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Abstract

The development and implementation of nanomaterials for a variety of clinical
applications is increasing as their utility in improving healthcare is demonstrated.
However, consideration must be given to appropriate pre-clinical testing to fully
translate these materials into clinical use.

A library of 22 nanomaterials, both commercially available and those devel-
oped in-house, were subject to an assay cascade forming the basis of a preclin-
ical in vitro assessment which utilised a broad and widely accessible range of
techniques. The library comprised numerous material classes; metallic (gold, sil-
ver, iron oxide, titanium dioxide, zinc oxide), non-metal (silica), and polymeric
(polystyrene, liposome, emulsion, polydendron), varying in manufacturer stated
particle size, charge, and functionalization.

Chapter 2 details characterisation of the size and zeta potential of the nanoma-
terial library in biologically relevant matrices. When combined with information
provided by the manufacturers regarding stabilisation and surface functionaliza-
tion, where available, these measures allowed associations to be made between
nanoparticle physicochemical characteristics and the biological effects observed
in subsequent chapters. Inherent optical properties of the nanomaterials in bi-
ologically relevant matrices and sample sterility were assessed in order to gain
indication of any potential incompatibility with subsequent assays.

The haemocompatibility of nanomaterials is of primary concern in their appli-
cation as nanomedicines, especially those administered intravenously. The work
presented in Chapter 3 assessed the haemolytic potential of a subset of nano-
materials. All nanomaterial treatments were found to result in a lower level of
complement activation compared to untreated cells, and cases of prolongation or
reduction in plasma coagulation times via the extrinsic, intrinsic, and common
pathways were observed.

In Chapter 4 the impact of nanomaterials on pro-inflammatory and anti-
inflammatory cytokine secretion by primary immune cells demonstrated. Endo-
toxin was shown to exacerbate the inflammatory responses toward tested nanopar-
ticles. Further to this; the inhibitory effects of polystyrene nanoparticles to
caspase-1 activity described in the literature was confirmed. Proliferation in
primary human leukocytes was shown to be significantly affected by certain nano-
materials where particular variants of silver and silica nanoparticles had antipro-
liferative and proliferation effects, respectively.

The work presented in Chapter 5 describes the development and utilisation of
screening methodologies to investigate the influence of nanomaterials on reactive
oxygen species generation, reduced glutathione and autophagy. Trends have been
observed within assays e.g. the reduction in levels of autophagy appears to be
linked with surface charge of the nanomaterials with the most negative having
the greatest effect.

Chapter 6 details the application of methods optimised throughout the thesis
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Abstract

to perform a preclinical assessment on a novel class of polymeric nanomaterial
termed polydendrons. It was found that variants composed of a higher ratio of
novel G2’ initiator demonstrated less immunogenic potential than those with an
equal ratio to PEG.

Given the heterogeneity of engineered nanomaterials in terms of composition,
coatings, particle characteristics and functionalization, the identification of par-
ticle characteristics that influence biological interactions will enable the rational
design of future nanomaterials. The work presented in this thesis has found
associations between nanoparticle characteristics and biological effects. These in-
cluded concentration-dependent correlations between zeta potential and reactive
oxygen species generation, and nanoparticle size and autophagic impact. Addi-
tionally, the need for thorough physicochemical characterisation, to generate as
many parameters as possible for determining structure-activity relationships, has
been presented. The methodologies used, and developed, throughout this thesis
will aid future preclinical characterisation of novel nanomaterials.
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Chapter 1

1.1 Introduction

The application of nanotechnology in a healthcare setting offers many novel ther-

apeutic strategies that may improve existing therapies and diagnostics. Advan-

tages of nanoformulation that can translate to medical benefits include improve-

ments in bioavailability, biodistribution, and reduced clearance compared to con-

ventional formulations (Alexis et al., 2008; Szabo and Zelko, 2015). Additionally,

there are opportunities for targeted therapies which may reduce undesirable ef-

fects in cell types other than those targeted, and co-formulation that may alleviate

pill burden in diseases such as HIV (Giardiello et al., 2016) as well as simplifying

dosing strategies by enabling parenteral long-acting depot formulations (Tatham

et al., 2015). While there are obvious advantages to the application of nan-

otechnology, it is entirely possible that it will not be a case of “one size fits all”

and that certain drugs may only be compatible with particular nanoparticles or

nanoformulation strategies (Rannard and Owen, 2009), or routes of administra-

tion (Vauthier, 2012).

1.2 Physicochemical characterisation of

nanoparticles

Size, charge, hydrophobicity, and shape are some of the numerous characteristics

that can be tuned by the manufacturing process. Modification of these properties

can alter the biological interactions of these nanoparticles. For example, uptake

of gold nanoparticles by epithelial cells has been shown to be size-dependent

where the rate increases with decreasing nanoparticle size (Yao et al., 2015), and

hydrophobic modification of glycol chitosan nanoparticles increased uptake in

cancer cells (Nam et al., 2009).

Options for characterisation of physicochemical characteristics are dictated by
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the preparation state of the material, and the desired characteristic to be eval-

uated (Thompson, 2010). Size, surface area, and morphology (shape and aspect

ratio), can be measured directly by microscopy (scanning electron microscopy

SEM, transmission electron microscopy TEM), however these methodologies re-

quire deposition to substrate for those materials in the liquid phase (Stratton

et al., 2013). Size measurements may also be performed in suspension by dy-

namic light scattering (DLS) (Kato et al., 2009) or tunable resistive pulse sensing

(TRPS) (Izon Science, 2015). Turbidity spectroscopy is used to assess sample

turbidity (Elsayed and Cevc, 2011). Nanoparticle surface charge in suspension is

determined by zeta potential (Clogston and Patri, 2011). Surface hydrophobicity

is most commonly assessed by contact angle measurements and hydrophobic in-

teraction chromatography (Murthy and Harivardhan Reddy, 2006). Crystallinity

can be assessed via X-ray diffraction (XRD) (Ingham, 2015), and porosity by

small angle X-ray scattering (Li et al., 2016), or gas adsorption (Zielinski and

Kettle, 2013).

Efforts by the National Cancer Institute’s Nanotechnology Characterisation

Laboratory (NCI-NCL) (http://ncl.cancer.gov/) to associate nanomaterial physic-

ochemical characteristics and biocompatibility have been summarised in Figure

1.1. Since the inception of the NCI-NCL in 2004 more than 300 different particles

have been characterised (National Cancer Institute, 2013). From this extensive

dataset it has been observed that smaller, more positively charged nanoparticles

are associated with a higher potential for cytotoxicity due to surface reactivity,

while those of negative charge are cleared by the renal and, potentially, biliary

systems. Larger hydrophobic nanoparticles, with low solubility, are subject to

recognition and clearance by the reticuloendothelial system while those more hy-

drophilic (soluble) are associated with enhanced permeability and retention in

tissues (McNeil, 2009).

The heterogeneity of nanoparticles being produced by various inventors is a
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Chapter 1

major advantage as it provides many options for the treatment of a broad range

of diseases by enabling numerous strategies for the formulation of therapeutic

compounds as well as allowing interactions with other therapeutics. However,

the broad spectrum of nanoparticle classes, in addition to their physicochemi-

cal characteristics, presents a challenge in determining their biocompatibility. A
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Figure 1.1: Qualitative representation of trends in relationships between inde-
pendent variables of particle size (neglecting contributions from attached coat-
ings and biologics), particle zeta potential (surface charge), and solubility with
the dependent variable of biocompatibility - which includes the route of uptake
and clearance (shown in green), cytotoxicity (red), and RES recognition (blue).
Acronyms used; RES - reticuloendothelial system, EPR - enhanced permeability
and retention. Adapted from “Nanoparticle therapeutics: A personal perspec-
tive,” by S. E. McNeil, 2009, Wiley Interdisciplinary Reviews - Nanomedicine
and Nanobiotechnology, 1(3), p. 268. Copyright 2009 by John Wiley and Sons.
Adapted with permission.
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balance should be found between nanoparticle characteristics that favour the de-

livery of therapeutic agents while simultaneously not resulting in issues around

either toxicity or undesirable interactions with the immune system. Clearly there-

fore, a rational understanding of how nanoparticle physical properties relate to

their biological interactions is required for the efficient development of beneficial

materials.

1.3 Interaction of nanoparticles with

components of the immune system

There are many well-described interactions of nanoparticles with cells of the im-

mune system (Zolnik et al., 2010). The reasons for these interactions may be

linked to specific nanoparticle properties, in particular size and charge (Frohlich,

2012; Kettler et al., 2014; Shang et al., 2014). Many nanoparticles are within the

size range of microorganisms that the immune system has evolved to recognise,

with many signatures in common with invading pathogens (Petersen et al., 2011).

The mechanism by which nanoparticles are internalised varies between im-

mune cell types. As demonstrated in Figure 1.2 this includes, but is not limited to,

phagocytosis, endocytosis, passive uptake, and receptor-interaction based uptake.

Phagocytosis (a process performed by macrophages, monocytes, neutrophils, den-

dritic cells, and mast cells) leads to the capture and internalisation of nanopar-

ticles in phagosomes which in turn undergo lysosomal degradation (Luzio et al.,

2007). While this is an effective tool for removing biological pathogens, not all

nanoparticles are so simply degraded. The pH environment of the phagolysosome

may affect the stability of the nanoparticle leading to the release of metallic ions

in the case of metallic nanoparticles (Knaapen et al., 2004). These in turn can dis-

rupt mitochondrial processes and generate reactive oxygen species (ROS) through

Fenton type reactions (Knaapen et al., 2004). A similar effect can be observed in
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clathrin-mediated (McMahon and Boucrot, 2011) and clathrin-independent endo-

cytosis (Kirkham and Parton, 2005) where degradation occurs following lysosomal

fusion with the endosome. Caveolin-mediated endosomes bypass lysosomal degra-

dation (Benmerah and Lamaze, 2007) the mechanism of which is being explored

for its potential for intracellular delivery of nanomaterials (Medina-Kauwe, 2007).

Nanoparticles which translocate passively through cellular membranes (Treuel

et al., 2013), or those which escape phagocytic/endocytic vesicles are then able

to come in direct contact with intracellular proteins and organelles (Krpetic

et al., 2014), with the potential to interact in a detrimental manner. Internalised

nanoparticles have been shown to interfere with the normal autophagic process

(Huang et al., 2015) and also as a result modulate the NLRP3 inflammasome

(Zhong et al., 2016).

Interaction with cell surface receptors leads to the internalisation of nanopar-

ticles, usually displaying surface motifs such as proteins and polysaccharides

(Salatin and Yari Khosroushahi, 2017), although this is not a necessity as scav-

enger receptors have been shown to bind polystyrene via the action of macrophage

receptor with collagenous structure (MARCO) (Kanno et al., 2007). Activation

of receptor associated pathways as a result of the binding of nanoparticles has

been demonstrated where Toll-like receptor 4 (TLR4) signal transduction followed

binding of polyethylenimine-coated SPIONs (Mulens-Arias et al., 2015).

In addition to size and charge, hydrophobicity has also been demonstrated

to be an important factor in the recognition of nanoparticles by the immune

system (Moyano et al., 2012). As many intracellular danger-associated molecular

patterns (DAMPs) are hydrophobic in nature their release upon cellular damage

signals to the immune system to respond to this damage (Seong and Matzinger,

2004). Hydrophobic nanoparticles have been shown to more likely induce an

immune response than those which are less hydrophobic (Shima et al., 2015).

As more classes/types of nanomaterials are created it is entirely possible that
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further nanoparticle characteristics will be recognised for their association with

biocompatibility, and nanoparticles may be stratified for their interactions with

the immune system by class-specific properties.

1.3.1 Nanoparticle involvement in cytokine generation

The in vitro cytokine production by human peripheral blood mononuclear cells

in response to nanomaterials has been shown to have good correlation to that ob-

served in vivo (Dobrovolskaia and McNeil, 2013). As such, the use of cytokines

as biomarkers of immunomodulatory properties of nanomaterials has been pro-

posed and utilised by numerous sources (Dobrovolskaia, 2015; Dobrovolskaia and

McNeil, 2013; Elsabahy and Wooley, 2013). A series of cytokines have been estab-

lished as being particularly pertinent in monitoring immune responses towards

nanoparticles, namely TNFα, IL1β, IL-6, IL-8, IL-10, IL-12, IFNα, IFNβ, and

IFNγ (Potter et al., 2015).

Cytokines are a class of growth factor proteins used in extracellular signalling,

which trigger differentiation or proliferation following binding to cell-surface re-

ceptors. The actions of numerous cytokines overlap one another, and can act

synergistically, or antagonistically. Their roles in modulating immune responses,

homeostasis, and inducing the expression of growth factors, imparts a high de-

gree of biological importance. Four cytokines, namely IFNγ, TNFα, IL-1β, and

IL-10, were chosen for assessment in Chapter 4, informed by their presence in the

literature for their implications with nanomaterials (Dobrovolskaia, 2015; Do-

brovolskaia and McNeil, 2013; Elsabahy and Wooley, 2013), and being a subset

of those assessed in the standard protocol developed by the NCI-NCL for their

assessments of nanomaterials (Potter et al., 2015).

IFNγ, a type II interferon, is a cytokine with pleotropic immune activity

inducing both proinflammatory and antiinflammatory responses (Teixeira et al.,

2005). It is known to be involved in both innate and adaptive immune responses

8
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Figure 1.2: Routes of entry determine nanoparticle intracellular effects, and ex-
tracellular consequences. Internalisation of nanomaterials includes, but is not
limited to, endocytosis (including phagocytosis), receptor-binding, and passive
uptake. The fate, and associated intracellular effects of these mechanisms in-
clude lysosomal degradation, generation of by-products such as metal ions which
can induce reactive oxygen species generation in mitochondria, direct interference
with intracellular processes involved in autophagy and the NLRP3-inflammasome,
and activation of intracellular cascades such as the scavenger receptor pathway,
TLR4 cascade, MAPK pathway, and the lectin pathway. Extracellular conse-
quences include exocytosis, cytokine secretion, and complement activation. Ef-
fects displayed here are non-exhaustive, some being ubiquitous and not limited
to individual modes of entry to the cell. Acronyms used; ROS - reactive oxy-
gen species, NLRP3 - NLR family pyrin domain containing 3, TLR4 - Toll-like
receptor 4, MAPK - mitogen activated protein kinase.
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against pathogens, tumors, in addition to maintaining immune homeostasis (Lin

and Young, 2013). Primary activities include priming macrophages for enhanced

microbial killing and inflammatory activation by TLRs (Su et al., 2015), and

upregulating MHC class I (Zhou, 2009) and class II (Giroux et al., 2003) antigen

processing and presentation. IFNγ is produced primarily by natural killer (NK)

cells, T cells and NKT cells (Lin and Young, 2013), as well as macrophages

(Darwich et al., 2009), B cells (Ballesteros-Tato et al., 2014), innate lymphoid

cells (ILCs) (Cella et al., 2014). Its receptor is expressed ubiquitously by almost

all cell types (Lin and Young, 2013). Induction of IFNγ has been demonstrated

by human peripheral blood mononuclear cells in response to 8 nm zinc oxide

nanoparticles (Hanley et al., 2009).

TNFα is a proinflammatory cytokine primarily secreted by activated macro-

phages and induces expression of other autocrine growth factors, and induces

signalling pathways that lead to proliferation or death (Papadakis and Targan,

2000). It also increases the permeability of local vascular epithelia to enhance

the movement of cells and soluble molecules into tissues (Hofmann et al., 2002).

TNFα activates NF-ΚB (Schutze et al., 1995; Wajant et al., 2003), which is in

turn involved in the transcriptional activation of inflammatory-related genes in

response to TNF and IL-1 (Baud and Karin, 2001), LPS (Andreakos et al., 2004),

and reactive oxygen species (Morgan and Liu, 2011). Silica nanoparticles have

been shown to induce generation of TNFα in Huh7 cells (Christen and Fent,

2016).

IL-1β is produced by activated macrophages and other antigen presenting

cells. In vivo it generates co-stimulation of antigen presenting cells (APCs) and

Th17 cells, resulting in inflammation (Garlanda et al., 2013). In addition to its

role as a mediator of the inflammatory response, IL-1β is involved in a variety of

cellular activities including cell proliferation, differentiation, and apoptosis. It is

produced as a proprotein which is proteolytically processed to its active form by
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caspase 1 (CASP1/ICE) (Denes et al., 2012). In the THP1 cell line, 15 nm silver

nanoparticles have been found to generate secretion of IL-1β by causing increased

activity of caspase-1, and the NLRP3 inflammasome (Simard et al., 2015).

Generation of proinflammatory cytokines IL-1β and IL-18 (Latz et al., 2013)

through immune stimulation can lead to the generation of oxidative stress. This

is the primary mode of toxicity for some nanomaterials following accumulation in

cells as demonstrated in Figure 1.2. Release of these cytokines requires activation

of the NLRP3 inflammasome (Sorbara and Girardin, 2011).

Inflammasomes are a group of cytosolic protein complexes within the innate

immune system which play a role in regulating inflammation in response to var-

ious stimuli (Guo et al., 2015). The innate immune system utilises a series of

pattern recognition receptors (PRRs) in order to differentiate pathogenic or host-

derived signals of cellular stress. PRRs are expressed by epithelial cells, mono-

cytes, macrophages, dendritic cells, neutrophils, as well as adaptive immune cells

(Mogensen, 2009). PRRs include Toll-like receptors (TLRs), involved in early in-

nate immune response to pathogens, and cytoplasmic NOD-like receptors (NLRs)

which detect conserved microbial factors termed pathogen-associated molecular

patterns (PAMPs) as well as host-derived DAMPs (Mogensen, 2009). NLRs are

involved in the assembly of inflammasomes in response to PAMP/DAMP recogni-

tion Davis et al. (2011). Subtypes include NLRP3, NLRC4, absent in melanoma

2 (AIM2), and non-canonical inflammasomes (Guo et al., 2015). The nomencla-

ture of inflammasome subtypes relate to the protein scaffold upon which the in-

flammasome forms, while the functional basis revolves around a sensory molecule,

the adapter protein apoptosis-associated speck-like protein containing caspase re-

cruitment domain (ASC), and caspase 1 (Guo et al., 2015). Of all inflammasome

subtypes NLRP3 has been subject to the most detailed characterisation (Wree

et al., 2014). Its activation by endogenous and exogenous danger signals leads

to the release of mature IL-1β via the action of caspase-1 (Franchi et al., 2009).
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Formerly known as IL-1β converting enzyme (ICE), the activation of caspase-1

is known to be the rate-limiting step in inflammation due to IL-1β or IL-18 (Jo

et al., 2016). In its active form, caspase-1 is a cysteine protease involved in the

processing and maturation of these cytokines. Endogenous signals which activate

NLRP3 include extracellular uric acid and adenosine triphosphate (ATP), and

cytosolic DNA (Jo et al., 2016). Alongside these, the NLRP3 inflammasome is

activated by crystalline particles. Such particles play roles in the pathogenesis

of diseases including gout (Kingsbury et al., 2011), Altzheimer’s (Heneka et al.,

2013), and respiratory conditions such as asbestosis and silicosis (Dostert et al.,

2008). This mechanism has been exploited as a target of vaccine adjuvants such

as alum (Eisenbarth et al., 2008). Nanoparticles, including silica and titanium

dioxide, have been shown to activate the NLRP3 inflammasome in macrophages

through release of ATP (Baron et al., 2015).

Secretion of IL-10 is a hallmark of dendritic cells (DC) (Saraiva and O’Garra,

2010), macrophages (Ouyang et al., 2011), and regulatory (TR1-like) T cells

(Wraith, 2016). IL-10 promotes differentiation of B cells to IL-10-secreting regula-

tory B cells (Wraith, 2016). Among functions including maintaining homeostasis

of tissue epithelial layers facilitating tissue-healing process in injuries resulting

from infection or inflammation, IL-10 plays a role in repressing proinflamma-

tory responses (Ouyang et al., 2011). This anti-inflammatory function results

from inhibition of APCs to present MHC class II, and costimulatory molecule

B7-1/B7-2 expression (Couper et al., 2008). Additionally, IL-10 production by

TR1-like cells can inhibit activation of helper (CD4+) and cytotoxic (CD8+) T

cells that are specific for other peptides presented by the same APC, thereby me-

diating bystander suppression (Couper et al., 2008; Wraith, 2016). Treatment of

macrophages with iron oxide nanoparticles for 24 hours has been shown to result

in IL-10 production (Rojas et al., 2016).

It should be noted that the mechanisms of nanoparticle recognition and pre-
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sentation to the immune system differs from that of graft rejection. Allograft re-

jection is primarily mediated by T lymphocytes (Ingulli, 2010). T cells, through a

process termed allorecognition, recognize non-host major histocompatibility com-

plex (MHC) molecules via direct or indirect pathways (LaRosa et al., 2007). In

the direct pathway, alloreactive T cells recognize intact donor MHC molecules on

APCs in the transplanted tissue (Larsen et al., 1990). In the indirect pathway,

alloreactive T cells are presented with antigen derived from donor MHC molecules

by antigen presenting cells in a self-restricted manner (Game and Lechler, 2002).

Graft damage incurs following näıve T cells activation and transition to effector

T cells by mechanisms that include direct T cell cytotoxicity and classic delayed-

type hypersensitivity (Le Moine et al., 2002).

Biomedical implants, through the process of implantation, result in physi-

cal damage which leads to blood-material interactions, provisional matrix for-

mation, acute inflammation, chronic inflammation, granulation tissue develop-

ment, foreign body reaction, and fibrosis/fibrous capsule development (Anderson

et al., 2008). The provisional matrix describes the initial thrombus at the tissue-

material interface (Anderson et al., 2008). Chemoattractants, cytokines, growth

factors, mitogens, and other bioactive agents present in the provisional matrix

is conducive with inflammatory and wound healing responses (Anderson et al.,

2008).

The mechanisms of degradation of metallic implants, specifically metal-on-

metal prostheses and metal-on-polyethylene, has been found to involve the gen-

eration of nanoparticles (Vasconcelos et al., 2016). Commonly used hip prosthe-

ses are primarily composed of metallic alloys, most commonly cobalt-chromium-

molybdenum and titanium-aluminum-vanadium, and their bearing surface can

be composed of different materials (Vasconcelos et al., 2016). It has been shown

that, depending on the particular materials composing the implant, at the site

of wear can generate metallic nanoparticles in the <100 nm range (Billi et al.,
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2012; Brown et al., 2007; Catelas et al., 2003; Doorn et al., 1998; Germain et al.,

2003; Pourzal et al., 2011), and polymeric particles of 100-10000 nm Tipper et al.

(2006). The origination of nanoparticles from implants is not limited to the com-

mon site of wear, as evidenced by titanium-based particles produced by different

regions of hip implants such as the femoral stem and/or acetabular cup Milosev

and Remskar (2009).

1.3.2 Nanoparticle antigenicity

Currently, nanoparticle antigenicity is not well understood. Antigenicity involv-

ing plasma B cells generating antibodies against the nanoparticles, or functional

groups, such as peptides, attached to the particle surface has been described

(Dobrovolskaia and McNeil, 2007). Since nanoparticle specific antibodies should

only influence the effectiveness of particle-based products, for example by modu-

lating cellular interactions or biodistribution, it is more probable that antibodies

which recognise the functional ligands present on the nanoparticle surface may

cause similar clinical results as those seen for biotechnology-derived therapeutic

proteins (Kivisakk et al., 2000; Swanson et al., 2004). Nanoparticle-specific an-

tibody formation has been reported. In particular these relate to monoclonal

antibody responses to C60 fullerenes, as well as an instance of polyclonal C60-

specific antibodies with a subpopulation shown to cross-react with C70 fullerene

(Braden et al., 2000; Chen et al., 1998). PEGylation (the functionalization of

nanoparticles with polyethylene glycol chains) has been used to reduce their im-

munogenic potential, but the production of anti-PEG antibodies has also been

reported (Ishida et al., 2007; Wang et al., 2007).

Unwanted immune stimulation is a hurdle for the development of some nano-

materials, but it does also present an opportunity for the formulation of certain

therapeutics, in particular, antigens to be utilised in vaccines. The use of nanopar-

ticles as adjuvants has been reported by numerous studies (Zhao et al., 2014).
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Poly(methyl methacrylate) (PMMA) nanoparticles have been shown to induce

long-lasting antibody titres in response to HIV-2 whole virus vaccine in mice,

and the antibody response was 100-fold higher than that of standard adjuvant

(Stieneker et al., 1991). Similarly, the levels of specific antibodies produced in

the immunisation of animals with colloidal gold conjugated antigens were higher

than that generated by other adjuvants while the amount of antigen required to

achieve this response was an order of magnitude lower than for immunisation with

Freund’s complete adjuvant (Dykman et al., 2004). The reason for this may be

due to greater accumulation of the antigen in cells such as dendritic cells allowing

greater presentation of the therapeutic antigen to the adaptive immune system.

Concerning the formulation of vaccines, the generation of inflammation is de-

sirable when nanoparticles are targeted to dendritic cells (DCs). DCs have the

ability to induce and modulate the immune response. DCs play a key role in

the activation of T cells and as such are a principal target for most vaccines.

Utilization of “danger signals” in vaccine design (DC activating non-host signals)

combined with specific antigen to induce the desired immune response type is a

common approach (Reddy et al., 2006). As mentioned earlier, nanoparticle size

can govern their immunostimulatory profile with plasmacytoid DCs (pDCs) show-

ing preferential uptake of nanoparticles <200 nm, resulting in the production of

IFNα while phagocytosis by monocytic DCs (mDCs) of 500-1000 nm particles in-

duced TNFα (Rettig et al., 2010). Similarly, gadolinium containing nanoparticles

have been reported to possess antitumor activity resulting from their ability to

induce the maturation of immature DCs (Yang et al., 2010). Stimulation of DCs

by TMC-TPP nanoparticles has been shown to induce differentiation of T cells

to inflammatory Th17 (Keijzer et al., 2013). The opposite effect was observed

following DC stimulation by PLGA nanoparticles where not only was TH17 dif-

ferentiation inhibited but also differentiation of näıve CD4+ T cells to FoxP3+

T cells (Treg cells) was observed. The anti-inflammatory role which Treg cells
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play in self-antigen tolerance, inhibition of T cell response, cytokine release, as

well as NK and CD4+ cell activity would not be favourable for a vaccine-based

application. Determination of the favourable characteristics of nanoparticles that

are correlated with the desired effect is vital to the development of future nano-

materials for use as a vaccines.

The application of knowledge regarding the biodistribution and accumulation

of nanomaterials in vivo (Almeida et al., 2011) is highly important when interpret-

ing immunogenicity not only regarding use as adjuvants but for general safety.

Passive and active accumulation of nanoparticles in multiple sites increase the

concern of off-target toxicity. The relationship between administration route and

biodistribution of nanoparticles is intrinsically linked. However, there exists no

thorough evaluation of route of administration, and how it relates to cytotoxicity

following tissue accumulation.

1.4 Interaction of nanoparticles with

components of the blood

Many nanoparticles have been shown to influence a number of haematological

components and processes (Ilinskaya and Dobrovolskaia, 2013). In their normal

homeostatic role platelets facilitate coagulation and are involved in the thrombo-

genic process to stop bleeding (Packham, 1994). Platelet activation and thrombus

formation have been found to occur in response to nanomaterials in the systemic

circulation (Radomski et al., 2005). Platelet aggregation following the activa-

tion of glycoprotein integrin receptor GPIIb/IIIa has been observed for both

single walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes

(MWCNT) in a particle size-dependant manner (Radomski et al., 2005). Platelet

activation has also been strongly associated with GPIIb/IIIa activation by silver

ions released from silver nanoparticles (Jun et al., 2011; Laloy et al., 2014) and in-
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creased intracellular calcium ion concentration resulting from silica nanoparticles

(Nemmar et al., 2015). The interaction of charged polystyrene latex nanoparticles

has been found to cause physical bridging of platelets in a GPIIb/IIIa indepen-

dent manner (Smyth et al., 2015).

The properties of size, charge, functionalization with charged surface groups

such as amines, and hydrophobicity can determine thrombogenicity of nanopar-

ticles resulting from altering prothrombin times and activated partial thrombo-

plastin times, as well as the mechanism by which coagulation is induced (Ilin-

skaya and Dobrovolskaia, 2013). Anionic polystyrene latex nanoparticles caused

platelet aggregation via upregulation of adhesion receptors, while their cationic

counterparts initiated platelet aggregation following destabilization of cell mem-

brane integrity (McGuinnes et al., 2011). Amine-functionalized nanoparticles

reduced thrombin production via depletion of factors VII and IX in a size depen-

dent manner (Oslakovic et al., 2012). It has been shown that these characteristics

hold greater influence over thrombogenicity than does the basic composition of

a given material (Ilinskaya and Dobrovolskaia, 2013). Cationic, but not neutral

or anionic, PAMAM dendrimers cause platelet aggregation (Dobrovolskaia et al.,

2012b; Jones et al., 2012). The size-dependence of polystyrene nanoparticles to

cause coagulation has been suggested because 220 nm but not 24 nm particles

exhibited this effect (Oslakovic et al., 2012).

A number of techniques can be utilised for the assessment of coagulation.

These include clot-based tests, chromogenic assays, direct chemical measure-

ments, and ELISAs (Bates and Weitz, 2005; Walenga and Hoppensteadt, 2004).

Of these, clot-based and chromogenic assays are used commonly applied clinically

and in the assessment of material impact on coagulation (Bates and Weitz, 2005).

The methodology chosen for nanomaterial assessment in Section 3.2.2.2 is con-

sistent with the protocol forming part of the assay cascade used by the National

Cancer Institute’s Nanotechnology Characterisation Laboratory in their assess-
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ments of nanomaterials (Neun et al., 2015b). This format of testing separately

assessed coagulation times via the extrinsic (prothrombin time - PT), intrinsic

(activated partial thromboplastin time - APTT), and common (thrombin time

- TT) pathways in order to elucidate where, if present, in these pathways any

changes occurred as a result of treating plasma with nanomaterials. For the pur-

poses of this evaluation the common coagulation pathway is able to be assessed

in isolation using thrombin to induce coagulation, however biologically the com-

mon pathway is not exclusive from either extrinsic nor intrinsic pathways. Under

normal physiological conditions it is not directly activated in the manner that the

intrinsic is initiated by binding of Factor XII to anionic or hydrophilic surfaces

(Vogler and Siedlecki, 2009), or the extrinsic through vascular injury (Owens and

Mackman, 2010). Activation of this pathway provides a means in which to further

probe any pro- or anticoagulant effects of nanomaterials. Prolongation or reduc-

tion of coagulation times via the extrinsic or intrinsic pathways in the absence of

effect on the common pathway means that materials are acting upon coagulation

factors necessary earlier in the cascade. In the case of nanomaterials altering

coagulation times via extrinsic/intrinsic pathways and the common pathway it

can be elucidated that the effect is based on nanomaterial action upon multiple

targets. Directly assessing coagulation time via the common pathway enables

confirmation of these observations.

1.4.1 Nanoparticle-protein corona

The inherent physicochemical characteristics of nanoparticles, when introduced

to a biological or any protein containing matrix, result in nanoparticle-protein

associations termed the corona. The corona is composed of layers of adsorbed

proteins and molecules to the nanoparticle surface providing the interface which

directly interacts with the biological system (Walczyk et al., 2010). As exem-

plified in Figure 1.3a, the composition of the corona changes over time (Tenzer
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et al., 2013). Known as the Vroman effect; proteins present in high concentration

but of low affinity, such as albumin and fibrinogen, will exchange with those of

higher affinity over time (Vroman et al., 1980). A great deal of effort has been put

into the characterisation of coronal composition (Tenzer et al., 2013), as well as

elucidation of the kinetics, affinities, and stoichiometries of nanoparticle-protein

association and dissociation (Cedervall et al., 2007). These are areas of impor-

tance as it is the corona that governs the biological distribution and fate of the

nanoparticle (Aggarwal et al., 2009; Gunawan et al., 2014), and understanding of

this effect may assist in the rational design of nanomaterials.

Coronal formation has the potential for detrimental effects on the nanopar-

ticle’s structure and function. Highlighted in Figure 1.3a; protein binding has

been shown to accelerate the dissolution of zinc oxide, cadmium selenium quan-

tum dots, iron oxides, aluminium oxides and oxyhydroxides (Xia et al., 2008),

resulting in the release of metallic ions which in turn may result in the generation

of reactive oxygen species. Reconstruction of the surface crystalline structure

through energy release following protein binding has been shown as a potential

mechanism, extrapolating work by Gilbert et al. on zinc sulphide nanoparticles

(Gilbert et al., 2004). Opsonization of the nanoparticle surface is known to reduce

the circulation time of nanoparticles by enhancing uptake by the RES (Chonn

et al., 1992), or forming a “molecular signature” (Aggarwal et al., 2009) marking

the nanoparticles for uptake and clearance by immune cells (Goppert and Muller,

2005).
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Figure 1.3: The nanoparticle-protein corona constitutes a primary nano-bio in-
terface determining nanoparticle function and fate in biological systems. (a)
Nanomaterial physicochemical characteristics associated with corona formation
in a biological environment including size, charge, hydrophobicity, and surface
functionalization Protein association/disassociation rates, competitive binding
interactions, and the protein composition of the nanoparticle environment cause
dynamic changes in coronal composition. (b) Potential modulations in protein
structure and function resulting from nanoparticle surface interaction which may
generate adverse biological effects contributing to disease pathogenesis. Coloured
symbols represent charged, lipophilic, conformationally flexible proteins, catalytic
enzymes with sensitive thiol groups, and fibril forming proteins. Adapted from
“Understanding biophysicochemical interactions at the nano-bio interface,” by A.
E. Nel, L. Mädler, D. Velegol, T. Xia, E. M. Hoek, P. Somasundaran, F. Klaessig,
V. Castranova, M. Thompson, 2009, Nature Materials, 8(7), p. 547. Copyright
2009 by Nature Publishing Group. Adapted with permission.
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Adhesion of proteins to the nanoparticle surface has been shown to impart

conformational changes of the proteins leading to exposure of cryptic epitopes

(Figure 1.3b) which may result in possible detection as non-self (Nel et al., 2009).

Such conformational changes may result in a loss of enzyme activity, as exem-

plified by the interaction of silica nanoparticles with lysozyme (Vertegel et al.,

2004).

The effect of protein on the colloidal stability of a nanoparticle suspension is

known to vary, either sterically stabilising or destabilising leading to aggregation,

depending on parameters including nanoparticle physicochemical characteristics

and the composition of the medium (Moore et al., 2015). Establishment of the

protein corona has been shown to reduce the haemolytic potential of nanomate-

rials by negating the effects of strong surface charge (Martinez et al., 2015; Paula

et al., 2012; Tenzer et al., 2013).

1.5 Links between immunological and

haematological systems

Immunological and haematological systems do not function in isolation and have

evolved to work cooperatively to both detect infection and ensure resolution of

the response. There are a number of examples of how nanoparticles interact with

one system, which in turn activates the other.

1.5.1 Leukocyte pro-coagulant activity

Leukocytes play key roles in the regulation of thrombin formation (Bouchard

and Tracy, 2003) having an influence over inflammation, wound healing, and

atherosclerosis. Monocytes and neutrophils are recruited by activated platelets

at sites of thrombogenesis (von Bruhl et al., 2012). This is achieved via recogni-
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tion of P-selectin on the activated platelet by leukocyte P-selectin glycoprotein

ligand (PSGL)-1 resulting in conformation changes in β2 integrins (Totani and

Evangelista, 2010) leading to potent procoagulant activity. Induction of tissue

factor synthesis, the presence of which is necessary for the production of thrombin,

leads to thrombus formation (Niemetz, 1972).

Contamination of materials can have a great effect on the pro-coagulant ac-

tivity of leukocytes. It has been shown that the presence of endotoxin confers

leukocytes with considerable procoagulant activity (Niemetz and Fani, 1971).

Contamination of nanomaterials by endotoxin may cause false positives in many

immunological assays and it has been demonstrated that cationic PAMAM den-

drimers enhance the procoagulant activity induced by endotoxin (Dobrovolskaia

et al., 2012b; Ilinskaya and Dobrovolskaia, 2014).

1.5.2 Complement activation

The complement system is a vital component of the innate immune system with

functions involved in homeostasis, pathogen recognition, and determining the

appropriate immune response be it innate or adaptive (Dunkelberger and Song,

2010). It is a multicomponent system made up of over 30 membrane-associated

and soluble proteins (Sarma and Ward, 2011).

Complement component C3 plays a central role in the activation of comple-

ment system. Its activation is required for the classical, lectin, and alternative

pathways of complement activation (Freedman, 1987). Complement activation

results in C3 cleavage to C3a, an anaphylatoxin mediating chemotaxis and in-

flammation (Peng et al., 2009), and C3b fragments by C3 convertases (Aru-

mugam et al., 2006). C3b covalently binds to the activating surface participating

in the self-activation loop of complement activation via the alternate pathway

(Nesargikar et al., 2012). C3b may also bind to the C4b2a complex to form C5

convertase which cleaves C5 into C5a, an anaphylatoxin exerting multiple inflam-
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matory responses which include the recruitment of phagocytes (Sarma and Ward,

2011), and C5b (Song et al., 2000) in turn initiating formation of the membrane

attack complex (MAC) (Nesargikar et al., 2012). MAC, formed by the interaction

of C5b with C6, C7, C8 and C9, inserts into cell membranes creating functional

pores resulting in lysis of microbial cells or apoptosis (Morgan, 1999).

C3b activity is regulated by two-site cleavage by Factor I, in the presence of co-

factors Factor H or CR1, yielding inactivated C3b (iC3b) blocking the formation

of C3 and C5 convertase enzymes (Fraczek and Martin, 2010). The immunoas-

say used in Section 3.2.4 quantifies the iC3b present in plasma. By assessing

complement activation in this manner any form of modulation can be observed.

This methodology, when utilised as a preliminary screen, allows higher through-

put and reduction of time compared more laborious methodologies such as single

component activities or haemolytic assays (Kirschfink and Mollnes, 2003). The

utility of these assays still stand as they can be later used to further elucidate

any observed interactions in greater detail, as well as being used in tandem to

highlight and/or negate any potential nanoparticle-based interference. Nanopar-

ticles have been shown to activate the complement system following intravenous

injection (Peter and Moghimi, 2012). Opsonization of nanomaterials by iC3b can

lead to their recognition and internalization by phagocytic cells (Boraschi et al.,

2012), while this is not as efficient as opsonization by other active fragments of

C3 (Freedman, 1987).

Numerous studies have pointed towards complement activation being a con-

tributing factor in the development of hypersensitivity and anaphylaxis as a re-

sponse to the systemic presence of nanoparticles (Chanan-Khan et al., 2003; Do-

brovolskaia et al., 2008a; Zolnik et al., 2010). Hypersensitivity reactions have

been reported for the liposomal formulation Doxil (Szebeni et al., 2011), and

there is evidence that this is mediated by complement activation (Chanan-Khan

et al., 2003). It has been described that polymeric nanoparticles consisting of

24



Chapter 1

PEG-PL (block copolymers of poloxamer and poloxamine) can activate comple-

ment exclusively via the lectin pathway (Moghimi et al., 2015). This mechanism

is normally reserved for the recognition of repeating and charged motifs of certain

polysaccharides (Hollmig et al., 2009).

1.5.3 Platelet activation and immune stimulation

The link between platelet activation and immune stimulation is multifactorial and

double-edged. While thrombogenesis can influence immune stimulation, along

with various thrombogenic factors being able to inhibit or augment immune re-

sponses, the opposite is also true where immune stimulation increases thrombo-

genic potential. Proinflammatory cytokines and endotoxin induce tissue factor

production on leukocytes, which in turn initiates extrinsic coagulation via throm-

bin (FIIa) generation (Chu, 2011). Complement activation leads to enrichment of

platelet plasma membrane surfaces with negatively charged phospholipids which

have been shown to amplify coagulation (Sims et al., 1989).

Thrombogenic function is just one of the numerous activities which platelets

have within homeostasis. The involvement of platelets within immune stimu-

lation has gained recognition in recent years (Franco et al., 2015; Speth et al.,

2013). Platelets carry numerous receptors including TLRs, and express immuno-

modulatory molecules and cytokines (Li et al., 2012). An example of how nanopar-

ticles may cause immune stimulation via platelets has been demonstrated previ-

ously where multi-walled nanotubes were shown to induce the release of platelet

membrane microparticles capable of stimulating other immune cells (De Paoli Lac-

erda et al., 2011). Further studies are warranted on the interaction of platelets

and immune cells with respect to nanoparticle effects on both cell types.
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1.5.4 Haemolytic potential

The mechanisms of nanoparticle-mediated haemolysis are not yet fully under-

stood. Haemolysis is the result of damage to red blood cells and may be used

as a measure of cell viability in response to contact with materials in addition

to possibly leading to anaemia (Love et al., 2012b). Many studies currently ex-

ist which describe the haemolytic potential of various nanomaterials, while only

some suggestions concerning their mode of action (Dobrovolskaia et al., 2008a)

primarily membrane disruption via interactions with red blood cell membrane

phosphatidylcholine (Nash et al., 1966; Razzaboni and Bolsaitis, 1990). Charge

has been shown to strongly influence whether nanoparticles cause haemolysis.

This process has been related to the disruption of cell membranes via pore for-

mation following the integration of charged nanoparticles into existing membrane

defects (Leroueil et al., 2008). The potential for nanoparticles to become ionised

(Choi et al., 2011), surface groups (Nash et al., 1966; Razzaboni and Bolsaitis,

1990), and cationic charge seem to be parameters likely to have an effect. Ma-

terials which exhibit this trend include silica nanoparticles (Rabolli et al., 2010;

Zhao et al., 2011) as well as numerous others via the presence of unprotected

amines on the nanoparticle surface such as PAMAM (Domanski et al., 2004),

carbosilane (Bermejo et al., 2007), polypropylene imine (Agashe et al., 2007),

and polylysine (Shah et al., 2000) dendrimers, which have been associated with

erythrocyte damage in a dose dependent manner. The haemolytic potential of

silver nanoparticles has been well described in numerous sources (Chen et al.,

2015; Choi et al., 2011; Laloy et al., 2014). It has been demonstrated that with

increasing hydrophilicity the haemolytic potential increases (Saha et al., 2014).

The presence of a protein corona has been shown to have a protective effect,

and the haemolytic potential of gold nanoparticles featuring both hydrophobic

and hydrophilic surface functionalization was reduced (Saha et al., 2014). This
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effect has also been described by Tenzer et al. wherein the presence of protein

corona on silica nanoparticles negated their haemolytic activity as well as a re-

duced level of thrombocyte activation compared to pristine nanoparticles (Tenzer

et al., 2013).

1.6 Challenges in assessing the

biocompatibility of novel, engineered,

nanoparticles

1.6.1 Contamination

The potential for nanomaterial contamination is intrinsically linked to the associ-

ated manufacturing process. Bacterial endotoxin, or lipopolysaccharide (LPS), is

a contaminant that can be introduced to nanomaterials during the manufactur-

ing process or in handling which elicits a strong immune response upon exposure

(Smulders et al., 2012). LPS, a component of the outer membrane of Gram-

negative bacteria, activates B cells, monocytes, macrophages, and other APCs

via Toll-like receptor 4 (TLR4) and lymphocyte antigen 96 (MD2) (Bryant et al.,

2010). Recognition is enhanced by the accessory proteins lipopolysaccharide bind-

ing protein (LBP) and CD14 (Park and Lee, 2013). Activation of monocytes

and macrophages by LPS results in the release of cytokines and costimulatory

molecules including TNFα, IL-1β, IL-6, IL-12, and IL-23 (Arango Duque and

Descoteaux, 2014; Dobrovolskaia and Vogel, 2002). It has been shown that en-

dotoxin can exacerbate inflammatory responses to nanoparticles (Bianchi et al.,

2015; Cesta et al., 2010; Shi et al., 2010; Vallhov et al., 2006). LPS has been

demonstrated to have a proliferative effect on B cells Xu et al. (2008), and CD4

and CD8+ T cells in vivo (Tough et al., 1997). Variation in the structure of
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LPS exists between bacterial source Lukacova et al. (2008), and these can result

is varying modes of action. LPS from R. sphaeroides is a potent antagonist of

TLR4 signalling, and can be exploited as an assay control to negate any possible

endotoxin effect (InvivoGen, 2007).

As a result of the potent proinflammatory activity the presence of endotoxin

in nanomedicines whose administration to individuals in an already diseased state

leads to the question of how this, in combination with potential nanoparticle asso-

ciated immunomodulation, may affect an already compromised immune system.

Various methods of depyrogenation or purification may be employed for the

inactivation or extraction of endotoxin from biotechnology products, however,

not all may be suitable for nanomaterials (Dobrovolskaia and McNeil, 2012).

Depyrogenation via prolonged exposure to extreme temperature (≤30 minutes

at ≤200◦C), while highly effective in inactivating endotoxin on glassware and

tools used in nanomaterial synthesis, may not be tolerated by the nanomaterials

themselves especially if containing biological components, targeting ligands, or

drugs (Dobrovolskaia and McNeil, 2012). Other sterilization methods are known

to be incompatible with classes of nanomaterials, such as gamma irradiation

applied to silver colloids (Subbarao, 2012) or gold nanoparticles (Franca et al.,

2010).

The formulation of nanomedicines can represent complicated, multistep pro-

cesses often involving the use of volatile chemicals and reagents. These volatile

agents must be removed to prevent toxicity being generated by carry-over from

contaminants within the formulation process (Crist et al., 2013). The cytotoxic

analysis of a preparation of gold nanorods both pre- and post-purification has

demonstrated the effects which can result from residual manufacturing compo-

nents (Leonov et al., 2008). Removal of cetyltrimethylammonium bromide, a

cationic surfactant used in the production of nanorods, using polystyrenesul-

fonate resulted in the preparation having a “comparable toxicity to a standard
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phosphate buffer solution” when evaluated via MTT in a human nasopharyngeal

carcinoma cell line (Leonov et al., 2008). This observation has also been described

by some sources where the toxicological potential of carbon nanotubes has been

assessed (Kagan et al., 2006; Shvedova et al., 2003). The production of carbon

nanotubes requires catalysis by transition metals (Hofmann et al., 2009). Most

frequently these are iron, nickel, and copper. As free ions, these metals have been

shown to induce oxidative stress via the production of reactive oxygen species

(Figure 1.2) (Diabate et al., 2002; Voelkel et al., 2003). Chemical contamination

of this type has been detected in commercially available preparations of carbon

nanotubes where, following purification, the material was no longer deemed toxic

(Pulskamp et al., 2007).

1.6.2 Nanoparticle interference with assays

A number of in vitro assays have been adopted for use with nanomaterials (Love

et al., 2012a). Their translation to use in nanotoxicology is mainly due to their

track record of versatility, simplicity, and reproducibility. As has become ap-

parent in recent years; the appropriateness to apply these methodologies with

little consideration to how novel materials may lead to spurious assay outcomes

(Kroll et al., 2012). Determining the appropriateness of assays for this end is

complicated by the intrinsic complexity of nanoparticles. As such, suitable inhi-

bition/enhancement controls should be included in this analysis when possible.

Adsorption of protein to the surface of nanoparticles reduces the concentra-

tion of free protein available for quantification. The polarity of nanoparticles can

enhance or reduce their potential for binding proteins from a biological matrix.

This is particularly evident by the reduction in measurable IL-8 due to adsorption

to a titanium dioxide preparation (Kroll et al., 2012). In this study depletion of

recombinant IL-8 concentration in a cell-free system was observed via ELISA fol-

lowing 24 hours incubation with titanium dioxide nanoparticles. Similarly, TLR9
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and IL-1β binding to citrate-stabilized gold nanoparticles has been documented

(Sumbayev et al., 2013; Tsai et al., 2012). The ability of nanoparticles to interact

with, and inactivate enzymes is a consideration which reaches beyond the poten-

tial in vitro and in vivo effects. Numerous methods for testing the toxicity of

nanomaterials rely on enzymatic function. The potential for interaction dictates

that further considerations be made so as not to generate data which may not be

representative of the material but merely an artefact of experimental interference

(Maccormack et al., 2012). Few assays have been implicated with this form of

interference to date. One that has been brought to light is the LDH assay. Inacti-

vation of lactate dehydrogenase as a result of adsorption to nanoparticle surfaces

has been presented as a mechanism by which the LDH assay can produce results

which are not an accurate representation of nanoparticle action (Kroll et al., 2012;

Maccormack et al., 2012).

Studying the haemotoxic effects of nanomaterials lends the opportunity for a

number of methodological issues relating to the basic properties of nanoparticles

under investigation. Techniques applied to these studies have a high potential for

material-based interference. The turbidity of nanoparticle preparations is known

to interfere with platelet aggregometry, the principal of which relies on the optical

assessment of the decrease in turbidity due to platelet aggregation. A potential

solution for this is to utilize alternative measurement methods such as flow cy-

tometry. Systems utilising magnets, such as those used for measuring platelet

activation, have the potential to be incompatible with magnetic nanoparticles.

When subjected to the magnetic field a region of higher concentration may es-

tablish, the effect of which may skew any observations and not be representative

of a uniform distribution.

Proliferation is commonly evaluated using the MTT assay, but there are nu-

merous mechanisms by which this can be incompatible with nanomaterials. A

potential issue with the use of this assay is that it relies on the metabolic conver-
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sion of the MTT compound. Materials which promote/alter mitochondrial bio-

genesis cause artificially high signal which could be mistaken as pro-proliferative

(Wang et al., 2010). Differences in rates of tetrazolium production is reflective of

the metabolic state of the cells (Berridge et al., 2005; Berridge and Tan, 1993).

It is known that activated lymphocytes are more metabolically active than non-

activated, which may reflect altered metabolism rather than proliferation (Mos-

mann, 1983). The effect of nanoparticles on metabolism and proliferation would

be difficult to discern so the use of further methods such as [3H]-thymidine incor-

poration and CFSE could be utilised.

The issues described here hold equal validity not only for toxicity assays but

also immunotoxicity as the reagents employ similar strategies for generation of

a measurable result i.e. absorbance, fluorescence. As such, the potential for

nanoparticle-based assay interference must be considered throughout assay de-

velopment and data interpretation.

1.6.3 Nanoparticle physicochemical characteristics in

biological matrices

To determine structure-activity relationships and define meaningful trends, it is

necessary to accurately measure physicochemical characteristics. The application

of nanomaterials under biological conditions, both in vitro and in vivo, require

in-depth knowledge of their physicochemical properties in relevant matrices. Due

to the complexity of biological matrices, it is not sufficient to assume that char-

acteristics determined under minimal conditions (i.e. under vacuum, or in water)

are still valid in the rational design and development for given purposes. The

size, charge, surface chemistry, stability, and a host of other properties can be

directly and dramatically altered by the medium in which the nanoparticles are

suspended, all of which may affect how the materials interact with biological
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processes (Hall et al., 2007; Treuel et al., 2014).

Not only is it important to produce accurate and appropriate measurements

of the physicochemical characteristics of nanomaterials, but it must be appreci-

ated that the production of such materials is often a complex multistep process.

Changes in particle size and/or charge can affect particle biodistribution, im-

munological impact and broader aspects of safety for nanoparticles made of the

same material (Dobrovolskaia et al., 2012a,b). While polydispersity within and

between preparations must be expected, this batch-to-batch variability must be

strictly monitored and accounted for to minimize downstream issues.

The issue of determining biologically meaningful in vitro assays which can

inform downstream in vivo studies is further complicated by the choice of appro-

priate cellular models and endpoints. In vitro cytotoxicity assays performed in

immune cell lines are known to not be good indicators of nanoparticle immuno-

toxicity in vivo (Dobrovolskaia, 2015). This results from the inability of a single

cell line to accurately represent the various populations of immune cells, nor al-

lowing for evaluation of the immune cell systemic function (Dobrovolskaia, 2015).

Assays known to demonstrate good in vitro-in vivo correlation with human and

animal models include haemolysis, complement activation, cytokine secretion,

opsonisation and phagocytosis (Dobrovolskaia, 2015; Dobrovolskaia and McNeil,

2013). While cellular responses to nanomaterials in these in vitro assays does

not guarantee the same to occur in vivo, these assays demonstrate great util-

ity in identifying cases of cause for concern where nanomaterials may generate

potentially detrimental effects when applied to in vivo models.

Linked with this is the need to choose relevant and efficacious controls as well

as determine any interaction between the nanomaterial and assay itself. To ex-

emplify this issue, it was earlier mentioned that numerous cytotoxicity assays are

prone to nanoparticle-related interference. Without detailing the choice of cell

line or endpoint, the choice of controls and assay interaction potential shall be
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discussed. The cytotoxic compound of choice must be sufficiently potent within

the given cell line to generate toxicity and, ideally, have a mode of action similar

to that which would be expected from a nanomaterial. While this is desirable,

tetrazolium salts such as MTS/MTT which detect the REDOX potential of cells

would not be necessarily compatible with ROS generators such as dicumarol which

can lead to overestimation of cellular viability and proliferation (Collier and Prit-

sos, 2003). Similarly, compounds which affect cell membrane integrity should be

used with care in the LDH assay, especially when comparing results of different

cytotoxicity assays. Cell-free preparations of assays can be considered vital as

a means to not only generate a baseline but also to observe any concentration

dependent interactions that may occur. This can be invaluable in fluorogenic

assays such as DCF where a threshold for interference may exist (Kroll et al.,

2009). As mentioned earlier, the inclusion of inhibition/enhancement controls

can assist in determining whether observations are a result of cellular interac-

tions with nanomaterials or solely due to the presence of the nanomaterial. This

is becoming routine in Limulus amoebocyte lysate (LAL)-based assays for mea-

suring endotoxin in which a nanomaterial sample is spiked with a known amount

of endotoxin and assessed for enhanced or diminished recovery (Neun and Do-

brovolskaia, 2011). The underlying principal is translatable to a host of assays in

which inducers or inhibitors of the desired effect can be introduced in addition

to nanomaterials. Although logical, these considerations are widely overlooked,

potentially resulting in misleading conclusions being drawn.

1.7 Considerations for specific patient

populations

Research efforts examining the biocompatibility of nanomaterials primarily use

blood, as well as immune cells, from healthy volunteers to assess potential inter-
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actions. However, the intended populations often have differential immunological

profiles compared to healthy volunteers. It is, therefore, vital that these aspects

be considered when testing novel engineered nanomaterials.

The broad concepts of “immunological frailty”, a term encompassing all sit-

uations in which the immune response is not adequate, and how they relate to

potential interactions with nanomaterials has been described (Boraschi, 2014)

and highlights the relative lack of experimental evidence in such populations

compared to investigations in healthy volunteer cells and tissues. There is evi-

dence to suggest that the genetic background of the test organism can influence

the outcome of biocompatibility testing. Gustafsson et al. showed that the re-

sponse to titanium dioxide nanoparticles in rats was strain-specific, indicating

that genetics plays a role in the response to nanomaterials (Gustafsson et al.,

2014). Existing data on the effects of nanoparticles in animal models reflecting

immunological frailty, dysregulated immunity, and immune-compromised states,

show that nanoparticles can have greater, or an additive, toxicological effect to

that resulting from the diseased state (Li et al., 2014). The can be the result of

Reduced protection mechanism, compromised immunity, and impaired self-repair

ability (Li et al., 2014). However, how closely animal models can reflect the sit-

uation in humans with respect to disease states is an ongoing issue surrounding

many fields of research, and it seems likely that obtaining ex vivo samples from

patients with specific conditions may complement other pre-clinical evaluations,

prior to Phase I trials.

As one would expect, potential side effects and immune interactions by nano-

materials may be further influenced by dysregulation of the immune system in

disease. HIV is a pertinent example of this, wherein the disease is underpinned

by complex multifactorial immunomodulation, and treatment paradigms are cur-

rently being investigated for improvement via the application of nanoformulation

(Mamo et al., 2010).
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There exist several parallels between the immunological effects of nanomate-

rials and those of the diseased state. These effects include some generated by

chronic inflammation such as rheumatoid arthritis, cancer, and even hepatitis

and HIV.

As mentioned previously, the activation of TH17 type response by TMC-TPP

nanoparticles leads to the generation of IL-17 (Keijzer et al., 2013). The genera-

tion of this particular proinflammatory factor is of interest in the pathogenesis of

rheumatoid arthritis, as its production in the synovial tissue has been shown to

promote destructive collagen arthritis in an IL-1 independent manner in murine

models (Lubberts et al., 2001), and act synergistically with IL-1 and TNFα (Leon-

aviciene et al., 2004).

The pathogenesis of cancer is intrinsically linked to a multitude of cytokines

generated by the innate and adaptive immune systems including IL-1, IL-6, IL-

12, IFNγ, TNFα (Sheen et al., 2014). All of these have also been shown to be

generated in response to, and associated with cellular interactions with various

nanoparticles including silver (IL-1) (Simard et al., 2015), MWCNT (IL-6) (He

et al., 2011), and zinc oxide (IL-12, IFNγ, TNFα) (Hanley et al., 2009). As a

platform for immunotherapy nanoparticles are being studied due to their known

induction of various immunostimulatory cytokines which are proposed to exacer-

bate, and illicit, a greater immune response against cancerous cells.

Mechanisms proposed to result in apoptosis in HCV and HIV-infected cells

include loss of cell membrane integrity, mitochondrial dysfunction, and genera-

tion of ROS (Alimonti et al., 2003). Silica (Wei et al., 2015) and titanium dioxide

(Novak et al., 2012) nanoparticles have been shown to alter cell membrane in-

tegrity in a charge- and concentration-dependent manner. Oxidative stress and

the generation of reactive oxygen species is directly relatable to mitochondrial

dysfunction (Figure 1.2) (Rego and Oliveira, 2003). A large number of nanoma-

terials have a similar effect (Manke et al., 2013). HIV has been shown to interfere
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with the autophagic process via inhibition in dendritic cells, and induction in

macrophages (Dinkins et al., 2014), while HCV has been shown to increase levels

of autophagy in infected cells (Vescovo et al., 2014). Inhibition (Stern et al., 2012)

or induction (Panzarini et al., 2013) of autophagy by nanomaterials (Figure 1.2)

is also common to the actions of HIV and HCV. Therefore, it seems likely that

certain material compositions should not be progressed for certain applications.

Immunocompromised individuals can be defined as having a substantially

weakened immune system, and this was originally thought to be the case in HIV

infection. However, it is now known that the situation is not clear cut since a

patients’ immunological profile varies with the type of viral populations infecting

them, and their response to antiretroviral therapy (Annison et al., 2013). Infec-

tion with HIV leads to a decline in CD4+ T cells, but treatment with antiretro-

virals may produce a resurgence in the number of these cells. However, it has

been shown that although the number of CD4+ T cells increases, their functional

capacity is diminished in chronic infection. This has been demonstrated by the

increased expression of the receptor programmed death 1 (PD-1), a negative reg-

ulator of activated T-cells (Day et al., 2006). Cells expressing high levels of PD-1

were shown to be functionally exhausted, hyporesponsive due to continuous anti-

genic stimulus (Ozkazanc et al., 2016; Yi et al., 2010), compared to uninfected

cells suggesting HIV+ patients are immunocompromised (Breton et al., 2013).

However, the reasons for this exhaustion of the immune system are unclear, and

several hypotheses have been proposed (Khaitan and Unutmaz, 2011). An inter-

esting hypothesis for the ongoing inflammation seen in HIV, which may be linked

to T cell exhaustion, is the discovery that HIV itself can induce an inflammatory

form of programmed cell death termed pyroptosis. Dotish et al. showed that HIV

can directly induce pyroptosis in CD4+ T cells via inflammasome activation, and

that this process could be blocked by inhibiting caspase-1 (Doitsh et al., 2014).

Interestingly, nanoparticles have been shown to interact with inflammasomes,
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NLRP3 in particular (Figure 1.2) (Baron et al., 2015), and carbon nanoparticles

have been shown to induce pyroptosis (Reisetter et al., 2011). This is an impor-

tant consideration for the application of nanoparticles either in the treatment of

HIV infection or when nanoparticles may be applied in HIV+ patients for con-

comitant health issues e.g. raised cholesterol or infections. As a condition where

chronic dosing is a reality which cannot be overlooked, the long term effects of

any nanoformulation must be considered, and is something being investigating

with interest.

Effects such as these may be tolerable in a healthy model but be potentially

incompatible with the diseased state. It is also possible for the opposite to be true,

where the observable effect is unacceptable under healthy conditions, whereas its

effect on the diseased state may not be as pronounced and within a range where

the potential benefits outweigh the negative outcomes. As is demonstrated in

Figure 1.4 the primary considerations of the nanomaterial itself, the immune

system to which it will be introduced, and the disease on which it will act, are not

mutually exclusive. The intersections of biocompatibility and treatment response

weigh heavily in the development of nanomedicines. Often overlooked is the

immune response relating the disease to the immune state, and also how the

nanomaterial has influence over these. To be able to create a truly appropriate

model for the design of nanomedicines, a holistic approach such as this must be

adopted.
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NANO

DISEASE

IMMUNE SYSTEM

•Suppressed
•Chronic inflammation
•Dysregulated

•HIV
•Asthma 
•JSLE
•Cancer

•Haemolysis
•Complement
•Cytokines
•Thrombogenicity
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Figure 1.4: Key challenges in compatibility of nanoparticles as nanomedicines.
Considerations involved in the design, analysis, and application of nanomate-
rial for the treatment of disease linking the material specific, immune state, and
particular disease. A more holistic approach incorporating investigation of im-
munological status and genetic variability in genes encoding immune signalling
proteins will allow a more holistic approach to the biocompatibility testing of
novel engineered nanomaterials. Acronyms used; PCC - physicochemical charac-
teristics, HIV - human immunodeficiency virus, JSLE - juvenile systemic lupus
erythematosus.
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1.8 Efforts for standardisation in nanoparticle

testing

To truly determine relationships between nanoparticle characteristics, the ne-

cessity to apply a more standardised approach to assays has become apparent

in order to correctly assess how nanoparticles interact with biological systems.

Many researchers involved in the development of nanomaterials use well-defined

assays to assess biocompatibility e.g. investigation of cytotoxicity by using MTT

assays. However, there are reports of contradictory test results from cell-based as-

says (Krug and Wick, 2011; Schrurs and Lison, 2012). Unexpected variability can

arise in such assays by differences in media composition, passage time of cell lines,

and the source of the serum used in routine cell culture media. The NCI-NCL has

been at the forefront of promoting harmonisation of assays to determine nanopar-

ticle interactions with biological systems and offers standardised methodologies

for its assessment. Given the increasing development of nanomaterials across Eu-

rope, a need has been identified to begin to regulate the preclinical evaluation

of novel engineered nanomaterials as well as provide a platform for the transla-

tion of these materials into clinical studies. The recently established European

Nanomedicine Characterization Laboratory (EU-NCL) (http://www.euncl.eu/)

shares the same ethos as the NCI-NCL in the provision of a standardised charac-

terisation of nanomedicines to aid in their translation to the clinic and facilitate

nanomedicine development. Currently, researchers and developers in Europe have

to gather preclinical data from a multitude of non-integrated providers which may

result in interlaboratory variability and, therefore, conflicting results. A major

ambition of the EU-NCL is to tackle that obstacle by providing an open-access

EU-wide characterisation infrastructure and maintain Europe as internationally

competitive in nanomedicine development. EU-NCL offers a unique integrated
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solution ensuring access to high-quality data, experience, and facilities through-

out Europe for a large range of medical applications. EU-NCL is a multi-centre

infrastructure which is intended to overcome current fragmentation and to im-

prove quality and efficiency of translation by drawing on expertise across Europe.

The involvement of multiple analytical centres guarantees direct access to dif-

ferent domains in the nanomedicine communities and other stakeholders while

maintaining the bandwidth to engage with Europe’s most promising candidates.

It is envisaged that using this integrated approach, EU-NCL will also be able

to determine critical nanoparticle characteristics that relate to biological effects,

without compromising confidentiality with developers. As such, this will enable

researchers to access anonymised information to inform future rational design of

nanomaterials.

1.9 Nanomaterials assessed in thesis

The nanoparticles used throughout this work were chosen to represent broader

classes of nanomaterials with predominance in the literature; metallic (gold, sil-

ver, iron oxide, titanium dioxide, zinc oxide), non-metal (silica), and polymeric

(polystyrene, liposome, emulsion, polydendron), varying in manufacturer stated

particle size, charge, and functionalization. Additionally, choices were subject to

nanomaterial availability at the time of the project.

Two types of gold nanoparticle were included in this work. The first being

sodium citrate-stabilised gold nanoparticles, 10 nm in size. The second type be-

ing 11 nm gold nanoparticles to which a mix matrix coating composed of peptides

CVVVT-ol and HS-PEG had been applied as described by Duchesne et al. (2008).

Both of these gold nanoparticle variants have previously been shown to augment

peripheral blood mononuclear cell (PBMC) proliferation in response to phyto-

hemagglutinin, and increase production of cytokines IL-10 and IFN-γ (Liptrott
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et al., 2014). Gold nanoparticles are a promising candidate material for drug

delivery systems and cancer therapeutics (Arvizo et al., 2010).

Two types of silver nanoparticles were obtained for this work which differed

in their surface stabilisation; sodium polyacrylate (1-10 nm), and sodium citrate

(20 nm). Silver nanoparticles show potential for range of biomedical applications

which include diagnosis, treatment, drug delivery, medical device coating, and for

personal health care (Ge et al., 2014; Zhang et al., 2016).

Three variants of iron oxide nanoaprticles, all featuring differing surface sta-

bilisation, were applied to the assessments in this thesis. Two of these, namely

Endorem and Ferumoxytol, are currently applied clinically. Endorem is a super-

paramagnetic iron oxide nanoparticle (SPION) magnetic resonance (MR) contrast

agent, composed of nano-sized iron oxide crystals coated with dextran or carboxy-

dextran (160 nm) (Wang, 2011). Ferumoxytol is 30 nm carboxymethyldextran-

coated iron oxide nanoparticles (Neubert et al., 2015) used in the treatment of iron

deficiency anemia in patients with chronic kidney disease (Coyne, 2009; Schwenk,

2010). JGC is a 6.9 nm diethylaminoethyl dextran coated SPION developed for

use in labelling macrophages (Sharkey et al., 2017). In addition to these ap-

plications, superparamagnetic iron oxide nanoparticles have been developed as

delivery systems, for magnetic hyperthermia (local heat source in the case of tu-

mor therapy) (Gupta and Gupta, 2005; Neuberger et al., 2005), and extensively

used as contrast agents for morphological imaging (Lee et al., 2006; Li et al.,

2013).

Titanium (IV) oxide nanoparticles were procured for this work. These were 21

nm in size as described by the manufacturer, supplied as a nanopowder. Titanium

dioxide nanoparticles are being developed for use in advanced imaging and nan-

otherapeutics (Yuan et al., 2010). Such applications include photosensitizers for

use in photodynamic therapy (PDT) (Szacilowski et al., 2005), use in various skin

care products as a novel treatment for acne vulgaris, recurrent condyloma accumi-
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nata, atopic dermatitis, hyperpigmented skin lesions, and other non-dermatologic

diseases (Wiesenthal et al., 2011). Titanium dioxide nanoparticles also show an-

tibacterial properties under UV light irradiation (Montazer et al., 2011; Yuan

et al., 2010) and utility as drug carriers (Shi et al., 2013).

Three zinc oxide nanoparticles were chosen for use in this work. These com-

prised a 35 nm zinc oxide nanoparticle surface-stabilised with 3-aminopropyl tri-

ethoxysilane, and 50 and 100 nm zinc oxides supplied as nanopowder. Zinc oxide,

as a potential nanotherapeutic, offers a platform of low toxicity and biodegrad-

ability (Zhang et al., 2013). Through exploiting the range of zinc oxide nanostruc-

tures, all possessing properties advantageous for particular applications (Zhong Lin,

2004), this material is being developed for biomedical imaging (fluorescence, mag-

netic resonance, positron emission tomography, dual-modality imaging), drug de-

livery, gene delivery, and biosensing (Xiong, 2013; Zhang et al., 2013).

Three types of silica nanoparticles were chosen for inclusion in the library of

nanomaterials; 50 and 310 nm, both of which stabilised with L-arginine, and a

100 nm silica nanoparticle supplied as a nanopowder. The latter has been shown

to trigger caspase-1 cleavage and IL-1β secretion in human macrophages and

keratinocytes (Yazdi et al., 2010). Silica has been described as one of the most

promising inorganic materials for nanovaccinology and delivery system design

(Zhao et al., 2014). They have shown utility in applications including selective

tumour targeting (Ow et al., 2005), real-time multimodal imaging (Benezra et al.,

2011), and vaccine delivery (Zhao et al., 2014).

Polystyrene nanoparticles featuring surface stabilisation by either quaternary

ammonium or sulphonate were purchased. These two distinct forms were then

subdivided into three nanoparticle sizes; 180, 275, 440 and 180, 300, 440 nm

respectively. Quaternary ammonium surface functionalization has previously

demonstrated antimicrobial activity (Xue et al., 2015), as well as low gastroin-

testinal uptake when applied for use in oral vaccination (Kim et al., 2012).
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Sulphonated polystyrene nanoparticles have been found to have a high affinity

for binding protein due to high surface energy (Pitek et al., 2012). Addition-

ally, a 245 nm sulphonate-stabilised polystyrene was shown trigger human den-

dritic cell maturation resulting in enhanced CD4+ T cell activation (Frick et al.,

2012). Polystyrene nanoparticles are able to conjugate to a variety of antigens

through surface-modification with various functional groups (Kalkanidis et al.,

2006). However, use of polystyrene nanoparticles is limited to model systems

as they are not biodegradable and cannot be cleared from circulation following

therapeutic action (Solaro et al., 2010).

Non-targeted/loaded liposomes composed constituent lipids DSPC, DSPE-

PEG(200), DSPE-PEG(2000)-maleimide, and cholesterol prepared using the thin

lipid film process as described by King et al. (2016) were included in this library

of nanomaterials. Liposomes show great potential for the delivery of chemother-

apeutics via entrapment in their internal structure (Crommelin and Storm, 2003;

Metselaar and Storm, 2005; Minko et al., 2006). As a platform for vaccine deliv-

ery they offer a number of ways in which an antigen or adjuvant may be delivered.

These include encapsulation in the core of the liposome, incorporation with the

lipid bilayer, or adsortion on the surface for presentation to APCs (Alving, 1991;

Alving et al., 1980; Saupe et al., 2006). Liposomes can be modified to generate

an immunogenic response by modifying the surface of the particle by adding a

ligand (Saupe et al., 2006), antigen (Alving et al., 1980) or lipid. Cationic lipo-

somes have been demonstrated as more potent than anionic or neutral liposomes

for generating a cell-mediated immune response (Nakanishi et al., 1999).

Additionally an unloaded nanoemulsion composed of castor oil, ethyl acetate,

and a novel in-house developed non-gelled branched polymer stabiliser (Hobson

et al., 2013) was included. Nanoemulsions have shown great promise in im-

proving the oral bioavailability and intestinal permeation of poorly water-soluble

drugs through encapsulation within the emulsion droplet structure (Hobson et al.,
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2017). Furthermore, they have shown potential for use as vaccines (Zhao et al.,

2014) through their ability to carry antigens inside their core structure (Shah

et al., 2010).

Finally nanoparticles of a novel polymeric material class termed polydendrons

were subject to assessment in this thesis. These polydendrons were composed of

N-(2-Hydroxypropyl) methacrylamide (HPMA) monmers polymerised with novel

G2’ and 2000PEG initiator (Figure 6.1b), at 50:50 and 75:25 ratios as described

by Hatton (2015). Of each ratio there were two sizes; 161, 378 nm and 157, 264

nm respectively. These dendrimer-like materials were developed to mimic the

surface functionality of dendrimers but at much higher molecular weights and

size than conventional dendrimers (Hatton, 2015). The small size of dendrimers

limits extensive drug incorporation internally, though their dendritic nature and

branching allows for drug conjugation to the surface of the polymeric structure

(Svenson and Tomalia, 2005). Currently, dendrimers pose promising candidates

as drug nanocarriers for their well-defined structures, loading capacities, and

potential for surface functionalization (Madaan et al., 2014), but are hindered by

lengthy and costly syntheses (Hatton, 2015).

1.10 Aims of thesis

The overall aim of this thesis was to associate specific nanoparticle characteris-

tics with targets linked to cellular health, including cellular health, immuno- and

haemocompatibility. Additionally, to identify issues that might hinder the bio-

logical characterisation of these materials and develop methodologies to overcome

them.

Chapter 2 details a “pre-screen” applied to a library of 22 nanomaterials,

both commercially available and those developed in-house. Contamination with

endotoxin or intact microbes was assessed, followed by characterisation of physic-
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ochemical properties; specifically size, charge, and optical properties, conducted

in a range of experimentally relevant matrices. Chapter 3 explores the effects

of nanomaterials on plasma coagulation, as well as potential haemolytic activity,

and influence on complement activation. Chapter 4 evaluates the generation of

cytokine secretion, influence over caspase-1, and inflammasome activation, in re-

sponse to nanoparticles by primary human peripheral blood mononuclear cells.

Chapter 5 investigates the cytotoxic potential of nanomaterials in human cell

lines, and the impact on cellular health; in particular reactive oxygen species

generation, reduced glutathione content, and autophagy. The suitability of com-

mercially available fluorogenic probes for kinetic measurement of oxidative stress

was explored to demonstrate the utility of such methodologies in nanotoxico-

logical assay development. Chapter 6 applies the methodologies described, and

developed, in previous chapters of this thesis to provide a preclinical assessment

of a class of novel nanomaterials termed hyperbranched polydendrons.
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Pre-screen to determine sterility,

physicochemical characteristics

and optical properties of

nanomaterial library.
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2.1 Introduction

Nanomaterials are being increasingly utilised in a wide range of applications span-

ning industrial uses (Stark et al., 2015), cosmetics (Raj et al., 2012), pharmaceu-

ticals (Sheth et al., 2012), and more. As a focus for the work presented here,

a number of the nanomaterials being studied are examples of, or are similar to,

those produced with the intention to come in close contact with, or have a route

of entry into the body e.g. gold, iron oxide, silica. Furthermore, as mentioned

in Section 1.9, others have been chosen with respect to their extensive presence

in the literature in in vitro studies e.g. polystyrene. The size of nanoparticles

allows them to interact at cellular and sub-cellular levels (Shang et al., 2014).

When introduced in such proximity to biological organisms their behaviour is

something that needs to be more clearly defined, particularly with respect to

detrimental effects on health. This creates the requirement for comprehensive

assessment of the nanomaterial’s physicochemical characteristics and biological

effects prior to their approval in the same way as with new medical devices, phar-

maceuticals, biosimilars, and non-biological complex drugs (NBCD) (U.S. Food

and Drug Administration, 2015).

There are numerous reports in the literature of a variety of toxic effects at-

tributed to nanoparticles which have been extensively reviewed elsewhere (Srivas-

tava et al., 2015; Yah et al., 2012). However, to clearly define potential nanopar-

ticle toxicity, contamination of nanomaterials cannot be overlooked whether this

is biological or chemical in nature (Pulskamp et al., 2007).

Residual chemical contamination from nanoparticle synthesis may also re-

sult in potentially false positive results in cytotoxicity, and further downstream

immunological, assays. This has been observed in commercially available prepa-

rations of carbon nanotubes where, following purification, the material was no

longer deemed toxic (Pulskamp et al., 2007). However this is beyond the scope
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of the project.

The matrix in which the nanoparticles are suspended tends to be minimal,

which reduces the risk of microbial growth (Venkitanarayanan et al., 1999), but

this is not guaranteed. Novel bacteria-derived surface coatings (Moon et al.,

2014), or isolated bacterial targeting ligands (Brenza et al., 2011) increase the po-

tential for contamination with bacterial structural components such as lipopoly-

saccharide (LPS or endotoxin).

Bacterial endotoxin is a contaminant which elicits a strong immune response

upon exposure (Smulders et al., 2012). Endotoxin is a component of Gram-

negative bacterial cell walls and can contaminate nanomaterials during the man-

ufacturing process or in handling. It has been shown that endotoxin can exac-

erbate inflammatory responses to nanoparticles (Li and Boraschi, 2016). The

removal of endotoxin from nanomaterial preparations is problematic and, as dis-

cussed in Section 1.6.1, methodologies such as UV irradiation, heat treatment,

and gamma irradiation have been shown to change the physicochemical charac-

teristics of nanoparticles (Franca et al., 2010). Given the difficulty in removing

endotoxin from nanoparticle preparations, it is clear that its presence during pro-

duction should be kept to a minimum. Products which have reached the stage

of GMP manufacture are of a lower concern due to stringent controls, but prior

to the scaling and transfer of materials to GMP manufacture it is necessary to

gain a preclinical understanding of any compatibility issues without false positives

generated by LPS. Production of novel nanomaterials by academic institutions

or small companies, whose resources do not allow for stringent monitoring of en-

dotoxin contamination at all stages of manufacture, are most at risk of rejection

due to incompatibility resulting from contamination (Crist et al., 2013). This is

a possible issue as many such producers of nanomaterials may not have access to

biological safety cabinets or other methods of aseptic procedures. Such consider-

ations should be addressed as best as possible prior to submission for biological
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assessment to reduce incurred costs and time wasted by having to meet these

issues retrospectively by modifying the formulation/production process.

Guidelines are in place for endotoxin presence in production. The FDA states

“For medical devices. . . the limit is 0.5 EU/ml or 20 EU/device for products

that directly or indirectly contact the cardiovascular system and lymphatic sys-

tem. For devices in contact with cerebrospinal fluid, the limit is 0.06 EU/ml

or 2.15 EU/device. For devices that are in direct or indirect contact with the

intraocular environment, a lower endotoxins limit may apply.” (U.S. Food and

Drug Administration, 2012a). The “gold standard” method of assessing endo-

toxin contamination is the gel clot assay which relies on lysate from the blood

of Limulus amoebocyte horseshoe crabs. The Limulus amoebocyte lysate (LAL)

assay has been adapted in many ways to serve the analysis of endotoxin due to

its sensitivity and consistency (Duff, 1983). However, nanomaterials have been

shown to interfere with this method of quantification (Dobrovolskaia et al., 2010;

Smulders et al., 2012) requiring careful interpretation of data generated. Dobro-

volskaia et al. have shown that citrate stabilised gold nanoparticles can reduce

the detected endotoxin content, while assessment of PLMA nanoparticles led to

an overestimation (Dobrovolskaia et al., 2010). Such interference relates to the

over and underestimation of endotoxin content. Inhibition/enhancement controls

where test materials are spiked with a known amount of endotoxin provide a

means to observe this effect. To obtain a valid result it is possible that addi-

tional techniques should be utilised as appropriate for certain materials (Neun

and Dobrovolskaia, 2011).

With respect to interference nanomaterials possess novel properties e.g. gold

nanoparticles with enhanced optical characteristics for photothermal therapy

(Huang et al., 2007) or improved catalytic properties (Mikami et al., 2013), and

quantum dots with specific emission spectra for advanced imaging (Chang et al.,

2008). It is for this reason why they are developed and chosen for use over their
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macro-scale counterparts. Although these properties are desirable for the end

product, they can make characterisation a challenging task (Baer, 2011). Such

optical properties include absorption at particular wavelengths (surface plasmon

resonance) (Noguez, 2007), increased scattering of light, as well as excitation and

emission at particular wavelengths (Kelly et al., 2003). These can all be affected

by the particular conditions and immediate environment of the nanoparticle (Link

and El-Sayed, 1999), and are inherent properties which can not only interfere with

tests of their biological interactions, but also with their basic structural analy-

sis. Their spectral characteristics should, as good practice, be assessed before

any assays in which their presence may interfere with any optical measurements

(Gonzales et al., 2010). The potential for nanomaterials to interfere with assays

is a factor that is often overlooked (Ong et al., 2014) and given the broad range

of nanomaterials which exhibit this quality; appropriate assay choices should be

made alongside thorough characterization.

The size and uniformity of dispersion of nanomaterials is determined and con-

trolled by factors in their manufacturing process (Rajput, 2015). To guarantee

that the intended size has indeed been produced, a direct determination is nec-

essary. There are a great number of methods employed to perform this task, the

majority of which require the material to be removed from its intended medium

(Stratton et al., 2013). Techniques such as scanning electron microscopy (SEM)

and transmission electron microscopy (TEM) are pertinent examples of this,

where imaging and size determination is performed under vacuum and requires

samples to be fixed and dried (Stadtländer, 2007). An accurate measurement of

dry particle size can be gained, but this is not as useful a piece of information

as would be the hydrodynamic size (Baalousha and Lead, 2012) which accounts

for the solvation layers around the nanoparticle in liquid. Dynamic light scatter-

ing (DLS) is a sizing method which allows the materials to be observed in their

native buffer creating an applicable representation of the material’s size (Kato
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et al., 2009). A secondary, yet valuable metric generated using dynamic light

scattering is the polydispersity index (PdI) of a given material. This provides

a measure of the broadness of the size distribution of the material preparation.

A larger PdI value relates to a more distributed representation of particle sizes

within the formulation, meaning that attributing cytotoxic/unwanted effects to a

particular size of the nanoparticle can be difficult or inaccurate (Murdock et al.,

2008).

Often paired with DLS is an assessment of the nanoparticle’s zeta potential

(Clogston and Patri, 2011), which is the surface charge of a particle in colloidal

suspension. Routinely this measurement is performed in water, and while this

may be the medium in which the material is supplied by the manufacturer, it

may not be the buffer in which the material is finally suspended when it comes

in contact with biological systems. As zeta potential measurements are strongly

influenced by the pH and ionic strength of the dispersing medium, Clogston et al.

recommend measurements be performed in 10 mM NaCl due to its extensive

characterisation, and the ability to generate highly reproducible data (Clogston

and Patri, 2011). Colloidal stability of nanomaterials is maintained either by

electrostatic interaction with the buffer or steric stabilisation by polymeric coating

of the particle surface, the latter being unaffected by changes in ionic balance

of the buffer (Wandee et al., 2009). As the zeta potential is a key indicator

of particle stability for materials in solution which are not sterically stabilised,

where a zeta potential of greater than ±30 mV is a hallmark of colloidal stability

(Larsson et al., 2012), it is important to have information generated in conditions

appropriate to the experimental setup.

The aim of this chapter was to perform a “pre-screen” of the nanoparticles that

would be investigated in subsequent chapters of this thesis. This approach was

employed to ensure the robustness of subsequent experimentation; particularly

to rule out potential false positives or negatives.
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Contamination with endotoxin or intact microbes was assessed initially, prior

to the investigation of the physicochemical properties, specifically size and charge,

and optical properties of test materials in order to determine possible interfer-

ence with downstream assays, the analysis of which was conducted in a range of

experimentally relevant matrices.

This work has been conducted on the materials listed in Table 2.1, which

covers a broad range of material classes, particle size and charge. The data in

this table was provided by the manufacturers/suppliers.
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2.2 Methods

2.2.1 Materials

Emulsion (Hobson et al., 2013) and JGC were prepared as part of ongoing, sepa-

rate, research projects at the University of Liverpool (Liverpool, UK). Endorem

was purchased from Guerbet GmbH (Sulzbach, Germany), Ferumoxytol was pur-

chased from AMAG Pharmaceuticals (Massachusetts, USA). Colloidal gold was

purchased from British Biocell (Cardiff, UK), and mix-matrix coating was ap-

plied as described previously (Duchesne et al., 2008). Liposome (non-targeted,

as described by King et al. (2016)) was provided by Lynda Harris from the

University of Manchester (Manchester, UK). Quaternary ammonium functional-

ized polystyrene (180nm, 275nm, 440nm), sulphonate functionalized polystyrene

(180nm, 300nm, 440nm), L-arginine stabilized silica (50nm, 310nm) and sodium

polyacrylate stabilized silver were purchased from Sciventions (Toronto, Canada).

Nano-SiO2 was purchased from Invivogen (San Diego, USA). Sodium citrate sta-

bilized silver, titanium (IV) oxide, zinc oxide dispersion, zinc oxide nanopowder

(<50nm, <100nm), RPMI-1640, Dulbecco’s Modified Eagle’s Medium (DMEM),

and Fetal Bovine Serum (FBS) were purchased from Sigma-Aldrich (Dorset, UK).

EndoLISA kit was purchased from Hyglos (Bernried, Germany). LB Broth (Hi-

Salt), and Agar No 1 Bacteriological were purchased from Lab M (Lancashire,

UK).
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Designation Size (nm) Hydrodynamic
size (nm)

PdI Zeta potential
(mV)

Stabiliser Surface groups

Polystyrene 1 180 N/A N/A 52.2 N/A quaternary ammonium
Polystyrene 2 180 N/A N/A -40.9 N/A sulphonate
Polystyrene 3 275 N/A N/A 42.2 N/A quaternary ammonium
Polystyrene 4 300 N/A N/A -37.2 N/A sulphonate
Polystyrene 5 440 N/A N/A 39.2 N/A quaternary ammonium
Polystyrene 6 440 N/A N/A -34.9 N/A sulphonate

Gold 1 10 N/A N/A N/A sodium citrate N/A
Gold 2 11 N/A N/A N/A N/A N/A
Silver 1 1-10 N/A N/A -39 sodium polyacrylate N/A
Silver 2 20 N/A N/A N/A sodium citrate N/A

Endorem N/A 160 N/A -6.8 sodium citrate mannitol
Ferumoxytol N/A 30 N/A -30.55 N/A carboxyl

JGC 6.9 52.3 0.275 20.2 N/A diethylaminoethyl dextran
Titanium (IV) oxide 21 N/A N/A N/A N/A N/A

Zinc oxide 1 35 100 N/A N/A 3-aminopropyl
triethoxysilane

N/A

Zinc oxide 2 50 N/A N/A N/A N/A N/A
Zinc oxide 3 100 N/A N/A N/A N/A N/A

Silica 1 50 N/A N/A -34.7 L-arginine N/A
Silica 2 310 N/A N/A -37.1 L-arginine N/A
Silica 3 100 N/A N/A N/A N/A N/A

Liposome N/A 174 N/A N/A N/A N/A
Emulsion N/A 345.73 0.141 N/A N/A N/A

Table 2.1: Nanomaterials being assessed in this chapter including information provided by the manufacturers on their size, hydro-
dynamic size measured by DLS, polydispersity index, zeta potential, stabiliser, and surface groups. N/A - information not available
from manufacturers.
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2.2.2 Determination of endotoxin concentration in

commercial and in-house nanoparticle samples

Endotoxin contamination was assessed using the EndoLISA kit as outlined in the

protocol provided by the manufacturer. Briefly, the LPS standard was recon-

stituted in endotoxin-free water. From this stock a 5-point dilution series was

prepared with a maximum of 50 EU/ml, three 1:10 dilution steps from this, and

a 0 EU/ml standard of endotoxin-free water. Nanomaterials were prepared to

the concentrations displayed in Table 2.2 at final a volume of 250 µl in duplicate.

Dilutions from stock concentrations were made with endotoxin-free water. One

of each material replicate was spiked with endotoxin at a final concentration of

5 EU/ml to assess potential inhibition or enhancement in recovery. Preparations

were performed in endotoxin-free glassware.

100 µl of each standard, material dilution, and endotoxin spiked material

dilution were added to the ELISA plate in duplicate. Binding was carried out for

90 minutes at 37◦C with shaking at 450 rpm.

The plate was washed twice with 150 µl of wash buffer. The plate was tapped

on paper towel to ensure complete removal of contents following each wash. 100

µl of assay reagent was added to each well. Detection was performed immediately,

and again following a 90 minute incubation at 37◦C. Fluorometric analysis was

performed on a Varioskan Flash Multimode Plate Reader (Thermo Scientific,

Massachusetts, USA).

Endotoxin content was calculated by a linear regression model applied to the

standard curve, following blank correction of the data, using Microsoft Excel

(2013).

Endotoxin percentage recovery was calculated in endotoxin spiked samples

and accepted when recovery fell within the range of 50-200% (U.S. Food and

Drug Administration, 2012a; European Medicines Agency, 2010). If recovery was
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outside of the acceptable range, further dilutions above the maximum valid di-

lution of the relevant material were prepared to determine if this was a result of

concentration or material dependent effects.

Material Tested concentration

Polystyrene 1 100 µg/ml 1 µg/ml
Polystyrene 2 100 µg/ml 1 µg/ml
Polystyrene 3 100 µg/ml 1 µg/ml
Polystyrene 4 100 µg/ml 1 µg/ml
Polystyrene 5 100 µg/ml 1 µg/ml
Polystyrene 6 100 µg/ml 1 µg/ml

Gold 1 100 pg/ml 1 pg/ml
Gold 2 100 pg/ml 1 pg/ml
Silver 1 100 µg/ml 1 µg/ml

500 pg/ml 250 pg/ml
Silver 2 100 µg/ml 1 µg/ml

Endorem 100 µg/ml 1 µg/ml
500 pg/ml 250 pg/ml

Ferumoxytol 100 µg/ml 1 µg/ml
500 pg/ml 250 pg/ml

JGC 100 µg/ml 1 µg/ml
Titanium (IV) oxide 100 µg/ml 1 µg/ml

Zinc oxide 1 100 µg/ml 1 µg/ml
Zinc oxide 2 100 µg/ml 1 µg/ml
Zinc oxide 3 100 µg/ml 1 µg/ml

Silica 1 100 µg/ml 1 µg/ml
Silica 2 100 µg/ml 1 µg/ml
Silica 3 100 µg/ml 1 µg/ml

Liposome 1/10 1/100
Emulsion 1/10 1/100

Table 2.2: Concentrations of nanomaterials used for endotoxin content measure-
ment.
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2.2.3 Assessment of possible viable microbial

contamination

Nanomaterials were streaked on plates of Luria-Bertani (LB) Agar at neat con-

centrations or at 10 mg/ml in deionised water for those in powder form. E. coli

MC1061 was used as a positive control and deionized water as a negative control.

All preparations were performed in triplicate.

The plates were incubated for 24 hours at 37◦C, following which visual in-

spection for signs of microbial growth was performed and photographic records

made.

2.2.4 Physical and optical characterization

2.2.4.1 Rheometry of media used for dispersion and subsequent DLS

analysis

The viscosity of chosen media; deionized water, RPMI-1640, RPMI-1640 supple-

mented with FBS to 10% final volume, DMEM, and DMEM supplemented with

FBS to 10% final volume, were measured using a microVISC (RheoSense, Cali-

fornia, USA). Measurements were performed at room temperature in triplicate.

2.2.4.2 Dynamic light scattering and zeta potential

Nanoparticle size and surface charge were measured using a Zetasizer Nano ZS

(Malvern, Malvern, UK). Measurements were performed in a DTS1060 folded

capillary cell at room temperature, using the automatic attenuation selection

and optimum measurement position seeking settings of the Zetasizer Software.

Number of runs and run duration were automatically determined by the soft-

ware, and 3 measurements were performed per sample. Experimentally deter-

mined viscosities of media from Section 2.2.4.1 were substituted to the software
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for size calculation. Measurements were performed in deionized water, RPMI-

1640, RPMI-1640 supplemented with FBS to 10% final volume, DMEM, and

DMEM supplemented with FBS to 10% final volume. Materials were prepared

at concentrations producing an attenuator index of 6-8 as recommended by the

manufacturer.

Z-average intensity weighted mean hydrodynamic size, peak mean intensity

size, polydispersity index, and zeta potential were recorded. The average and

standard deviation for each parameter of the triplicate measurements was calcu-

lated.

2.2.4.3 Evaluation of absorption and emission spectra in

experimentally-relevant matrices

Absorption and emission spectra of materials suspended at three concentrations

denoted High, Mid, and Low (actual concentrations displayed in Table 2.3) in

100 µl of deionised water, RPMI-1640, RPMI-1640 supplemented with FBS to

10% final volume, DMEM, and DMEM supplemented with FBS to 10% final

volume were assessed using CLARIOstar (BMG Labtech, Ortenberg, Germany)

in 96-well microplates.

Wavelengths of absorption and emission maxima were calculated using MARS

Data Analysis Software (BMG Labtech).
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Material Low Mid High

Polystyrene 1 50 µg/ml 100 µg/ml 200 µg/ml
Polystyrene 2 50 µg/ml 100 µg/ml 200 µg/ml
Polystyrene 3 50 µg/ml 100 µg/ml 200 µg/ml
Polystyrene 4 50 µg/ml 100 µg/ml 200 µg/ml
Polystyrene 5 50 µg/ml 100 µg/ml 200 µg/ml
Polystyrene 6 50 µg/ml 100 µg/ml 200 µg/ml

Gold 1 250 pM 500 pM 1 nM
Gold 2 250 pM 500 pM 1 nM
Silver 1 50 µg/ml 100 µg/ml 200 µg/ml
Silver 2 2.5 µg/ml 5 µg/ml 10 µg/ml

Endorem 50 µg/ml 100 µg/ml 200 µg/ml
Ferumoxytol 50 µg/ml 100 µg/ml 200 µg/ml

JGC 50 µg/ml 100 µg/ml 200 µg/ml
Titanium (IV) oxide 50 µg/ml 100 µg/ml 200 µg/ml

Zinc oxide 1 50 µg/ml 100 µg/ml 200 µg/ml
Zinc oxide 2 50 µg/ml 100 µg/ml 200 µg/ml
Zinc oxide 3 50 µg/ml 100 µg/ml 200 µg/ml

Silica 1 50 µg/ml 100 µg/ml 200 µg/ml
Silica 2 50 µg/ml 100 µg/ml 200 µg/ml

Table 2.3: Concentrations and dilution factors used to assess absorption and
emission spectra of nanomaterials.
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2.3 Results

2.3.1 Endotoxin content and recovery

Some interference with the quantification of endotoxin content was observed as

highlighted in Table 2.4. Materials such as polystyrene 2 and 3 demonstrated

a possible additive effect which was resolved at lower concentration. Silver 1

conversely had an inhibitory effect which again was rectified by further sample

dilution. With regard to percentage recovery of spiked samples silver 1, Endorem,

and Ferumoxytol all fell outside the accepted 50-200% recovery range at higher

concentrations (Figure 2.1b, 2.1c). Interestingly JGC fell below the 50% threshold

to 24.88% at 1 µg/ml (Figure 2.1c) which could be a result of an underlying

concentration-dependent effect.

61



C
h
ap

ter
2

Material Tested concentration Endotoxin content (EU/ml) Tested concentration Endotoxin content (EU/ml)

Polystyrene 1 100 µg/ml 1.97 1 µg/ml BLQ
Polystyrene 2 100 µg/ml 2.02 1 µg/ml 3.55
Polystyrene 3 100 µg/ml 2.74 1 µg/ml 1.27
Polystyrene 4 100 µg/ml 1.37 1 µg/ml 0.73
Polystyrene 5 100 µg/ml 2.27 1 µg/ml 1.13
Polystyrene 6 100 µg/ml 1.04 1 µg/ml 1.93

Gold 1 100 pg/ml BLQ 1 pg/ml BLQ
Gold 2 100 pg/ml BLQ 1 pg/ml BLQ

Silver 1
100 µg/ml 1.63 1 µg/ml 2.98
500 pg/ml 0.50 250 pg/ml 1.91

Silver 2 100 µg/ml 1.41 1 µg/ml 2.06

Endorem
100 µg/ml BLQ 1 µg/ml 0.61
500 pg/ml 0.02 250 pg/ml 0.07

Ferumoxytol
100 µg/ml BLQ 1 µg/ml BLQ
500 pg/ml 1.47 250 pg/ml 4.40

JGC 100 µg/ml 107.80 1 µg/ml 2.99
Titanium (IV) oxide 100 µg/ml BLQ 1 µg/ml BLQ

Zinc oxide 1 100 µg/ml BLQ 1 µg/ml BLQ
Zinc oxide 2 100 µg/ml BLQ 1 µg/ml BLQ
Zinc oxide 3 100 µg/ml BLQ 1 µg/ml BLQ

Silica 1 100 µg/ml 1.36 1 µg/ml 1.37
Silica 2 100 µg/ml 2.26 1 µg/ml 2.4
Silica 3 100 µg/ml BLQ 1 µg/ml BLQ

Liposome 1/10 18.44 1/100 3.19
Emulsion 1/10 3.11 1/100 1.29

Table 2.4: Endotoxin content measured from the concentrations stated. Text coloured red demonstrated a possible additive effect.
Text coloured blue demonstrated a possible interference effect. BLQ - below limit of quantification (0.05 EU/ml).
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(a)

(b)
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(c)

(d)

Figure 2.1: Percentage endotoxin recovery from endotoxin spiked nanomaterials
at stated concentrations. Green shaded region highlights the acceptable 50-200%
range of recovery.
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2.3.2 Microbial presence

The positive control plates all demonstrated bacterial growth of E. coli (Figure

2.2a), while no bacterial growth was observed in the negative control (Figure 2.2b)

or any of the nanomaterials assessed (Figure 2.2c) following 24 hour incubation.

(a) (b) (c)

Figure 2.2: LB agar plates following 24 hours incubation after streaking of (a)
Positive control E. coli. (b) Negative control deionised water. (c) Example of
nanomaterial; titanium (IV) oxide.
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2.3.3 Dynamic light scattering and zeta potential

Size measurements were performed on liposome and emulsion by their respective

manufacturers utilising an identical protocol to the one in this work. The high

degree of similarity of Z-average size in deionised water to stated sizes shows no

degradation, or reduction in the stability of the materials during storage (Table

2.1). Similarity by this measurement was found in the polystyrene samples, with

5 and 6 matching the manufacturer stated sizes, as well as Endorem. Conversely,

stark disparity was observed in all other materials ranging from upwards of twice

the stated size, to titanium (IV) oxide, zinc oxides 2 and 3, and silicas 2 and 3

being micron-sized.

The Z-average size of polystyrene 5 displayed an increase to micron size in

RPMI-1640 and DMEM, an eleven- and sevenfold increase over its size in wa-

ter respectively. Unlike the metal oxides there was no visible precipitation, only

turbidity due to the concentration of material. Supplementation of RPMI-1640

and DMEM with FBS resulted in fold increases of 1.5 and 1.2 respectively with

regard to polystyrene 5. Both zinc oxide and titanium dioxide suspended at a

concentration of 1 mg/ml formed a visible precipitate once introduced to RPMI-

1640 and DMEM, both with and without supplementation with FBS, prior to

measurement. This loss of colloidal stability has resulted in their respective hy-

drodynamic diameters no longer being nanoscale.

Nanoparticle peak mean intensity sizes were found not to be influenced by the

presence of large aggregates, as evidenced by the sizes of silicas 2 and 3 being a

half and a third of their equivalent Z-average sizes in deionised water (Table 2.6).

Nanoparticle sizes by this measure were observed not to succumb to the skew

imparted by an additional distribution resultant from protein supplementation.

Henceforth, nanoparticle sizes will be displayed by this measurement unless stated

otherwise.
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Overall, nanoparticle suspensions in FBS-supplemented media demonstrated

smaller size than those in unsupplemented media. The presence of protein could

have provided some stabilising effect on the colloidal suspensions, protecting them

from aggregation due to the salt content of culture media.

A zeta potential of greater than ±30 mV is a hallmark of colloidal stability

(Larsson et al., 2012). All of the materials when suspended in culture media

supplemented with FBS displayed zeta potentials which are indicative of insta-

bility and high likelihood of flocculation (Table 2.8). The presence of protein

resulted in all materials, with the exception of JGC, irrespective of their polarity

in deionised water, demonstrating negative zeta potentials.
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Material Expected value Deionised water RPMI-1640 RPMI-1640 10% FBS DMEM DMEM 10% FBS

Polystyrene 1 180 198.47 6157.00 526.90 5574.67 330.80
Polystyrene 2 180 230.83 184.77 234.60 324.33 187.77
Polystyrene 3 275 281.73 9021.67 678.27 6329.67 450.27
Polystyrene 4 300 402.53 319.10 392.03 274.63 315.43
Polystyrene 5 440 439.77 4931.00 667.77 3137.67 538.47
Polystyrene 6 440 440.80 387.30 449.80 319.10 322.97

Gold 1 10 143.36 810.60 87.66 553.33 37.85
Gold 2 11 45.77 64.55 29.98 83.99 99.01
Silver 1 1-10 64.64 199.87 104.57 313.53 67.78
Silver 2 20 126.13 80.98 192.17 413.50 88.46

Endorem 160 138.50 116.60 102.70 82.57 75.13
Ferumoxytol 30 70.55 54.54 29.43 72.44 72.89

JGC 6.9/52.3 131.97 47.91 26.46 27.86 27.19
Titanium (IV) oxide 21 1457.00 3718.67 2193.67 2117.00 263.03

Zinc oxide 1 35/100 117.69 19853.33 1906.33 9640.33 251.30
Zinc oxide 2 50 4964.00 3943.00 7768.67 1891.33 844.97
Zinc oxide 3 100 1483.00 1913.33 2035.67 1510.67 1659.00

Silica 1 50 101.56 657.87 67.35 108.61 84.75
Silica 2 310 1105.07 2530.33 279.67 682.03 89.29
Silica 3 100 3494.33 3564.67 870.17 2080.33 483.77

Liposome 174 175.70 154.63 159.93 127.67 115.60
Emulsion 345.73 370.70 301.13 282.27 251.80 213.33

Table 2.5: Nanoparticle Z-average intensity weighted mean hydrodynamic size (nm) determined via dynamic light scattering in
deionized water, RPMI-1640, RPMI-1640 supplemented with FBS to 10% final volume, DMEM, and DMEM supplemented with
FBS to 10% final volume. Expected values include size/hydrodynamic size where available.68
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Material Expected value Deionised water RPMI-1640 RPMI-1640 10% FBS DMEM DMEM 10% FBS

Polystyrene 1 180 208.10 892.67 1169.93 5258.00 358.47
Polystyrene 2 180 244.23 199.37 261.13 406.33 211.07
Polystyrene 3 275 298.40 153.82 926.93 5489.67 568.43
Polystyrene 4 300 475.17 353.33 453.47 302.93 354.47
Polystyrene 5 440 464.30 4683.00 802.50 3405.67 643.23
Polystyrene 6 440 490.47 418.57 497.97 352.63 354.23

Gold 1 10 20.26 821.23 31.99 662.37 25.69
Gold 2 11 19.87 18.15 16.71 14.48 13.90
Silver 1 1-10 120.90 308.70 142.73 440.77 93.41
Silver 2 20 166.33 120.57 368.33 486.83 178.17

Endorem 160 175.17 176.13 163.70 112.33 110.73
Ferumoxytol 30 173.43 32.51 33.27 20.34 20.09

JGC 6.9/52.3 191.23 55.85 38.42 36.01 36.70
Titanium (IV) oxide 21 1656.33 3318.33 2132.67 2197.67 329.27

Zinc oxide 1 35/100 79.09 0.59 489.33 693.16 406.00
Zinc oxide 2 50 2754.00 302.93 611.67 1918.67 1369.00
Zinc oxide 3 100 1529.00 1599.33 2176.33 1673.33 1796.67

Silica 1 50 67.55 756.60 130.80 66.51 58.68
Silica 2 310 521.10 274.80 400.63 342.87 322.33
Silica 3 100 1160.07 646.20 1062.60 1012.87 691.70

Liposome 174 189.77 169.80 179.27 139.50 134.50
Emulsion 345.73 421.07 335.67 344.20 287.50 244.30

Table 2.6: Nanoparticle peak mean intensity size (nm) determined via dynamic light scattering in deionized water , RPMI-1640,
RPMI-1640 supplemented with FBS to 10% final volume, DMEM, and DMEM supplemented with FBS to 10% final volume.
Expected values include size/hydrodynamic size where available.69



C
h
ap

ter
2

Material Expected value Deionised water RPMI-1640 RPMI-1640 10% FBS DMEM DMEM 10% FBS

Polystyrene 1 N/A 0.03 0.46 0.46 0.28 0.34
Polystyrene 2 N/A 0.14 0.07 0.10 0.39 0.16
Polystyrene 3 N/A 0.04 0.47 0.27 0.25 0.22
Polystyrene 4 N/A 0.15 0.09 0.15 0.12 0.21
Polystyrene 5 N/A 0.04 0.23 0.19 0.15 0.23
Polystyrene 6 N/A 0.10 0.13 0.16 0.09 0.08

Gold 1 N/A 0.25 0.39 0.43 0.40 0.72
Gold 2 N/A 0.30 0.18 0.28 0.33 0.60
Silver 1 N/A 0.49 0.41 0.26 0.39 0.30
Silver 2 N/A 0.52 0.42 0.74 0.36 0.61

Endorem N/A 0.44 0.42 0.41 0.32 0.42
Ferumoxytol N/A 0.43 0.36 0.58 0.39 0.24

JGC 0.28 0.29 0.27 0.36 0.25 0.50
Titanium (IV) oxide N/A 0.09 0.72 0.42 0.35 0.24

Zinc oxide 1 N/A 0.38 1.00 0.93 0.55 0.56
Zinc oxide 2 N/A 0.32 0.58 1.00 0.40 0.63
Zinc oxide 3 N/A 0.30 0.54 0.19 0.28 0.34

Silica 1 N/A 0.55 0.50 0.59 0.30 0.57
Silica 2 N/A 0.65 1.00 0.46 0.69 0.45
Silica 3 N/A 0.68 0.78 0.87 0.82 0.78

Liposome N/A 0.07 0.09 0.11 0.08 0.14
Emulsion 0.14 0.26 0.25 0.23 0.20 0.26

Table 2.7: Nanoparticle polydispersity index (PdI) determined via dynamic light scattering in deionized water, RPMI-1640, RPMI-
1640 supplemented with FBS to 10% final volume, DMEM, and DMEM supplemented with FBS to 10% final volume.70
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Material Expected value Deionised water RPMI-1640 RPMI-1640 10% FBS DMEM DMEM 10% FBS

Polystyrene 1 52.2 52.07 23.60 -9.99 6.55 -10.82
Polystyrene 2 -40.9 -21.63 -49.53 -7.02 -45.70 -12.90
Polystyrene 3 42.2 45.57 22.30 -8.47 7.85 -11.71
Polystyrene 4 -37.2 -42.27 -46.83 -7.93 -52.23 -12.15
Polystyrene 5 39.2 40.33 20.50 -7.97 13.00 -11.02
Polystyrene 6 -34.9 -35.73 -50.67 -6.51 -33.10 -9.00

Gold 1 N/A -19.70 -26.03 -10.97 -20.30 -10.57
Gold 2 N/A -4.00 -4.72 -12.40 -4.49 -6.31
Silver 1 -39 -45.73 -48.43 -16.27 -47.17 -14.93
Silver 2 N/A -42.53 -19.33 -11.39 -30.33 -9.65

Endorem -6.8 -22.87 -4.30 -4.40 -4.96 -3.54
Ferumoxytol -30.55 -10.98 -5.24 -10.80 -9.83 -16.50

JGC 20.2 40.13 8.05 3.78 7.01 1.77
Titanium (IV) oxide N/A 15.33 -9.76 -8.15 -6.32 -14.43

Zinc oxide 1 N/A 26.27 -9.97 -9.64 0.21 -13.97
Zinc oxide 2 N/A 16.97 -28.77 -7.04 -12.30 -10.83
Zinc oxide 3 N/A 21.93 -23.53 -5.83 -13.63 -10.00

Silica 1 -34.7 -15.90 -26.40 -8.78 -18.97 -11.77
Silica 2 -37.1 -28.60 -20.00 -8.53 -26.83 -12.57
Silica 3 N/A -26.10 -21.73 -8.60 -28.20 -8.45

Liposome N/A -20.13 -3.78 -2.30 -4.00 -3.55
Emulsion N/A -4.55 -6.44 -7.76 -5.94 -10.85

Table 2.8: Nanoparticle zeta potential (mV) determined in deionized water, RPMI-1640, RPMI-1640 supplemented with FBS to
10% final volume, DMEM, and DMEM supplemented with FBS to 10% final volume.71
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2.3.4 Evaluation of nanomaterial absorption and

emission spectra in various matrices

To better visualise any observable trends, the wavelengths of maximal absorption

and emission at given concentrations were plotted in relation to the other test

materials within individual matrices. It can be seen that generally in both types of

culture media, with and without supplementation with FBS, the polystyrene have

a highly similar absorption maximum across the three concentrations (Figures

2.3b to e). Similar trends were observed in the maximum emission wavelengths

generated in RPMI-1640 (Figure 2.4b), and in both cell culture media containing

of FBS (Figures 2.4c, 2.4e).

While the assessment of both maximal absorption and emission generated

discrete wavelengths, which have been displayed here, they were however not of

sufficiently high intensity with regard to their relative absorbance/fluorescence

units to generate cause for concern when considering applying further assays to

these nanomaterials.
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(a)

Absorbance maximum (nm)
in deionized water

Material Low Mid High

Polystyrene 1 601 356 601
Polystyrene 2 601 356 601
Polystyrene 3 601 356 601
Polystyrene 4 601 601 601
Polystyrene 5 601 356 601
Polystyrene 6 601 601 601

Gold 1 496 521 501
Gold 2 536 356 596
Silver 1 511 561 591
Silver 2 356 601 596

Endorem 601 601 601
Ferumoxytol 591 601 601

JGC 516 521 521
Titanium (IV) oxide 596 601 601

Zinc oxide 1 596 591 596
Zinc oxide 2 356 591 601
Zinc oxide 3 506 526 521

Silica 1 356 356 356
Silica 2 356 356 356
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(b)

Absorbance maximum (nm)
in RPMI-1640

Material Low Mid High

Polystyrene 1 561 596 601
Polystyrene 2 586 601 601
Polystyrene 3 596 591 601
Polystyrene 4 601 596 596
Polystyrene 5 596 596 601
Polystyrene 6 596 601 601

Gold 1 501 601 496
Gold 2 561 356 601
Silver 1 356 356 356
Silver 2 496 601 601

Endorem 596 596 601
Ferumoxytol 596 596 601

JGC 521 521 521
Titanium (IV) oxide 601 601 601

Zinc oxide 1 601 601 601
Zinc oxide 2 596 596 596
Zinc oxide 3 521 521 506

Silica 1 376 376 381
Silica 2 376 376 376
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(c)

Absorbance maximum (nm)
in RPMI-1640 10% FBS

Material Low Mid High

Polystyrene 1 601 601 601
Polystyrene 2 601 601 601
Polystyrene 3 601 601 601
Polystyrene 4 601 601 601
Polystyrene 5 601 601 601
Polystyrene 6 601 601 601

Gold 1 406 511 546
Gold 2 511 511 511
Silver 1 431 431 531
Silver 2 511 406 546

Endorem 601 601 601
Ferumoxytol 601 601 601

JGC 456 431 421
Titanium (IV) oxide 406 401 546

Zinc oxide 1 511 431 431
Zinc oxide 2 596 581 596
Zinc oxide 3 551 516 521

Silica 1 371 601 376
Silica 2 376 356 361
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(d)

Absorbance maximum (nm)
in DMEM

Material Low Mid High

Polystyrene 1 356 356 366
Polystyrene 2 356 356 356
Polystyrene 3 356 356 451
Polystyrene 4 356 356 356
Polystyrene 5 356 356 356
Polystyrene 6 356 356 356

Gold 1 366 361 406
Gold 2 436 356 461
Silver 1 376 371 371
Silver 2 496 376 436

Endorem 561 566 601
Ferumoxytol 561 561 561

JGC 436 496 526
Titanium (IV) oxide 376 371 436

Zinc oxide 1 371 436 466
Zinc oxide 2 506 561 561
Zinc oxide 3 396 506 506

Silica 1 356 356 356
Silica 2 356 451 451
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(e)

Absorbance maximum (nm)
in DMEM 10% FBS

Material Low Mid High

Polystyrene 1 601 576 601
Polystyrene 2 601 601 601
Polystyrene 3 576 601 601
Polystyrene 4 601 601 601
Polystyrene 5 601 601 601
Polystyrene 6 601 601 601

Gold 1 416 521 406
Gold 2 401 486 416
Silver 1 521 406 406
Silver 2 401 406 361

Endorem 601 601 601
Ferumoxytol 601 601 601

JGC 401 366 361
Titanium (IV) oxide 521 371 371

Zinc oxide 1 416 371 521
Zinc oxide 2 446 591 601
Zinc oxide 3 491 531 601

Silica 1 576 371 601
Silica 2 601 601 356

Figure 2.3: Graphical representations of maximum absorption wavelengths, and
associated wavelengths (nm), of nanomaterials suspended in (a) Deionized water.
(b) RPMI-1640. (c) RPMI-1640 supplemented with FBS to 10% final volume.
(d) DMEM. (e) DMEM supplemented with FBS to 10% final volume.
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(a)

Emission maximum (nm)
in deionized water

Material Low Mid High

Polystyrene 1 356 591 601
Polystyrene 2 506 526 521
Polystyrene 3 591 601 601
Polystyrene 4 601 601 601
Polystyrene 5 596 581 596
Polystyrene 6 551 516 521

Gold 1 496 521 501
Gold 2 536 356 596
Silver 1 511 561 591
Silver 2 356 601 596

Endorem 601 601 601
Ferumoxytol 591 601 601

JGC 516 521 521
Titanium (IV) oxide 596 601 601

Zinc oxide 1 596 591 596
Zinc oxide 2 356 591 601
Zinc oxide 3 506 526 521

Silica 1 601 601 601
Silica 2 601 601 601
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(b)

Emission maximum (nm)
in RPMI-1640

Material Low Mid High

Polystyrene 1 561 596 601
Polystyrene 2 586 601 601
Polystyrene 3 596 591 601
Polystyrene 4 601 596 596
Polystyrene 5 596 596 601
Polystyrene 6 596 601 601

Gold 1 501 601 496
Gold 2 561 356 601
Silver 1 356 356 356
Silver 2 496 601 601

Endorem 596 596 601
Ferumoxytol 596 596 601

JGC 521 521 521
Titanium (IV) oxide 601 601 601

Zinc oxide 1 601 601 601
Zinc oxide 2 596 596 596
Zinc oxide 3 521 521 506

Silica 1 376 376 381
Silica 2 376 376 376
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(c)

Emission maximum (nm)
in RPMI-1640 10% FBS

Material Low Mid High

Polystyrene 1 601 601 601
Polystyrene 2 601 601 601
Polystyrene 3 601 601 601
Polystyrene 4 601 601 601
Polystyrene 5 601 601 601
Polystyrene 6 601 601 601

Gold 1 406 511 546
Gold 2 511 511 511
Silver 1 431 431 531
Silver 2 511 406 546

Endorem 601 601 601
Ferumoxytol 601 601 601

JGC 456 431 421
Titanium (IV) oxide 406 401 546

Zinc oxide 1 511 431 431
Zinc oxide 2 596 581 596
Zinc oxide 3 551 516 521

Silica 1 371 601 376
Silica 2 376 356 361
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(d)

Emission maximum (nm)
in DMEM

Material Low Mid High

Polystyrene 1 596 596 596
Polystyrene 2 521 521 506
Polystyrene 3 596 596 601
Polystyrene 4 596 596 601
Polystyrene 5 446 591 601
Polystyrene 6 491 531 601

Gold 1 366 361 406
Gold 2 436 356 461
Silver 1 376 371 371
Silver 2 496 376 436

Endorem 561 566 601
Ferumoxytol 561 561 561

JGC 436 496 526
Titanium (IV) oxide 376 371 436

Zinc oxide 1 371 436 466
Zinc oxide 2 506 561 561
Zinc oxide 3 396 506 506

Silica 1 601 601 601
Silica 2 601 601 601
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(e)

Emission maximum (nm)
in DMEM 10% FBS

Material Low Mid High

Polystyrene 1 601 576 601
Polystyrene 2 601 601 601
Polystyrene 3 576 601 601
Polystyrene 4 601 601 601
Polystyrene 5 601 601 601
Polystyrene 6 601 601 601

Gold 1 416 521 406
Gold 2 401 486 416
Silver 1 521 406 406
Silver 2 401 406 361

Endorem 601 601 601
Ferumoxytol 601 601 601

JGC 401 366 361
Titanium (IV) oxide 521 371 371

Zinc oxide 1 416 371 521
Zinc oxide 2 446 591 601
Zinc oxide 3 491 531 601

Silica 1 576 371 601
Silica 2 601 601 356

Figure 2.4: Graphical representations of maximum emission wavelengths, and
associated wavelengths (nm), of nanomaterials suspended in (a) Deionized water.
(b) RPMI-1640. (c) RPMI-1640 supplemented with FBS to 10% final volume.
(d) DMEM. (e) DMEM supplemented with FBS to 10% final volume.
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2.4 Discussion

Biological contamination is a potential source of false positives in a number of

assays examining toxicity and biocompatibility. The materials included in the

present study were demonstrated to show no bacterial growth suggesting a lack

of viable microbial contamination. However, it is also necessary to confirm the

absence of bacterial based contaminants, specifically endotoxin, in the test ma-

terials. Presence of such contaminants in nanoparticle preparations could result

in the outcomes highlighted in Section 1.6.1.

As has been described previously by others (Yang et al., 2012), some materials

demonstrated interference with the ELISA-based assay which was utilised here.

This was observed in polystyrenes 2, 3, and 4, gold 2, silver 2, JGC, and silicas

1 and 2 as highlighted in Table 2.4. However, following further dilution, these

effects were mitigated thereby providing a reliable determination of endotoxin

concentration as evidenced by the spike recovery. A further limitation of this

method was the limit of quantification; manufacturer-stated measurement range

of 0.05 - 500 EU/ml (Hyglos GmbH, 2017). To complement the results of this

assay, and to avoid misleading results due to overlooked interference, the ELISA

could be used side by side with another detection method such as a chromogenic

LAL-based assay (Neun and Dobrovolskaia, 2011) which does not succumb to

the same limitations as the ELISA or gel clot assay mentioned previously. These

methodologies were, however, unavailable at the time. The data presented here

demonstrates that there are detectable concentrations of endotoxin within some

test materials, notably JGC (107.80 EU/ml at a material concentration of 100

µg/ml) and liposome (18.44 EU/ml at a material dilution of 1/10 from stock).

This is to be expected as not all commercially available nanomaterials are in-

tended for biological use and are not therefore necessarily guaranteed to be py-

rogen free. To ensure that any activation of immune cells that may be observed
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in subsequent immunotoxicological assays is not a result of the presence of endo-

toxin; it is possible to include LPS from R. sphaeroides, a potent antagonist of

TLR4 signalling, to negate any possible endotoxin effect (InvivoGen, 2007) and

therefore ensure effects are nanoparticle dependent.

There are several options for measuring particle sizes (Bootz et al., 2004). The

most direct of these are by TEM (Stratton et al., 2013). The crux of this method,

and others like it, is that the materials must be fixed in a manner removing them

from their intended medium, as well as treated via coating to confer conductivity

to the sample surface (Höflinger, 2013). Another limitation is that particles must

be measured individually within a frame of limited size, so any measurements are

only representative of that population. By utilizing dynamic light scattering over

TEM the hydrodynamic diameter of the nanoparticle can be measured. Along

with this, a vastly greater number of particles can be assessed simultaneously

providing information about the population.

Sizing of nanoparticles in the appropriate buffer is associated to physicochem-

ical characteristics (Sabuncu et al., 2012). The same can be said for measuring

the zeta potential as well as optical properties. Data presented in this work has

shown that considerable changes arise in the measurable properties of the nano-

materials by suspending nanomaterials in buffer relevant to biological systems,

which corresponds to in vitro assays performed in subsequent chapters. This is

exemplified by nanoparticles such as polystyrene 1, the size of which increased

to 1169.93 nm in RPMI-1640 supplemented 10% with FBS compared to its mea-

sured size of 208.10 nm in deionised water. ISO 13321:1996 specifies reporting of

mean z-average diameter and mean polydispersity index (International Organiza-

tion for Standardization, 1996). Z-average provides the intensity weighted mean

hydrodynamic size but can be skewed by polydispersity caused by aggregates or

protein supplementation within a sample (Malvern Instruments Ltd, 2014). Size

distribution by intensity overcomes these limitations. This measurement provides
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the hydrodynamic diameter of nanoparticles within modes of a multimodal dis-

tribution. Using suitable sample preparation the nanoparticles should present

the mode of the highest intensity. The size calculated from this, termed “peak

mean intensity” in this work, provides the best representation of the nanoparticle

size in conditions increasing distribution complexity. For this reason it was found

that the peak mean intensity size provided the most accurate representation of

the hydrodynamic diameter of the nanomaterials in biologically relevant media.

Estimation and extrapolation of properties from values gained in water are evi-

dently not sufficient, and it should always be questioned the method by which the

manufacturer stated size was determined. It is possible that alternative method-

ologies should be included in this type of analysis. Although sensitive to technical

limitations including low throughput, extensive optimisation, pore size thresholds

which can lead to clogging resultant from heterogeneity in samples (Maas et al.,

2015), tunable resistive pulse sensing (TRPS) measurement has been shown to

yield additional data for size and charge of nanoparticles and would complement

DLS data (Pal et al., 2014). The lower threshold of 40 nm limits the suitability

of TRPS to certain size distributions of nanomaterials. Beneficially this renders

TRPS insensitive to the presence of protein in media, meaning further unde-

sired distributions are not recorded. Indeed may regulatory agencies now require

physicochemical characteristic data using differential techniques to show consis-

tency in measurement (U.S. Food and Drug Administration, 2012b). However,

researchers do not necessarily have access to all of these technologies, and their

acquisition can be cost limited. The development of alternative, cheaper method-

ologies is therefore required. Previous work within our group has demonstrated

the utility of flow cytometry for the characterisation of changes in nanoparticle

size in various matrices as well as simultaneous measurement of protein interac-

tion (Liptrott et al., 2015). Many research groups have access to a flow cytometer,

and these techniques may be adapted for use as an additional source of characteri-
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sation however this methodology is not a standard in the field and is in its relative

infancy for characterisation requiring additional validation, which is ongoing.

Zeta potential has proven to be a highly useful tool to accompany DLS mea-

surements. As mentioned in Section 2.1, there are characteristic magnitudes of

charge which provide a guide for the stability of nanoparticle suspensions. Charge

stabilization of materials in water is a common practice for metallic nanoparti-

cles e.g. citrate-stabilized gold nanoparticles. This reduces the likelihood of

aggregation and allows greater shelf-life of the material. As already known, and

further shown here, colloidal stability is not always carried across into more com-

plex buffers. In conjunction with the results of DLS, one gains a greater insight

into the reasons behind any buffer related differences in measurements. When the

nanoparticles are introduced into a biologically relevant matrix they may undergo

changes in their surface chemistry. These changes include, but are not limited to;

the adhesion of proteins, ion exchange with the buffer, and salt-induced aggrega-

tion.

Zinc oxide and titanium dioxide nanoparticles both displayed low colloidal

stability in RPMI-1640 and DMEM, to a point of aggregation and non-viability.

This effect has been described regarding titanium dioxide previously (Allouni

et al., 2009). This observation is an important one in demonstrating upon intro-

duction to biologically relevant matrices, nanoparticles may no longer remain in

the nanoscale. This is crucial when attempting to build quantitative structure-

activity relationship (QSAR) models, incorporating physicochemical characteris-

tic data as relationships may not be valid without robust physicochemical charac-

terisation. Furthermore, when considering biological outcomes it would be ques-

tionable whether associating properties linked to the nanoscale are valid when

aggregates are micro-sized.

The optical properties which some nanoparticles exhibit at the nanoscale are

something which tends to be exploited for novel uses. This intrinsic property
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creates difficulties when combined with fluorescent molecules in biological assays.

Interference can occur if the nanoparticle absorbs or emits at a corresponding

wavelength to what is being used to excite or detect the fluorophore (Gonzales

et al., 2010).

Particular materials such as gold and iron oxide have characteristic spectral

regions at which they have a surface plasmon resonance or absorption peak. This,

however, is not always the point of highest absorption across the entire spectrum.

In the case of gold nanoparticles, the surface plasmon peak wavelength is in the

region of 520 nm (Link and El-Sayed, 1999), the intensity of which directly relates

to the concentration of material present. What our assessment has determined is

that the absorption maximum at 300 nm in deionised water is minimally affected

by material concentration. The convention in biological sciences when present-

ing absorption spectra of plasmonic nanomaterials is to focus and display data

roughly ±100 nm of the plasmon peak. This narrow window does not necessarily

provide a true representation of the material’s optical properties. Publications

focussed toward chemistry and engineering, however, do display spectral data

across a wider range and support the observations described here (Amendola and

Meneghetti, 2009; Uppal et al., 2010). It can be argued that this style of gen-

erating and presenting data should be adopted in biological sciences to provide

more complete insight from which better informed conclusions can be drawn.

Similar concentration independent effects were seen in other materials like

polystyrene, which do not have a particular maximal absorption wavelength, they

absorb across the entire spectrum with only minor fluctuations. If this general ab-

sorption is relatively low, then interference, for this reason, can be minimal. Any

interference observed can then be attributed to other factors such as turbidity.

The buffer in which the materials are suspended can affect their absorption

spectrum. Components of more complex buffers can physically influence the

material as mentioned earlier regarding their size and charge. Particular buffers
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can have inherent regions of higher absorption which can then be exacerbate

those of nanomaterials. Vetten et al. highlights this effect in the case of gold

nanoparticles suspended in culture media. The work attributes absorbance peak

broadening to the composition and refractive index of the medium (Vetten et al.,

2013). Blank correction of these samples, where the medium itself is treated as a

baseline, can somewhat alleviate the additive effect, but it is far from a perfect

solution, and may reduce the sensitivity of the assay. For this to be a complete

solution, the combined absorption of the material and buffer must be additive. As

this is not always the case, a compromise must be made, and that blank correction

should be applied but not relied on to provide a perfect result. Direct interference

controls offer some solution to this, where nanoparticle-containing preparations in

the absence of cells are assessed in tandem to the cell-based assay (Petersen, 2015).

Further to this, the use of inhibition/enhancement controls provide a means by

which these effects may be further visualised. The addition of nanomaterials to

a treatment generating a known response would confirm observations from direct

interference controls, or reveal assay interference generated following biological

processes such as binding of assay targets to the nanoparticle surface.

The work outlined in this chapter has demonstrated that we have been able to

determine successfully the levels, or absence, of endotoxin in the materials chosen

for analysis, alongside an assessment of microbial contamination. The optical

properties of the nanomaterials have been assessed. In doing so, the likelihood

of optical interference with assays has been evaluated and has been shown to be

minimal. This is a result of there being either no overlap in wavelengths or that

the absorption or emission at interfering wavelengths being of low intensity to

have little effect.
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3.1 Introduction

The intended administration route dictates the design of nanoparticle drug car-

riers (Yildirimer et al., 2011). Nanomedicines administered intravenously come

into direct and immediate contact with the blood. As discussed in Section 1.4,

evaluation of haemocompatibility, therefore, is vital in the preclinical assessment

of nanomedicines (Ilinskaya and Dobrovolskaia, 2013).

Coagulation is critical in haemostasis and is subdivided into three main path-

ways; intrinsic, extrinsic, and the common pathway. The extrinsic coagulation

pathway is initiated through vascular injury which exposes of tissue factor (TF,

also identified as factor III) to plasma coagulants, Factor VII, and calcium, pro-

moting conversion of Factor X to Xa (Owens and Mackman, 2010). Tissue fac-

tor, a cell-surface glycoprotein, is expressed in the subendothelial tissue (Lasne

et al., 2006). However, expression may be induced in monocytes and endothelial

cells following injury or pathological stimuli (Rao and Pendurthi, 2012). Acti-

vation of the intrinsic cascade is initiated by binding of Factor XII to anionic

or hydrophilic surfaces (Vogler and Siedlecki, 2009) such as cellular RNA and

polyphosphates released through necrosis, and endotoxin (Esmon et al., 2011).

The common pathway is ubiquitous through stimulation of either the extrinsic or

intrinsic pathways (Troy, 1988). Thrombin, through enzymatic cleavage by Fac-

tor Xa (Krishnaswamy, 2013), converts circulating fibrinogen to fibrin monomer,

induces morphological changes in platelets, and mobilises platelet aggregation

mediators (Coughlin, 2000).

Each pathway utilises numerous coagulation factors, some of which display

commonality between pathways. The intrinsic pathway is assessed using the

activated partial thromboplastin time (APTT) assay, and looks at coagulation

factors XII, XI, IX, VIII, X, V, and II (prothrombin). Prothrombin time (PT)

is used to measure coagulation time via the extrinsic pathway which involves
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factors VII, X, V and II. Lastly thrombin time (TT) is used to assess the common

pathway. Each of these tests measure the generation time of fibrin following the

activation of the coagulation cascade at specific points, via the conversion of

coagulation factors from their zymogen to active forms, as can be seen in Figure

3.1.

XI

XII XIIa

Surface Activation (APTT)

XIa

IX IXa

VIIIa
Calcium
Platelet factor

X Xa

Tissue Activation (PT)

VIIa VII

Va
Calcium
Platelet factor

Prothrombin Thrombin (TT)

Fibrinogen Fibrin
M

Fibrin
P

XIII XIIIa

Fibrin clot

Plasminogen Plasmin

Tissue plasminogen
activators (TPA)

Fibrin
degradation

products

Intrinsic Extrinsic

Common

Figure 3.1: Pathways comprising the blood coagulation cascade. Factors dis-
played; XII - Hageman factor, XI - plasma thromboplastin, IX - Christmas fac-
tor, X - Stuart-Prower factor, VII - stable factor, II - prothrombin, XIII - fibrin
stabilising factor. Lower-case a denotes active form, FibrinM and FibrinP repre-
sent fibrin monomer and fibrin polymer respectively. Adapted from “Coagulation
Tests,” by M. N. Raber, in H. K. Walker, W. D. Hall, J. W. Hurst (Eds.), Clinical
Methods: The History, Physical, and Laboratory Examinations (3rd edition, p.
740), 1990, Boston, MA: Butterworths. Copyright 1990 by Elsevier. Adapted
with permission.

Erythrocytes have a haematocrit (blood volume percentage) of 42-47% under
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normal conditions. When damaged, they release their intracellular content to the

plasma; termed haemolysis. Haptoglobin, a plasma protein, binds the released

haemoglobin for removal via the reticuloendothelial system. If this release of

haemoglobin is on a larger scale, as a result of a haemolytic anaemia, the effects

can be detrimental to the individual displaying this pathology. Fragmentation

haemolysis, a form of mechanical destruction of red blood cells, is know to oc-

cur via the action of drugs under normal dosing strategies, termed drug-induced

thrombotic microangiopathy (DITMA) (Al-Nouri et al., 2015). Haemoglobin is

toxic and may affect vascular, myocardial, renal and central nervous system tis-

sues. Concentrations of free haemoglobin greater than 100 nM can result in

deleterious effects (Tracz et al., 2007) via oxidative damage under acute expo-

sure, or chronic pathologies affecting vascular, hepatic, splenic, and renal systems

(Schaer et al., 2013). For these reasons it is necessary for all medical devices and

drugs which come in contact with blood to be tested for potential haemolytic

properties (Desai and Lister, 2011).

As mentioned in Section 1.5.2, the complement system is comprised of a num-

ber of plasma proteases and cell surface components. Cleavage of the zymo-

gen protease precursors initiate activation of this multicomponent system, whose

functions within innate immunity include directing immune responses, pathogen

recognition, and involvement in homeostasis (Dunkelberger and Song, 2010). Be-

ing a vital in vivo system, involvement of the complement system in the biological

interactions of nanomaterials is a consideration which cannot be overlooked (Bo-

raschi et al., 2012). The physicochemical characteristics of nanoparticles can

share likeness with those of pathogenic microorganisms, including size, charge,

and surface modifications (Moghimi et al., 2015). Polymers such as PEG have

been exploited for nanoparticle surface functionalization due to their ability to

create a steric barrier which reduces the ability of proteins to bind the surface and

subsequently reducing complement activation and macrophage uptake (Vonar-
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bourg et al., 2006). While some of these properties have been applied in the

design of nanoparticles to evade rapid clearance by macrophages, they do not

offer a complete solution to overcoming innate immune recognition, and the po-

tential for adverse effects. The formation of anti-PEG antibodies has been shown

to occur in healthy volunteers (Garay et al., 2012), where PEG has been shown

to behave as a hapten to elicit this response (Ishida and Kiwada, 2013). A small

number of studies have shown this to result in enhanced clearance (Ishida and Ki-

wada, 2013), further reducing nanoparticle circulation time through complement

activation (Dams et al., 2000; Ishida et al., 2003).

Binding of complement factors to the surface of nanoparticles can mark them

for recognition and clearance by monocytes and macrophages (Peter and Moghimi,

2012). Activation of complement by nanomaterials can also induce adverse reac-

tions (Peter and Moghimi, 2012). Doxil, doxorubicin-containing PEGylated lipo-

somes, have been reported to generate hypersensitivity reactions (Szebeni et al.,

2011). Evidence suggests that this effect is mediated by complement activation

(Chanan-Khan et al., 2003).

The link between complement activation and platelet activation with regard

to pro-coagulant activity (Andersen et al., 2009), as well as complement medi-

ated red blood cell destruction (Suankratay et al., 1999; Freedman, 1987) have

been previously documented. The latter has shown involvement in the pathol-

ogy of subtypes of autoimmune haemolytic anaemia (AIHA) (Berentsen, 2015).

Coating of the red blood cell with antibodies IgG1, IgG3 or IgM, can activate

complement leading to insertion of complexes C5, 6, 7, 8 and 9 into the cell

membrane which disturb osmotic balance resulting in intravascular haemolysis

(Garratty, 2008). Extravascular haemolysis occurs through interaction of hepatic

and splenic macrophages with C3b/iC3b coated red blood cells (Garratty, 2008).

The aim of this chapter was to observe effects of treatment with nanomaterials

outlined in Table 2.1 on plasma coagulation, as well as the potential haemolytic
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activity, and influence on complement activation by selected materials.
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3.2 Methods

3.2.1 Materials

Sodium citrate, lithium heparin, and K2EDTA coated Vacuettes were purchased

from VWR (Pennsylvania, USA). Neoplastine Cl, thrombin, CaCl2 (0.025 M),

Owren-Koller buffer, PTTA, CoagControl N+ABN, metal balls, and cuvettes

were purchased from Diagnostica Stago (Reading, UK). Haemoglobin Reagent Set

was purchased from Teco Diagnostics (California, USA). Dulbecco’s phosphate-

buffered saline (DPBS), Triton X-100 were purchased from Sigma-Aldrich (Dorset,

UK). The MicroVue iC3b EIA was purchased from Quidel (California, USA), and

cobra venom factor was purchased from Quidel (Ohio, USA).

Approval for the sampling and storage of human blood samples for biomedical

research was gained from the University of Liverpool Committee in Research

Ethics (Ref: RETH000563).

3.2.2 Plasma coagulation

3.2.2.1 Blood collection

Blood from healthy volunteers was obtained by venipuncture (3 volunteers) into

vacutainers anticoagulated with sodium citrate and used within 30 minutes of

being drawn.

3.2.2.2 Experimental protocol

Whole blood was centrifuged for 10 minutes at 2500 × g at room tempera-

ture. Plasma inspected for haemolysis, collected, and pooled. Nanomaterials

were added to microcentrifuge tubes at sufficient volume to provide final treated

concentrations displayed in Table 3.1. Concentrations were chosen in order to
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assess the effect of greatest material concentration and carrier, consistent with

assays throughout the thesis. Pooled plasma was added to achieve total volumes

of 1 ml. Treatments were incubated for 30 minutes at 37◦C. During this time;

normal and abnormal control plasmas, neoplastine, PTTA reagent, and thrombin

were reconstituted in deionized water as indicated on the product packaging, and

allowed to stand at room temperature for 30 minutes prior to use. The Merlin

MC4 plus coagulometer (ABW Medizin und Technik GmbH, Lemgo, Germany)

was turned on 15 minutes prior to use to allow the heating block to reach 37◦C.

Reagents were transferred to test tubes and placed in the heating block of the

coagulometer prior to use. Cuvettes were loaded in the test rows of the coag-

ulometer, a metal ball was placed inside each, and allowed to warm for three

minutes.

Specific details of the PT, APTT, and TT assays are outlined below.

As per the protocol established by the NCI-NCL for the analysis of nanoparti-

cle effects on plasma coagulation times in vitro (Neun et al., 2015b); samples were

run in duplicate, and following coagulation of samples, the time and coefficient of

variation (%CV) were recorded. The acceptance criteria for samples was a %CV

below 5%. For values greater than this, samples were re-analysed.

Prothrombin time

100 µl of plasma (normal control, abnormal control, untreated, and nanomaterial

treated) was added to the cuvette and incubated for 120 seconds. 100 µl of

neoplastine (ISI ~ 1.7) was added to trigger coagulation.

Activated partial thromboplastin time

50 µl of plasma (normal control, abnormal control, untreated, and nanomaterial

treated), and 50 µl of PTTA reagent were added to the cuvette and incubated

for 180 seconds. 50 µl of CaCl2 (0.025 M) was added to trigger coagulation.
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Material Final concentraion/dilution

Polystyrene 1 100 µg/ml
Polystyrene 2 100 µg/ml
Polystyrene 3 100 µg/ml
Polystyrene 4 100 µg/ml
Polystyrene 5 100 µg/ml
Polystyrene 6 100 µg/ml

Gold 1 500 pg/ml
Gold 2 500 pg/ml
Silver 1 100 µg/ml
Silver 2 5 µg/ml

Endorem 100 µg/ml
Ferumoxytol 100 µg/ml

JGC 100 µg/ml
Titanium (IV) oxide 100 µg/ml

Zinc 1 100 µg/ml
Zinc 2 100 µg/ml
Zinc 3 100 µg/ml
Silica 1 100 µg/ml
Silica 2 100 µg/ml
Silica 3 100 µg/ml

Liposome 1/20
Emulsion 1/20

Table 3.1: Final concentrations/dilution factors of nanomaterials used to assess
effects on plasma coagulation.

Thrombin time

100 µl of plasma (normal control, abnormal control, untreated, and nanomate-

rial treated) was added to the cuvette and incubated for 60 seconds. 100 µl of

thrombin (1.5 NIH units/ml) was added to trigger coagulation.
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3.2.3 Haemolysis

3.2.3.1 Blood collection

Healthy volunteer blood was obtained by venipuncture (3 volunteers) into vacu-

tainers anticoagulated with lithium heparin. The first 10 ml from each donor was

discarded to minimise the level of haemolysis in collected samples generated by

veinal trauma from puncture (Bush, 2003).

3.2.3.2 Determining plasma free haemoglobin

3 ml of blood from each volunteer was centrifuged at 800 × g for 15 minutes. The

plasma was collected and stored at room temperature while 2 ml of haemoglobin

reagent was dispensed into microcentrifuge tubes corresponding to “blank” and

each volunteer. 10 µl of plasma was added to respective tubes, and incubated

at room temperature for 3 minutes. 200 µl of blank and volunteer samples were

transferred to a 96 well plate in quadruplicate. 200 µl of methemoglobin stan-

dard was added to the plate in triplicate and the absorbance of all samples was

measured at 540 nm using a CLARIOstar plate reader (BMG Labtech). The

absorbance values were then converted to haemoglobin concentration using the

calculation shown in Section 3.2.3.3. Remaining blood from volunteers was di-

luted to a plasma free haemoglobin concentration of 10 g/dl using DPBS.

3.2.3.3 Calculations

As outlined in the manufacturer’s protocol, the calculation used to determine

haemoglobin presence is as follows;

Abs. of unknown

Abs. of standard
× Conc. of standard (g/dl) = Value (g/dl)
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The 60 mg/dl methemoglobin standard produces an absorption equivalent to that

of 15 mg/ml of haemoglobin.

3.2.3.4 Experimental procedure

Nanoparticles were prepared at eight times final concentration displayed in Table

3.2 in DPBS. 792 µl of diluted blood from each volunteer was transferred to mi-

crocentrifuge tubes in replicates corresponding to negative control, nanomaterial

treated, positive control, and inhibition/enhancement controls. To the negative

control 8 µl of DPBS was added, 8 µl of eight times concentrated nanomaterials

were added to nanomaterial treated, and 8 µl of 1% triton X-100 was added to

positive control and designated inhibition/enhancement control wells. Incuba-

tion was performed at 37◦C for 3 hours and samples were mixed every 30 minutes

throughout the duration. Following incubation, 8 µl of eight times concentrated

nanomaterials were added to inhibition/enhancement samples, and all prepara-

tions were centrifuged at 800 × g for 15 minutes. 100 µl of supernatant was

transferred to a 96 well microplate for all samples in triplicate, to which 100 µl of

haemoglobin reagent was added. 200 µl of methemoglobin standard was added

to the plate in triplicate, and the absorbance of all samples was measured at 540

nm. Calculations were performed as outlined in Section 3.2.3.3, and recorded as

percentage haemolysis.

Material Final concentration/dilution

Polystyrene 2 10 µg/ml
Silica 1 10 µg/ml
Silica 2 10 µg/ml
Silica 3 10 µg/ml

Emulsion 1/200

Table 3.2: Final concentrations and dilution factors used to assess haemolytic
potential of chosen nanomaterials.
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3.2.4 Complement activation

3.2.4.1 Blood collection

Healthy volunteer blood was obtained by venipuncture (3 volunteers) into va-

cutainers anticoagulated with K2EDTA. The first 10 ml from each donor was

discarded.

3.2.4.2 Experimental procedure

Blood was centrifuged at 2500 × g for 10 minutes. Plasma was evaluated for

haemolysis, and pooled.

In microcentrifuge tubes, equal volumes (100 µl) of veronal buffer, plasma,

and test-samples (final concentrations displayed in Table 3.3), negative control

(DPBS), or positive control (cobra venom factor with functional titer of 628

units/ml) were combined. All samples were prepared in triplicate. Tubes were

vortexed to mix components and spun briefly in a microcentrifuge to collect total

volume. Treatments were then incubated for 30 minutes at 37◦C.

All reagents were provided with the MicroVue iC3b EIA kit. Wash buffer was

prepared, and standards and controls were reconstituted using hydrating reagent

and allowed to sit for 15 minutes and mixed prior to use.

Cobra venom factor treated samples were diluted 1:40 using iC3b specimen

diluent and loaded to the plate at a volume of 100 µl. All other samples and

standards were loaded at neat concentration.

The plate was incubated for 30 minutes at room temperature, and washed

using the following procedure; well contents were aspirated, 300 µl of wash solu-

tion was added and incubated for 1 minute, then aspirated. This was repeated 5

times, and following the final cycle the plate was tapped onto absorbent paper. 50

µl of iC3b conjugate was added to all wells and incubated for 30 minutes at room
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temperature. The wash procedure was repeated. 100 µl of substrate solution was

added to all wells and incubated for 30 minutes at room temperature. 5 µl of

stop solution was added to all wells and the plate gently tapped to ensure even

dispersion of colour. Absorbance at 405 nm was measured immediately using a

CLARIOstar plate reader. Concentrations of iC3b were determined as described

in Section 3.2.4.3, and validated using the high and low iC3b controls included

with the kit.

Material Low High

Silver 1 1 µg/ml 100 µg/ml
Silver 2 0.01 µg/ml 1 µg/ml

Endorem 1 µg/ml 100 µg/ml
Ferumoxytol 1 µg/ml 100 µg/ml

JGC 1 µg/ml 100 µg/ml
Titanium (IV) oxide 1 µg/ml 100 µg/ml

Zinc oxide 1 1 µg/ml 100 µg/ml
Zinc oxide 2 1 µg/ml 100 µg/ml
Zinc oxide 3 1 µg/ml 100 µg/ml

Silica 1 1 µg/ml 100 µg/ml
Silica 2 1 µg/ml 100 µg/ml
Silica 3 1 µg/ml 100 µg/ml

Liposome 1/10000 1/100

Table 3.3: Concentrations and dilution factors used to assess complement activa-
tion in human plasma.

3.2.4.3 Calculations

Concentration of iC3b was calculated using a linear trendline generated from a

semi-log curve produced from the MicroVue iC3b EIA kit standards using Mi-

crosoft Excel (2013) (Figure 3.4). Dilution corrections of 1:3 were made for all

treated samples, and a further 1:40 for the positive control.
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3.2.5 Statistical analysis

Statistical analysis was performed using GraphPad Prism 6. Statistical differ-

ences were determined using one-way analysis of variance (ANOVA) and Dun-

nett’s multiple comparison tests. A p-value <0.05 was considered as statistically

significant. Correlation analysis was performed using GraphPad Prism 6 via non-

parametric Spearman correlation. A p-value <0.05 was considered as statistically

significant.
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3.3 Results

3.3.1 Plasma coagulation

Of all nanomaterials tested, treatment of plasma with titanium (IV) oxide pro-

duced the most pronounced reduction in coagulation time, compared to that

of the normal (1.95 s), and untreated (2.05 s) controls in the PT assay (Figure

3.2a). Prolongation of coagulation beyond the set limit of 60 seconds was observed

in treatment with the emulsion. Prolongation of 2.25 seconds was observed by

treatment with silver 1 compared to the untreated control in the PT assay, but

a more pronounced prolongation by this material was found in the APTT (27.95

s, Figure 3.2b) and TT (20.95 s, Figure 3.2c) assays, being the only material

to generate marked change in the latter. Treatment with zinc oxide nanopar-

ticles demonstrated highly differential effects in the APTT assay where zinc 1

prolonged coagulation beyond the time limit, while zinc 3 reduced coagulation

time by 11 seconds compared to untreated plasma (Figure 3.2b). Prolongation

was also exhibited by Endorem, JGC, titanium (IV) oxide, and emulsion, beyond

the acceptable coagulation time range for the normal control in the APTT assay.

Conversely, treatment with zinc 3 reduced the coagulation time by 10.95 seconds

compared to untreated plasma.
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(a)

(b)
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(c)

Figure 3.2: Coagulation times for nanoparticle treated plasma via the (a) Ex-
trinsic pathway. (b) Intrinsic pathway. (c) Common pathway. Black bars denote
samples which did not coagulate within the time limit. Green, and red highlighted
areas indicate expected ranges of coagulation time for normal and abnormal con-
trol plasmas respectively, as stated in the manufacturer’s product information.
Data displayed as average (n = 2) ± %CV.
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3.3.2 Haemolysis

Resource availability at the time of assessment limited the number of materials

tested. Silica was chosen following indications in the literature of being a material

having haemolytic potential. The testing of emulsion was determined by the

effects generated in Section 3.3.1.

The American Society for Testing and Materials have set out guidelines for

the assessment of haemolysis; <2% is deemed non-haemolytic, 2-5% slightly

haemolytic, and >5% haemolytic (American Society for Testing and Materials,

2000).

Two materials demonstrated slightly haemolytic effect; treatment with silica

1 generated an average 2.42% haemolysis in individual 3, and silica 2 caused an

average 3.12% haemolysis in individual 1 (Figure 3.3a). No haemolytic activity

>5% was observed for any of the nanomaterial treatments.

Negative percentages of haemolysis displayed in Figure 3.3a were attributed to

assay variation resulting from percentages being calculated from 10 g/dl plasma

free haemoglobin. Similarly, percentages of haemolysis greater than 100% shown

in Figure 3.3b are the result of nanomaterial-related absorbance enhancement, as

treatment with Triton X-100 generated complete haemolysis of samples.

The calculated percentage haemolysis of silica 1 treated inhibition/enhance-

ment control was 11% less than that of the positive control in individual 2, while

being 16.40% and 7.64% higher in individuals 1 and 3 respectively (Figure 3.3b).

Inhibition/enhancement did not follow any observable material-associated trend.
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(a)
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(b)

Figure 3.3: Percentage haemolysis, relative to controls, generated by (a) Treat-
ment with stated nanomaterials. * denotes 2-5% haemolysis. ** denotes haemol-
ysis >5%. (b) Nanomaterials following treatment with Triton X-100 to assess
inhibition/enhancement. Data displayed as average (n = 3) ± standard devia-
tion.
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3.3.3 Complement activation

Figure 3.4 displays the standard curve used to calculate the iC3b concentrations in

treated samples as described in Section 3.2.4.3. The standard curve was validated

by the calculated concentrations of high and low standards included with the kit

falling within the ranges stated by the kit protocol.

Figure 3.4: Standard curve prepared from standards provided with the iC3b EIA
kit, used to calculate iC3b concentrations. Data displayed as average (n = 3) ±
standard deviation.
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Pooled plasma treated with the positive control, cobra venom factor, demon-

strated an iC3b concentration 132.7-fold (p = <0.0001) more than that of the

negative control (Figure 3.5).

No nanomaterial treatments, under the experimental conditions described,

resulted in iC3b concentrations significantly different than that of the negative

control (p = <0.05).

Figure 3.5: iC3b concentrations generated by treatments with negative and pos-
itive controls, and stated nanomaterials. Data displayed as average (n = 3) ±
standard deviation. * p-value <0.05.
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3.4 Discussion

Haematological compatibility is a property of utmost importance when consid-

ering nanomaterials being developed for in vivo use. For this reason, stringent

preclinical assessment is a necessity to evaluate, characterise, and inform the

development of nanomaterials for use as nanomedicines and nanotherapeutics.

Plasma coagulation in the presence of excessive endotoxin, through the gener-

ation of tissue factor, has been well documented (Pernerstorfer et al., 1999). JGC

was found to contain the highest quantity of endotoxin of all materials tested in

this work, 107.80 EU/ml at a tested concentration of 100 µg/ml. Treatment of

plasma with JGC, however, demonstrated a prolongation in coagulation time of

1.4 seconds via the extrinsic pathway. The endotoxin-related effect is the result

of tissue factor expression by monocytes (Pernerstorfer et al., 1999), not present

in the cell-free methodology used in this work.

Zinc oxides 1, 2, and 3 each demonstrated highly different impact on coagu-

lation times via the intrinsic pathway. Zinc oxide 2 prolonged coagulation time

by 5.8 seconds compared to that of untreated plasma. Zinc 3 displayed pro-

coagulant activity resulting in a coagulation time of 23.4 seconds, outside the

accepted range for normal plasma of between 29 and 40 seconds (Diagnostica

Stago, 2002). Zinc 1 prolonged coagulation beyond the assay maximum of 120

seconds. Zeta potentials of these materials displayed a high degree of similarity

in FBS-supplemented media. Zinc 3 was found to be the largest in these media,

while zinc 1 had the smallest size. Without characterisation of these parameters

in plasma it cannot be stated with confidence which of these characteristics most

influenced the observed effects.

Huang et al. have shown that sodium citrate coated silver nanoparticles did

not affect coagulation (Huang et al., 2016). This is corroborated by the assessment

of sodium citrate-coated silver 2 in this chapter. Laloy et al. described silver
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nanoparticles stabilized by polyvinyl pyrolidone (PVP) as having procoagulant

activity (Laloy et al., 2014). No existing literature has been found describing the

effects of sodium polyacrylate stabilized nanoparticles on coagulation with which

to compare the anticoagulant properties exhibited by silver 1, but it is intuitive

that the surface functionalization is a key factor in determining coagulatory effect.

Emulsion treated plasma displayed prolongation of coagulation in the extrin-

sic, and intrinsic pathways. This was not the case in the common pathway. It

could be argued that this is a result of the emulsion having some effect on factor

VIII or X, but without further in-depth evaluation cannot be confirmed.

In vitro assessments of plasma coagulation demonstrate good correlation with

in vivo effects (Dobrovolskaia, 2015; Dobrovolskaia and McNeil, 2013). The met-

ric that is used in these assessments is change in coagulation time from a range

that is accepted to be normal in healthy plasma (Neun et al., 2015b). As has

been highlighted in Figure 3.2, accepted ranges are used to validate control plas-

mas used in these assays. While nanomaterial treatments may impact the plasma

coagulation time under in vitro conditions, these responses should be taken as a

preliminary guide for identifying possible cases of cause for concern when consid-

ering in vivo testing. If a change in coagulation time is found to be statistically

significant in vitro this may have no bearing on the effect in an animal model.

As such, this form of data handling is not applied (Neun et al., 2015b). Similarly

in vitro assessments of haemolysis conform to a convention where haemolytic

activity is scrutinised by percentage-ranges of haemolysis (Malinauskas, 1997;

Neun et al., 2015a). As stated in Section 3.3.2 these guideline ranges, set by the

American Society for Testing and Materials, are as such; <2% is deemed non-

haemolytic, 2-5% slightly haemolytic, and >5% haemolytic (American Society

for Testing and Materials, 2000). This allows a clear determinant of the potential

for a nanomaterial to generate potentially detrimental effects when applied to in

vivo models.
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Red blood cells, due to the presence of sialylated glycoproteins on the cell sur-

face, demonstrate a negative zeta potential (Fernandes et al., 2011), and it is well

known that cationic nanoparticles have a greater tendency for permeation and

disruption (Clogston and Patri, 2011). Nanomaterials displaying a zeta potential

of between the range of -10 to +10 mV are considered to be neutral, whereas

those greater than +30 mV or more negatively than -30 mV are considered to be

strongly cationic and anionic, respectively (Clogston and Patri, 2011). A num-

ber of the nanomaterials assessed in this work displayed zeta potentials greater

than ±30 mV when measured in deionised water namely; polystyrenes 1, 3, 4,

5, 6, silver 1 and 2, and JGC. Further shown in Chapter 2 protein binding to

the nanoparticle confers a zeta potential tending toward neutrality. As such, no

haemolytic action could be attributed to strong surface charge, corroborated by

a number of sources describing negation of the haemolytic potential of nanoma-

terials following establishment of a protein corona (Martinez et al., 2015; Paula

et al., 2012; Tenzer et al., 2013).

The haemolytic potential of silica nanoparticles has been extensively reviewed

(Tang and Cheng, 2013), and while it is know that the action of mesoporous

silica is a function of the porosity of the material, the information surround-

ing nonporous silica nanoparticles is comparatively lacking. One instance where

nonporous silica has been assessed described the effect of nonporous silica to

be less than that of mesoporous at the same particle size (Yu et al., 2011). It

was also shown that when the particle surface had been amine-modified, the

amount of haemolysis was relative to the concentration (Yu et al., 2011). The

effects described by Yu et al. followed an experimental design consistent with

others who report haemolysis prior to establishment of a corona (Barshtein et al.,

2011). Conversely it has been shown elsewhere that nonporous silica nanoparti-

cles generate a higher lever of haemolysis compared to mesoporous silica, while

surface modification with PEG-silane reduced this effect (Lin and Haynes, 2010).
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Again, no significant and consistent effect was observed in the three types of silica

nanoparticles evaluated in this work.

In recent years there has been an increase in the design of emulsion carriers

to reduce the haemolytic effects of drugs. The mechanism through which this

is thought to occur is by decreasing the potential contact between erythrocytes

and the haemolytic agent (Jumaa and Muller, 2000). Interestingly, Bruxel et al.

describe an instance where the loading of oligonucleotides reduce the haemolytic

potential of their cationic lipid emulsion carrier (Bruxel et al., 2011). The un-

loaded nanoemulsion tested in this work showed no evidence of significant influ-

ence over erythrocyte stability, and it can be argued that any effects resulting

from treatment with emulsion-based materials will be heavily based on their con-

stituents.

Inhibition and enhancement of the calculated percentage of haemolysis was

observed. While no material specific trends were observed in these, such an

effect should still be considered when assessing other materials, particularly those

whose optical characteristics overlap the absorption wavelength used in this assay

methodology. As was shown in Chapter 2, none of the materials tested would

demonstrate cause for concern in this manner.

The inclusion of inhibition/enhancement controls in this assay was informed

by accounts in the literature of nanomaterial interactions with assessments of

haemolysis, as discussed in Section 1.6.2. The absorbance spectrum of gold

nanoparticles is known to overlap the 540 nm wavelength used to quantify free

haemoglobin, potentially resulting in overestimation (Dobrovolskaia et al., 2008b).

This control also estimates interaction between nanoparticles and haemoglobin

through adsorption to the nanoparticle surface (Neun et al., 2015a). Furthermore,

coagulation on the surface of nanoparticles has been described, which limits their

surface exposure and modulates their haemolytic potential (Dobrovolskaia and

McNeil, 2007).
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The positive control, cobra venom factor, resulted in an iC3b concentration

133-times greater than that of the negative control. The mechanism by which

this compound activates the complement system is via the alternative pathway.

Generation of such a pronounced effect was expected (Vogel et al., 2004) and

validates the assay.

Nanomaterial selection was limited by the number of samples able to be loaded

to the plate with sufficient replicates. Under the tested conditions it was found

that no nanomaterial treatments generated concentrations of iC3b statistically

different from that of the untreated control. As a preliminary screen this has

indicated that none of the tested nanomaterials activated complement under the

assay conditions. This observation could potentially be a result of the binding of

this fragment to the nanomaterial surface which would reduce the concentration

of free iC3b available to bind the plate. Subsequently during the wash procedure

of this assay, the nanoparticles and associated iC3b would have been washed away.

This is a consideration which should be taken when applying similar assays to

nanomaterials. In this case any complement activation would have needed to

be magnitudes higher to overcome this effect, providing sufficient amount of the

unbound iC3b fragment to be bind the plate and subsequently detected and quan-

tified. While the methodology utilised here allowed higher throughput and reduc-

tion of time compared more laborious methodologies such as single component

activities or haemolytic assays (Kirschfink and Mollnes, 2003), additional/further

assessment would prove invaluable in confirming this result, either by assessing

nanomaterials in cobra venom factor-stimulated plasma, or by assessing via al-

ternative techniques.

While it is well established in the literature that nanoparticles possessing

strong charge (>±30 mV) have the potential to generate greater, and more detri-

mental, effect than those tending towards neutral charge (Clogston and Patri,

2011; Ilinskaya and Dobrovolskaia, 2013), the observations made here were lim-
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ited by the nanomaterials chosen for use in this work possessing neutral charge

in biologically relevant, protein containing, media. With the exception of certain

materials affecting coagulation pathways, the lack of any highly aberrant results

is supported by pre-existing trends in the literature although to conclusively con-

firm this, the inclusion of highly charged materials under biologically relevant

conditions would have proved beneficial. It can be inferred, however, that surface

functionalization, and material specific effects may play a role in the observations

made throughout this chapter.
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Nanoparticle physicochemical

characteristics and their

potential immunogenicity
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4.1 Introduction

The ideal design of a preclinical assessment is a simple, reliable, robust method-

ology with good in vitro to in vivo correlation. Determination of immunotoxicity

is a vital aspect prior to the translation of, but not limited to, nanomedicines

(Dobrovolskaia et al., 2009; Giannakou et al., 2016). The complex nature of

nanoparticles in terms of their physicochemical characteristics lends to the need

for rigorous determination of said characteristics in order to establish those which

may contribute to adverse immune effects (Dobrovolskaia and McNeil, 2013). In

order to perform this on a viable scale, high throughput is a necessity. As such,

the development of in vitro assays which are able to generate translatable results

to further in vivo testing is becoming a necessity. In order to achieve this, the

use of primary cells in preclinical in vitro analysis is becoming more widespread.

As discussed in Section 1.3.1, cytokines as biomarkers of nanoparticle im-

munomodulatory properties demonstrate good correlation to that to that ob-

served in vivo (Dobrovolskaia and McNeil, 2013). Four cytokines, namely IFNγ,

TNFα, IL-1β, and IL-10, were chosen for assessment. This selection was based on

the inter-related roles these cytokines play, and allowing observation of the influ-

ence nanoparticles have on the generation of these inflammatory (TNFα, IL-1β),

anti-inflammatory (IL-10), and pleotropic (IFNγ) cytokines. For these reasons

the study of cytokine secretion is a pertinent choice relating to the focus of this

chapter.

Highlighted in Chapter 1.3.1, nanoparticles, including silica and titanium diox-

ide, have been shown to interact with inflammasomes (Baron et al., 2015) which

are involved in the maturation of pro-inflammatory cytokines IL-1β and IL-18

(Guo et al., 2015). NLRP3 inflammasome activation by endogenous and exoge-

nous danger signals leads to the release of mature IL-1β via the action of caspase-1

(Franchi et al., 2009). Activation of caspase-1 is known to be the rate-limiting
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step in inflammation due to IL-1β or IL-18 (Jo et al., 2016). Being such a key com-

ponent in the regulation and generation of IL-1β, the potential for nanoparticle

interference was assessed.

The proliferative response of leukocytes to stimulators and cytokine produc-

tion is vital in the normal generation of an immune response. The utility of

assessing this process in vitro can evaluate the potential of nanomaterials for be-

ing immunostimulatory or immunosuppressive (Dobrovolskaia and McNeil, 2013).

The latter involves the use of a known mitogen/antigen to determine the extent

of potential suppression of proliferation. Strong correlation has been shown be-

tween in vitro and in vivo mitogen responses and subsequent immunosuppression

by nanomaterial (Moon et al., 2011).

The aim of this chapter was to evaluate the cytokine secretion by primary hu-

man peripheral blood mononuclear cells in response to nanoparticles. This was

performed by direct quantification, as well as observing the influence of nano-

materials over caspase-1 activity, and inflammasome activation. The impact on

proliferation of primary human leukocytes was also assessed.
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4.2 Methods

4.2.1 Materials

Chloroquine, Hanks’ balanced salt solution (HBSS), penicillin-streptomycin, heat-

inactivated human AB serum, HEPES solution, L-glutamine solution, Phyto-

hemagglutinin-M (PHA), rapamycin, and transferrin were purchased from Sigma-

Aldrich (Dorset, UK). Lipopolysaccharide (LPS), monosodium urate (MSU),

wortmannin, and VX-765 were purchased from Invivogen (San Diego, USA).

Ficoll-Paque was purchased from Fisher Scientific (Loughborough, UK). Bio-Plex

Pro reagent kit containing antibody-coupled detection beads for human IFNγ,

TNFα, IL-1β, IL-10 was purchased from Bio-Rad Laboratories (Hemel Hemp-

stead, UK). Human IL-1 beta ELISA Kit, and Caspase 1 Inhibitor Drug Detection

Kit were purchased from ABCAM (Cambridge, UK). Efavirenz powder (>98%

pure) was purchased from LGM Pharma (Boca Raton, USA). Lopinavir powder

(>98% pure) was purchased from LGC Pharma (London, UK). Buffy coats were

obtained from the National Health Service Blood and Transplant Special Health

Authority (Liverpool, UK).

Approval for the sampling and storage of human blood samples for biomedical

research was gained from the University of Liverpool Committee in Research

Ethics (Ref: RETH000563).

4.2.2 Peripheral blood mononuclear cell isolation and

culture

Peripheral blood mononuclear cells (PBMCs) were isolated from healthy volun-

teer blood using Ficoll-Paque separation. Blood was layered over Ficoll-Paque

separation medium at a 2:1 ratio respectively in 50 ml falcon tubes. These were
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centrifuged for 30 minutes at 2000 rpm without brake. The PBMC layer was

transferred to fresh falcon tubes using transfer pipettes. HBSS was added to

each PBMC fraction to a total volume of 50 ml, and then centrifuged for 5 min-

utes at 2000 rpm. The supernatant was discarded and the cell pellet suspended

in RPMI-1640 supplemented 10% with FBS. PBMC suspensions were transferred

to relevant culture plates prior to experimentation.

4.2.3 Cytokine secretion determined via multiplex assay

PBMCs were isolated from buffy coats (n = 3) as described in Section 4.2.2.

Cells were seeded at a density of 2.5 × 105 per well in 1 ml of culture medium

in 48-well microplates. PBMCs were then treated with LPS at concentrations

of 10, 20, 30, or 40 ng/ml, nanomaterials at the concentrations stated in Table

4.2, or combined treatments of nanomaterials with 20 ng/ml of LPS. Untreated

PBMC controls were included, and each condition was prepared in triplicate.

Cultures were incubated for 24 hours at 37◦C and 5% CO2. Following incubation;

plates were centrifuged for 5 minutes at 2000 rpm, replicate 100 µl aliquots of the

supernatants were transferred to fresh 96-well microplates, and stored at -80◦C

until analysis.

The Bio-Plex Pro assay was used to quantify the concentration of cytokines

IFNγ, TNFα, IL-1β, and IL-10 present in the cell culture supernatants, following

the manufacturer’s guidelines.

Initial preparation involved the Bio-Plex 200 Luminex system (Bio-Rad Labo-

ratories, Hemel Hempstead, UK) being started up to reach the working tempera-

ture. Assay buffer, wash buffer, and sample diluent were allowed to equilibrate to

room temperature. The lyophilised standard included with the kit was reconsti-

tuted in 500 µl of Bio-Plex sample diluent, vortexed, and incubated on ice for 30

minutes. Calibration of the system was performed daily, and validation monthly.
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Analyte Minimum Maximum

IFNγ 6.93 pg/ml 28395 pg/ml
TNFα 15.40 pg/ml 63082 pg/ml
IL-1β 3.85 pg/ml 8212 pg/ml
IL-10 8.42 pg/ml 34472 pg/ml

Table 4.1: Maximum concentration of standards provided by the manufacturer,
and lower limit of quantification (minimum concentration within the 8-point stan-
dard curve) for analytes IFNγ, TNFα, IL-1β, and IL-10.

A 5-point logistic curve was prepared following the assay protocol. Maximum

standard concentrations of analytes, and lower limits of quantification of analytes

of interest are displayed in Table 4.1.

Culture supernatants were allowed to thaw and equilibrate to room temper-

ature, while 50 µl of the coupled beads were added to each well of the assay

plate, and subsequently washed twice with 100 µl of Bio-Plex wash buffer using

a Bio-Plex Pro Wash Station with magnetic plate carrier (Bio-Rad Laboratories,

Hemel Hempstead, UK). Thawed samples were diluted 1:4 using Bio-Plex sample

diluent prior to loading to the plate at a volume of 50 µl. Standards and blank

(sample diluent) were also loaded at the same volume.

The plate was covered with sealing tape and protected from light using alu-

minium foil prior to incubation at room temperature for 30 minutes with shaking

(850 rpm).

The plate was washed three times with 100 µl of wash buffer, and 25 µl of

detection antibodies was added to each well. Sealing and protection from light,

and incubation was repeated. During this time the Bio-Plex 200 Luminex was

calibrated, and standard values (bead regions, and analyte concentrations) were

submitted to the Bio-Plex software.

The plate was again washed three times with 100 µl of wash buffer, and 50

µl of of SA-PE was added to each well before being sealed, covered in aluminium

foil, and incubated for 10 minutes at room temperature.
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A final washing, three times with 100 µl of wash buffer, was performed and

the beads resuspended in 125 µl of assay buffer. The plate was sealed, shaken at

850 rpm for 30 seconds, and then analysed using the Bio-Plex 200 Luminex using

the low PMT, RP1 settings, as recommended in the protocol.

Material Final concentraion

Polystyrene 1 100 µg/ml
Polystyrene 2 100 µg/ml
Polystyrene 3 100 µg/ml
Polystyrene 4 100 µg/ml

Silver 1 100 µg/ml
Silver 2 1 µg/ml

Endorem 10 µg/ml
Ferumoxytol 10 µg/ml

JGC 1 µg/ml
Titanium (IV) oxide 100 µg/ml

Silica 1 100 µg/ml
Silica 2 100 µg/ml
Silica 3 100 µg/ml

Table 4.2: Final concentrations of nanomaterials used to assess cytokine secretion
via multiplex assay.

4.2.4 IL-1β ELISA

PBMCs were isolated from Buffy Coats as described in Section 4.2.2 and seeded

at a density of 1 × 106/ml in 1 ml of media in 24 well culture plates.

Assay 1 - Wells were designated for untreated cells, and treatments with LPS

(20 ng/ml), MSU (100 µg/ml), LPS (20 ng/ml) and MSU (100 µg/ml) designated

hereon as “combined positive control”, combined positive control and chloroquine

(50 µg/ml), combined positive control and wortmannin (100 µg/ml), all of which

were prepared in triplicate.
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Assay 2 - Wells were designated for untreated cells, and treatments with LPS

(20 ng/ml), MSU (100 µg/ml), combined positive control, combined positive

control and rapamycin (40 µg/ml), all of which were prepared in triplicate.

Assay 3 - Wells were designated for untreated cells, and treatments with LPS

(20 ng/ml), combined positive control, combined positive control and silicas 1, 2,

and 3 (100 µg/ml), all of which were prepared in triplicate.

All conditions containing LPS were treated with LPS for 2 hours prior to the

addition of further materials. Treatments were incubated for 24 hours at 37◦C

and 5% CO2.

4.2.4.1 Assay protocol

IL-1β was quantified using the Human IL-1 beta ELISA Kit following the manu-

facturer’s protocol. Briefly, standard diluent buffer, and wash buffer were diluted

to working concentrations using deionized water. IL-1β standard and control were

reconstituted as indicated on the product packaging. A 7-point standard curve

was prepared, the maximum and minimum concentrations being 500 pg/ml and

15.6 pg/ml respectively.

Cell suspensions were transferred to microcentrifuge tubes and centrifuged at

1000 × g for 10 minutes. 100 µl of supernatant from each sample was trans-

ferred to the ELISA plate (n = 3) accompanied by the standards, control, and

appropriate blanks included in the kit (n = 2).

Following a three hour incubation the plate was washed three times in 300

µL of wash buffer. 100 µl of Streptavidin-HRP was added to all wells and incu-

bated for 30 minutes. The wash procedure was repeated before adding 100 µL of

Chromogen TMB solution for 15 minuted while protected from light.

100 µl of stop reagent was added and the absorbance of each well was imme-
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diately measured at 450 nm using a CLARIOstar plate reader. All incubations

were performed at room temperature.

4.2.4.2 Calculations

A linear trendline was generated from the standard curve, and validated using

control IL-1β of known concentration included with the kit. Concentrations of

IL-1β present in samples were interpolated from the trendline (Figure 4.4) using

Microsoft Excel (2013).

4.2.5 Inhibition of caspase-1

Assessment of the inhibition of caspase-1 was performed using the Caspase 1

Inhibitor Drug Detection Kit following the manufacturer’s protocol. VX-765,

Efavirenz, and Lopinavir were prepared at concentrations of 10 µM, and poly-

styrenes 1-6 were prepared at concentrations of 100 µl/ml, in deionized water. 50

µl of each was added in triplicate to a 96-well microplate. Active caspase-1 was

reconstituted in reaction buffer following the kit protocol, 5 µl of which added to

each of these wells.

Assay controls were added to the plate as follows; 50 µl of deionized water as

background control, caspase-1 control of 50 µl of deionized water and 5 µl active

caspase-1, and positive inhibition control comprised of 50 µl of deionized water,

5 µl active caspase-1 and 1 µl of caspase-1 inhibitor.

“Master Mix” was prepared following the assay protocol. DTT was added to

the 2× reaction buffer to a final concentration of 10 mM. To this; 1 mM YVAD-

AFC substrate was added at 10% total volume. 50 µl of Master Mix was added

to each well and incubated at 37◦C for 1 hour.

Fluorescence of each well was measured using a CLARIOstar plate reader
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with excitation and emission wavelengths of 440 nm and 505 nm respectively.

Average fluorescence values of background control wells were subtracted from

all sample wells. Caspase-1 activity in treated samples was calculated as a per-

centage of the activity present in negative control wells.

4.2.6 Leukocyte proliferation

Culture medium to be used throughout this assay, here-on referred to as leukocyte

proliferation (LP) medium, was prepared; RPMI-1640 was supplemented with

pooled heat-inactivated human AB serum to 10% final volume, 25 mM HEPES,

2 mM L-glutamine, 25 µg/ml transferrin, 100 µg/ml streptomycin and 100 U/ml

penicillin.

Nanomaterials were prepared in LP medium at four times the final concen-

tration displayed in Table 4.3 to allow for the dilution when added to the cell

culture. PHA was prepared in LP medium at final concentrations of 2.5, 5, 10,

20, and 40 µg/ml.

PBMCs were isolated from buffy coats (n = 6) as described in Section 4.2.2.

PBMC cultures were centrifuged for 5 minutes at 2000 rpm. and culture medium

was replaced with LP medium. Cell suspensions were adjusted to a density

of 2.5 × 106 cells/ml and plated at a volume of 100 µl/well in 96-well round-

bottomed plates.

PBMCs were treated as follows; 100 µl of LP medium was added to the

negative “unstimulated” control, 50 µl of 2.5, 5, 10, 20, or 40 µg/ml PHA and 50

µl of LP medium were added as PHA stimulated samples where 20 µg/ml PHA

is designated as the “stimulated” control. 50 µl of nanoparticle preparations

and 50 µl of LP medium were added to nanoparticle treated wells, and 50 µl of

nanoparticle preparations and 50 µl of 20 µg/ml PHA were added to “stimulated”

nanoparticle treated wells. All conditions were prepared in triplicate.
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Plates were incubated for a total of 48 hours at 37◦C, 5% CO2. For the final

16 hours; 1 µCi of [3H]-thymidine was added to each well.

Cells were harvested onto a filtermat using a Tomtec Harvester 96 (Tomtec,

Connecticut, USA), and sealed in a sample bag with melt on scint.

Incorporated radioactivity was measured on a Perkin-Elmer MicroBeta detec-

tor (Perkin Elmer, Ohio, USA).

Material Final concentraion

Polystyrene 1 100 µg/ml
Polystyrene 2 100 µg/ml
Polystyrene 3 100 µg/ml
Polystyrene 4 100 µg/ml
Polystyrene 5 100 µg/ml
Polystyrene 6 100 µg/ml

Silver 1 100 µg/ml
Endorem 10 µg/ml

Ferumoxytol 10 µg/ml
JGC 1 µg/ml

Silica 1 100 µg/ml
Silica 2 100 µg/ml
Silica 3 100 µg/ml

Table 4.3: Final concentrations of nanomaterials used to assess leukocyte prolif-
eration.

4.2.6.1 Calculations

Change in proliferation was calculated using the following equation, where in-

corporated reactivity in unstimulated control was used relative to unstimulated

nanomaterial treatments, and PHA 20 µg/ml was used for stimulated nanomate-

rial treatments. CPM - counts per minute.

Proliferation =
Incorporated radioactivitysample (CPM)

Incorporated radioactivitycontrol (CPM)
× 100%
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4.2.7 Statistical analysis

Statistical analysis was performed using GraphPad Prism 6. Statistical differ-

ences were determined using one-way analysis of variance (ANOVA) and Dun-

nett’s multiple comparison tests. A p-value <0.05 was considered as statistically

significant.
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4.3 Results

4.3.1 Cytokine secretion determined via multiplex assay

No samples were found to have generated IFNγ at a concentration greater than

the lower limit of detection for the assay (6.93 pg/ml). Furthermore, as the

levels of TNFα, IL-1β, and IL-10 were below the detectable limit of the assay

(15.40 pg/ml, 3.85 pg/ml, 8.42 pg/ml respectively) in untreated controls it was

not possible to calculate fold difference or perform statistical analysis on these

samples.

Detectable concentrations of TNFα were generated in response to all tested

concentrations of LPS for all three individuals (Figure 4.1a). The concentra-

tions of TNFα in LPS treatments demonstrated a high degree of similarity in

individuals 2 and 3. The concentrations generated in PBMCs from individual 1

were approximately 2.5-times less at all LPS concentrations. JGC and silica 3

generated TNFα is PBMCs from all three individuals. Treatment with silica 2

resulted in TNFα generation in PBMCs from individuals 1 (261.95 pg/ml) and 2

(44.35 pg/ml), but not 3. Only individual 2 was found to have produced TNFα

in response to polystyrene 2 (21.86 pg/ml).

Consistent reductions of TNFα concentrations (0.8-, 1-, and 0.3-fold within

individuals 1, 2, and 3 respectively) were observed in combined treatments with

LPS and all polystyrene nanoparticles, compared to positive controls (Figure

4.1b). Endorem- and Ferumoxytol-combinded LPS treatments also resulted in

lower cocentrations of TNFα than solely LPS (20 ng/ml) treated PBMCs. Com-

bined LPS and Silicas 2 and 3, however, resulted in higher concentrations of

TNFα in samples from individuals 1 and 2.

Treatment with LPS at all tested concentrations, JGC, and silica 3 resulted

in detectable quantities of IL-1β from individuals 1, 2, and 3. The most marked
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of these was that of individual 1 in response to treatment with 100 µg/ml of silica

3, being 18-times that of individual 3, and 36-times greater than individual 1

(Figure 4.2a). Silica 3 generated an IL-1β concentration of 11.99 pg/ml in the

sample from individual 1, the only one to do so in response to this nanomaterial.

Combined treatment with LPS and silica 3 resulted in the highest concentra-

tion of IL-1β generated in response to all tested conditions in PBMCs from all

individuals (Figure 4.2b).

LPS treatment across all concentrations, and JGC, resulted in the secretion of

IL-10 in PBMCs from all individuals, the most pronounced effect being observed

from individual 3 (Figure 4.3a). Silica 3 was found to have stimulated IL-10

secretion in individuals 1 (37.84 pg/ml) and 3 (8.69 pg/ml), while only individual

3 produced a quantifiable concentration of this cytokine in response to titanium

(IV) oxide (5.85 pg/ml).

All LPS-combined nanomaterial treatments resulted in less IL-10 than treat-

ment solely with 20 ng/ml LPS in PBMCs from individual 3 (Figure 4.3b). Com-

bined treatments of silver 2, Ferumoxytol, titanium (IV) oxide, silica 2 and silica

3 with LPS generated more IL-10 than LPS-only treatments by individual 1.

This increased production was observed in individual 2 from LPS with JGC, and

silicas 2 and 3.

Combined treatment with LPS and silver 1 abolished generation of TNFα,

IL-1β and IL-10 in all individuals.
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(a)

(b)

Figure 4.1: Concentrations of cytokine TNFα secreted by peripheral blood
mononuclear cells in response to (a) Treatment with LPS, or stated nanoma-
terials. (b) Combined LPS treatment with stated nanomaterials. Data displayed
as average (n = 2).
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(a)

(b)

Figure 4.2: Concentrations of cytokine IL-1β secreted by peripheral blood
mononuclear cells in response to (a) Treatment with LPS, or stated nanoma-
terials. (b) Combined LPS treatment with stated nanomaterials. Data displayed
as average (n = 2).
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(a)

(b)

Figure 4.3: Concentrations of cytokine IL-10 secreted by peripheral blood
mononuclear cells in response to (a) Treatment with LPS, or stated nanoma-
terials. (b) Combined LPS treatment with stated nanomaterials. Data displayed
as average (n = 2).
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4.3.2 IL-1β ELISA

Figure 4.4 displays the standard curve used to calculate the IL-1β concentra-

tions in treated samples as described in Section 4.2.4.2. The standard curve was

validated by the calculated concentration of IL-1β control included with the kit

falling within the range stated by the kit protocol.

Figure 4.4: Standard curve prepared from standards provided with the Human
IL-1 beta ELISA Kit, used to calculate IL-1β concentrations. Data displayed as
average (n = 2).
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Treatment of PBMCs from all individuals with either LPS or MSU resulted

in significantly more IL-1β (p = <0.0001) than that of the untreated control

(Figure 4.5a). Furthermore, LPS-primed PBMCs treated with MSU generated

IL-1β concentrations greater than that by LPS or MSU in isolation.

The untreated controls of the assay represented in Figure 4.5c did not contain

a quantifiable concentration of IL-1β. As such it was not possible to calculate

fold difference or perform statistical analysis on these samples.

The response of individual 4, as shown in Figure 4.5b, to treatments with

solely LPS and MSU would indicate a pre-existing sensitivity potentially due to

immune priming or TLR4 activation. Similar was observed in the LPS treatment

of individuals 1 and 2 in the subsequent assay (Figure 4.5c)

Chloroquine and wortmannin treatment of LPS-primed PBMCs in individual

1 resulted in near-identical concentrations of IL-1β; 414.96 pg/ml and 413.61

pg/ml respectively (Figure 4.5a). Chloroquine-treatment in individual 2 produced

15 pg/ml more IL-1β than in the combined positive control. Treatment with

wortmannin resulted in all individuals displaying concentrations less than that of

the combined positive control.

An average four-times lower IL-1β concentration (p = <0.0001) was found in

treatment with LPS, MSU, and rapamycin, compared to that of LPS and MSU

(Figure 4.5b).

The IL-1β concentrations generated in response to silica 3 demonstrated a high

degree of similarity to that of the combined control in all individuals (Figure

4.5c). Treatment with silica 2 of LPS-primed PBMCs resulted in comparable

IL-1β concentrations generated by individuals 1, 2, and 3, however individual

4 generated a concentration 5-fold less than that of the corresponding combined

positive control. Silica 1 treatment generated IL-1β concentrations similar to that

of treatment solely with LPS in all individuals.
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(a)

(b)
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(c)

Figure 4.5: IL-1β concentrations generated by treatments with positive controls,
and stated nanomaterials. LPS-primed samples were treated with 20ng/ml for 2
hours prior to the addition of further materials. Data displayed as average (n =
3) ± standard deviation. * p-value <0.05.
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4.3.3 Inhibition of caspase-1

The caspase-1 inhibitor (Z-VAD-FMK), provided with the kit as a positive con-

trol, reduced caspase-1 function by 92.5% (p = <0.0001).

All treatments demonstrated significant inhibition of caspase-1 (p = <0.0001)

with the exception of VX765, which had no effect on caspase-1 activity compared

to the untreated control. Efavirenz and Lopinavir inhibited caspase-1 activity

by 35.3% (p = 0.0130) and 27% (p = 0.0013) respectively. Negatively charged

sulphonate-functionalized polystyrenes 2, 4, and 6 demonstrated increasing inhi-

bition of caspase-1 (23%, 28.6%, and 38%) consistent with their increasing size.

This trend was absent, however, in quaternary amine-functionalized polystyrenes

1, 3, and 5 (Figure 4.6). Of these materials the greatest effect was demonstrated

by polystyrene 3 (275 nm manufacturer provided size) inhibiting caspase-1 by

34.4%. No significant difference between the effects of Efavirenz or Lopinavir and

those of the polystyrene nanoparticles was found.

Figure 4.6: Caspase-1 activity displayed as a percentage of total activity in
caspase-1 control, following treatments with small molecules, and stated nano-
materials. Data displayed as average (n = 3) ± standard deviation. * p-value
<0.05.
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4.3.4 Leukocyte proliferation

Silica 2, the largest sized silica nanoparticle at 310 nm (manufacturer’s provided

size), resulted in a 93% increase in proliferation compared to the untreated control

(p = <0.01). No other nanomaterial treatments resulted in significant change (p

< 0.05) from that of the unstimulated control (Figure 4.7a).

Significant change in proliferation of PHA-stimulated nanomaterial treat-

ments was only observed for silver 1 where no viable cellular presence was found

(p < 0.0001). No other nanomaterial treatments of PHA-stimulated PBMCs re-

sulted in significant change (p < 0.05) from that of the PHA-stimulated control

(Figure 4.7b).

(a)
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(b)

Figure 4.7: Proliferation of peripheral blood mononuclear cells, as a percentage of
controls, following treatment with (a) Stated nanomaterials. (b) Combined treat-
ment with PHA and stated nanomaterials. Data displayed as box and whisker
plots showing average, maximum, and minimum (n = 6) ± standard deviation.
* p-value <0.05.
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4.4 Discussion

The interplay of cytokines in vivo involves a highly complex, multicomponent

system, in which secretion of cytokines from various cells can generate, suppress,

or recruit further cell types to the site of inflammation. Dysregulation of cytokine

balance is a hallmark of numerous diseased states (Elenkov et al., 2005), but also

a source of opportunity for exploitation in the rational design of nanoparticles for

nanomedicine.

Thorough assessment of the potential modulation of cytokine profiles by new

drugs and therapies has been highlighted by the outcomes of the phase 1 clinical

trial of TGN1412, an anti-CD23 monoclonal antibody. Six volunteers received

a dose 0.1 mg of TGN1412 per kilogram of body weight (Suntharalingam et al.,

2006), 500 times smaller than that deemed safe by preclinical animal studies (At-

tarwala, 2010). Following infusion, a series of adverse effects involving multiple

organ failure were elicited by unexpected cytokine release (Attarwala, 2010). The

“cytokine storm”, a term coined by Aikawa (1996), is the elevation of both proin-

flammatory and anti-inflammatory cytokines leading to the deleterious effects

observed in the trial. It is important to note that the systemic inflammatory

response generated by TGN1412 was in the absence of contaminating organic

factors (MHRA, 2006). The cytokine storm to this drug was not observed in the

preclinical studies performed in rats and cynomolgus monkeys (Suntharalingam

et al., 2006), but would have been detected using an in vitro cytokine release

assay in primary human blood (Stebbings et al., 2007).

IL-1β is a marker for pyrogenic response and the intentional design of materi-

als to stimulate its production in vivo is of great interest for vaccine development

(Xiang et al., 2012). Iron oxide nanoparticles have been demonstrated as having

great potential in this area. Pusic et al. have described murine dendritic cells

treated with <20 nm carboxyl-functionalized nanoparticles resulted in the gener-
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ation of a range of cytokines including IL-1β, TNFα, and IFNγ (Pusic et al., 2013).

Ferumoxytol, a 30 nm (manufacturer provided size) carboxyl-functionalized iron

oxide nanoparticle, was not found to generate secretion of any tested cytokines

under the experimental conditions described in this work. Ferumoxytol possesses

a negative zeta potential which is still present in complex media (-10.8 mV in

RPMI-1640 supplemented 10% with FBS). While it can be assumed that the

iron oxide nanoparticles assessed by Pusic et al. were also of negative charge,

their qualitative determination of charge by gel electrophoresis does not provide

sufficient evidence for comparison. The only iron oxide nanoparticle from the cho-

sen panel which resulted in an increased production of cytokines, without LPS

stimulation, was JGC (diethylaminoethyl dextran coated, 52.3 nm manufacturer

provided hydrodynamic size). Similar to the observations in the study by Pusic

et al., JGC was found to increase IL-1β and TNFα compared to untreated con-

trol. Unlike the described study, treatment with JGC did not generate IFNγ to

a concentration detectable via the multiplex methodology used (>6.93 pg/ml).

As discussed in Section 1.5.3, proinflammatory cytokines IL-1β and TNFα are

known to induce coagulation via the extrinsic pathway via thrombin (FIIa) gener-

ation (Chu, 2011) by induction of tissue factor on endothelial cells and monocytes

(Johnson et al., 1996). Only two of the tested materials demonstrated elevation

in the concentration of secretion of both IL-1β and TNFα in PBMCs from all

three individuals, namely JGC and silica 3. No notable change was observed in

coagulation time via this pathway for silica. JGC was found to have the oppo-

site effect on this pathway, generating a 1.4 second increase in coagulation time

(Figure 3.2a). The assessment of nanomaterial impact on coagulation described

in Section 3.2.2.2 was performed under cell-free conditions. Cellular presence is

required for the generation of cytokines and, furthermore, the extrinsic coagu-

lation pathway is initiated via damage to red blood cells. The cell-free method

used for assessing plasma coagulation should, therefore, not be sensitive to such
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an effect. Further assessment of this property in a cell-based coagulation assay

would be of interest in future work. While JGC has generated a similar cytokine

response to those described by observations of Johnson et al., their data was gen-

erated in response to LPS (Johnson et al., 1996). Combined nanomaterial and

LPS treatment demonstrated generation of IL-1β and TNFα by all materials, with

the exception of silver 1. It would be interesting in further study to observe the

effects of combined nanomaterial and LPS treatment on coagulation times in the

PT assay to determine the extent of influence that nanomaterial presence would

have.

TNFα, IL-1β, and IL-10 are known to be stimulated by LPS in PBMCs (Jan-

sky et al., 2003). Our data supports this observation while also confirming the

lack of influence over IFNγ. In order to thoroughly assess the potential inhibitory

effects of nanomaterials on the type II interferon IFNγ, use of a different stimula-

tor would be invaluable. PHA is a known IFNγ stimulator (Dobrovolskaia, 2015),

in addition to IL-2, and GM-CSF (De Groote et al., 1992). In this work, however,

PHA was utilised for its action as a mitogen. When comparing the mitogenic po-

tential of PHA to that of tested nanomaterials it must be noted that its rate, and

mode of action is different, involving binding to T cell membranes (Movafagh

et al., 2011). Additionally PHA increases membrane permeability (Segel et al.,

1979) and while it’s commonplace use to assess nanoparticle-related proliferation

inhibition (Dobrovolskaia, 2015) in the co-incubation manner utilised here, this

effect may alter the rate and/or mechanism of nanoparticle uptake, compared

to that in cells not been stimulated with PHA. No literature has been found

to investigate the potential for this effect in comparison it to other mitogenic

compounds.

Silver 1 generated cytotoxic effect in PHA-stimulated PBMCs at the 48 hour

time point, being the only material to do so. Cytotoxicity testing performed in

Section 5.2.3 did not highlight any cause for concern in the THP1 or CEM cell
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lines following 24 hours exposure. In order to better understand this mechanism,

similar testing should be performed in PBMCs at the time point used in this

assay. Furthermore, the synergistic action of PHA with silver 1 warrants further

evaluation as toxicity at a significant level was not observed in unstimulated

PBMCs treated with this nanomaterial.

In order to perform a valid statistical analysis of the impact of nanomaterials

on the generation of cytokines measured via multiplex assay (Section 4.3.1) fur-

ther replicates would be needed. Material availability at the time of assessment

limited analysis to duplicate measurements. Increased replicates and a higher

number of donor samples would provide a deeper understanding of the effects

generated by the tested nanomaterials, as well as provide deeper insight into

interindividual variability in responses.

NLRP3 inflammasome induction is indicated by secretion of IL-1β (Franchi

et al., 2009). This process requires two distinct signals; a priming signal which

leads to the transcriptional upregulation and synthesis of pro-IL-1β, and a second

signal activating the NLRP3 inflammasome resulting in IL-1β maturation and

secretion (Jo et al., 2016; Latz et al., 2013). This is well exemplified by the IL-

1β concentration generated in response to the combined positive control, when

compared to solely LPS and MSU treatments.

Silica nanoparticles have been associated with the activation of the NLRP3

inflammasome (Dostert et al., 2008; Hornung et al., 2008; Yazdi et al., 2010).

Treatment of LPS-primed PBMCs with silica 3 was found to generate IL-1β con-

centrations highly similar to that observed in the combined positive control in all

individuals. It has been shown previously that sub-micron sized silica particles

induce higher levels of IL-1β production as a result of lysosomal dysfunction than

those of larger sizes (Kusaka et al., 2014). Silica 3 is known to be the largest

of the three tested silica nanoparticles (1062.60 nm). The contradictory result

obtained here compared to that described by Kusaka et al. would imply that size
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is not the only determinant in this effect. All three silica nanoparticles displayed

near-identical zeta potential in RPMI-1640 supplemented 10% with FBS. Silicas

1 and 2 are known to be stabilised with L-arginine, however the stabilisation

applied to silica 3 is unknown.

Recently the link between autophagy and regulation of the inflammasome has

been established (Yuk and Jo, 2013). IL-1β induces autophagy (Harris, 2011),

which in turn regulates endogenous inflammasome activators, inflammasome com-

ponents, and pro-IL-1β (Harris, 2013; Harris et al., 2011).

The observation that the combined positive controls of LPS and MSU when

further treated with the autophagy inducer rapamycin led to a lower concentra-

tion of IL-1β than that of solely the combined control is supported by observations

by Harris et al., where induction of autophagy in mice with rapamycin reduced

serum levels of IL-1β in response to challenge with LPS (Harris et al., 2011).

Chloroquine, an autophagy inhibitor and inducer of lysosomal damage, has

been shown previously to activate caspase-1 in an in vivo LPS-stimulated mouse

model (Shin et al., 2013). Such an effect was not observed in this work, wherein

samples from two out of three individuals demonstrated less IL-1β concentration

than the combined positive control. Furthermore, the PI3K autophagy inhibitor

wortmannin has been evidenced to not affect inflammasome activation (Ghonime

et al., 2014). The highly similar response to treatment with wortmannin as with

chloroquine, under the tested conditions in this work, would contradict this. This

difference may be due to the use of MSU as a confirmatory signal here, while the

study by Ghonime et al. utilised ATP for this purpose (Ghonime et al., 2014).

VX-765 is a prodrug requiring conversion by plasma and liver esterases to the

active VRT-043198, a potent caspase-1 inhibitor (Stack et al., 2005). The lack

of enzymatic conversion validates the absence of observable caspase-1 activity in

the chosen cell-free assay.

Efavirenz, a non-nucleoside reverse-transcriptase inhibitor, has been shown to
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prevent activation of caspase-1 and caspase-3 in CD4 T cells (Doitsh et al., 2014).

The inhibition of cell-free caspase-1 activity observed here demonstrates direct

influence of Efavirenz on the enzyme.

Lopinavir, an antiretroviral protease inhibitor, is known to induce apoptosis

via suppression of NF-ΚB (Kariya et al., 2014). NF-ΚB plays a role in coordinating

innate and adaptive immunity, and controls the expression of several proinflam-

matory cytokines and upregulation of costimulatory molecules on dendritic cells,

which are required for T cells activation (Elsabahy and Wooley, 2013). Caspase-1

has been shown to play a role in the activation of NF-ΚB (Lamkanfi et al., 2004).

The apoptotic mechanism of Lopinavir described by Kariya et al. was shown to

be caspase-dependent (Kariya et al., 2014). The inhibition of caspase-1 described

in this chapter would support this mechanism, however further evaluation of the

apoptotic potential of lopinavir under the conditions utilised are required.

Lunov et al. have described 100 nm amino-functionalized polystyrene nanopar-

ticles, but not carboxy- or non-functionalized of the same size, to activate caspase-

1 through ROS generation following lysosomal destabilisation (Lunov et al., 2011).

The quaternary ammonium- (polystyrenes 1, 3, 5) and sulphonate- (polystyrenes

2, 4, 6) functionalized polystyrene nanoparticles, of varying sizes, assessed in

this chapter all demonstrated a highly similar inhibitory effect toward caspase-

1. The cell-free nature of the assay design shows that inhibition of caspase-1

by polystyrene nanoparticles is a direct interaction of the material, and not the

result of further nanoparticle-related effects. This too may be the case but would

require further investigation. By utilising this methodology, it can be elucidated

whether inhibition of caspase-1 is a result of nanomaterials directly on caspase-1,

or whether there is an interaction with the mechanisms required for its generation.

In addition to consistency with examples in the literature (Liptrott et al.,

2014), the decision to utilise uptake of radioactive thymidine over other colouri-

metric methodologies was to negate any potential interference effects that nano-
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materials may pose on the assays without excess wash steps, as highlighted in

Section 1.6.2.

Being able to assess the potential recruitment of other cell types which may

modulate an inflammatory response to nanoparticles in vivo would be of great

advantage in current and future perspectives in order to extrapolate in vitro

observations to in vivo outcomes. As mentioned previously, the ability to assess

new nanomaterials in a high throughput manner is of great interest, not only to

the scientific community, but also to those developing these materials with intent

to bring them to commercial market by reducing potential bottlenecks which

occur as a result of lengthy assessment procedures.

The use of cell lines for in vitro assays is built on a number of advantages

including their cost effectiveness, ease of amplification, they do not raise the same

ethical concerns as using human or animal tissue, and they reasonably simulate

the function of their primary, non-immortalised counterparts. It is well known

that through genetic manipulation, the phenotype of cell lines may be altered,

including their functionality and responsiveness to stimuli (Kaur and Dufour,

2012). Increasing time in culture and passage number can exacerbate this effect,

as well as introducing heterogeneity within cultures.

While there is an ever increasing number of strategies to try to overcome these

issues (Luebke, 2012), the use of freshly isolated primary cells provides the most

accurate representation of the in vivo response that may be generated toward

nanoparticles. Such an advantage does exist parallel to the main limitation of

using such a strategy, namely interindividual variability (Pfaller et al., 2010) as

demonstrated by the data presented in this chapter. Although often described as

a limitation, this variability is important to try to identify specific interactions

in individuals. The interindividual variability of PBMC cultures is known to be

higher than that of whole blood (De Groote et al., 1992). The authors also point

out that the potential for cytokine production is highest in whole blood, or PBMC
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cultures where the cell density matches that of whole blood. While simulating

such physiological conditions may be the ideal scenario, it lends further technical

complications in vitro, and when considering working with precious nanomaterials

where only limited quantities are available. This kind of assay design would

be best suited to materials which have a known in vivo dosage. However, this

information is not readily available for nanomaterials not intended for clinical

use, or unloaded nanocarriers whose dosage would be determined by the loading

efficiency of the associated drug.

Accounting for this interindividual variability is a concern which has two main

proposed solutions. The first of which is to increasing sample size, through which

greater statistical power may be achieved, and variability will be inherently re-

duced. The crux of this approach is summarised by the question; how large

a cohort is necessary to alleviate interindividual variability? Additionally, this

method adds to the ethical concerns, difficulty in finding sufficient numbers of

volunteers, as well as the cost of materials for collection and processing. This is

the case for any clinical study and a great deal of guidance in the literature exists

to inform researchers in their calculations of sample size (Charan and Biswas,

2013).

It is well known that factors including time of sampling (chrono-immunology)

(Geiger et al., 2015), age (Weiskopf et al., 2009), gender (Klein and Flanagan,

2016), diet (Marcos et al., 2003), medications and pre-existing conditions, all

affect the immune system. These in turn may modulate the manner, and magni-

tude, of any immune responses toward challenge by nanomaterials. The alterna-

tive, without performing a large scale clinical study in which all environmental

factors can be observed and potentially controlled, is to perform immunopheno-

typic, and potentially genotypic, analysis on donors in addition to the assays of

interest. The advantages of this would not only be limited to the interpretation

of data generated, but in the subsequent dissemination of results to the scientific
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community.

Already there exist calls from researchers and governing bodies for mini-

mum reports of physicochemical details and experimental conditions (Hendren

et al., 2015). Further demographics of the sources of primary samples would

only aid in the efforts to create truly transferable datasets (Rösslein et al.,

2016). Efforts to catalogue existing information to databases, such as caNanoLab

(https://cananolab.nci.nih.gov/caNanoLab/), exemplify the need for standardi-

sation in the presentation of information surrounding generated data, which is

commonly excluded in order to comply with the conventions of publication. While

this is necessary in the current scientific climate, the outlook for high powered

computation of the associations between physicochemical characteristics and im-

munological effects requires these considerations to be taken sooner rather than

later.
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5.1 Introduction

Engineered nanomaterials can be composed of substances which, at the macro

scale, are well characterised. It should not be assumed, however, that if the

components of the nanoparticle are deemed safe in bulk that they will not be

subject to quantum size effects which may impart them with greater reactivity or

potential toxicity (De Jong and Borm, 2008). Gold is a commonly used example

for illustrating this point; where at the bulk scale it is chemically inert, but at

the nano-scale has potential for reactivity and cytotoxicity (Alkilany and Murphy,

2010).

Commonly evaluated measures of cellular health in vitro focus on metabolic

function. Intrinsically linked to this is the oxidative balance which most simply

is divided into prooxidant and antioxidant mechanisms. Prooxidant mechanisms

relate to the generation of reactive oxygen species which, under normal circum-

stances, are endogenously generated through processes such as mitochondrial

function, and are vital in homeostasis, cell signalling (Ray et al., 2012), and in-

flammatory function of phagocytes (Robinson, 2008). Cellular antioxidants are

comprised of low molecular weight free radical scavengers; reduced glutathione,

α-tocopherol, thioredoxins, and ascorbic acid, as well as enzymatic defences; su-

peroxide dismutase, catalase, and glutathione peroxidase (El-Ansary et al., 2014).

Overproduction of ROS and/or a deficiency of antioxidants can result in dis-

turbance to the equilibrium leading to deleterious outcomes, termed oxidative

stress (Burton and Jauniaux, 2011).

Excessive ROS can cause damage to proteins, nucleic acids, cellular lipids,

and other macromolecules inhibiting their normal functions (El-Ansary et al.,

2014). Production of reactive oxygen species is one of the primary hallmarks of

inflammation and has been shown to be a principal mechanism for nanoparti-

cle incompatibility (Manke et al., 2013), and has been attributed to a range of
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nanoparticle physicochemical characteristics including size, shape, surface func-

tionalization/stabilisation, oxidation status, and aggregation state (Fu et al.,

2014). Literature associates high surface charge, as well as smaller nanoparti-

cle size, to the induction of higher levels of ROS (Manke et al., 2013).

While increased production of ROS is of concern, impaired elimination of free

radicals leads to increased oxidative stress (Anreddy et al., 2013). Glutathione

plays a highly important role as an intracellular defence mechanism against the

damaging effects related to ROS (Mytilineou et al., 2002). In aerobic cells it is the

most abundant antioxidant; present in micromolar and millimolar concentrations

in bodily fluids and tissue respectively (Owen and Butterfield, 2010), and displays

even subcellular distribution (Ault and Lawrence, 2003). The ratio of oxidized

glutathione (GSSG) to the reduced form (GSH) has been established as a dynamic

indicator of oxidative stress (Jones, 2002). Silver (Piao et al., 2011) and gold

nanoparticles (Khan et al., 2012) have been shown to influence glutathione based

antioxidant mechanisms resulting in oxidative stress via lipid peroxidation (Khan

et al., 2012).

The link between ROS and autophagy has gained interest in recent years

(Azad et al., 2009; Filomeni et al., 2015; Gibson, 2013). Autophagy is a lysosomal

degradation pathway which plays a role in maintaining homeostasis within the cell

accomplished by degrading cytoplasmic components such as damaged organelles

or unused/misfolded/aggregated proteins, balancing and recycling sources of en-

ergy when cells experience nutrient starvation and or stress, and eliminating

intracellular pathogens (Meijer and Codogno, 2004). Reactive oxygen species

have been found to induce autophagy via mTOR activation, Beclin-1 upregula-

tion, p53, p62, and oxidation of Atg4 (Gibson, 2013). ROS-induced autophagy

has also been shown to be repressed by NF-ΚB by regulating TNFα-induced

macroautophagy (Djavaheri-Mergny et al., 2007). Cell death can be caused

when autophagy becomes dysregulated (He and Klionsky, 2009). This can result
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from either excessive/chronic autophagy, or by insufficient/defective autophagy

(Levine and Kroemer, 2008). Nanoparticle-induced autophagy has been associ-

ated with a growing number of nanomaterials, while disruption of the autophagic

process has been described via mechanisms including cytoskeleton disruption by

multiwalled-carbon nanotubes, copper oxide, silver, and silica nanoparticles, and

lysosomal dysfunction through defects and modulation of pH by single-walled

carbon nanotubes, graphene oxide, and gold nanoparticles in cell lines including

THP1, A549, and human umbilical vein endothelial cells (Cohignac et al., 2014;

Stern et al., 2012).

The aims of this chapter were to assess the cytotoxicity of test materials in

human cell lines, specifically models of T-lymphocytes (CEM) and monocytes

(THP-1). Cytotoxicity values (CC50) are particularly important for subsequent

analysis to ensure cell death is not a major confounding factor in functional as-

says. This was achieved using two assays; the outcome of which provided a mea-

sure of cytotoxicity, but each via a differing mechanism. These assays, namely

MTT and LDH, provide measures of mitochondrial function and cell membrane

integrity, respectively. The impact of the nanomaterial library on cellular health;

in particular reactive oxygen species generation, reduced glutathione content, and

autophagy was investigated. Associations between physicochemical characteris-

tics and the observed effects were evaluated. The final objective was to assess the

suitability of commercially available fluorogenic probes for, and to demonstrate

the utility of kinetic measurement of oxidative stress in nanotoxicological assay

development.
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5.2 Methods

5.2.1 Materials

Phenol red-free RPMI-1640, Thiazolyl blue tetrazolium bromide (MTT) pow-

der, Cytotoxicity Detection KitPLUS (LDH), dimethyl sulfoxide (DMSO), and

double-distilled water (DDH2O) were purchased from Sigma-Aldrich (Dorset,

UK). CellROX Green Reagent and ThiolTracker Violet were purchased from

Thermo Fisher (Cheshire, UK). CYTO-ID Autophagy Detection Kit was pur-

chased from Enzo Life Sciences (Exeter, UK). MACSQuant running buffer was

purchased from Miltenyi Biotec GmbH (Bergisch Gladbach, Germany). CEM,

Raji, and THP-1 cell lines were purchased from ECACC (European collection of

cell cultures) via Public Health England (Salisbury, UK).

5.2.2 Routine cell culture

CEM, Raji, and THP-1 cell lines were cultured in RPMI-1640 supplemented with

FBS to 10% final volume, at 37◦C with 5% CO2.

Medium renewal protocol was identical for all three cell lines; cell suspensions

were transferred to 50 ml universal tubes and centrifuged for 5 minutes at 2000

rpm. Supernatant was discarded, and cells suspended in 30 ml of pre-warmed

(37◦C) culture medium.

Viable cell counts were performed using a NucleoCounter NC-100 (ChemoMe-

tec, Allerod, Denmark) following the manufacturer’s guidelines. Total cell count

was performed by combining equal volumes of cell suspension, Reagent A100

(ChemoMetec), and Reagent B (ChemoMetec) in a microcentrifuge tube. This

was mixed by vortex for 5 seconds prior to loading to a NucleoCassette (ChemoMe-

tec). The 1:3 dilution was accounted for when determining final cell count. Cell

count of non-viable cells was performed by directly the loading cell suspension to
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a NucleoCassette. Viable cell count was calculated by subtracting the non-viable

cell count from the total cell count.

THP-1 and CEM, cell cultures were corrected to a density of 2×105 viable

cells/ml and subcultured when density reached 8×105 cells/ml. Raji cell cultures

were corrected to a density of 4×105 viable cells/ml and subcultured when density

reached 1×106 cells/ml. Medium renewal/subculturing was performed every 2-3

days.

5.2.3 Cytotoxicity of nanomaterials

5.2.3.1 MTT assay

MTT assay was performed on THP-1 and CEM cell lines. Cells were seeded in

96 well microplates at a density of 5 × 104 per well in 100 µl medium. Blank

(RPMI-1640 supplemented with FBS to 10% final volume), and negative control

wells of untreated cells were prepared. In test wells; nanomaterials or the positive

control vinblastine were added at the maximum concentrations listed in Table 5.1,

followed by eight subsequent 1:2 serial dilutions across the plate. All conditions

were prepared to a total of eight replicates. Plates were incubated at 37◦C,

5% CO2 for 24 hours. 20% well volume of MTT reagent (5 mg/ml in DPBS)

was added to all wells and incubated for two hours. An equal volume of lysis

buffer (20% SDS in 50:50 water:DMF) was added to all wells and incubated

for 18 hours (37◦C, 5% CO2). Lysis was performed to solubilise the crystalline

formazan produced within cells to provide a homogeneous solution within each

well. Prior to reading, plates were subjected to orbital shaking for 60 seconds to

ensure even distribution of colour throughout samples. Absorbance was measured

on a plate reader (CLARIOstar, BMG Labtech, Ortenberg, Germany) at 560 nm

wavelength.

To assess nanomaterial interference with the MTT assay, cell-free preparations
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were performed under identical conditions to those described above. Material

choices for this test were informed by data from the cell-based assay.

5.2.3.2 LDH assay

LDH assay was performed in the THP-1 cell line. Plate layout for this assay was

designed following the protocol of the Cytotoxicity Detection KitPLUS (LDH).

Cells were seeded in 96 well microplates at a density of 5 × 104 per well in 100 µl

medium. Blank control wells of 100 µl of culture medium corresponding to each

cell-containing well were prepared.

Nanomaterials were added at the maximum concentrations listed in Table 5.1

followed by eight subsequent 1:2 serial dilutions across the plate in cell and cell-

free wells, prepared in triplicate. Wells allocated for untreated (Low control) and

treatments with either Triton X-100 or lysis buffer (High control) were included.

Following 24 hours incubation at 37◦C and 5% CO2, plates were centrifuged for

5 minutes at 2000 rpm. The supernatants of wells to be treated with Triton

X-100 were aspirated and replaced with 200 µl of Triton X-100 (1% in culture

medium). 100 µl of fresh culture media was added to all nanomaterial-treated

wells, controls, and cell-free preparations. All wells were gently resuspended using

a multichannel pipette. 5 µl of lysis buffer, provided with the kit, was added to

the wells designated High control. This was to demonstrate the maximum LDH

activity in the cell cultures. Untreated cells corresponding to the Low control

show LDH activity released by cells in untreated conditions. The plate was in-

cubated for 15 minutes (37◦C and 5% CO2), and then centrifuged for 5 minutes

at 2000 rpm. In this time the catalyst, included with the kit, was reconstituted

in DDH2O, and mixed thoroughly after 10 minutes. 100 µl of supernatant from

each well was transferred to a fresh 96-well microplate. Reaction mixture was

prepared by combining 250 µl of catalyst with 11.25 ml of dye solution, 100 µl of

which was added to each well and incubated for 20 minutes. 50 µl of stop solution
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was added to each well. Prior to reading, plates were subjected to orbital shaking

for 60 seconds. Absorbance was measured on a plate reader (CLARIOstar, BMG

Labtech, Ortenberg, Germany) at 492 nm wavelength. Cell-free absorbance val-

ues were evaluated for inhibition/enhancement by nanomaterials, and subtracted

from their corresponding cell-containing wells.

Material Maximum concentration/dilution

Polystyrene 1 5000 µg/ml
Polystyrene 2 5000 µg/ml
Polystyrene 3 5000 µg/ml
Polystyrene 4 5000 µg/ml
Polystyrene 5 5000 µg/ml
Polystyrene 6 5000 µg/ml

Gold 1 1000 pg/ml
Gold 2 1000 pg/ml
Silver 1 1500 µg/ml
Silver 2 2 µg/ml

Endorem 3000 µg/ml
Ferumoxytol 1100 µg/ml

JGC 121 µg/ml
Titanium (IV) oxide 1000 µg/ml

Zinc oxide 1 1000 µg/ml
Zinc oxide 2 1000 µg/ml
Zinc oxide 3 1000 µg/ml

Silica 1 5000 µg/ml
Silica 2 5000 µg/ml
Silica 3 1000 µg/ml

Liposome 1/10
Emulsion 1/10

Table 5.1: Maximum concentrations and dilution factors of nanomaterials used
to assess cytotoxicity.
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5.2.3.3 Calculations

CC50 (Cytotoxic Concentration 50 - nanoparticle concentration inducing 50%

cell mortality) values were determined via nonlinear regression (sigmoidal dose-

response curve) using GraphPad Prism 6.

The criteria used to determine a valid concentration-response curve was that

the curve followed a sigmoidal shape from which a CC50 concentration was able

to be generated, and this concentration was below the stock (greatest possible)

concentration of the nanomaterial.
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5.2.4 Assessment of cellular health

5.2.4.1 Reactive oxygen species generation

THP-1 cells were seeded at 5 × 105 per well in 100 µl of culture medium in 96-

well microplates. Untreated control wells were designated, and treatments with

nanomaterials at the final concentrations displayed in Table 5.2, and positive

control camptothecin (10 µM) were prepared (n = 4). Following 24 hours incuba-

tion (37◦C, 5% CO2), staining was performed using CellROX Green. The probe

was added to all wells (with the exception of background untreated cells) at a

final concentration of 5 µM, and incubated for 30 minutes (37◦C, 5% CO2). The

plate was centrifuged at 2000 rpm for 5 minutes, and supernatant removed. Cells

were washed in 100 µl DPBS followed by centrifugation, repeated three times.

Following the final aspiration, cells were suspended in 100 µl of MACSQuant

running buffer (Miltenyi Biotec, Germany) and transferred to a deep well 96-

well microplate. Quantification was performed by flow cytometry (MACSQuant,

Miltenyi Biotec) using the FITC channel.

5.2.4.2 Measurement of reduced glutathione

THP-1 cells were seeded at 5 × 105 per well in 100 µl of culture medium in 96-well

microplates. Untreated control wells were designated, and treatments with nano-

materials at the final concentrations displayed in Table 5.2, and positive control

menadione (10 µM) were prepared (n = 4). Following 24 hours incubation (37◦C,

5% CO2), the plate was centrifuged at 2000 rpm for 5 minutes, and supernatant

removed. Cells were washed in 100 µl DPBS followed by centrifugation, repeated

twice. During the wash procedure ThiolTracker Violet dye was prepared to 20

mM in DMSO, and subsequently to the working concentration of 20 µM in DPBS

and warmed. 100 µl of the dye was added to each well and incubated for 30 min-
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utes at 37◦C and 5% CO2. The plate was centrifuged at 2000 rpm for 5 minutes,

and supernatant removed. Cells were washed in 100 µl DPBS followed by cen-

trifugation, and finally suspended in 100 µl of MACSQuant running buffer. Cell

suspensions were transferred to a deep well 96-well microplate. Quantification

was performed by flow cytometry (MACSQuant) using the FITC channel.

Material Final concentration/dilution

Polystyrene 1 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Polystyrene 2 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Polystyrene 3 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Polystyrene 4 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Polystyrene 5 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Polystyrene 6 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml

Gold 1 1 pg/ml 10 pg/ml 100 pg/ml 1000 pg/ml
Gold 2 1 pg/ml 10 pg/ml 100 pg/ml 1000 pg/ml
Silver 1 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Silver 2 1 ng/ml 10 ng/ml 100 ng/ml 1000 ng/ml

Endorem 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Ferumoxytol 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml

JGC 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Titanium (IV) oxide 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml

Zinc oxide 1 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Zinc oxide 2 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Zinc oxide 3 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml

Silica 1 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Silica 2 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml
Silica 3 0.1 µg/ml 1 µg/ml 10 µg/ml 100 µg/ml

Liposome 1/20000 1/2000 1/200 1/20
Emulsion 1/20000 1/2000 1/200 1/20

Table 5.2: Concentrations and dilution factors used to assess reactive oxygen
species generation, reduced glutathione, and autophagy.
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5.2.4.3 Autophagy

Determination of optimal time points in three cell lines

CEM, Raji, and THP-1 cells were seeded at 5 × 105 cells/well in 100 µl of culture

medium (RPMI-1640 supplemented with FBS to 10% final volume) in 96-well

microplates. Untreated background, untreated control wells were designated,

and experimental wells were treated with rapamycin (0.5 µM), chloroquine (10

µM), or combined rapamycin and chloroquine (0.5 µM and 10 µM respectively).

Positive controls were provided with the Cyto-ID Autophagy Detection Kit, and

concentrations were chosen in line with recommendation from the assay protocol.

Treatments were performed reverse-chronologically at 30 minutes, 1, 2, 4, 6,

and 8 hours in order that staining procedures were identical, and flow cytometric

analysis could be performed in the same run to ensure sample comparability. An

additional time point of 24 hours was performed in the THP-1 cell line to attain

suitable cellular response. During these incubations, cells were maintained at

37◦C, 5% CO2.

Effect of nanomaterial treatments on autophagy

THP-1 cells were seeded at 5 × 105 per well in 100 µl of culture medium in 96-well

microplates. Untreated background, and untreated control wells were designated,

and treatments with nanomaterials at the final concentrations displayed in Ta-

ble 5.2, and positive controls; rapamycin (0.5 µM), chloroquine (10 µM), and

combined rapamycin and chloroquine were prepared (n = 4). Preparations were

incubated for 24 hours at 37◦C, 5% CO2.

Assay procedure

Following incubations; autophagy was assessed using the Cyto-ID Autophagy

Detection Kit following the flow cytometry analysis protocol. Plates were cen-

trifuged (5 minutes, 2000 rpm) and washed in 250 µl of assay buffer (prepared by
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diluting the concentrate 1:10 with deionized water). Following centrifugation and

aspiration of the supernatants, cells were resuspended in 250 µl of assay buffer.

CYTO-ID Green Detection Reagent was prepared by diluting 1:1000 in assay

buffer. 250 µl of the diluted reagent was added to all wells with the exception

of untreated background. Following incubation for 30 minutes (37◦C, 5% CO2),

cells were washed once with 250 µl of assay buffer, and resuspended in 500 µl of

assay buffer.

Quantification was performed via flow cytometry using a MACSQuant flow

cytometer using the FL1 channel.

5.2.5 Development of kinetic assessment assays for

cellular health

Medium, designated “kinetic assay medium”, was prepared as follows; RPMI-

1640 without phenol red indicator was supplemented to 10% final volume with

FBS.

The atmospheric control unit (ACU) of the CLARIOstar plate reader was set

to 37◦C and 5% CO2 prior to assay preparation to allow conditions to stabilise.

5.2.5.1 Kinetic application of ROS and glutathione fluorescent

probes

THP-1 cell culture was transferred to 50 ml universal tubes and centrifuged at

2000 rpm for 5 minutes. The cells were washed in 50 ml of warm HBSS to remove

any residual culture medium. The cell pellet was finally resuspended in kinetic

assay medium and the cell density brought to 1 × 105 cells/ml as described in

Section 5.2.2.

100 µl of this cell suspension was transferred to a 96 well plate in sufficient

replicates for untreated control, as well as treatment with menadione at final
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concentrations of 2.5, 5, 10, 20, and 40 µM (n = 4). Blank wells containing 100

µl of kinetic assay medium were also prepared.

Reactive oxygen species generation

CellROX Green fluorescent probe was added to all wells at a concentration of 5

µM.

Quantification was performed using a CLARIOstar monochromatic plate reader

(BMG Labtech) reading at 485/520 nm Ex/Em every 30 minutes for time courses

of 12 and 24 hours.

A further 12-hour assessment following the preparation protocol outlined in

Section 5.2.5 was performed where kinetic assay medium was substituted for

RPMI-1640 containing phenol red, supplemented to 10% final volume with FBS.

Measurement of reduced glutathione

ThiolTracker Violet fluorescent probe was added to all wells at a concentration

of 20 µM.

Quantification was performed using a CLARIOstar monochromatic plate reader

(BMG Labtech) reading at 404/526 nm Ex/Em every 30 minutes for 12 hours.

5.2.5.2 Calculations

AUC (area under the curve) in units of fluorescence per litre per hour, Cmax

(maximum fluorescence at each concentration), and Tmax (time taken to reach

maximum signal) were calculated for the 12 hour kinetic assessment of ROS using

Microsoft Excel (2013).

5.2.6 Statistical analysis

Statistical analysis was performed using Stats Direct software (Stats Direct Ltd,

Cheshire, UK). Distribution of the data was assessed using the Shapiro-Wilk test,
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and statistical significance was evaluated by unpaired t-test. Correlation analysis

was performed via nonparametric Spearman correlation using GraphPad Prism

6. A p-value <0.05 was considered as statistically significant.
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5.3 Results

5.3.1 Cytotoxicity of nanomaterials

5.3.1.1 MTT assay

Of the nanomaterials tested, only zinc oxides 1 and 2 generated valid CC50 values

under the described conditions in the MTT assay, given the criteria outlined in

Section 5.2.3.3. This was true of both CEM (Figures 5.1a and 5.1b) and THP-1

(Figures 5.2a and 5.2b) cell lines. Zinc 1, the smallest (489.33 nm) and most

highly charged (-9.64 mV) of the tested zinc oxide nanoparticles in RPMI-1640

10% FBS, demonstrated CC50 concentrations 15.7- and 5.4-times less than that

of zinc oxide 2 (611.67 nm, -7.04 mV) in CEM and THP-1 cell lines, respectively.

The CC50 concentration of zinc 1 determined in CEM (Table 5.3a) was found

to be 2.5-fold less than that in THP-1 (Table 5.3b), and zinc 2 being 0.2-fold less.

This indicates that the T lymphocyte cell line (CEM) has a greater cytotoxic

sensitivity than the human monocytic cell line (THP1).

The positive control vinblastine resulted in a CC50 concentration 0.2-fold

higher in THP-1 than CEM (Table 5.3), suggesting that the cytotoxic sensitivity

of the CEM cell line applies to small molecules in addition to nanomaterials.

Vinblastine, at its greatest impact in THP1 (Figure 5.2c) led to a ~30% re-

duction in cell viability, compared to 55% in the CEM cell line. In contrast

zincs 1 and 2 reduced cell viability by 95% and 85% in CEM, and 94% and 68%

in THP1, respectively. The cytotoxic impact of these zinc nanoparticles was,

therefore, greater than vinblastine under the conditions assessed in this assay.

An example of a material which did not produce a valid concentration-response

curve in either tested cell line is shown in Figures 5.1d and 5.2d where gold 2

(16.71 nm, -12.4 mV) did not generate overt cytotoxicity within the concentration

range tested.
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Material Calculated CC50

Zinc oxide 1 12.63 µg/ml
Zinc oxide 2 198.20 µg/ml
Vinblastine 27.40 ng/ml

(a)

Material Calculated CC50

Zinc oxide 1 44.45 µg/ml
Zinc oxide 2 240.50 µg/ml
Vinblastine 33.37 ng/ml

(b)

Table 5.3: CC50 concentrations generated from MTT assay concentration-
response curves following 24 hour treatment with stated nanomaterials in (a)
CEM cell line. (b) THP-1 cell line.

170



Chapter 5

(a) (b)

(c) (d)

Figure 5.1: MTT assay concentration-response curves generated following 24 hour
treatment of CEM cell line with (a) zinc oxide 1. (b) zinc oxide 2. (c) vinblastine.
(d) gold 2. Data displayed as average (n = 8) ± standard deviation.
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(a) (b)

(c) (d)

Figure 5.2: MTT assay concentration-response curves generated following 24 hour
treatment of THP-1 cell line with (a) zinc oxide 1. (b) zinc oxide 2. (c) vinblas-
tine. (d) gold 2. Data displayed as average (n = 8) ± standard deviation.
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Assay interference was observed in a number of treatments. Absorbance val-

ues higher than those of untreated control wells were observed in treatments of

both CEM and THP-1 with polystyrenes 1-6, in a concentration-dependent man-

ner (Figure 5.3a). Visual inspection of the samples confirmed this not to be a

proliferative effect given the absence of the characteristic purple colour change,

rather an artefact resulting from the turbidity of the preparations resulting in a

nonspecific absorbance overlapping the detection wavelength of the assay.

Under cell-free conditions; silver 1, Endorem, Ferumoxytol (Figure 5.3b), and

JGC displayed optical absorption at 560 nm without conversion of the MTT

reagent. Silica 3 was found to catalyse the conversion of MTT reagent under

cell-free conditions as shown in Figure 5.3c.
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(a) (b)

(c)

Figure 5.3: MTT assay concentration-response curve generated following 24 hour
treatment of THP1 cell line with (a) polystyrene 1. Red horizontal line signifies
absorbance of untreated control. MTT assay concentration-response curves gen-
erated under cell-free conditions by (b) Ferumoxytol. (c) silica 3. Data displayed
as average (n = 8) ± standard deviation.
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5.3.1.2 LDH assay

JGC and zinc oxide 1 were the only materials of those tested to generate a

valid concentration-response curve, from which CC50 values of 75.24 µg/ml and

110.1 µg/ml, respectively, were calculated (Figures 5.4a and 5.4b). No overt

toxicity was observed following treatment of THP-1 cells with any other materials

under the described conditions when assessed by the LDH assay as exemplified

by the concentration-response curve generated by polystyrene 4 (Figure 5.4c). As

such, CC50 values were unable to be generated from the resulting concentration-

response curves.

(a) (b)

(c)

Figure 5.4: LDH assay concentration-response curves generated following 24 hour
treatment of THP-1 cells with (a) JGC. (b) zinc oxide 1. (c) polystyrene 4. Data
displayed as average (n = 3) ± standard deviation.
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5.3.2 Assessment of cellular health

5.3.2.1 Reactive oxygen species generation

Polystyrene 4 at a concentration of 100 µg/ml resulted in the most pronounced ef-

fect of all polystyrene nanoparticle treatments, where ROS generation was 48.3%

(p = <0.0001) that of the untreated control. Polystyrenes 2 (261 nm, -7.02 mV),

4 (453 nm, -7.93 mV), and 6 (497 nm, -6.51 mV), being the smaller and more neu-

trally charged in RPMI-1640 10% FBS compared to 1 (1169.93 nm, -9.99 mV),

3 (926.93 nm, -8.47 mV), and 5 (802.50 nm, -7.97 mV), resulted in the highest

number of significant changes to observed ROS generation within that material

class (Figure 5.5a).

Of those tested, the only nanomaterials found to result in an observed level

of ROS higher than that of the untreated control were gold 1 and gold 2. At a

concentration 100 pg/ml, treatment with both materials resulted in ROS genera-

tion significantly higher than untreated THP-1 cells (Figure 5.5b). The condition

leading to the greatest induction was that of gold 2 (16.71 nm, -12.4 mV, mix-

matrix capped) at 100 pg/ml generated 48.6% (p = <0.0001) more compared to

28.3% (p = 0.0001) by gold 1 (31.99 nm, -10.97 mV, citrate-stabilised) at the

same concentration. Nanomaterials of similar size, charge, or surface stabilisa-

tion; Ferumoxytol (33.27 nm, -10.80 mV), JGC (38.42 nm), silver 2 (-11.39 mV,

citrate-stabilised), and Endorem (citrate-stabilised), did not exhibit this effect.

Silver 1, the most highly charged nanoparticle tested (-16.27 mV determined

in RPMI-1640 10% FBS), resulted in a level of ROS 98.4% (p = <0.0001) less

than the untreated control at a concentration of 100 µg/ml (Figure 5.5b). Silver

2, possessing different size, charge, and surface stabilisation, generated a similar

but less pronounced effect (41.2% less than untreated, p = <0.0001). However,

the treatment concentration of this material was 1000-times less than that of

Silver 1, due to limited concentration of the stock material. Silica 3, a material
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demonstrating no known physicochemical similarity, led to a similar observation

to that of silver 1 at the same concentration (98.8% less, p = <0.0001). Such

an effect was not seen in silicas 1 or 2 (Figure 5.5d). Silica 3 has been shown to

have the largest size in RPMI-1640 supplemented with FBS to 10% final volume;

1062.60 nm, compared to 130.80 nm and 400.63 of silicas 1 and 2 respectively,

while the zeta potential of all three materials show a high degree of similarity.

Whereas silicas 1 and 2 share stabilisation by L-arginine, the stabiliser of silica 3

is unknown.

At 100 µg/ml all zinc oxides displayed a level of ROS ~87% less than untreated

(Figure 5.5c). Treatment with emulsion at the highest tested concentration led to

a similar effect; 91.9% less, p = <0.0001 (Figure 5.5d). All of these materials vary

in their physicochemical properties but have produced similar biological effects.

Treatment with the positive control camptothecin, a known inducer of reactive

oxygen species, resulted in a level of ROS 86% lower than that of the untreated

control (Figure 5.5d).

(a)
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(b)

(c)
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(d)

Figure 5.5: Generation of reactive oxygen species in the presence of stated nano-
materials as a percentage of untreated of control. Data displayed as average (n
= 4) ± standard deviation. * p-value <0.05.
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Significant correlation was found with reactive oxygen species generation at

the lowest tested nanomaterial concentrations (0.1 µg/ml, 1 pg/ml, 1 ng/ml,

1/20000 dilution) and zeta potential measured in FBS-supplemented RPMI-1640

(p = 0.0449). The trend demonstrates nanomaterials whose zeta potentials tend

toward neutrality resulted in less observed ROS than the untreated control. Such

correlation was not found in the other treatment conditions.

Figure 5.6: Correlation of reactive oxygen species generation at the lowest tested
nanomaterial concentrations (0.1 µg/ml, 1 pg/ml, 1 ng/ml, 1/20000 dilution) and
zeta potential measured in RPMI-1640 supplemented to 10% final volume with
FBS.
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5.3.2.2 Measurement of reduced glutathione

At the highest tested concentration, treatment with polystyrenes 1, 3, and 5 re-

sulted in levels of reduced glutathione less than the untreated control (Figure

5.7a). The most pronounced was by polystyrene 5 (97% less, p = <0.0001), fol-

lowed by polystyrene 3 (39.8% less, p = <0.0001), and then polystyrene 1 (30.2%

less, p = 0.01). These three nanomaterials feature quaternary ammonium surface-

functionalization, as opposed to the sulphonate-functionalization of polystyrenes

2, 4, and 6 which do not demonstrate this effect.

Treatment of THP-1 cells with Endorem and Ferumoxytol at concentrations of

0.1 µg/ml and 1 µg/ml resulted in significantly higher levels of reduced glutathione

than that of untreated cells (Figure 5.7c). Of these materials Ferumoxytol is

the most highly charged in RPMI-1640 supplemented with FBS to 10% final

volume, while Endorem tends toward neutrality with a zeta potential of -4.40

mV. The response of THP-1 cells to titanium (IV) oxide showed similarity to

that of Endorem, where levels of reduced glutathione were nearly identical at

0.1 and 100 µg/ml treatments (Figure 5.7c). Neither of these materials show

physicochemical similarity, where titanium (IV) oxide is thirteen-times larger,

and its zeta potential is almost double that of Endorem.

All three zinc oxide nanomaterials resulted in significantly more reduced glu-

tathione present than that of untreated THP-1 cells at concentrations of 10 and

100 µg/ml (Figure 5.7c). Significant positive trends were observed where increas-

ing concentration led to greater glutathione in zinc 1 (p = 0.0071), 2 (p = 0.0204)

and 3 (p = 0.0164).

Silicas 1 and 2 did not affect the level of reduced glutathione under the de-

scribed conditions at the highest tested concentration (100 µg/ml), whereas treat-

ment with silica 3 led to a level 60.5% (p = <0.0001) lower than the control. All

three of the silica nanoparticles display zeta potentials with a high degree of sim-
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ilarity, whereas silica 3 was shown to be 1062.60 nm in RPMI-1640 10% FBS

compared to silica 1; 130.80 nm, and silica 2; 400.63 nm.

The positive control menadione generated a 29% (p = <0.0001) greater level

of glutathione reduction than the untreated control.

No significant correlation (p = <0.05) was found between nanomaterial impact

on glutathione and the compared parameters of size, zeta potential, or polydis-

persity.

(a)
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(b)

(c)
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(d)

Figure 5.7: Reduced glutathione in the presence of stated nanomaterials as a
percentage of untreated control. Data displayed as average (n = 4) ± standard
deviation. * p-value <0.05.
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5.3.2.3 Autophagy

A time course of autophagic induction (Figure 5.8a, b, c) was performed to es-

tablish optimum durations of incubation to gain maximum observable effects. It

has been determined here that for this particular experimental design incubation

for 8 hours for CEM, 6 hours for Raji, and 24 hours for THP-1 are necessary to

reach the desired outcome.

When compared to example data (Figure 5.8d) generated in Jurkat (human

T lymphocyte), the magnitude of responses are quite different. Although under

different conditions, Jurkat produced a maximum increase of 116.6% under ex-

posure to rapamycin and chloroquine. The maximum autophagic induction in

CEM and Raji (Figures 5.8a, and 5.8b) was produced by the combination of ra-

pamycin and chloroquine (105% and 446% respectively). THP-1 demonstrated

a 148.7% increase under the combination while chloroquine alone resulted in a

160% induction (Figure 5.8c).

All nanomaterial treatments, with the exception of zinc oxide 1 at 10 µg/ml

(p = 0.9914), resulted in a significantly lower (p = <0.0001) level of autophagy

in the THP-1 cell line at 24 hours, compared to the untreated control. The

level of autophagy was found to be lowest following treatment with the highest

concentration of silver 1, being 22.7% (p = <0.0001) that of the untreated control

(Figure 5.9b). Liposome resulted in the greatest impact across all treatments with

an average 70% less than untreated THP-1 cells (Figure 5.9d).

JGC, titanium (IV) oxide, zinc oxide 2, and zinc oxide 3 all demonstrate

greater impact at decreasing concentration (Figure 5.9c). This trend was only

found to be statistically significant in titanium (IV) oxide (p = 0.0499) and zinc

oxide 3 (p = 0.0061).

Treatment of THP-1 cells with positive controls rapamycin and chloroquine

produced levels of autophagy 32% lower (p = <0.0001), and 68% (p = <0.0001)
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higher than that of the untreated control. Combined treatment with rapamycin

and chloroquine caused autophagy to be 40% (p = <0.0001) greater than in

untreated cells.

(a) (b)

(c) (d)

Figure 5.8: Autophagic responses, as a percentage of untreated of control, at
stated time points following treatment with 0.5 µM rapamycin, 10 µM chloroquine
or combined rapamycin and chloroquine in cell lines (a) CEM. (b) Raji. (c) THP-
1. Data displayed as average (n = 4) ± standard deviation. (d) Example response
in Jurkat cells treated with 0.5 mM rapamycin, 10 mM chloroquine or combined
rapamycin and chloroquine at 18 hours (Enzo Life Sciences, 2016).
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(a)

(b)
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(c)

(d)

Figure 5.9: Effect on autophagy in THP1 cell line resulting from treatment with
the stated nanomaterials for 24 hours as a percentage of untreated of control.
Data displayed as average (n = 4) ± standard deviation. * p-value <0.05.
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Significant correlation was found with autophagy at the highest tested nano-

material concentrations (100 µg/ml, 1000 pg/ml, 1000 ng/ml, 1/20 dilution) and

Z-average (p = 0.0060, Figure 5.10a), as well as peak mean intensity size (p =

0.0042, Figure 5.10b). Peak mean intensity size also showed significant correlation

(p = 0.0461, Figure 5.10c) with the second highest nanomaterial concentrations

(10 µg/ml, 100 pg/ml, 100 ng/ml, 1/200 dilution). The observed trend demon-

strated by these correlations is that nanoparticles of smaller size resulted in a

lower level of autophagy than those of larger size.

(a)
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(b)

(c)

Figure 5.10: Correlation of autophagy at the highest tested nanomaterial concen-
trations (100 µg/ml, 1000 pg/ml, 1000 ng/ml, 1/20 dilution) and (a) Z-average
hydrodynamic size. (b) peak mean intensity size. Correlation of autophagy at
the second highest nanomaterial concentrations (10 µg/ml, 100 pg/ml, 100 ng/ml,
1/200 dilution) and (c) peak mean intensity size. All sizes refer to those measured
in RPMI-1640 supplemented to 10% final volume with FBS.
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5.3.3 Development of kinetic assessment assays for

cellular health

5.3.3.1 Kinetic assessment of reactive oxygen species

Amplification of the fluorescent signal produced by 40 µg/ml menadione when

measured in media containing phenol red, displayed in Figure 5.11, was attributed

to the presence of the indicator. This amplification was not observed at other

concentrations when compared to data generated in kinetic assay medium (Figure

5.12a). Such an effect would lead to an overestimation in reactive oxygen species

generation, for which reason the use of phenol red-free RPMI-1640 was justified.

The AUC of all menadione treatments over 12 hours were significantly higher

than that of untreated cells, the greatest being 1.6-fold (p = 0.0067) by 40 µM

(Figure 5.12b).

The time to maximum fluorescence was also markedly different between un-

treated and treated cells, where Tmax for untreated cells was 270 minutes but 720

minutes for cells treated with 40 µg/ml menadione (Figure 5.12d).

A convergence of the in the fluorescent signal generated by treatments with

20 and 40 µg/ml menadione was observed (Figure 5.13a) as exemplified by the

near-identical Cmax calculated for these treatments (Figure 5.13b). With the

exception of these concentrations, the static assessment at 24 hours (Figure 5.13c)

showed similar trend to the Cmax of the kinetic assay. Differences between the

two methodologies such as the accumulated signal by the kinetic assay could be

associated with the higher fluorescence found in the kinetic Cmax.

The higher fluorescence values produced by samples treated with higher con-

centrations of menadione would indicate a higher level of reactive oxygen species

in these conditions compared to those treated with lower concentrations.
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Figure 5.11: Kinetic measurement of reactive oxygen species generation in re-
sponse to stated concentrations of menadione over 12 hours performed in RPMI-
1640 supplemented 10% with FBS containing phenol red. Data representative of
mean fluorescence values (n = 3).

(a)
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(b) (c)

(d)

Figure 5.12: (a) Kinetic measurement of reactive oxygen species generation in re-
sponse to stated concentrations of menadione over 12 hours performed in “kinetic
assay medium”. Data representative of mean fluorescence values (n = 3). (b)
AUC of 12 hour kinetic measurement of ROS generation in response to menadione
at stated concentrations, as a function of fluorescence per litre per hour. Data
shown is average (n = 3) ± standard deviation. (c) Cmax maximum fluorescence
generated in response to menadione at stated concentrations for 12 hour kinetic
measurement of ROS generation. Data shown is average (n = 3) ± standard
deviation. (d) Tmax time taken to achieve maximum fluorescence signal relating
to ROS generation in response to menadione at stated concentrations over 12
hours. Data shown is average (n = 3) ± standard deviation. * p-value <0.05.
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(a)

(b) (c)

Figure 5.13: (a) Kinetic measurement of reactive oxygen species generation in
response to stated concentrations of menadione over 24 hours performed in “ki-
netic assay medium”. Data representative of mean fluorescence values (n = 4).
(b) Cmax maximum fluorescence generated in response to menadione at stated
concentrations for 24 hour kinetic measurement of ROS generation. Data shown
is average (n = 3) ± standard deviation. (c) Static measurement of ROS gener-
ation under stated treatments at 24 hours performed in “kinetic assay medium”.
Data shown is average (n = 4) ± standard deviation. * p-value <0.05.
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5.3.3.2 Kinetic measurement of reduced glutathione

Kinetic measurement of reduced glutathione resulted in detector saturation by

the untreated control at 480 minutes (Figure 5.14).

All concentrations of menadione tested resulted in a lower fluorescence than

that of the untreated control across the 12 hour period.

THP1 cells treated with higher concentrations of menadione were found to

have lower fluorescence intensity at all time points than those treated with lower

concentrations, with the exception of some overlap between 2.5 µM and 5 µM

treatments 5.14). This would imply that there was less cellular reduced glu-

tathione present in samples treated with greater concentrations of the free radical

inducing compound.

Figure 5.14: Kinetic measurement of glutathione reduction in response to stated
concentrations of menadione over 12 hours performed in “kinetic assay medium”.
Data representative of mean fluorescence values (n = 4).
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5.4 Discussion

Cytotoxic assessment of nanomaterials in vitro using organotypic cell models can

yield a valuable understanding of the mechanisms of nanoparticle toxicity and has

the advantage over in vivo assessment in terms of cost and logistics (Dobrovolskaia

and McNeil, 2013; Lewinski et al., 2008). However, careful consideration must

be given when trying to extrapolate in vitro cytotoxicity data to in vivo doses

(Sayes et al., 2007). It is well known that in vitro cytotoxicity assessments and in

vivo acute toxicity, under most conditions, demonstrate little correlation (Garle

et al., 1994). The review by McKim highlights the main limitations which exist in

using in vitro cytotoxicity assays to predict in vivo toxicity; central to which is the

inability of single endpoint assays to provide quantitative information required to

extrapolate the in vitro effects to relevant in vivo toxicity reference values such

as a plasma concentration (McKim, 2010).

As a means to inform nanomaterial concentrations for subsequent assays, mea-

sures of cytotoxicity prove useful. Following cytotoxic assessment of the nano-

material library, choices of treatment concentrations were informed for investi-

gation of the impact of these materials on cellular oxidative balance. This sub-

sequent assessment was carried out via direct determination of ROS generation,

and measurement of cellular glutathione. In doing so, observations are drawn on

the effects of the nanomaterials, and not artefacts generated due to cell death

(Dobrovolskaia, 2015). The adoption of standard cytotoxicity tests for use with

nanoparticles has been called into question (Hirsch et al., 2011), due to the com-

plexity of the materials and their likelihood to interfere with assays and produce

misleading results (Holder et al., 2012; Kroll et al., 2012). This consideration

was at the forefront when choosing and designing the assays performed in this

chapter. Of those routinely described in the literature, the MTT and LDH assays

were utilised due to their predominance (Love et al., 2012a; Pfaller et al., 2010),
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and the mechanisms by which nanoparticle-based interference may be accounted

for.

The use of cell lines for such assessment provide benefits including cost effec-

tiveness, ease of amplification, homogeneous response, but are inherently limited

compared to primary cells. The sensitivities of cell lines to stimulation differs to

that of the primary counterparts as a result of the genetic changes undergone in

the immortalisation process, and phenotypic changes over time in culture (ATCC,

2010; Dobrovolskaia, 2015). Use of the THP-1 cell line for in vitro assessments

of cytotoxicity and modulation of cellular health was informed by their exten-

sive presence in the literature as a model of human monocytes (Chanput et al.,

2014), providing a pertinent representation of a cellular subset encountered by

nanoparticles in the peripheral blood. CEM cell line was utilised in a comparative

capacity in the MTT assay to observe any differences in the sensitivities of these

immune cell lines to the positive control and nanomaterial library.

The MTT assay is used a measure of cell viability by determining metabolic

function. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide),

a soluble yellow compound, is reduced to insoluble purple formazan in the pres-

ence of actively respiring cells by cleavage of the tetrazolium ring by dehydroge-

nase enzymes (Slater et al., 1963). The autoconversion of MTT is so well known

that manufacturers such as Promega have published literature highlighting this

fact (Riss, 2014). Nanoparticles have the capacity to facilitate electron trans-

fer (Kovacic and Somanathan, 2013) and in doing so enable cell free conversion

of MTT. Catalysis of MTT under cell free conditions has been described for

combustion-generated carbon nanoparticles, and titanium dioxide (Holder et al.,

2012), and was observed here for silica 1. In such cases blank correction using

cell free preparations of materials could potentially lead to an underestimation of

cell viability if the effect is not simply additive.

As an absorbance based assay, the MTT assay is susceptible to interference due
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to inherent optical properties of nanomaterials and their preparations. This effect

has been highlighted by numerous sources in the literature (Casey et al., 2007;

Monteiro-Riviere et al., 2009). The optical properties relating to the absorbance

maxima of the tested nanomaterials was assessed in Chapter 2 with no cause

for concern regarding incompatibility of the nanomaterials with the MTT assay.

However, in practice this did not hold true following the observations of signal

generation by preparations in the absence of dye conversion, as well as false

positives produced by turbid samples.

Of all the nanomaterials tested in this work; zinc oxides 1 and 2 were the

only ones to generate valid CC50 values. 53.6 nm zinc oxide nanoparticles have

previously been shown to generate toxicity in THP-1 cells, following 24 hours

exposure, as determined via the MTT assay (Lanone et al., 2009). Of these,

zinc 1 was the only nanomaterial to produce CC50 concentrations in both the

MTT and LDH assays. This would observation suggests that zinc 1 does have

a cytotoxic effect, and not just affecting either mitochondrial function or cell

membrane integrity in isolation.

Extracellular quantification of lactate dehydrogenase (LDH) is achieved fol-

lowing the release of the cytoplasmic enzyme from the cell as a result of a re-

duction in membrane integrity. It is this principal which makes LDH a primary

biomarker of haemolysis and erythrocyte damage (Kato et al., 2006).

The LDH protocol chosen for use in this work is based on a colourimetric

endpoint. LDH activity catalyses the oxidation of lactate to pyruvate, via the

reduction of NAD+ to NADH+/H+. The proprietary catalyst then protonates

the tetrazolium salt producing the detected formazan product.

The suitability of applying the LDH assay for nanomaterials has been evalu-

ated elsewhere (Han et al., 2011), it can be seen that while it is a useful tool, its

application as a one-size-fits-all assay cannot be assumed and must be evaluated

on a case by case basis. As highlighted earlier, the preparation of cell free inhi-
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bition/enhancement controls were an integral part of the experimental design of

the LDH assay. This provided an immediate indicator of nanomaterial suitability

for this assay. While these preparations were used as a baseline for cell-based

treatments, they were individually scrutinised for material-related interference

with the assay (be that catalytic auto-conversion of the reagents, spectral in-

terference, or otherwise). It has been previously described that citrate-capped

silver nanoparticles are incompatible with LDH assay due to LDH binding to the

nanomaterial surface, and inactivation of LDH by ROS (Oh et al., 2014). While

such interference was not observed in the work performed here, interference in

this manner would suggest the need for further inhibition/enhancement controls

of known quantities of LDH being challenged by nanomaterials.

The increasing human exposure to nanomaterials creates cause for concern

with regard to their potential to modulate and affect cellular health. The route

of exposure should be a primary consideration for a well informed, mechanistic,

approached assessment (Kong et al., 2011). THP-1 as a model of monocytes

represent an abundant cellular subset that nanoparticles will encounter in the

blood stream, comprising between 10 and 30% of peripheral blood mononuclear

cells in healthy individuals (Miyahira, 2012)). THP-1 are a widely utilised in

vitro model in the literature, and have been validated in their use by numerous

sources (Chanput et al., 2014; Garcia et al., 2013; Heil et al., 2002).

The generation of reactive oxygen species has been associated with numerous

nanomaterials as a mechanism of nanoparticle-mediated toxicity (Fu et al., 2014).

Proposed mechanisms of this include generation of free radicals via Fenton-type

reactions (Valko et al., 2006), mitochondrial localisation (Foley et al., 2002),

mitochondrial dysfunction via other mechanisms (Manke et al., 2013). Cell-

type specific interactions have also been shown, such as frustrated phagocytosis

(Bergstrand, 1990) which has been associated with carbon nanotubes (Manke

et al., 2013).
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Amino-functionalized polystyrene nanoparticles have been found to generate

ROS in primary human macrophages, which led to activation of caspase-1, induc-

ing IL-1β (Lunov et al., 2011). Amine-functionalized polystyrene nanoparticles

also induced cell death, increased oxidative stress, mitochondrial disruption and

release of cytochrome C, indicating apoptotic cell death in primary human alve-

olar macrophages (Ruenraroengsak and Tetley, 2015). Polystyrenes 1, 3, and 5

possess the most similar surface-functionalization, however did not display any

of these effects under the described conditions.

The potential for gold nanoparticles to generate ROS in a detrimental manner

has been demonstrated by various sources (Li et al., 2010; Zhang et al., 2003).

Here, both citrate- (gold 1) and mix-matrix capped (gold 2) gold nanoparticle

treatments resulted in an observed level of ROS higher than that of the untreated

control, the only tested materials to do so across all tested concentrations.

Due to their widespread use, a great deal of data exists on the toxicological

profile of titanium dioxide nanoparticles (Shi et al., 2013). Titanium dioxide exists

in a number of conformations, but its anatase and rutile crystalline forms have

been subject to most analysis. Tada-Oikawa et al. have shown that both rutile

and anatase titanium dioxide nanoparticles reduced cellular viability of THP-1

cells via MTS assay at 24 hours, as well as increasing the production of ROS

(Tada-Oikawa et al., 2016). While the crystalline structure of the titanium (IV)

oxide nanoparticles used in this work is unknown, no overt toxicity was observed

via MTT or LDH assay. In the aforementioned study; reactive oxygen species

assessment was performed via flow cytometry as in this chapter, however the

authors used CM-H2DCFDA staining (Tada-Oikawa et al., 2016). The observed

effect of THP-1 treatment with titanium (IV) oxide was a lower level of ROS

compared to untreated control, in contrast with the effects described by Tada-

Oikawa et al.

Direct quantification of reactive oxygen species poses inherent difficulty as the
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presence of these radicals is short-lived, ~10-9 seconds, prior to their reaction with

cellular components (Fu et al., 2014). Investigation of the level of glutathione,

due to its rate limited enzymatic conversion (Tandoǧan and Ulusu, 2006), pro-

vides an alternative measure for oxidative stress possessing a greater window for

observation.

Citrate-stabilised gold nanoparticles have been associated with glutathione

depletion in a human liver cell line, HL7702 (Gao et al., 2011). No significant

impact was observed following treatment with THP-1 cells with gold 1 (citrate-

stabilised) at concentrations of 1000, 100, and 10 pg/ml. Significantly higher

glutathione, compared to the untreated control, was found at the lowest treated

concentration (1 pg/ml). Mix-matrix capped gold 2 generated effects with a high

degree of similarity to those of gold 1 at each concentration tested.

Iron oxide nanoparticles have been implicated with depletion of glutathione

by a number of sources (Hohnholt and Dringen, 2011; Radu et al., 2010). En-

dorem and JGC demonstrated such an effect at a concentration of 100 µg/ml,

however, showed the opposite at 0.1 and 1 µg/ml, with no significant change at 10

µg/ml. Reduced glutathione was higher than the untreated control in all tested

concentrations of Ferumoxytol.

Nanomaterial toxicity based around their impact towards intracellular pro-

cesses has led to a large amount of work assessing their influence on inflammation

and oxidative stress. Investigation into autophagy, a key homeostatic mechanism,

has been comparatively limited. Autophagic dysfunction is becoming widely ac-

cepted as an important mechanism of nanomaterial toxicity which requires careful

consideration when producing new materials. For this reason it forms part of the

standardised assay cascade performed by the NCI-NCL (Stern et al., 2013; Stern

and Neun, 2011).

Song et al. have previously shown amino-functionalized negatively charged

polystyrene nanoparticles to interfere with autophagosomal degradation by accu-
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mulation in lysosomes of fibroblasts over 48 hours (Song et al., 2015). Such effects

were not observed for positively or neutrally charged polystyrene nanoparticles

(Song et al., 2015). There is some confusion, however, as the authors performed

zeta potential measurement in cell culture medium, similarly to work performed

in Chapter 2, showing that all tested polystyrene nanoparticles displayed a neg-

ative surface charge. It can be ascertained that the “cell culture medium” was

DMEM, but it is nowhere stated if the medium was supplemented with FBS. As

such the described effects should be attributed to the particular surface function-

alization and not to the nanoparticle charge. The polystyrene nanoparticles tested

in this work, just as all other materials, resulted in a lower level of autophagy

compared to the untreated control. A high degree of similarity was observed in

the responses of THP-1 cells to quaternary ammonium (polystyrenes 1, 3, and 5)

and sulphonate-functionalized polystyrene nanoparticles (polystyrenes 2, 4, and

6) under the conditions described, as such no comment can be given about the

effect of zeta potential or surface functionalization.

The influence of the panel of nanomaterials on autophagy was investigated us-

ing a high throughput methodology. Existing techniques to assess autophagy e.g.

immunoblot, TEM, GFP-LC3 transfection (Tasdemir et al., 2008), are time and

labour intensive, while producing limited amounts of data. The work outlined

here incorporates an assay based upon a cationic dye that partitions into cells

and accumulates in autophagic vacuoles (pre-autophagosomes, autophagosomes,

and autolysosomes (autophagolysosomes)) (Barth et al., 2010). Levels of fluo-

rescence can be quantified using a microplate reader, enabling faster analysis, or

flow cytometer enabling multiparameter analysis per sample (used here). Many

conditions can be assessed in a relatively short amount of time providing a large

dataset which can then be reviewed and individual aspects be further investigated

by more traditional means. The ability to perform a high throughput assay like

that outlined in this work is invaluable as it provides sufficient data to estab-
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lish a material’s autophagic impact utilising widely available equipment, or as a

preliminary screen from which particular conditions can be further investigated

using other established methodologies.

A limitation in the methodology used to assess nanomaterial impact on au-

tophagy is that it is unable to discern whether lower fluorescence is a result of

less autophagy, or an increased rate of autophagosome degradation and clearance.

Further investigation via associated mechanisms would be required for elucidation

of the source of this effect. Additionally, if it was found that the cellular response

to these nanoparticles was indeed a reduced level of autophagy, assessment of the

biological consequences would be of great interest.

The cell lines relevant to, and available at the time of this work were CEM

(T lymphocyte), Raji (B lymphocyte), and THP-1 (human monocytic cell line).

In order to generate a detectable and meaningful response, preliminary optimisa-

tion of the assay was required. Treatment concentrations of the positive controls

rapamycin and chloroquine were informed by the assay protocol (Enzo Life Sci-

ences, 2016). The duration of exposure required to reach the greatest observable

effect has been shown to differ greatly between cell types ranging from 6 to 24

hours. The observable effect can differ significantly not only between materials

but also in cell types and as such there is no “one size fits all” model available for

nanomaterials. The magnitude of autophagic induction at optimal time points

has been shown to be cell type dependent, with the greatest response seen in the

Raji cell line.

The design of in vitro assays to investigate specific biological outcomes is

fraught with numerous vital considerations which must be addressed in order

to generate valid and meaningful data. Here it was attempted to highlight the

importance of informed selection for exposure times with regard to assessments

of cellular health. For assays quantifying a secreted entity such as LDH or cy-

tokines, so long as sufficient exposure time has been allowed for the response to
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be generated, and the accumulated marker is still stable at the time of assess-

ment, the subsequent measurement will be unaffected (Aziz et al., 2016, 1999).

When investigating cellular health using a single time point design in the manner

described in this chapter, the time point poses greater impact on the observable

outcome. Use of predetermined exposure times, often arbitrarily chosen due to

convention or convenience, may not provide a true representation of the max-

imal effect (Essen BioScience, 2016). Even with optimisation of the assay and

preliminary investigation to find the exposure time with positive controls to gen-

erate maximum observable effect, the translation of this to other compounds and

especially nanomaterials does not necessarily hold true (Kell and Oliver, 2014;

Treuel et al., 2013). An assay such as this provides insight into the state of the

cell at that particular point in time, providing little indication of what biological

changes that it has already undergone which may have reached resolution, or ini-

tiated further response. For these reasons; modification of standard static time

point protocols allowing kinetic assessment was performed.

A number of factors had to be considered in the development of these ki-

netic methodologies. Phenol red-free medium was chosen for use informed by

fluorescence microplate assessment protocols of assays not requiring wash proce-

dures following labelling/staining of the cells. Furthermore, phenol red-containing

medium was observed to generate an amplification in the fluorescent signal of cells

treated with 40 µg/ml of menadione, but not present in other treatments. If un-

observed this effect would lead to an overestimation of the generated ROS.

Cell density required optimisation in order to generate sufficient detectable

signal. Low cell counts are not a limiting factor when utilising flow cytometry, as

the staining is measured on a cell by cell basis. In a microplate assay such as this,

the optical measurement (absorbance/fluorescence/luminescence) is an average of

the entire contents of each well. As is standard practice for microplate-based flu-

orescence assays; in order to detect potential biological effects a balance must
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be met where the cell count is within a range that, following staining, sufficient

resolution is found between unstained and stained cells, and between various

treatments, with the least additional gain applied. Numerous manufacturers are

moving toward the production of dyes generating brighter signal so that fewer

cells per treatment is necessary. While such dyes may allow for a lower applica-

tion of additional gain, this is not necessarily a desirable property for application

in this situation. A greater number of cells per treatment serves to reduce vari-

ability where averages are being taken from entire well contents. The particular

microplate reader used in this work utilises a feature called orbital averaging,

where the well is analysed at multiple points within its area and an average is

taken (BMG LABTECH, 2016). For a uniformly distributed cell suspension this

is not a vital feature, but proves invaluable when applying such methodology to

adherent cells. Some inconsistencies in trypsinization or dissociation of adherent

cell cultures during sample preparation are inevitable, as is uneven distribution of

cells in the well following seeding. Overly vigorous ejection of the cell suspension

from the pipette into the well can force the cells to deposit on the edges of the

well (as this methodology utilises flat-bottomed microplates). In a worst case

scenario; the signal generated following measurement is very low but not as a

result of lack of effect, in reality measurement being performed on an area of low

cell density.

Important parameters required in the protocol are the setting of gain, and

focal height. The CLARIOstar features a function to quickly find the well con-

taining the highest signal. The focal height for measurement is then determined

again using a propitiatory function of the equipment. Gain setting parameters

allow the user to inform the software of the expected signal at its highest point.

This is done as a percentage i.e. the signal generated at time zero is 25% of

the maximum, which informs the software to set a lower gain to allow for the

increased signal at later time-points so as not to saturate the detector. While
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theoretically this is a useful feature it has been found more viable to set multiple

reads per time point, each of which having gain settings ranging from low to high.

In turn this method produces a greater volume of data, from which the optimal

gain-associated dataset can be chosen for subsequent analysis. In the instance of

developing a new, or applying an existing protocol to a different cell type, it can

serve as a safety net if the response is not as expected either being greater and

saturating the detector or not providing sufficient signal strength to differentiate

between treatments, both instances providing an unusable dataset requiring the

assay to be repeated. Obviously this would be easily rectifiable when performing

a single endpoint read, but not so where the problem may develop or highlight

itself some hours into a lengthy time-course.

The suitability of dyes is of primary importance. For use in a kinetic applica-

tion; a fluorescent dye needs to be activated/converted in response to the target

effect. Those which display constant signal, relying on partitioning into cells and

requiring washing to remove surplus unassociated dye would not prove appro-

priate as any variation in signal generated would be merely small fluctuations.

While a dye may seem to be suitable, in practical application this may not stand

true.

Most readily available dyes are irreversibly converted following interaction

with the biological target. As long as this is known, appropriate data handling

can be performed. A limitation can be derived from this fact, especially in in-

stances of more lengthy assessment times, where depletion of the dye can become

a limiting factor. Furthermore, dyes of this type cannot directly allow visuali-

sation of the generation and subsequent reduction of effect. The bioluminescent

dye of the Promega RealTime-Glo MT Cell Viability Assay is able to produce

such a response (Peters and Worzella, 2015). If this principal were to be applied

to other cell health assays such as ROS generation, it would allow antioxidant

responses to be observed.
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While not yet applied to study the impact of nanoparticles on reactive oxy-

gen species generation or reduced glutathione content, the data presented here

shows great promise. With further development this methodology could yield an

invaluable platform for monitoring the effects of nanoparticles on cellular health

over time with high resolution.

The ability of nanomaterials to interact not only with biological systems but

also the methods used to assess these interactions leads to complications with

determining the appropriateness of assays as well as the inability to have a one-

size-fits-all model for nanoparticle assessment. The necessity to assess nanomate-

rials on a case-by-case basis limits the suitability of applying existing mechanistic

knowledge to new materials. Nanomaterial influence over key aspects of cellular

health was assessed. Under the tested conditions lower observed levels of ROS

were associated with higher glutathione content. All tested nanomaterial con-

ditions led to a lower level of autophagy compared to untreated controls at 24

hours. The development of, and utility and potential for, kinetic methodologies

for the assessment of aspects of cellular health has been demonstrated.
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Preclinical biocompatibility

assessment of hyperbranched

polydendrons with the potential

for drug delivery vehicles
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6.1 Introduction

The aim of the work described in this chapter was to apply the methodolo-

gies described, and developed, in previous chapters of this thesis to a class of

novel nanomaterials termed hyperbranched polydendrons. The rationale of these

dendrimer-like materials was to mimic the surface functionality of dendrimers but

at much higher molecular weights and size than conventional dendrimers, whilst

maintaining a facile synthesis at low production cost (Hatton, 2015). Currently,

dendrimers pose promising candidates as drug nanocarriers for their well-defined

structures, loading capacities, and potential for surface functionalization (Madaan

et al., 2014), but are hindered by lengthy and costly syntheses (Hatton, 2015).

Polydendrons were produced by mixed initiator polymerizations as described

by Hatton (2015). Purified N-(2-Hydroxypropyl) methacrylamide (HPMA) mono-

mers (Figure 6.1c) were polymerised with G2’ (Figure 6.1a) and 2000PEG ini-

tiator (Figure 6.1b), at 50:50 and 75:25 ratios, to result in 100 monomer unit

diblock copolymers. The hyperbranched polymeric architectures were formed by

the introduction of ethylene glycol dimethacrylate (EGDMA, Figure 6.1d). Self-

assembly of the nanoparticles was achieved by nanoprecipitation of the polymers,

dissolved in tetrahydrofuran (THF), into water. This method produced nanopar-

ticles with hydrophobic (G2’ initiator) and amphiphilic (2000PEG initiator) do-

mains exposed to the external environment (Figure 6.1e). Steric stabilisation

of the nanoparticles was achieved through the combination of hydrophilic sur-

face domains as well as long PEG chain length, improving the stability of the

nanoparticles under physiologically-relevant conditions as demonstrated in 0.14

M sodium chloride (Hatton, 2015).

In previous chapters within this thesis, a number of assays have been applied

to a panel of nanoparticles with the aim of linking physicochemical characteristics

to biological effect. These assays have examined aspects of cellular health, im-
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munological and haematological interactions as well as blood contact properties.

These assays have previously been demonstrated to provide information on com-

mon, acute, toxicities that may hinder translation of these materials to in vivo

studies (Dobrovolskaia and McNeil, 2013; Zamboni et al., 2012). In addition to

a putative preclinical safety assessment, the work sought to link physicochemical

characteristics of these materials with biological impact.

(a)

(b)
(c)

(d)

(e)

Figure 6.1: Chemical structures of components used in polydendron synthesis
(a) G2’ initiator. (b) 2000PEG initiator. (c) HPMA. (d) EGDMA. Theoreti-
cal structure of the mixed-initiator polydendron nanoparticles (e) Red denotes
terminal G2’ groups, blue represents 2000PEG groups. Adapted from Hyper-
branched Polydendrons (p. 105), by F. L. Hatton, 2015, Switzerland: Springer
International Publishing. Copyright 2015 by Springer International Publishing
Switzerland. Adapted with permission.
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6.2 Methods

6.2.1 Materials

Polydendrons composed of G2’:2000PEG-pHPMA100-EGDMAx (x = amount of

EGDMA present in the polydendron) were provided to us for analysis from the

Department of Chemistry at the University of Liverpool (Liverpool, UK) (Hatton,

2015).

The four polydendrons tested were comprised of two ratios (50:50 and 75:25) of

dendron initiator (G2’) to PEG initiator (2000PEG-pHPMA100-EGDMAx, where

x = 0.85 for 50:50 and 0.8 for 75:25), and subdivided by size.

Nomenclature of the polydendrons used in this chapter are as follows:

Polydendron
.

Ratio of dendron initiator
.

Initial Z-average size
(PD) to PEG initiator in deionized water (nm)

where initial Z-average size relates to the Z-average size immediately following

production.

Designation Hydrodynamic size (nm) PdI

PD.5050.161 160.80 0.07
PD.5050.378 377.80 0.52
PD.7525.157 156.93 0.05
PD.7525.264 264.40 0.00

Table 6.1: Nanomaterials assessed in this chapter including the Z-average hydro-
dynamic size (nm) and polydispersity index determined by DLS in water at time
of production.

Approval for the sampling and storage of human blood samples for biomedical

research was gained from the University of Liverpool Committee in Research

Ethics (Ref: RETH000563).
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6.2.2 Physicochemical characterisation

Stability of polydendrons over time in deionized water was assessed by DLS at

0, 6, 9, and 12 months. Further characterisation of polydendrons in biologically

relevant media; RPMI-1640, RPMI-1640 supplemented with FBS to 10% final

volume, DMEM, and DMEM supplemented with FBS to 10% final volume, were

performed 12 months from production. DLS and zeta potential measurements

were performed using a Zetasizer Nano ZS as described in Section 2.2.4.2.

6.2.3 Assessment of material contamination

6.2.3.1 Determination of endotoxin concentration in nanoparticle

samples

Endotoxin contamination of polydendrons was assessed using the EndoLISA kit

as described in Section 2.2.2. Polydendrons were tested at final concentrations of

100 and 1 µg/ml.

6.2.3.2 Assessment of possible viable microbial contamination

Polydendrons were streaked on plates of LB Agar at neat concentrations. Micro-

bial growth assessment was performed as described in Section 2.2.3.

6.2.4 Assessment of cytotoxicity

6.2.4.1 MTT assay

MTT assay was performed as described in Section 5.2.3.1. THP-1 cells were

treated with polydendrons for 24 hours at a maximum concentration of 100 µg/ml,

and nine subsequent 1:2 serial dilutions.
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6.2.4.2 LDH assay

LDH assay was performed using the Cytotoxicity Detection KitPLUS (LDH) as

described in Section 5.2.3.2. THP-1 cells were treated with polydendrons for 24

hours at a maximum concentration of 100 µg/ml, and eight subsequent 1:2 serial

dilutions.

6.2.5 Assessment of cellular health

6.2.5.1 Reactive oxygen species generation

Generation of reactive oxygen species was measured via flow cytometry using the

CellROX Green fluorogenic probe as described in Section 5.2.4.1. THP-1 cells

were treated with polydendrons at concentrations of 0.1, 1, 10, and 100 µg/ml,

or camptothecin (10 µM) for 24 hours.

6.2.5.2 Measurement of reduced glutathione

Glutathione reduction was measured via flow cytometry using the ThiolTracker

Violet fluorogenic probe as described in Section 5.2.4.2. THP-1 cells were treated

with polydendrons at concentrations of 0.1, 1, 10, and 100 µg/ml, or menadione

(10 µM) for 24 hours.

6.2.5.3 Autophagy

Effects on autophagy were assessed via flow cytometry using the CYTO-ID Au-

tophagy Detection Kit as described in Section 5.2.4.3. THP-1 cells were treated

with polydendrons at concentrations of 0.1, 1, 10, and 100 µg/ml for 24 hours.

Positive controls of rapamycin (0.5 µM), chloroquine (10 µM), or combined treat-

ment with rapamycin and chloroquine were included.
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6.2.6 Blood contact properties

6.2.6.1 Plasma coagulation

Plasma coagulation via the extrinsic (PT), intrinsic (APTT), and common (TT)

pathways was assessed as described in Section 3.2.2.2. Pooled plasma isolated

from 3 healthy volunteers was treated with polydendrons at a final concentration

of 100 µg/ml for 30 minutes as described in Section 3.2.2.1.

6.2.6.2 Haemolysis

Haemolytic potential of polydendrons was assessed as described in Section 3.2.3.

Diluted blood from three healthy volunteers, corrected for plasma free haemoglobin,

was treated with polydendrons at a final concentration of 10 µg/ml. Inhibi-

tion/enhancement controls of combined 1% Triton-X100 and polydendrons were

included.

6.2.7 Immunotoxicological assessment

6.2.7.1 Cytokine secretion

Production of cytokines IFNγ, TNFα, IL-1β, and IL-10 by PBMCs following

treatment with polydendrons was assessed via Bio-Plex Pro multiplex assay as

described in Section 4.2.3. PBMCs were treated with polydendrons at a final

concentration of 100 µg/ml. Combined treatments of polydendrons with LPS

(20 ng/ml) were included to assess potential inhibition or enhancement of LPS-

mediated stimulation.

6.2.7.2 Leukocyte proliferation

Proliferation was assessed via [3H]-thymidine incorporation as described in Sec-

tion 4.2.6. PBMCs isolated from buffy coats were treated with polydendrons at
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a final concentration of 100 µg/ml. Combined treatments of polydendrons with

PHA (20 µg/ml).

6.2.8 Statistical analysis

Statistical analysis was performed using GraphPad Prism 6. Statistical differ-

ences were determined using one-way analysis of variance (ANOVA) and Dun-

nett’s multiple comparison tests. A p-value <0.05 was considered as statistically

significant.
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6.3 Results

6.3.1 Physicochemical characterisation and stability of

polydendron materials over time

Size and polydispersity of the polydendrons were monitored over time, as well as

visual inspections of the stock solutions, to assess stability of the materials while

stored at room temperature. No visible aggregation of the materials was observed

and while there were some fluctuations in DLS measured sizes over time (Table

6.2), these were not indicative of aggregation.

Intensity- and volume-weighted size distribution plots of PD.5050.161 dis-

played unimodal sample distribution in deionized water (Figures 6.2a, 6.2b).

Suspension of this polydendron in RPMI-1640 resulted in a greater Z-average

size compared to that in deionized water (Figure 6.2c) and the presence of a peak

at 5140 nm corresponding to aggregation in one of the replicate measurements.

This is exemplified in Figure 6.2d due to its mass. The intensity-weighted distri-

bution of PD.5050.161 suspended in RPMI-1640 supplemented with FBS to 10%

final volume displays a multimodal distribution and a skewing of the Z-average

size due to peaks at smaller sizes (Figure 6.2e). Figure 6.2f reveals that this is a

result of the abundance of protein in the sample generating a peak at 7.66 nm.

Similar effect was observed in DMEM supplemented with FBS to 10% final vol-

ume. Z-average measurements of polydendrons PD.5050.378, PD.7525.157, and

PD.7525.264 were also affected by the presence of protein (Table 6.3).

Peak mean intensity sizes of polydendrons (Table 6.3) overcome the skew gen-

erated in the calculations of Z-average. This is exemplified by the consistency of

polydendron sizes when measured in complex media compared to that generated

in deionized water. For this reason; descriptors of nanoparticle size in complex

media throughout this chapter refer to this measure.
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With the exception of PD.5050.161, all polydendrons demonstrated positive

zeta potential in deionised water (Table 6.3). When introduced to complex culture

media, both unsupplemented and supplemented with FBS to 10% final volume,

all polydendrons displayed a negative zeta potential tending towards a neutral

charge.

Material 0 months 6 months 9 months 12 months

Z-average

PD.5050.161 160.80 183.80 183.97 188.10
PD.5050.378 377.80 368.20 352.17 408.33
PD.7525.157 156.93 155.50 154.50 149.93
PD.7525.264 264.40 264.07 264.10 394.43

PdI

PD.5050.161 0.07 0.04 0.04 0.09
PD.5050.378 0.52 0.36 0.45 0.60
PD.7525.157 0.05 0.06 0.05 0.14
PD.7525.264 0.00 0.04 0.05 0.27

Table 6.2: Nanoparticle Z-average intensity weighted mean hydrodynamic size
(nm) and polydispersity index (PdI) measurements performed at various time
points to assess temporal stability of polydendrons in water.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Intensity-weighted size distribution plots generated by DLS measure-
ment of PD.5050.161 suspended in (a) deionized water. (c) RPMI-1640. (e)
RPMI-1640 supplemented with FBS to 10% final volume. Vertical solid black
lines denote preparation specific Z-average nanoparticle size, vertical dashed black
lines denote Z-average of PD.5050.161 determined in deionized water. Corre-
sponding volume-weighted size distribution plots generated by DLS measurement
of PD.5050.161 suspended in (b) deionized water. (d) RPMI-1640. (f) RPMI-
1640 supplemented with FBS to 10% final volume. Red, green, and blue traces
represent n=3 sample measurements.

220



C
h
ap

ter
6

Material Deionised water RPMI-1640 RPMI-1640 10% FBS DMEM DMEM 10% FBS

Z-average

PD.5050.161 188.10 332.53 35.86 161.97 106.41
PD.5050.378 408.33 452.23 27.72 256.30 19.40
PD.7525.157 149.93 145.33 47.54 109.50 39.49
PD.7525.264 394.43 361.13 24.84 571.23 69.98

Peak mean intensity

PD.5050.161 207.23 289.17 202.60 181.83 240.00
PD.5050.378 689.23 831.00 485.10 528.90 437.10
PD.7525.157 161.30 166.87 134.33 117.73 104.27
PD.7525.264 392.17 325.43 301.23 208.37 281.10

PdI

PD.5050.161 0.09 0.28 1.00 0.22 0.47
PD.5050.378 0.60 0.69 0.77 0.68 0.74
PD.7525.157 0.14 0.16 0.68 0.14 0.65
PD.7525.264 0.27 0.36 0.88 0.66 0.85

Zeta potential

PD.5050.161 -11.97 -2.01 -2.21 -1.49 0.57
PD.5050.378 27.17 -1.91 -1.70 -1.14 -1.77
PD.7525.157 33.77 -1.81 -2.51 -0.99 -0.88
PD.7525.264 9.73 -0.63 -4.74 -1.33 -1.54

Table 6.3: Nanoparticle Z-average intensity weighted mean hydrodynamic size (nm), peak mean intensity size (nm), polydispersity
index (PdI), and zeta potential (mV) determined in deionized water , RPMI-1640, RPMI-1640 supplemented with FBS to 10%
final volume, DMEM, and DMEM supplemented with FBS to 10% final volume.
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6.3.2 Assessment of endotoxin and possible

microbiological contamination

Polydendrons streaked on LB agar did not demonstrate any microbial growth

upon visual inspection following 24 hours incubation.

PD.5050.161 at 100 µg/ml was found to contain 0.22 EU/ml of endotoxin

(Table 6.4). All other samples fell below the limit of quantification of the assay

(0.05 EU/ml). All tested polydendron concentrations generated recoveries within

the accepted 50-200% range (Figure 6.3) showing no interference with the assay.

Material
Tested

concentration
Endotoxin

content
Tested

concentration
Endotoxin

content

PD.5050.161 100 µg/ml 0.22 1 µg/ml BLQ
PD.5050.378 100 µg/ml BLQ 1 µg/ml BLQ
PD.7525.157 100 µg/ml BLQ 1 µg/ml BLQ
PD.7525.264 100 µg/ml BLQ 1 µg/ml BLQ

Table 6.4: Endotoxin content (EU/ml) measured from the concentrations stated.
BLQ - below limit of quantification (0.05 EU/ml).

Figure 6.3: Percentage endotoxin recovery from endotoxin spiked nanomaterials
at stated concentrations. Green shaded region highlights the acceptable 50-200%
range of recovery.
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6.3.3 Assessment of cytotoxicity

6.3.3.1 MTT assay

The MTT assay of THP-1 cells treated with polydendrons for 24 hours gener-

ated CC50 values for PD.5050.161 (67.4 µg/ml, Figure 6.4a), PD.5050.378 (111.4

µg/ml, Figure 6.4b), and PD.7525.264 (26.6 µg/ml, Figure 6.4d). PD.7525.157

did not generate an CC50 under the tested conditions (Figure 6.4c).

The greatest cytotoxic impact generated by the polydendrons was observed

at the highest tested concentration (100 µg/ml). This resulted in a 35% loss

in cell viability following treatment PD.5050.161, however, did not exceed 30%

in treatments with PD.5050.378, PD.7525.157, and PD.7525.264, at the 24 hour

time point. Incomplete sigmodial concentration-response curves were generate

in response to these materials suggesting that at higher concentration, a greater

cytotoxic effect may occur. Evaluation of this was not possible due to the limited

stock concentrations of the polydendron nanomaterials.
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(a) (b)

(c) (d)

Figure 6.4: MTT assay concentration-response curves generated following 24
hour treatment of THP-1 cells with (a) PD.5050.161. (b) PD.5050.378. (c)
PD.7525.157. (d) PD.7525.264. Curves denote treatments which provided cal-
culated CC50 concentrations. Data displayed as average (n = 8) ± standard
deviation.
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6.3.3.2 LDH assay

No overt loss of membrane integrity and release of LDH was observed following

treatment of THP-1 cells with polydendrons under the described conditions when

assessed by the LDH assay. As such, CC50 values were unable to be generated

from the resulting concentration-response curves (Figure 6.5).

(a) (b)

(c) (d)

Figure 6.5: LDH assay concentration-response curves generated following 24
hour treatment of THP-1 cells with (a) PD.5050.161. (b) PD.5050.378. (c)
PD.7525.157. (d) PD.7525.264. Data displayed as average (n = 3) ± standard
deviation.
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6.3.4 Assessment of cellular health

6.3.4.1 Reactive oxygen species generation

Overall, significantly lower (p = <0.0001) levels of reactive oxygen species gener-

ation were observed across all tested concentrations of polydendrons compared to

the control of untreated THP-1 cells at the 24 hour time point (Figure 6.6). The

greatest effect was found at the highest treated concentration (100 µg/ml) for each

polydendron, where ROS generation was 48% (PD.5050.161), 59% (PD.5050.378),

57% (PD.7525.157), and 39% (PD.7525.264) lower, but concentration-dependent

effects were only found in PD.5050.161.

Treatment with the positive control camptothecin, a known inducer of reactive

oxygen species, resulted in a level of ROS 86% (p = <0.0001) lower than that of

the untreated control.

Figure 6.6: Graph displaying the generation of reactive oxygen species in the
presence of stated nanomaterials as a percentage of untreated of control. Data
displayed as average (n = 4) ± standard deviation. * p-value <0.05.
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6.3.4.2 Measurement of reduced glutathione

A 30% greater level of reduced glutathione compared to the untreated control was

observed across all treated concentrations of PD.7525.157 (p = <0.0001, Figure

6.7). Similar was observed for 0.1, and 1 µg/ml treatments with PD.5050.378,

whereas 10 and 100 µg/ml of this polydendron did not result in significant change.

The only polydendron treatment to generate a level of reduced glutathione con-

tent lower than that of the untreated control was PD.7525.264 at a concentration

of 0.1 µg/ml (14%, p = 0.0195). No further polydendron treatments were found

to have significant effect on the level of reduced glutathione under the tested

conditions.

Menadione, a compound used to generate free radicals, at a concentration of

10 µM generated a 29% (p = <0.0001) greater level of reduced glutathione than

the untreated control.

Figure 6.7: Graph displaying reduced glutathione in the presence of stated nano-
materials as a percentage of untreated of control. Data displayed as average (n
= 4) ± standard deviation. * p-value <0.05.
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6.3.4.3 Autophagy

Levels of autophagy were found to be significantly lower (p = <0.0001) across

all polydendron treatments, with the exceptions of 100 µg/ml PD.5050.378 (p =

0.1425) and PD.7525.264 (p = 0.9996), compared to the untreated control after

24 hours. 100 µg/ml was found to generate the least effect across all materials.

Treatment with PD.7525.157, possessing the smallest peak mean intensity size

in RPMI-1640 10% FBS (134.33 nm), resulted in the lowest observed levels of

autophagy compared to the other polydendrons, at each tested concentration.

Treatment of THP-1 cells with positive controls rapamycin and chloroquine

produced levels of autophagy 32% (p = <0.0001) lower, and 68% (p = <0.0001)

higher than that of the untreated control. Combined treatment with rapamycin

and chloroquine caused autophagy to be 40% (p = <0.0001) greater than in

untreated cells.

Figure 6.8: Graph displaying the effect on autophagy resulting from treatment
with the stated nanomaterials as a percentage of untreated of control. Data
displayed as average (n = 4) ± standard deviation. * p-value <0.05.
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6.3.5 Blood contact properties

6.3.5.1 Plasma coagulation

Under the tested conditions, the greatest effect was observed in treatment of

pooled plasma with PD.7525.157 where coagulation occurred at 11.2 seconds

compared to 11.75 for the untreated control (Figure 6.9a).

Untreated plasma and all polydendron treated plasma coagulation times fell

within the accepted “normal” range of 12-15 seconds for the intrinsic coagulation

pathway. A 1.8 second greater coagulation time resulted from treatment with

PD.7525.157 compared to untreated plasma (Figure 6.9b).

Coagulation time via the common coagulation pathway of PD.7525.157-treated

plasma was 2.8 seconds faster than that of untreated plasma (Figure 6.9c).

(a)
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(b)

(c)

Figure 6.9: Coagulation times for nanoparticle treated plasma via the (a) Ex-
trinsic pathway. (b) Intrinsic pathway. (c) Common pathway. Black bars denote
samples which did not coagulate within the time limit. Green, and red highlighted
areas indicate expected ranges of coagulation time for normal and abnormal con-
trol plasmas respectively, as stated in the manufacturer’s product information.
Data displayed as average of duplicate measurements ± %CV.
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6.3.5.2 Haemolysis

The American Society for Testing and Materials have set out guidelines for

the assessment of haemolysis; <2% is deemed non-haemolytic, 2-5% slightly

haemolytic, and >5% haemolytic (American Society for Testing and Materials,

2000). Treatment of healthy volunteer whole blood with polydendrons not re-

sult in major haemolysis however, treatment with PD.5050.161 in individual 1,

and PD.7525.157 in individual 3 demonstrated slight haemolytic activity (3.85%

and 2.35% respectively, Figure 6.10a). Interindividual variability was observed

regarding the magnitude and effect of polydendron treatment relative to the un-

treated control. Negative percentages of haemolysis displayed in Figure 6.10a

were attributed to assay variation resulting from percentages being calculated

from 10 g/dl plasma free haemoglobin as described in Section 3.2.3.

Inhibition (12%) of Triton X-100 induced haemolysis by PD.5050.161 treated

samples was observed in blood from individuals 2 and 3. PD.5050.378 and

PD.7525.157 also inhibited haemolysis in individual 2 by 11% and 9% respectively.

Enhancement of calculated percentage of haemolysis was found by PD.5050.378

(25%) and PD.7525.264 (30%) in blood from individual 1 (Figure 6.10b). This

effect is attributed to material presence, as total haemolysis was achieved with

Triton X-100 treatment.
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(a)
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(b)

Figure 6.10: Percentage haemolysis, relative to controls, generated by (a) Treat-
ment with stated nanomaterials. * denotes 2-5% haemolysis. ** denotes haemol-
ysis >5%. (b) Nanomaterials following treatment with Triton X-100 to assess
inhibition/enhancement. Data displayed as average (n = 3) ± standard devia-
tion.
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6.3.6 Assessment of potential immunogenicity

6.3.6.1 Cytokine secretion

No samples were found to have generated IFNγ at a concentration greater than

the lower limit of detection for the assay (6.93 pg/ml). Furthermore, as the levels

of TNFα, IL-1β, and IL-10, were below the detectable limit of the assay (TNFα -

15.40 pg/ml, IL-1β - 3.85 pg/ml, IL-10 - 8.42 pg/ml) in untreated controls, it was

not possible to calculate fold difference or perform statistical analysis on these

samples.

Treatment with PD.5050.161 generated 83.43, and 100.27 pg/ml of TNFα in

individuals 2, and 3 respectively (Figure 6.11a).

In LPS stimulated samples, all polydendron treatments resulted in inhibition

of TNFα compared with the positive control in individuals 1 and 2. PD.5050.378

enhanced the level of TNFα in individual 3 by 18 pg/ml. IL-1β was inhibited

in individual 1 and, with the exception of PD.5050.378, individual 3. Enhance-

ment of 48% was observed in individual 2. IL-10 production was inhibited by all

polydendrons in LPS stimulated samples, most notably 50% by PD.7525.264 in

individual 1, 50% by PD.5050.378 in individual 2, and 69% by PD.7525.157 in

individual 3.
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(a)

(b)

235



Chapter 6

(c)

Figure 6.11: Concentrations of cytokines (a) TNFα, (b) IL-1β, (c) IL-10 secreted
by peripheral blood mononuclear cells in response to treatment with polyden-
drons, LPS, or combined LPS treatment with polydendrons. Red horizontal line
signifies lower limit of quantification.
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6.3.6.2 Leukocyte proliferation

Significantly greater proliferation (62.8%, p = 0.0095) was observed in PBMCs

treated with PD.5050.161 compared to the unstimulated control. No further

polydendron treatments were found to have generated a statistically significant

effect on leukocyte proliferation.

No significant changes were found in leukocyte proliferation between the stim-

ulated control and coincubations of PBMCs with polydendron materials and

PHA. Therefore, the polydendron materials did not enhance, or inhibit, PHA

stimulated proliferation (Figure 6.12).

Figure 6.12: Proliferation of peripheral blood mononuclear cells in the presence
of polydendrons, and combined treatment with PHA and polydendrons. Data
displayed as box and whisker plots showing average, maximum, and minimum (n
= 6) ± standard deviation. * p-value <0.05.
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6.4 Discussion

The application of routinely used physicochemical characterisation methodologies

and assays are not always appropriate to determine material biocompatibility of

nanomaterials (Cleland et al., 2016). As outlined in Chapter 2, this can be the

result of either direct or indirect interference by the physicochemical and optical

characteristics of nanomaterials (Baer, 2011), or their preparation i.e. polydisper-

sity, low or high concentration, turbidity, or the medium which they are suspended

in. While for nanomaterials of low complexity e.g. monodisperse spherical solid

nanoparticles, an accurate measurement of size and charge can be achieved in wa-

ter (Dieckmann et al., 2009; Rameshwar et al., 2006) or under vacuum (Stratton

et al., 2013). Increasingly complex nanomaterials whose structure and stability

relies on remaining in suspension such as dendrimers and emulsions, pose limita-

tions on the characterisation methodologies which can be directly applied (Wang

et al., 2012), or require specialised preparation such as cryo-fixation (Klang et al.,

2012).

These measurements, however, are not as applicable when the eventual fate

of the nanomaterial is to be introduced into a biological system. The complex-

ity of the medium to which the material is introduced can greatly affect the

nanoparticle’s physical state causing changes in size, charge, and agglomeration

state (Lazzari et al., 2012). This is especially pertinent when the nanomaterial

under evaluation is of a novel architecture such as hyperbranched polydendrons

(Hatton, 2015). Therefore, the need to measure physicochemical characteristics

in biologically relevant media becomes increasingly important, especially when

attempting to observe trends amongst various formulations.

Stability of the polydendrons over time (as measured by changes in size and

PdI) was monitored over a one-year period as a confirmatory measure of the

long-term stability described by Hatton (2015). As with any nanomaterial being
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assessed, the shelf life is of importance not only for the end product, but in

knowing that the physicochemical characteristics maintain consistency over time

ensuring data produced is comparable. The parameters monitored in Table 6.2

show high stability for the polydendrons when stored at room temperature for a

period of 12 months.

As discussed in Section 2.4, the use of peak mean intensity size was most

applicable when the polydendrons were assessed in complex media. For this mea-

sure nanoparticle sizes within modes of the sample distribution are generated

separately to those of Z-average allowing the peak’s source to be distinguished.

When considering the Z-average sizes in exclusion of the peak mean intensity

sizes it would appear that the nanoparticle sizes are altered significantly follow-

ing introduction to complex media. Observing this further measure highlights

limitations in the methods employed to calculate nanoparticle sizes using this

technology. As was the intention of the design of these polydendrons; steric sta-

bilisation imparted a stability and consistency in size following introduction to

complex media.

The observation that PD.5050.161 at a concentration of 100 µg/ml was the

only preparation to contain a quantity of endotoxin greater than the limit of

detection for the assay (0.05 EU/ml), although being formulated from the same

reagents as PD.5050.378, is not unexpected as these materials were not prepared

to GMP standard. No other polydendron preparations were found to contain

quantifiable levels of endotoxin and evaluations of spike recovery showed no cause

for concern regarding polydendrons sequestering endotoxin, all being within the

accepted range of 50-200% (U.S. Food and Drug Administration, 2012a; European

Medicines Agency, 2010).

Use of the THP-1 cell line for in vitro assessments of cytotoxicity and modula-

tion of cellular health, as discussed in Chapter 5, was informed by their extensive

presence in the literature as a model of human monocytes (Chanput et al., 2014)
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providing a pertinent representation of a cellular subset encountered by nanopar-

ticles in the peripheral blood. Previous development and optimisation of assays

in this cell line established their continued use in this chapter.

No assay interference was observed by the polydendrons in either the MTT

or LDH assays as evidenced by the inclusion of cell free controls within each

assay run. Polydendrons PD.5050.161, PD.5050.378, and PD7525.264 generated

CC50 values in the MTT assay. THF was used as a solvent in the production

of polydendrons and is removed by overnight evaporation (Hatton, 2015). While

THF has been deemed non-cytotoxic on its own (U.S. Environmental Protection

Agency, 2011), any effects resulting from residual THF are unknown. This could

be controlled for by using a secondary, earlier, timepoint for assay (~2 hours)

where nanomaterials would not yet have accumulated intracellularly but small

molecules would. It can be suggested that the polydendrons have some influence

over mitochondrial activity, but do not necessarily generate cytotoxicity under the

conditions assessed as evidenced by data generated in the LDH assay. The MTT

assay relies on mitochondrial dehydrogenases in order to produce the detected

formazan product (Berridge and Tan, 1993), whereas the LDH assay measures

LDH activity following disruption of cell membrane integrity and release of the

enzyme from the cytosol. No overt cytotoxicity was observed in the LDH assay

under the conditions tested, supporting the proposed idea and strengthening

the arguments set out in Chapter 1 surrounding the need for complementary

assays as a confirmative measure. Maximum tested concentrations were limited

by the process used to produce the polydendron suspension. As the work outlined

here is a preclinical assessment, the concentrations tested could not be based on

pharmacokinetic data. Data on the PK of these materials would provide an

informed basis for further compatibility assessment.

To further explore the theme of complementary assays, in accordance with the

work set out in Chapter 5, the impact of polydendrons on oxidative stress was
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assessed by both oxidative and antioxidant mechanisms. As discussed in Chapter

5; the generation of the antioxidant response requires first the propagation of

reactive oxygen species. The time-dependant nature of these processes must be

considered when monitoring, and relating the observed effect to the biological

effect. It has been shown that higher levels of reduced glutathione, most evident

in response to PD.5050.378 and PD.7525.157, correspond with lower ROS levels at

the same time point compared to untreated cells. Treatments with PD.5050.161

and PD.7525.264 do not display as great a magnitude in effect which may relate to

the assay being performed at an earlier point in the generation of the antioxidant

response, or a return to homoeostasis. The lower level of reactive oxygen species

in response to treatments with PD.5050.161, combined with the lack of influence

over reduced glutathione content, would imply that this variant possesses some

antioxidant properties. Further assessment would be required to confirm this.

An absence in dose-dependent effects raises the question of how the polydendron

nanomaterials are affecting pro- and antioxidant mechanisms in the THP1 cell

line. This could be the result of concentration-dependent limitation of cellular

uptake, which would necessitate differing time points being required to detect

maximum observable effect. An kinetic assessment paradigm like that described

in Section 5.2.5 would be highly advantageous for such an evaluation.

Similar to the observations described in Chapter 5, polydendron treatments

at concentrations of 0.1, 1, and 10 µg/ml exhibited lower levels of autophagy

compared to the untreated control in THP-1 cells at 24 hours. It was inter-

esting to observe that at the highest tested concentration (100 µg/ml) there

was no significant change from untreated cells in treatments with PD.5050.378,

PD.7525.157, and PD.7525.264. This may be the result of a restorative effect,

or this concentration affecting the time to onset of the effects found in the other

tested concentrations. While the optimal time point for this assay was vali-

dated in Chapter 5 using the small molecule controls rapamycin and chloroquine,
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the mechanisms by which these enter cells (Kell and Oliver, 2014) differ from

that of nanoparticles (Treuel et al., 2013). Small molecules are able to directly

reach the cytoplasm which results in a faster generation of biological response

compared to that of nanoparticles which is reliant on particle escape from en-

docytic machinery or release of degradation products. The fluorescent probe

used here for measuring autophagy exhibits fluorescence following incorporation

into pre-autophagosomes, autophagosomes, and autolysosomes (autophagolyso-

somes) (Enzo Life Sciences, 2016). Any pH changes resulting from the presence

of nanomaterials in autophagosomes could potentially modulate the efficacy of

the probe. The potential for this has been shown by Song et al. where the

fluorescence intensity of acridine orange (AO) labelled lysosomes was reduced

by cationic polystyrene nanoparticles affecting lysosomal pH (Song et al., 2015).

Also in a similar manner to the observations described by Song et al.; damage

caused to the autophagosomal membrane by nanomaterials could lead to leakage

of the probe and reduce the amount available to generate fluorescence. Evidence

for this has also been described for single walled carbon nanotubes, graphene ox-

ide, and gold nanoparticles, in murine peritoneal macrophages (Wan et al., 2013).

These effects are not assay interference, but biological impacts to which the as-

says show sensitivity. Increased autophagic flux could also lead to more rapid

degradation of autophagosomes reducing the amount which could be labelled.

Future assessment of autophagy in this manner could benefit from a complemen-

tary assessment such as determining the concentration of LC3B; a microtubule-

associated protein recruited to autophagosomal membranes (Tanida et al., 2008),

or P62; involved in packing and delivery of polyubiquitinated, misfolded, aggre-

gated proteins and dysfunctional organelles for autophagic degradation (Moscat

and Diaz-Meco, 2009).

Analysis of polydendron haemocompatibility revealed that plasma coagula-

tion times via the extrinsic, intrinsic, and common coagulation pathways were
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largely unaffected under the conditions described here. Treatment of plasma

with PD.7525.157, in each instance, resulted in the greatest average difference

in coagulation time from that of untreated plasma. It cannot be stated with

certainty whether these changes are biologically relevant without further assess-

ment in vivo. Furthermore, the use of pooled plasma in this experimental design

proved to be both a benefit and a potential limitation. Coagulation response was

normalised by pooling, but also potentially skewed by the interindividual vari-

ability in the expression of coagulation factors (Corlan and Ross, 2011) given the

relatively small sample size. Haemolytic potential was affected by interindividual

variability but no polydendron treatments generated a truly haemolytic (>5%)

response (American Society for Testing and Materials, 2000). An enhancement

of the calculated percentage haemolysis was found where one individual exceeded

the maximum possible, under the treatment conditions. This could be the re-

sult of variability in sample preparations, but the potential for this effect to be

material-related cannot be ruled out without performing the assay using blood

from a greater number of individuals. This enhancement was limited only to the

inhibition/enhancement assay preparation and not present the standard assay.

Assessment of the cytokine secretion of PBMCs in response to the polyden-

dron materials revealed that a detectable generation of TNFα was present in two

out of three individuals treated with PD.5050.161. Of the four polydendrons,

PD.5050.161 was the only one to contain a quantifiable endotoxin content (0.22

EU/ml). While this may have exacerbated the immunogenic properties of the

material; no stimulation of IL-10, shown previously to be produced by alveolar

macrophages in response to endotoxin (Chanteux et al., 2007), was observed. Sig-

nificant proliferation was observed following treatment with PD.5050.161 (Figure

6.12). TNFα and IL-1β are well known to induce proliferation in human lympho-

cytes (Ebert, 1998; Falkoff et al., 1983; Lichtman et al., 1988).

In order to perform a valid statistical analysis of the impact of nanomaterials
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on the generation of cytokines measured via multiplex assay (Section 6.3.6.1)

further replicates would be needed. Material availability at the time of assessment

limited analysis to duplicate measurements. Increased replicates and a higher

number of donor samples would provide a deeper understanding of the effects

generated by the tested nanomaterials, as well as provide deeper insight into

interindividual variability in responses.

The link between generation of these cytokines and the proliferative response

is strengthened by PD.5050.378 generating a significant proliferative response in

primary human leukocytes. It can be proposed that this effect is formulation

dependent as neither of the 75:25 dendron initiator:PEG initiator polydendrons

resulted in any change in proliferation, nor the generation of cytokines to a de-

tectable degree. It should be highlighted that while cytokine production was mea-

sured at 24 hours, proliferation was assessed at 72 hours. This later time would

have allowed further cytokine generation to be realised and subsequent effects

to take place such as the observed proliferative effect. Inhibition enhancement

controls showed no significant change in proliferation in PHA-stimulated poly-

dendron treatments but interindividual response and magnitude of variability in

LPS-combined cytokine analyses. Measured level of IL-1β displayed a ~2-fold in-

crease from the LPS-stimulated control in all polydendron-combined treatments

in individual 2. TNFα and IL-10, however, were lower in polydendron-combined

treatments. LPS is an activator of the inflammasome, a process which demon-

strates a characteristic generation of IL-1β in turn promoting TNFα expression

(Guo et al., 2015). While this has not been found at the chosen timepoint, the

observation could potentially indicate inflammasome activation but further inves-

tigation would be required. Work performed at the NCI-NCL has shown that of

the nanoparticles tested to date; ~10% induce cytokines, of which 63% induced

IL-8 and of that population 53% did so exclusively, without inducing TNFα and

IL-1β (Dobrovolskaia, 2015). Typically the materials found to behave in this
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manner were liposomes, micelles, and nanoemulsions, with a highlighted example

of Cremophor-EL micelles (Dobrovolskaia, 2015). The use of this excipient has

been further studied by comparing the cytokine generation in response to Taxol

(Cremophor-EL vehicle) and Abraxane (Cremophor-free albumin-bound pacli-

taxel) resulting in observations that human PBMCs produce IL-8 in the absence

of TNFα and IL-1β in response to Taxol while no inflammatory cytokines are

induced by Abraxane (Ilinskaya et al., 2015). Further work into the influence of

polydendrons on cytokine generation would benefit from the inclusion of IL-8 in

the panel of tested cytokines.

The two polydendrons composed of a higher ratio of PEG (PD.5050.161 and

PD.5050.378) generated more, potentially detrimental effects. Although the sur-

face structure of the polydendrons is not conclusively known, with regard to the

presentation of constituent groups to the external environment of the nanoparti-

cle, the greater proportion of dendron initiator in polydendrons PD.7525.157 and

PD.7525.264 appears to have conferred greater compatibility with the biological

mechanisms assessed in this work. From the observations made throughout this

chapter; polydendrons composed of a 75:25 ratio of dendron initiator:PEG initia-

tor would appear to be the most suitable candidates for further development as

drug carriers. Specifically, PD.7525.264 showed the least immunomodulatory po-

tential of all tested polydendrons. Choice of a material for widely applicable use

as a drug carrier platform necessitates immunocompatibility (Adlakha-Hutcheon

et al., 2009). This would need to be ensured throughout development of the

material prior to in vivo studies.

Further physicochemical characterization of these materials to gather more

data on physicochemical characteristics, such as hydrophobicity, may provide

a clearer insight into relationships between physicochemical characteristics and

biological impact. The work performed here highlights the need for robust, and

thorough, analysis of these characteristics in order to build structure-activity
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relationships.

Through the assessment described here it has been determined that the poly-

dendron materials appear to be compatible with the biological systems assessed,

however, assessments of cytotoxicity at later time points are needed. Physico-

chemical characterisation has revealed good stability over the tested period, as

well as following introduction to complex biologically relevant media. Tests of in

vitro bio-, immuno-, haemocompatibility showed minimal cause for concern with

only minor interactions observed. However, the full impact of these interactions

should be carefully observed in subsequent in vivo studies. Some associations be-

tween physicochemical characteristics were observed. The inclusion of additional

variants of these materials may serve to further clarify the associations detailed

here.
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General discussion

247



Chapter 7

The aims of this thesis were to assess the associations between nanoparticle

physicochemical characteristics and their observed biological effects focussing on

aspects of cellular health, immuno- and haemocompatibility using a standardised

analytical approach. Additionally, an in vitro assay cascade serving as a preclin-

ical assessment for a small library of commercially available as well as in-house

nanomaterials was established. Following a thorough analysis of physicochemical

characteristics in a range of relevant biological matrices this work was conducted

to allow direct comparison of nanomaterials within, and between, assays. This

approach in testing showed utility for all tested nanomaterials and proved suitable

when applied to polydendrons; a previously uninvestigated novel class of nano-

materials, with the inclusion of suitable controls. The methodologies presented

here, with due consideration to the suggestions proposed throughout this thesis,

should be widely applicable to classes of nanomaterials not investigated in this

current work.

The early developmental process for nanomaterials for biological application

can be generally summarised by the workflow depicted in Figure 7.1. Formulation

and synthesis of a suitable candidate material is closely followed by two related

stages of characterisation. The first of which focusses on assessments of material

contamination and physicochemical characteristics. The information generated

by these are used to inform the biological and chemical characterisation in a

second stage of analysis. By performing these assessments in a sequential format,

it allows for “stop points” to be adhered to stopping unsuitable materials from

progressing without rectification of issues such as contamination. Each of these

criteria are essential to inform the development of earlier stages in an iterative

process.

Determination of possible biological contamination of nanomaterial products

is important to inform observations of preclinical assessments which may be

strongly impacted by such contaminants, as well as for the eventual production
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Synthesis Characterisation

PCC

Contamination

Formulation 
process Characterisation

Biological

Chemical

Figure 7.1: Structure of development process for nanomaterials prior to biological
assessment. Solid lines denote direction of workflow. Dashed lines denote feed-
back informing previous steps in the workflow. Acronyms used; PCC - physico-
chemical characteristics.

of GMP-grade materials for progression to market. This aspect of characterisa-

tion poses numerous obstacles which must be addressed prior to implementation.

Methods for endotoxin measurement such as LAL testing may require specialised

equipment, not necessarily accessible outside specialist institutions. The use of

such equipment requires extensive training, or highly experienced staff, for effec-

tive operation. Given the complexity of the assessment, it is vital that the investi-

gator be able to recognise and discriminate any potential assay interference. The

choice of assay to measure endotoxin will be influenced by the physicochemical

characteristics of the material under assessment. Compatibility of nanomaterials

with particular methodologies is not guaranteed, as such should be scrutinised

prior to the application of such assessment (Neun and Dobrovolskaia, 2011). For

this reason the FDA requires validation of the accuracy and reliability of en-

dotoxin measurement by comparing two testing methodologies (USP, 2011). In

turn, this makes endotoxin assessment a relatively complex issue that must be

treated carefully.

Physicochemical characterisation plays an important role in monitoring batch-

to-batch reproducibility in nanomaterial manufacture. This is a vital activity
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given that variation, in essence, produces a new nanomaterial which may generate

biological effects different from those previously tested thereby rendering the ex-

isting information difficult to interpret or use in SAR studies. The growing body

of literature relating biological effects to particular nanoparticle physicochemi-

cal characteristics further highlights the need for comprehensive characterisation

(Gatoo et al., 2014).

Commercially available nanomaterials are routinely provided with informa-

tion of their size and zeta potential determined in water, and details of surface

functionalization. This information is becoming insufficient given the extensive

potential biological applications of nanomaterials. It is becoming widely accepted

that these measures are not sufficient by themselves when application of these

materials in biologically relevant media is known to influence such parameters

(Sabuncu et al., 2012). Other physicochemical parameters such as hydrophobic-

ity are not routinely provided, given the class of product within which they are

categorised. In the process of drug development; information is generated on

parameters such as solubility and hydrophobicity, whereas nanomaterials are not

necessarily treated in such a manner. Techniques are available for the analysis

of these properties in nanoparticles, but require extensive material-specific opti-

misation (Mitrano and Ranville, 2014; Murthy and Harivardhan Reddy, 2006).

Minimum provided information for nanomaterials would benefit from the inclu-

sion of further physicochemical characteristics so that biological effects may be

better related to all, available, PCC.

Combined with the information provided by manufacturers on the nanopar-

ticle surface stabilisation/functionalization, characterisation in water and biolog-

ically relevant matrices provided a basis in this work from which comparisons

could be drawn from existing literature on the biological impact of nanoparticles.

Cytotoxicity was assessed in order to inform nanomaterial concentrations for

subsequent assays. As mentioned previously, without having in vitro PK/exposure
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data, which is most often the case in novel material development, the rational

course of action is to assess a broad range of sub-cytotoxic concentrations.

Assessments of aspects of cellular health, focussing on reactive oxygen species,

glutathione, and autophagy, were performed utilising facile flow cytometry-based

methodologies permitting relatively high-throughput screening. Such experimen-

tal design proves great utility in the generation of a dataset of sufficient statistical

power to provide information on nanomaterial effects, while also supporting or

forming the basis from which further in-depth mechanistic elucidation may be

subsequently performed. Trends observed through these assessments included

the observed generation of reactive oxygen species in nanoparticle treatments

being less than untreated controls, and association between nanoparticles pos-

sessing neutral zeta potential being more pronounced in this effect. Conversely,

the literature associates high surface charge, as well as smaller nanoparticle size,

to the induction of higher levels or ROS (Manke et al., 2013). However, it is

difficult to compare data between literature reports without comprehensive in-

formation on how the physicochemical characteristics were determined. These

evaluations demonstrated the necessity of assay optimisation for translation in

different cellular models, as well as application of the techniques to nanomate-

rial treatments. The importance of time points on observed biological effect led

to the development of micro-plate based kinetic assessments of reactive oxygen

species and glutathione. The data generated here showed the potential bene-

fits of these techniques, and further development of these protocols could yield

assessment platforms which provide data with high resolution of the changes in

these processes over time while being much more efficient in terms of material

use. Such a paradigm could alleviate some of the issues which surround standard

assay optimisation, allowing for better standardisation.

Cell lines provided a useful platform for in vitro assessments, however, they are

potentially limited in the ability to suitably extrapolate to in vivo models (ATCC,
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2010; Dobrovolskaia, 2015), and for this reason immunological assessments were

performed in primary human cells. The focus of many arguments is the need for

greater characterisation of nanomaterials. It has been proposed that primary sam-

ples should also undergo characterisation (Rösslein et al., 2016). Through phe-

notypic and genotypic assessment, the ability to assess donor background in such

a manner would add strength to relationships between physicochemical relation-

ships and biological effects. In addition to characterising the status of volunteer

samples used, the utility of mixed immune cell populations in these assessments

outweighs initial isolated subset assessments. Assessment of sub-populations in

isolation would generate a clearer understanding of direct nanomaterial impact,

but simultaneously lose the inter-cell-type interactions which govern responses in

vivo.

Numerous examples in the literature have associated biological effects with

particular physicochemical characteristics. In most circumstances, however, con-

flicting data exists. This is most often a result of some difference in the ex-

perimental design or mode of analysis. Said differences may be inadvertent, or

informed by advances in the understanding of particular mechanisms and pro-

cesses. An example of this, highlighted in Chapter 3, is that of haemolytic poten-

tial and strong cationic charge (Barshtein et al., 2011) where the importance of

nanoparticle-protein corona formation in biological media has informed more re-

cent studies to perform such assessments not in the absence of protein (Martinez

et al., 2015; Paula et al., 2012; Tenzer et al., 2013).

The production of nanomaterials, although existing on an industrial scale for

some time, is still in its relative infancy with regard to the biological applications

of these materials. Standardisation of safety screening is an ongoing effort which

continues to develop with growing understanding of the mechanisms by which

nanomaterials behave.

Attempts to draw comparisons between existing literature and work pre-
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sented in this thesis further highlighted the need for standardisation in the data

generated on nanomaterials, for example the protocols developed by the NCI-

NCL for their nanomaterial characterisation assay cascade are freely available

(https://nanolab.cancer.gov/working assay-cascade.asp). This effort provides a

source of information from which researchers in the field can use as a reference to

inform their own work, however validation is necessary prior to their employment.

As much of their work conforms to, or informs regulatory bodies, wider adoption

of said protocols would intuitively be encouraged in order to better standardise

assessment and more broadly challenge the applicability to other nanomaterials.

Adoption of standardised protocols, in itself, does not completely alleviate the

problems faced when attempting to draw comparisons of information generated

from different sources. Variability between labs in in vitro data generated on the

same materials using the same methods is a known issue (Lanone et al., 2009).

Efforts to alleviate this involve strict adherence to the protocols and stringent

quality control checks. This is inherently difficult when considering less con-

trollable sources of variability. These may include sources of reagents, cell line

differences, storage conditions and time between collection of primary samples

and their use. One, potential, solution to this has already been established else-

where, in the form of the minimum information about a microarray experiment

(MIAME) (Brazma et al., 2001). This system allows presented data to be easily

interpreted and that results derived from its analysis can be independently ver-

ified. Similar efforts are ongoing to establish a standardised nanoparticle data

repository Nanomaterial Data Curation Initiative (NDCI) (Hendren et al., 2015).

Assessments demonstrating nanoparticles to be safe and not exert overt influ-

ence do not necessarily reach the wider community. Such information is vitally

useful in the rational design of nanoparticles. Databases, such as caNanoLab

(https://cananolab.nci.nih.gov/caNanoLab/), acting as repositories for such in-

formation pose the ideal platform for dissemination of this type of data. Adop-
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tion of these platforms would provide a means for associations to be made by

researchers, and providing power to computational analysis potentially leading

to better informed structure-activity relationships.

Greater insight into the effect of nanoparticles on the diseased state would

benefit from testing in relevant patient samples. Nanomaterials, ideally, should

be considered in the final format for which they have been developed. Not only

will this aid in determining if the nanoparticle is fit for purpose, but also how

its application may affect patient populations in terms of nanomedicine (David

et al., 2016). It is hoped that with greater integration and cooperation of various

research efforts the development of nanomedicines will gain speed to bring forward

these advances in patient care.

The work presented within this thesis adds to the knowledge relating particle

characteristics to biological effects relevant to their use clinically. It has been

highlighted that robust physicochemical characterisation is vital to that analysis.

Additionally, the methodologies used and developed, throughout this thesis will

serve future preclinical characterisation of novel nanomaterials.
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Höflinger, G. (2013). Brief introduction to coating tech-
nology for electron microscopy. Leica Microsystems, Vi-
enna. Retrieved from www.leica-microsystems.com/science-lab/
brief-introduction-to-coating-technology-for-electron-microscopy/.

Hofmann, S., Blume, R., Wirth, C. T., Cantoro, M., Sharma, R., Ducati, C.,
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