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Correcting for Bias due to Misclassification
when Error-Prone Continuous Exposures Are

Misclassified
Ruth H. Keogh, Alexander D. Strawbridge, and Ian White

Abstract
To investigate the association between a continuous exposure and an outcome it is common

to categorize the exposure and estimate the relative associations between categories. Error in
measurement of the continuous exposure results in misclassification when the exposure is
categorized. In this paper we investigate methods for correcting for this misclassification. We
consider applications of methods for continuous exposures and for fundamentally categorical
exposures. A particular challenge is that even nondifferential error in the underlying continuous
exposure can result in differential misclassification in the categorized exposure, i.e.
misclassification dependent on the outcome. For continuous exposures, there exist a range of
methods for correcting for the effects of exposure measurement error on the exposure-outcome
association, including regression calibration (RC), multiple imputation (MI), moment
reconstruction (MR) and simulation extrapolation (SIMEX). There are also correction methods
for use with genuinely categorical exposures, using estimated misclassification probabilities.
Alongside simple methods using estimated misclassification probabilities, we also consider two
RC based methods, MI and MR of the continuous exposure followed by categorization, and a new
SIMEX method. Simulation studies are used to compare the methods when the true exposure is
available in a validation study and the more common situation in which replicate or additional
error-prone exposure measurements are available in a subsample. We restrict attention to the case
where the underlying association between the continuous exposure and the outcome is linear on the
appropriate scale. RC and SIMEX methods fail to correct adequately for bias. However, MI and MR
perform well. Methods using estimated misclassification probabilities also perform well, provided
differential misclassification is assumed, however these methods are restricted to estimation of
odds ratios and have other practical drawbacks. MI and MR have the benefit of being flexible for
use with different analysis models, with quantile-based cutpoints, and more easily accommodate
covariate adjustment. In summary, we found that MI and MR can be applied to correct exposure-
outcome associations for the effects of misclassification error when the association is linear.
Extending MI and MR for use with categorized continuous exposures under nonlinear exposure-
outcome associations is now an important area for further research.

KEYWORDS: measurement error, categorized exposures, regression calibration, multiple
imputation, moment reconstruction, SIMEX
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1 Introduction
Many exposures in epidemiology studies are subject to measurement error. Error
arises, for example, due to fluctuation in exposure over time when the exposure of
interest is usual level and inferences are based on a single measurement; due to the
measurement processing stage (e.g. laboratory error); due to self-reporting; and
due to limitations of measurement instruments. We focus on exposures measured
on a continuous scale. Examples include biological exposures, such as blood pres-
sure (MacMahon et al., 1990) and plasma fibrinogen (The Fibrinogen Studies Col-
laboration, 2006), and self-reported measurements of dietary intake in nutritional
epidemiology (Willett, 1998). Error in exposure measurements results in biased
estimates of exposure-outcome associations (Carroll et al., 2006)

In epidemiological analyses it is common to categorize continuous expo-
sures and to investigate the exposure-outcome association in exposure categories
relative to a reference category. We refer to this as a categorized exposure analysis.
The cutpoints may be fixed, i.e. based on predefined values, or may be based on
quantiles of the exposure distribution in the study population. While a categorized
exposure analysis has drawbacks (Greenland, 1995a,b) it is widely used because
it provides a simple method of investigating nonlinearity in the exposure-outcome
association and a convenient way of presenting results. Measurement error in the
continuous exposure results in misclassification of individuals when the exposure
is categorized, leading to biased estimates of the exposure-outcome association in a
categorized exposure analysis. In this paper we investigate methods for correcting
for the effects of misclassification when error-prone continuous exposures are cate-
gorized. At present there exists no single clear correction method for this situation
and the contribution of this paper is to investigate potential candidates for such a
method.

When a continuous exposure is categorized, it is clear that individuals with
a continuous exposure value close to one of the cutpoints which define the expo-
sure categories are more likely to be misclassified than individuals with continuous
exposure values further from a cutpoint. The result is that knowing both the catego-
rized true exposure and the categorized mismeasured exposure could give more in-
formation about the outcome than the categorized true exposure alone, because the
probability of misclassification depends on the proximity of an exposure value to a
cutpoint, which in turn is related to the outcome. Therefore, even nondifferential
error in a continuous exposure measurement - that is, error which is independent of
the outcome - can give rise to differential misclassification in the categorized expo-
sure. This phenomenon is discussed in detail by Flegal et al. (1991) and Gustafson
and Le (2002).
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Methods for correcting for the effects of measurement error in continu-
ous exposures on the associations found in categorized exposure analyses have re-
ceived little attention in the literature. Perhaps the most intuitive approach is to
employ methods for correcting for misclassification of fundamentally categorical
exposures, that is categorical exposures which are not derived from an underlying
continuous measure. These methods are based on estimated misclassification prob-
abilities (Barron, 1977, Morrissey and Spiegelman, 1999, Kosinski and Flanders,
1999, Chu et al., 2008). A disadvantage of these methods is that they are focused
on estimation of odds ratios, and therefore not applicable in a more general con-
text. There also exist a number of methods for correcting for the effects of error
in a continuous exposure on the continuous exposure-outcome association. These
include regression calibration (RC) (Rosner et al., 1989, 1992, Spiegelman et al.,
1997, Carroll et al., 1999, 2006), which is widely used, multiple imputation (MI)
(Cole et al., 2006, Freedman et al., 2008), moment reconstruction (MR) (Freedman
et al., 2004, 2008), and simulation extrapolation (SIMEX) (Cook and Stefanski,
1994, Carroll et al., 2006, Staudenmayer and Ruppert, 2004). In this paper we in-
vestigate whether RC, MI, MR and SIMEX can be adapted for use in correcting for
the effects of misclassification when the mismeasured observed continuous expo-
sure is categorized. A method based on RC for use in categorized exposure analyses
was recently proposed by Natarajan (2009), though we show later that this method
is flawed.

In this paper we restrict our attention to the case in which the underlying
association between the continuous exposure and the outcome is linear on the ap-
propriate scale, e.g. in a logistic model. Possible extensions to the case of nonlinear
associations are noted in the discussion. In the first part of the paper we focus on
nondifferential error in the continuous measurement, that is error not associated
with the outcome. In this situation the continuous mismeasured exposure gives no
additional information about the outcome beyond that given by the true exposure.
We consider both classical (random) measurement error in the continuous expo-
sure, where the observed exposure W can be written as W = X +U where X is the
true exposure and U is random error with constant variance, and systematic error
depending on the true level of exposure, where W = α0 + α1X +U . In a later sec-
tion we extend our investigations to differential error in the continuous exposure
measurement. Heteroscedastic error, in which the variance of U depends on X , is
considered in the discussion.

Any correction method requires information about the relationship between
the true and mismeasured exposures. This could be from information external to
the current study, but we focus on the case where additional information is avail-
able within the study population. This is ideally in the form of a validation study in
which the true exposure is observed in a subsample. However, in many situations
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it is not possible to obtain a measure of true exposure. In the case of classical mea-
surement error, correction methods can be applied using repeated measurements in
a subsample. In the case of systematic measurement error in the main exposure
measurement, correction methods can be applied if a different measure of expo-
sure is available in a subsample which is superior to the main measure and which
provides an unbiased measure of the true exposure.

The plan of the paper is as follows. In Section 2.1 we set out the measure-
ment error problem in more detail and outline three scenarios under which we will
consider using correction methods, which depend on the additional information
available in the study. In Section 2.2 we briefly outline simple correction meth-
ods for fundamentally categorical exposures, based on estimated misclassification
probabilities. In Section 2.3 we describe the adaptation of correction methods for
continuous exposures to the categorized exposure situation. The performance of the
methods is investigated using simulation studies covering a range of scenarios, as
described in Section 3. In Section 4 we extend the simulation study to the case of
differential error in the continuous exposure and we conclude with a discussion in
Section 5.

2 Methods

2.1 Measurement error

Let X denote the true but unobserved continuous exposure measurement and Y
denote the outcome of interest, e.g. disease status (0,1). For simplicity we focus
on a dichotomized continuous exposure XC = I(X > C) where C is a predefined
cutpoint. XC therefore takes value 1 if X >C and value 0 otherwise. In a categorized
exposure analysis the exposure-outcome model of interest is

g(E(Y |XC)) = b0X +b1X XC (1)

where for example g(x) = x for a linear regression and g(x) = {1 + exp(−x)}−1

for a logistic regression. The focus of this paper is on estimating b1X , which is
the regression coefficient in a linear regression, and the log odds ratio in a logistic
regression.

The observed continuous exposure measurement is denoted W1 where

W1 = α0 +α1X +u1 (2)

such that E(u1) = 0 and var(u1) = σ2
u1

. The errors u1 are assumed independent of X
and Y , that is error in W1 is nondifferential (E(Y |X ,W1) = E(Y |X)). When α0 = 0
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and α1 = 1, (2) is the classical measurement error model. Other values for (α0,α1)
represent systematic error, with α1 6= 1 indicating systematic error depending on
the true exposure. The naive approach to estimating b1X is to replace X with the
observed exposure W1 using

g(E(Y |W1C)) = b0W +b1WW1C (3)

where W1C = I(W1 >C). The estimate of b1W is not an unbiased estimate of b1X be-
cause of the misclassification in W1C. Below we investigate methods for obtaining
unbiased estimates of b1X . As noted in the introduction, additional measurements
are required to make corrections for measurement error. We consider three scenar-
ios:

Scenario (a) True exposure measurements X are available for a subset of
the study population. This situation may arise when the true exposure measurement
is expensive to obtain and an error-prone but cheaper instrument is used in studies
involving a large number of individuals. For example, in a large prospective cohort,
participants may self-report anthropometric variables such as height and weight,
which may be measured by a nurse in a subsample for use in a validation study. In
this scenario W1 can follow any error model of the form in (2).

Scenario (b) W1 follows the classical measurement error model (α0 = 0,α1 =
1 in model (2)) and a repeated measurement W2 is available in a subset of the study
population. In this scenario we have Wj = X +u j, j = 1,2, where the errors u1 and
u2 are independent and have the same variance σ2

u1
. An example of this is when

repeated measures of blood pressure are available, where the exposure of interest is
usual level.

Scenario (c) W1 is subject to systematic error depending on true exposure
(α1 6= 1 and α0 takes any value in model (2)) and two additional exposure mea-
surements of a different type, W2 and W3, are available and are subject to classical
measurement error. Here Wj = X + u j, j = 2,3, where the errors u2 and u3 are in-
dependent of each other, of X and Y , and of u1, and have the same variance σ2

u2
.

Examples of this scenario arise in nutritional epidemiology where food frequency
questionnaires, known to be subject to systematic error, are used as the main method
of measuring dietary intake in large studies, and repeated food record measurements
or biological measurements are available in a subsample and assumed to follow the
classical measurement error model.

In scenarios (b) and (c) the true exposure X is completely unobserved. We
do not specifically consider the situation in which the observed exposure mea-
surements are subject to a constant shift relative to the true exposure such that
W1 = α0 + X + u1, α0 6= 0. In that situation methods for scenario (c) would be
appropriate for a fixed cutpoint C. However, if the cutpoint were a quantile of the
exposure distribution then methods for scenarios (a) and (b) would apply.
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In Section 4 we consider the more complex case in which measurement
error in W1 is differential, that is depends in some way on the outcome Y .

2.2 Methods using estimated misclassification probabilities

We begin by outlining correction methods using estimated misclassification prob-
abilities. These are perhaps the first obvious candidates to consider, due to their
simplicity and their common use with fundamentally categorical exposures. The
methods in this section refer to a binary outcome Y = 0,1 and estimation specif-
ically of an odds ratio. For the dichotomized true exposure, XC, the odds ratio of
interest is

OR =
Pr(Y = 1|XC = 1)Pr(Y = 0|XC = 0)
Pr(Y = 0|XC = 1)Pr(Y = 1|XC = 0)

. (4)

A crucial result for the methods in this section is that the odds ratio can also be
written in the form

OR =
Pr(XC = 1|Y = 1)Pr(XC = 0|Y = 0)
Pr(XC = 0|Y = 1)Pr(XC = 1|Y = 0)

. (5)

There exist matrix-based methods for estimating the odds ratio in (5) using
estimated misclassification probabilities (Barron, 1977, Morrissey and Spiegelman,
1999). Let ηX

xy = Pr(XC = x|Y = y) and ηW
wy = Pr(WC = w|Y = y). We also define the

positive and negative predictive probabilities ppvy = Pr(XC = 1|W1C = 1,Y = y) and
npvy = Pr(XC = 0|W1C = 0,Y = y). Estimation of ppvy and npvy is discussed below.
An alternative approach would be to formulate the misclassification using sensitiv-
ities and specificities (Barron, 1977). It can be shown that the probabilities ηX

xy
are estimated using η̂X

1y = p̂pvyη̂W
1y +(1− n̂pvy)η̂

W
0y , η̂

X
0y = (1− p̂pvy)η̂

W
0y + n̂pv1η̂W

01
(y = 0,1). Hence, the odds ratio of interest is estimated by

ÔR =
η̂X

11η̂X
00

η̂X
10η̂X

01
. (6)

The probabilities ppvy,npvy(y = 0,1) are written here to allow differential
misclassification by conditioning on Y . However, typically for fundamentally cat-
egorical exposures the most common approach would be to assume nondifferential
misclassification. In our later simulation studies we investigate allowing differential
or non-differential misclassification.

In the situation of interest in this paper, in which the exposure categories are
formed by categorizing an underlying continuous exposure, there are two ways of
estimating the probabilities ppvy and npvy, which we outline below.
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2.2.1 Misclassification probability method 1 (MP1)

The simplest way to estimate the misclassification probabilities is to treat the the
observed XC and WC as purely categorical, that is to ignore the underlying continu-
ous values. In scenario (a), where the true exposure X is observed in a subset of the
study population, ppvy and npvy(y = 0,1) can be estimated directly in the subset.
When X is not observed, in general at least three observations of the misclassified
exposure are required to estimate misclassification probabilities if they are treated
as fundamentally categorical (Hui and Walter, 1980). We do not pursue this here.

2.2.2 Misclassification probability method 2 (MP2)

The second way of estimating the misclassification probabilities is to use the un-
derlying continuous values. Using this method, the positive predictive probability
(ppvy) can be written

Pr(XC = 1|W1C = 1,Y = y) = Pr(X > C|W1 < C,Y = y)

=
∫

∞

C

Pr(X > C|w,Y = y)
Pr(W1 > C|Y = y)

fW |Y (w|y)dw (7)

where fW |Y denotes the conditional distribution of W1 given Y . To estimate the
misclassification probabilities this way therefore requires assumptions about the
distribution of W1 given Y and about the distribution of X given (W1,Y ). Here
we outline the case in which both conditional distributions are assumed normal.
In this case we let µW |Y = E(W1|Y ), σ2

W |Y = var(W1|Y ), µX |WY = E(X |W1,Y ) and
σ2

X |WY = var(X |W1,Y ). The probability in (7) can then be written as{
1−Φ

(
C−µW |Y

σW |Y

)}−1 ∫
∞

C

{
1−Φ

(
C−µX |WY

σX |WY

)}
φ

(
w−µW |Y

σW |Y

)
dw (8)

where Φ(.) denotes the cumulative density function for the standard normal distri-
bution and φ(.) denotes the corresponding probability density function. The nega-
tive predictive probability can be estimated in a similar way.

In scenario (a), where X is observed, µX |WY and σ2
X |WY can be estimated in

the validation subset. Unlike method MP1, this method for estimating misclassifi-
cation probabilities can be used in scenario (b) when only two observations of the
mismeasured exposure are available. In this case µX |WY and σ2

X |WY can be estimated
using the joint distribution of W1,W2 given Y . In scenario (c) we similarly use W2
and W3 to estimate µX |WY and σ2

X |WY . Further details are given in Appendices A
and B.
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2.3 Use of correction methods for continuous exposures

In this section we discuss applications of correction methods for continuous mis-
measured exposures in the categorized exposure situation. These are discussed in
the context of a more general form for the exposure-outcome association, which
includes the logistic model.

2.3.1 Regression calibration (RC)

Consider a linear association, on some scale, between the continuous exposure and
outcome,

g(E(Y |X)) = β0X +β1X X .

When W1 is observed instead of X as the main measurement, it can be shown that
unbiased estimates of (β0X ,β1X) can be obtained by replacing X with E(X |W1).
This is called RC (Rosner et al., 1989, Carroll et al., 2006) and relies on the as-
sumption that error in W1 is nondifferential. This method is exact under a linear
exposure-outcome model (g(x) = x), and an approximation under a logistic model
(Rosner et al., 1989). The expectation E(X |W1) can be found by assuming a linear
association between X and W1,

X = λ0 +λ1W1 + e. (9)

The model in (9) can be fitted easily if X is observed alongside W1 for a subset of
individuals (scenario (a)). In scenarios (b) and (c) λ0 and λ1 can be estimated by a
regression of W2 on W1 no matter what the values of α0 and α1 in the error model
for W1. W2 must, however, be subject only to classical measurement error. This is a
special case in which a third measurement W3 is not required under scenario (c).

Measurement error correction using RC does not extend to the situation in
which mismeasured continuous exposures are categorized because of its reliance
on the assumption of nondifferential error. In the simulation study we investigate
the effect of falsely making this assumption on the resulting estimates of b1X using
two RC based methods outlined below.

Natarajan’s method (RC1) Natarajan (2009) proposed a RC based method for
correcting for the misclassification which arises when continuous exposures are
categorized. In this, first the fitted values for the continuous exposure are found
using (9), giving X̃ = λ0 + λ1W1. Next, the fitted values X̃ are dichotomized using
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the cutpoint C to obtain the binary variable X̃C = I(X̃ > C), which is then used in
the exposure-outcome model:

g(E(Y |X̃C)) = brc1
0 +brc1

1 X̃C. (10)

Although this seems an obvious approach it is flawed because the transformation of
W1 to X̃ results only in a shift of the exposure measurements and not in a change in
the ordering of individuals with respect to their exposure measurements. Suppose
that instead of having a fixed cutpoint, the cutpoint was defined by the median,
then W1C = X̃C for all individuals and this method would give identical results to
the naive method. By using X̃ to find X̃C as above it is implicitly assumed that the
misclassification of individuals is nondifferential. In scenario (c), although only
one of W2 and W3 is required to fit model (4), in the simulation we fitted the model
by regressing the mean of W2 and W3 on W1.

Alternative RC based approach (RC2) An alternative RC approach is some-
what related to the misclassification probabilities approach in Section 2.2. In this
method we fit the model

g(E(Y |W1C)) = brc2
0 +brc2

1 E(XC|W1C). (11)

This is a direct extension of RC to categorical exposures and as such requires the
assumption that misclassification in W1C is nondifferential, though this is known
not to be the case. Suppose we were to proceed with this approach. In scenario (a)
E(XC|W1C) can be estimated in the validation sample, e.g. using logistic regression.
In scenarios (b) and (c) we assume that X and W1 have a joint normal distribution
and estimate E(XC|W1C = 1) = Pr(X > C|W1 > C) using a similar method to that
described in Section 2.2.2, but removing the conditioning on Y .

2.3.2 Multiple imputation (MI)

MI was introduced by Rubin (1987) and is becoming widely used to handle miss-
ing data in studies of different types. The key idea in MI for missing exposure
measurements is that missing values are imputed by drawing a random value from
the distribution of the exposure conditional on all observed data, including the out-
come. To account for the uncertainty in the imputed values a number of imputed
values are obtained for each missing data point, creating M imputed data sets for
the full cohort. The resulting data sets are analysed separately but identically and
the resulting estimates are combined (Rubin, 1987). There is now a large literature
on MI for missing data - see for example White and Carlin (2010) and White et al.
(2011) for summaries.

196

Epidemiologic Methods, Vol. 1 [2012], Iss. 1, Art. 9

Brought to you by | London School of Hygiene & Tropical Medicine
Authenticated

Download Date | 1/21/17 6:41 PM



Cole et al. (2006) and Freedman et al. (2008) proposed using MI to correct
for measurement error in continuous exposures, by treating the true continuous ex-
posure values as missing data. In this method X is replaced in the exposure-outcome
model by imputed values from the model

X = γ0 + γ1W1 + γ2Y + ε. (12)

The imputed measurement is given by

XMI(W1,Y ) = E(X |W1,Y )+ ε
∗

where E(X |W1,Y ) is obtained using model (12), and ε∗ is a random draw from the
distribution of the residuals from the regression of X on W1 and Y . The procedure
is repeated to give M multiply imputed data sets. We propose that to estimate the
association between dichotomized X and outcome Y the imputed values XMI(m) are
dichotomized to give the binary variable XMI(m)

C = I(XMI(m) > C), (m = 1, . . . ,M).
In each imputed data set we fit the model:

g(E(Y |X (m)
C )) = bMI(m)

0 +bMI(m)
1 XMI(m)

C

and estimate the parameter of interest b1X as

b̂MI
1 =

1
M

M

∑
m=1

b̂MI(m)
1 .

The imputation model can be fitted directly in scenario (a). To fit the model un-
der scenarios (b) and (c) we require assumptions about the joint distribution of
(X ,W1,W2) and (X ,W1,W2,W3) respectively. This is outlined in Appendices A and
B, assuming joint normal distributions. To make the most of the available data, we
allow a different imputation model for individuals in the subsample with additional
exposure measurements.

2.3.3 Moment reconstruction (MR)

MR is an alternative correction method for continuous exposures proposed by Freed-
man et al. (2004). The idea of MR is to find values XMR(W1,Y ) such that the first
two joint moments of XMR(W1,Y ) with Y are the same as the first two joint moments
of X with Y . It has been shown (Freedman et al., 2004, 2008) that XMR(W1,Y ) is

XMR(W1,Y ) = E(X |Y )+(W1 −E(W1|Y ))

√
var(X |Y )
var(W1|Y )

. (13)

When the distributions of X |Y and W1|Y are normal, it follows the joint distribution
of XMR(W1,Y ) and Y is the same as that of X and Y (Freedman et al., 2004). Having
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obtained the moment reconstructed values we define XMR
C = I(XMR(W1,Y ) > C)

and fit the categorized exposure model

g(E(Y |XMR
C )) = bMR

0 +bMR
1 XMR

C .

Calculation of the moment reconstructed values requires estimation of E(X |Y ) and
var(X |Y ). Under scenario (a) E(X |Y ) and var(X |Y ) can be estimated in the val-
idation subset. Estimation of these quantities under scenarios (b) and (c) can be
performed by maximum likelihood, as outlined in Appendices A and B.

2.3.4 Simulation extrapolation (SIMEX)

In the SIMEX procedure for continuous exposures, the change in the estimated
exposure-outcome association parameter under different degrees of exposure mea-
surement error is modelled using pseudo-datasets formed by adding additional mea-
surement error to the observed measurements W1 (Cook and Stefanski, 1994, Car-
roll et al., 2006). The model is then used to extrapolate back to the case of no
measurement error. Here we adapt the SIMEX procedure to accommodate catego-
rized continuous variables. We refer to this as group-SIMEX.

As in standard SIMEX for continuous exposures, J simulated sets of values
for W1 are generated using

W ∗
j (ζ ) = W1 +

√
ζ σu1Z j, j = 1, . . . ,J (14)

for several values of ζ , where Z j is a vector of standard normal random deviates. J
is typically chosen to be between 100 and 200. Typical values considered for ζ are
{0.5,1,1.5,2}, where ζ = 0 represents the original observed measurement W1. In
group-SIMEX the categorized values W ∗

C j(ζ ) = I(W ∗
j (ζ ) > C) are obtained. The

model of interest is then fitted using each simulated set of values W ∗
j (ζ ), under each

value of ζ :
g(E(Y |W ∗

C j(ζ ))) = bSIM( j)
0 +bSIM( j)

1 W ∗
C j(ζ ). (15)

For a particular value of ζ we let b̂SIM
0 (ζ ) and b̂SIM

1 (ζ ) denote the mean
of the parameter estimates across the J simulated data sets. A regression model is
fitted which relates b̂SIM

0 (ζ ) and b̂SIM
1 (ζ ) to ζ , and the model is used to extrapolate

back to the error-free situation where ζ = −1. Examples of suitable extrapolation
models include quadratic and linear-rational extrapolant models (Cook and Stefan-
ski, 1994). When W1 is subject to systematic error (scenario (c)) Alpizar-Jara et al.
(1998) suggest performing an initial calibration step, and performing SIMEX on
W ∗

1 = (W1 −α0)/α1 using measurement error variance σ∗2

u1
= σ2

u1
/α2

1 . See Appen-
dices A and B for some further details.
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Another SIMEX method has been proposed for fundamentally categorical
exposures subject to misclassification, called misclassification-SIMEX (Kuchen-
hoff et al., 2006, Carroll et al., 2006). In this, a matrix of misclassification probabil-
ities is assumed for the observed exposures and misclassification is increased using
ζ and then extrapolated to the case with no misclassification. However, this method
assumes that the probability of misclassification is uniform within categories, and
therefore does not accommodate differential misclassification.

3 Simulation study

3.1 Description

For a sample of 5000 individuals the true continuous exposure X was generated
according to a normal distribution with mean 0 and variance 1. The observed
exposure W1 was generated using (2). We considered both a classical measure-
ment error model for W1 using (α0 = 0,α1 = 1), and systematic error in W1 using
(α0 = 0,α1 = 0.5). The errors u1 were generated from a normal distribution with
mean 0 and variance σ2

u1
, using values σ2

u1
= 0.25,1. Dichotomized true and ob-

served exposures XC and W1C were derived using a fixed cutpoint at C = 0 or C = 1.
We consider a binary outcome Y , generated according to a logistic regres-

sion model Pr(Y = 1|X)= {1+e−(β0X+β1X X)}−1 using values β1X = log(1.5), log(2)
and β0X = −2.5, resulting in approximately 8% and 9% of individuals having the
outcome Y = 1 for each value of β1X respectively.

In scenario (a) the true exposure, X , was assumed to be observed in a ran-
dom subset of 10% or 50% of the population, and W1 can be subject to either clas-
sical or systematic error. Scenario (b) refers to classical measurement error in W1
and scenario (c) to systematic error, and in both cases X is assumed unobserved.
We generated two additional observed exposures W2, W3 according to the classi-
cal measurement error model Wj = X + u j( j = 2,3), where the errors u2, u3 are
independently distributed normal with means 0 and variances σ2

u2
= σ2

u1
and inde-

pendent of u1. The additional exposure measurements W2, W3 were assumed to be
available in a randomly selected subset of 10% or 50% of the study population. In
scenario (b) only W2 is needed in the correction methods while in scenario (c) both
W2 and W3 are required.

The simulation was repeated 1000 times. In each simulated dataset we fit-
ted the analysis model using the true exposure, X , and using the mismeasured ex-
posure W1, which is referred to as the naive method. The methods outlined in
Section 2 were then applied, as detailed further below. In scenario (a) only we ap-
plied the method of Section 2.2.1, using misclassification probabilities estimated
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by treating the categorized exposure as fundamentally categorical (MP1). This
was performed first assuming nondifferential misclassification and then allowing
differential misclassification. We are interested in the results using this method
under nondifferential misclassification because it is that which is commonly used
for fundamentally categorical exposures and as such may be the first analysis to
consider in our situation. The method of Section 2.2.2 in which misclassification
probabilities are estimated using the underlying continuous measurements (MP2)
was applied in scenarios (a), (b) and (c). For this we restrict ourselves to the case
in which differential misclassification is assumed. We then applied the methods
Section 2.3: RC using Natarajan’s method (RC1), RC using misclassification prob-
abilities (RC2), MI, MR, and group-SIMEX (gSIMEX). In all methods, the aim
was to estimate the log odds ratio parameter b1X in the logistic regression model
Pr(Y = 1|XC) = {1+ e−(b0X+b1X XC)}−1. The focus is on assessing bias in estimates
of b1X under the different methods.

When X was observed in a subsample of the study population (scenario (a))
the true dichotomized values XC were used in place of fitted or imputed values. This
does not apply for the methods in Section 2.2 based on misclassification probabil-
ities. Using MI, the number of multiply imputed data sets equaled the percentage
of missing data, and for the group-SIMEX procedure we used J = 100 pseudo-
datasets, values ζ = {0,0.5,1,1.5,2}, and a quadratic extrapolant. For consistency,
all methods were implemented using maximum likelihood as described in the ap-
pendices, with the exception of RC1 which was performed using the commonly
used method of moments approach. The simulations were performed using R.

3.2 Results

Table 1 shows the estimated log odds ratio, b̂1X , in scenario (a) in which true ex-
posure X was observed in a subset of individuals (10% or 50%) for each of the
methods described above. Tables 2 and 3 show the corresponding results in scenar-
ios (b) and (c), where X was not observed for any individuals, but where repeated
or additional error-prone measurements were available instead.

As was expected, the naive method results in attenuated log odds ratio es-
timates, with the attenuation being more severe as the variability of the errors in-
creases (σ2

u1
) and when W1 is subject to systematic error (Table 1).

In scenario (a) method MP1 resulted in badly attenuated odds ratio esti-
mates when nondifferential misclassification was assumed, with the attenuation be-
ing much worse than under the naive approach. However, the extension to allow
differential misclassification under this method resulted in almost unbiased esti-
mates, with some fairly negligible attenuation when only 10% of individuals were
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in the validation subsample. The extension to this method in which misclassifi-
cation probabilities were estimated using the underlying continuous measurements
(MP2) was successful when we allowed differential misclassification. Notice that
the empirical standard deviations of the estimates were substantially lowered when
we used the continuous exposure measurements to estimate misclassification prob-
abilities. Method MP2, allowing for differential misclassification, also performed
well in scenarios (b) and (c) (Tables 2 and 3).

The RC method proposed by Natarajan (2009) (RC1) did not work well in
general. In scenario (a), where the true value of X was used in the analysis where it
was observed, the estimated log odds ratio for those above versus below the cutpoint
at C = 0 is a weighted average of the estimate obtained using XC and that obtained
under the naive method using W1C. Hence in scenario (a) the attenuation under RC1
was less severe when a greater proportion of the population have the true exposure
observed (Table 1). Note that in scenarios (b) and (c), where X was completely
unobserved, method RC1 gave almost the same attenuated estimate of the log odds
ratio as the naive method when the cutpoint was at 0 (Tables 2 and 3). This was
because the median of the exposure distribution happened to be at the cutpoint 0,
which as discussed in Section 2.3.1, leads to individuals being categorized in the
same way using W1 and using the calibrated values. Method RC2 performed better
than RC1 when X was observed in a subsample, giving approximately unbiased
estimates when 50% of individuals had X observed. However, the estimates became
biased when only 10% had X observed, with the bias depending on the choice of
cutpoint. In scenarios (b) and (c) method RC2 resulted in severe upward bias in the
log odds ratio estimates.

MI and MR performed well under all scenarios, giving unbiased or almost-
unbiased estimates of the log odds ratio.

Group-SIMEX gave attenuated log odds ratio estimates. Estimates became
more biased as the error variability increased, though the attenuation was less se-
vere than when using the naive method or RC1. The bias was more severe when W1
was subject to systematic error (scenario (a) (Table 1), and scenario (c) (Table 3)).
The degree of extrapolation required under the group-SIMEX method increases as
measurement error increases and so any error in the extrapolation model is ampli-
fied.

The simulation study was repeated for a situation in which the proportion
of cases (Y = 1) was higher (approximately 25%). The results were not materially
different from those reported above and are not shown here.
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4 Extension to differential error
So far we have assumed an error model of the form W1 = α0 +α1X +u1 where the
errors u1 have mean zero and constant variance, and are independent of both X and
Y . Classical measurement error is a special case (α0 = 0,α1 = 1). In this section
we extend the simulation study to the situation in which the observed continuous
exposure measurement W1 has differential error, that is error which depends on the
outcome Y . Differential error is believed to occur especially in case-control studies
in which exposure information is obtained retrospectively. For example, cases may
report their exposure more accurately.

We describe different types of differential error in the context of the pre-
viously considered error model, W1 = α0 + α1X + u1, and we focus on a binary
outcome Y = 0,1. One possibility is that the variability of the errors u1 depends on
Y , given by σ2

u1y(y = 0,1). A second possibility is that the mean of W1 given X dif-
fers in the two outcome groups such that there are different slopes, α1y (y = 0,1), in
the error model. A third simple possibility is that there are different intercept terms,
α0y (y = 0,1), in the error model. We do not consider this case further here.

For a continuous exposure with differential error of one of the three types
described above, Freedman et al. (2008) found in simulation studies that MI and
MR gave almost unbiased log odds ratio estimates in a logistic regression using
the continuous exposure. In the simulation study we restrict our attentions to the
misclassification probability methods of Section 2.2 (allowing differential misclas-
sification) and to MI and MR, which were the only methods to perform well in the
simulations study for the types of exposure measurement error considered earlier.

For the simulation study the true exposure X and outcome Y were generated
as described in Section 3.1. We focus on two types of differential error in the
continuous observed exposure measurements:

(i) W1 = X + u1, where the u1 were generated from a normal distribution with
mean 0 and variance depending on y, σ2

u1y, with values σ2
u10 = 2,σ2

u11 = 0.5.
(ii) W1 = α1yX +u1, where α10 = 0.5,α11 = 1 and the u1 were generated from a

normal distribution with mean 0 and constant variance σ2
u1

= 1.

The above parameter values mimic those used by Freedman et al. (2008). As before,
the exposure is dichotomized using a fixed cutpoint C = 0 or C = 1. In situation
(i) we consider scenario (a) where X is observed in a subsample of the study pop-
ulation, and scenario (b) where a repeated measurement of the same type W2 is
available in a subsample. W2 was generated in the same way as W1. For situation
(ii) we consider scenarios (a) and (c). In scenario (c) we must assume that two
additional measurements of a different type are available in a subsample, and that
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these measurements do not suffer differential error. Therefore, W2 and W3 were
generated independently from a classical measurement error model with constant
error variance 1.

For both differential error models considered, the parameters required to
perform both MI and MR were estimated separately within the subgroups with Y =
0 and Y = 1. The imputed values were dichotomized as before.

The results from the simulation are shown in Tables 4 and 5. All methods
(MP1, MP2, MI, MR) were found to continue to perform well in the presence of
differential error in the continuous exposure.

5 Discussion
In this paper we investigated methods for correcting for the effects of misclassifica-
tion which results when continuous exposures are categorized for use in categorized
exposure analyses. While there exist correction methods for use with fundamen-
tally categorical exposures and also methods for use with continuous exposures, the
situation in which continuous exposures are categorized in the exposure-outcome
analysis has received little attention. We summarized methods for fundamentally
categorical exposures, which are based on correction of an odds ratio using esti-
mated misclassification probabilities, and outlined their use when continuous ex-
posures are categorized. We also described possible adaptations to four methods
used to correct for error in continuous exposures: regression calibration (RC), mul-
tiple imputation (MI), moment reconstruction (MR) and simulation-extrapolation
(SIMEX). The methods were compared using simulation studies for the case a di-
chotomized continuous exposure and a logistic regression model with underlying
linear exposure-outcome association. As expected, the naive method in which the
error-prone categorized exposure is used in place of the true exposure results in
attenuated log odds ratio estimates within categories.

A particular challenge in this situation is that even nondifferential error in
continuous exposure measurements can translate into differential error when the
exposure measurements are categorized. Methods for fundamentally categorical
exposures can accommodate this by estimating misclassification probabilities sepa-
rately by the binary outcome, and this approach was found to work well in simula-
tion studies. Using the underlying continuous exposures to estimate the misclassi-
fication probabilities resulted in more precise estimates, under some distributional
assumptions. The commonly used method for categorical exposures which assumes
nondifferential misclassification performed badly in the simulations and should not
be used for categorized continuous exposures.
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There does not appear to be an obvious extension of RC to accommodate
categorization of continuous exposures and RC based methods performed badly
in the simulation studies. We focused for simplicity on fixed cutpoints, but we
also note that the RC method proposed by Natarajan (2009) can perform no better
than the naive method when the cutpoint is defined by a quantile of the exposure
distribution and true exposure is completely unobserved (scenarios (b) and (c)).
An extension to SIMEX, referred to as group-SIMEX, was found to give attenuated
effect estimates, though the attenuation was less severe than under the naive method
or RC1. We also investigated misclassification-SIMEX (Kuchenhoff et al., 2006,
Carroll et al., 2006), which suffers the same problem of assuming nondifferential
misclassification and did not perform well (results not shown).

We proposed a simple adaptation of the MI method proposed by Cole et al.
(2006) and Freedman et al. (2008), in which multiply imputed continuous exposure
measurements are categorized. Similarly we proposed categorization of imputed
continuous exposure measurements otained using MR (Freedman et al., 2004).
Both MI and MR performed well in all situations considered, giving unbiased or
nearly unbiased estimates of the log odds ratio. In further simulations we applied
the methods for linear exposure-outcome models, as opposed to logistic models,
which again led to similar results across methods (results not shown). We also
assessed the use of MI and MR with more than two exposure categories, finding
that these methods continue to work well when the number of exposure categories
increases (results not shown). In contrast to RC, MI and MR give imputed val-
ues which have approximately the same distribution as the true exposure, hence
the subsequent categorization allows for differential misclassification. It is this fea-
ture of MI and MR that makes these methods suitable for extension to categorized
continuous covariates.

Correction methods based on estimated misclassification probabilities are
restricted to estimation of odds ratios (see Section 2.2) and also do not extend di-
rectly to incorporate additional adjustment for covariates. However, the approach
described in Section 2.2 can be found to be equivalent under differential misclas-
sification to a likelihood-based approach (Lyles, 2002), which can be extended to
allow covariate adjustment. Kosinski and Flanders (1999) outlined a likelihood-
based method for estimating the odds ratio under misclassified exposures when the
true exposure X is not observed, where the probability of true exposure is mod-
elled as dependent on the outcome Y plus an additional covariate. The presence
of the covariate is crucial for identifiability. Dalen et al. (2009) proposed a cor-
rection method for use with categorized continuous exposures for use specifically
in a logistic regression, in which the probabilities Pr(XC = 1|Y = y) are estimated
by assuming a distribution for continuous X conditional on Y , or by treating the
conditional distribution nonparametrically.
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A drawback of methods based on estimation of misclassification probabil-
ities is that they are restricted to binary outcomes and estimation of odds ratios.
Hence they do not apply in linear regressions or proportional hazards regression,
for example. An advantage of using MI or MR is that they are not restricted to
a specific analysis model. We have not considered survival outcomes in this pa-
per, but it has been shown that MI can be used to impute missing covariates in a
proportional hazards regression (White and Royston, 2009). MR has not, to our
knowledge, been extended to a survival analysis setting. A particularly attractive
feature of the MI and MR methods is that they involve imputing a value (or values)
for the true exposure, categorizing, and implementing the original analysis model.

In this paper we considered dichotomized continuous exposures created us-
ing a fixed cutpoint. For exposures for which there are no commonly used pre-
defined cutpoints, quantile cutpoints are often used. We have already made some
references to this. A further drawback of the methods based on estimated misclassi-
fication probabilities is that they do not extend in an obvious way to accommodate
non-fixed cutpoints. For MI and MR, quantile-based cutpoints can be derived from
the distribution of the multiply imputed or moment reconstructed exposure values
respectively. Further simulation studies using cutpoints based on the quantiles of
the distribution yielded similar results to those shown.

To perform MI and MR requires assumptions about conditional or joint con-
ditional distributions of observed continuous exposure measurements, and we as-
sumed normal distributions. Methods using misclassification probabilities in which
the probabilities are estimated using the underlying continuous measurements re-
quire similar assumptions. However, the methods can also be applied by making
these assumptions about measurements on a transformed scale. Inferences can then
be made about exposure categories on the original scale provided the transformation
is monotonic.

One type of error which have not considered in this paper is heteroscedas-
tic error in W1 such that variability of the error depends on X ; typically error in
W1 increases as X increases. This type of error at the continuous level will result
in individuals in the upper end of exposure being more prone to misclassification
when the continuous exposure is categorized. It can be investigated graphically
whether there is heteroscedastic error, both when the true exposure is available in a
validation subset, or using replicate measurements (Carroll et al., 2006). In many
situations it may be possible to apply a transformation, h(·) say, to X and W1, such
that h(W1) = θ +h(X)+u1 is the classical measurement error model with a constant
shift θ (Carroll et al., 2006). In some cases a log transformation may be suitable,
and in general Box-Cox transformations may be considered. Provided the transfor-
mation used is monotonic, the classification of individuals will be the same whether
categorized on the basis of X or h(X) and whether on the basis of W1 or h(W1). It
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follows that the correction methods could be applied using the transformed-scale
continuous measurements, as noted above. Guo and Little (2011) suggested a MI
based correction method specifically for use with continuous exposures subject to
heteroscadastic error, as described here, and Spiegelman et al. (2011) described a
RC based method. An adaptation of the MI method of Guo and Little (2011) to the
categorized exposure situation may be possible, however we believe our suggested
method using transformations could work well in many situations. This is an area
for further work.

In this paper we focused on a linear association between the continuous ex-
posure and the outcome, on the appropriate scale. An important reason for using a
categorized exposure analysis is to avoid assuming a particular form for this associ-
ation, and the method is often used to assess nonlinearity. Development of methods
that apply for categorized exposure analyses when the exposure-outcome associa-
tion is nonlinear on the appropriate scale is an area for future work. The success
of MI and MR for linear exposure-outcome associations on the appropriate scale
suggests that, with modifications, these methods may be good candidates for ex-
tension to a more general situation. Use of MI to correct for measurement error in
dichotomized exposures relies on the assumptions that true and observed exposure
measurements have a joint normal distribution conditional on the outcome Y . Un-
der nonlinear associations the variance of X will depend on Y and the distribution
of X |Y may not be normal. Possible adaptations to MI therefore include allow-
ing separate imputation models by outcome groups and drawing residuals from a
non-normal distribution. MR using the first two moments may suffer similarly un-
der nonlinear associations. Thomas et al. (2011) recently suggested an extension
to the MR method proposed by Freedman et al. (2004), called moment-adjusted
imputation, which uses more than the first two moments to impute ‘corrected’ ex-
posure values therefore allowing greater flexibility. This method is also a target for
extension to the nonlinear situation.

The aim of this paper was to investigate the use of measurement error cor-
rection methods in exposure-outcome analyses involving categorized continuous
exposures. In summary, methods for categorical exposures using misclassification
probabilities which allow differential misclassification performed well. MI and MR
also worked well. Use of MI or MR is attractive and has a number of advantages
over methods based on misclassification probabilities. MI and MR are now targets
for further extension to the situation in which the underlying continuous exposure-
outcome association is nonlinear.
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MP2: Diff RC1 RC2 MI MR gSIMEX
σ2

u C Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
β1X = log(1.5)

0.25 0 Mean 0.650 0.580 0.650 0.649 0.580 0.580 0.824 0.824 0.649 0.645 0.649 0.649 0.621 0.622
SD 0.109 0.105 0.116 0.104 0.107 0.106 0.150 0.150 0.112 0.100 0.117 0.115 0.158 0.157

1 Mean 0.707 0.614 0.703 0.702 0.648 0.646 0.982 0.980 0.703 0.698 0.704 0.703 0.644 0.644
SD 0.120 0.119 0.125 0.116 0.131 0.130 0.192 0.191 0.121 0.111 0.131 0.129 0.163 0.162

1 0 Mean 0.650 0.457 0.652 0.649 0.456 0.457 0.918 0.916 0.651 0.641 0.651 0.651 0.487 0.487
SD 0.109 0.106 0.197 0.123 0.108 0.106 0.217 0.214 0.194 0.119 0.161 0.134 0.156 0.160

1 Mean 0.707 0.473 0.707 0.705 0.552 0.547 1.251 1.239 0.702 0.691 0.702 0.700 0.488 0.488
SD 0.120 0.110 0.208 0.130 0.166 0.163 0.316 0.295 0.205 0.126 0.174 0.144 0.153 0.152

β1X = log(2)
0.25 0 Mean 1.106 0.982 1.105 1.102 0.981 0.982 1.394 1.394 1.104 1.096 1.105 1.104 1.052 1.054

SD 0.112 0.107 0.117 0.105 0.108 0.107 0.154 0.152 0.113 0.103 0.122 0.119 0.162 0.161
1 Mean 1.169 1.019 1.166 1.164 1.069 1.068 1.630 1.628 1.166 1.157 1.166 1.165 1.070 1.070

SD 0.110 0.107 0.117 0.106 0.117 0.115 0.177 0.173 0.114 0.101 0.120 0.117 0.152 0.151
1 0 Mean 1.106 0.766 1.109 1.101 0.767 0.767 1.540 1.537 1.109 1.088 1.109 1.103 0.816 0.817

SD 0.112 0.105 0.199 0.123 0.106 0.105 0.221 0.212 0.197 0.119 0.164 0.137 0.157 0.160
1 Mean 1.169 0.785 1.175 1.168 0.914 0.911 2.074 2.056 1.171 1.148 1.170 1.165 0.816 0.815

SD 0.110 0.102 0.200 0.122 0.146 0.140 0.329 0.283 0.197 0.118 0.165 0.132 0.148 0.145

Table 2: Scenario (b) (α0 = 0,α1 = 1): Mean and empirical standard deviation (SD)
of estimates of the log odds ratio in a logistic regression of a binary outcome Y on
XC across 1000 simulated data sets using the true exposure, the naive method, and
different correction methods when W2 is assumed to be observed in 10% or 50% of
the study population.
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MP2: Diff RC1 RC2 MI MR gSIMEX
σ2

u C Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50% 10% 50% 10% 50%
β1X = log(1.5)

0.25 0 Mean 0.650 0.457 0.646 0.643 0.456 0.457 0.913 0.914 0.647 0.642 0.650 0.648 0.583 0.576
SD 0.109 0.106 0.226 0.120 0.107 0.106 0.215 0.213 0.226 0.120 0.149 0.127 0.192 0.191

1 Mean 0.707 0.548 0.700 0.699 0.550 0.546 1.009 1.008 0.698 0.694 0.702 0.698 0.726 0.734
SD 0.120 0.164 0.239 0.128 0.163 0.162 0.308 0.303 0.237 0.130 0.157 0.138 0.342 0.330

1 0 Mean 0.650 0.287 0.647 0.641 0.287 0.287 0.982 0.975 0.648 0.636 0.651 0.648 0.397 0.395
SD 0.109 0.104 0.318 0.148 0.105 0.103 0.378 0.357 0.318 0.147 0.228 0.150 0.207 0.204

1 Mean 0.707 0.304 0.698 0.696 -0.057* 0.333 1.331 1.313 0.696 0.686 0.702 0.697 0.401 0.404
SD 0.120 0.118 0.332 0.156 2.507* 0.963 0.564 0.517 0.332 0.156 0.240 0.160 0.206 0.208

β1X = log(2)
0.25 0 Mean 1.106 0.766 1.096 1.093 0.766 0.767 1.533 1.533 1.098 1.092 1.104 1.101 0.974 0.970

SD 0.112 0.105 0.226 0.117 0.106 0.105 0.218 0.211 0.225 0.121 0.152 0.131 0.195 0.194
1 Mean 1.169 0.910 1.161 1.160 0.911 0.910 1.676 1.675 1.159 1.153 1.166 1.162 1.218 1.223

SD 0.110 0.139 0.224 0.117 0.141 0.140 0.273 0.259 0.222 0.118 0.149 0.125 0.290 0.278
1 0 Mean 1.106 0.479 1.100 1.091 0.480 0.479 1.639 1.627 1.101 1.083 1.109 1.100 0.662 0.661

SD 0.112 0.101 0.318 0.142 0.101 0.101 0.397 0.349 0.317 0.143 0.234 0.152 0.199 0.198
1 Mean 1.169 0.509 1.163 1.158 0.394* 0.700 2.224 2.196 1.160 1.142 1.170 1.160 0.666 0.669

SD 0.110 0.109 0.316 0.142 2.221* 0.385 0.585 0.484 0.315 0.142 0.231 0.148 0.194 0.193

Table 3: Scenario (c) (α0 = 0,α1 = 0.5): Mean and empirical standard deviation
(SD) of estimates of the log odds ratio in a logistic regression of a binary outcome
Y on XC across 1000 simulated data sets using the true exposure, the naive method,
and different correction methods when W2,W3 are assumed to be observed in 10%
or 50% of the study population. * Based on 995 datasets since max(XC) < C for
five datasets.
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MP1: Diff MP2: Diff MI MR
C Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50%
Scenario (a): β1X = log(1.5)

0 Mean 0.650 0.517 0.668 0.651 0.658 0.651 0.655 0.649 0.678 0.654
SD 0.109 0.106 0.302 0.140 0.193 0.110 0.198 0.115 0.366 0.154

1 Mean 0.707 0.128 0.713 0.709 0.704 0.705 0.707 0.709 0.709 0.711
SD 0.120 0.112 0.351 0.159 0.236 0.126 0.248 0.133 0.424 0.176

Scenario (a): β1X = log(2)
0 Mean 1.106 0.870 1.137 1.107 1.120 1.107 1.114 1.106 1.151 1.110

SD 0.112 0.107 0.319 0.145 0.206 0.117 0.212 0.121 0.384 0.158
1 Mean 1.169 0.474 1.182 1.171 1.165 1.162 1.168 1.167 1.181 1.172

SD 0.110 0.102 0.310 0.144 0.205 0.113 0.209 0.121 0.368 0.158

Scenario (b): β1X = log(1.5)
0 Mean 0.650 0.517 - - 0.673 0.654 0.672 0.647 0.664 0.653

SD 0.109 0.106 - - 0.195 0.117 0.193 0.111 0.155 0.125
1 Mean 0.707 0.128 - - 0.686 0.705 0.682 0.687 0.695 0.703

SD 0.120 0.112 0.284 0.151 0.280 0.145 0.238 0.158
Scenario (b): β1X = log(2)

0 Mean 1.106 0.870 - - 1.149 1.113 1.147 1.101 1.133 1.111
SD 0.112 0.107 - - 0.225 0.126 0.224 0.120 0.179 0.134

1 Mean 1.169 0.474 - - 1.166 1.167 1.161 1.144 1.169 1.167
SD 0.110 0.102 - - 0.252 0.136 0.249 0.132 0.217 0.142

Table 4: Differential error, type (i), scenario (a): Mean and empirical standard
deviation (SD) of estimates of the log odds ratio in a logistic regression of a binary
outcome Y on XC across 1000 simulated data sets using the true exposure, the naive
method, and different correction methods when (a) X is observed in 10% or 50% of
the study population, (b) W2 is observed in 10% or 50% of the study population
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MP1: Diff MP2: Diff MI MR
C Using XC Naive 10% 50% 10% 50% 10% 50% 10% 50%
Scenario (a): β1X = log(1.5)

0 Mean 0.650 0.444 0.658 0.649 0.651 0.644 0.646 0.644 0.644 0.647
SD 0.109 0.106 0.320 0.151 0.221 0.114 0.229 0.123 0.258 0.128

1 Mean 0.707 0.782 0.690 0.699 0.690 0.699 0.698 0.700 0.698 0.698
SD 0.120 0.110 0.353 0.163 0.259 0.130 0.262 0.137 0.270 0.134

Scenario (a): β1X = log(2)
0 Mean 1.106 0.743 1.127 1.105 1.111 1.101 1.104 1.102 1.100 1.101

SD 0.112 0.105 0.326 0.154 0.229 0.120 0.235 0.127 0.253 0.129
1 Mean 1.169 1.079 1.165 1.165 1.111 1.101 1.159 1.161 1.166 1.163

SD 0.110 0.102 0.305 0.144 0.229 0.120 0.228 0.120 0.250 0.122

Scenario (c): β1X = log(1.5)
0 Mean 0.650 0.444 - - 0.688 0.650 0.687 0.647 0.650 0.644

SD 0.109 0.106 - - 0.345 0.154 0.344 0.152 0.347 0.163
1 Mean 0.707 0.782 - - 0.629 0.687 0.624 0.672 0.700 0.697

SD 0.120 0.110 - - 0.460 0.177 0.463 0.175 0.368 0.172
Scenario (c): β1X = log(2)

0 Mean 1.106 0.743 - - 1.166 1.110 1.166 1.103 1.104 1.093
SD 0.112 0.105 - - 0.402 0.167 0.405 0.165 0.343 0.157

1 Mean 1.169 1.079 - - 1.120 1.148 1.116 1.130 1.169 1.159
SD 0.110 0.102 - - 0.376 0.154 0.374 0.151 0.345 0.159

Table 5: Differential error, type (ii), scenarios (a) and (c): Mean and empirical
standard deviation (SD) of estimates of the log odds ratio in a logistic regression of
a binary outcome Y on XC across 1000 simulated data sets using the true exposure,
the naive method, and different correction methods when (a) a repeat X is observed
in 10% or 50% of the study population, (c) W2,W3 are assumed to be observed in
10% or 50% of the study population.
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Appendices

A Estimation of required parameters in scenario (b)
under different correction methods
We assume a joint normal distribution for W1,W2|Y to estimate µX |Y and σ2

X |Y re-
quired to estimate misclassification probabilities (Section 2.2.2), to fit the MI model
in (12) (Section 2.3.2), and to obtain moment reconstructed values (Section 2.3.3):

W1,W2|Y ∼ N
{(

E(X |Y )
E(X |Y )

)
,

(
var(X |Y )+σ2

u1
var(X |Y )

var(X |Y ) var(X |Y )+σ2
u1

)}
, (16)

X1,W1|Y ∼ N
{(

E(X |Y )
E(X |Y )

)
,

(
var(X |Y ) var(X |Y )
var(X |Y ) var(X |Y )+σ2

u1

)}
. (17)

This gives

E(X |W1,Y ) =
W1var(X |Y )+E(X |Y )σ2

u1

var(X |Y )+σ2
u1

,var(X |W1,Y ) =
var(X |Y )σ2

u1

var(X |Y )+σ2
u1

where E(X |Y ), var(X |Y ), and σ2
u1

are estimated by maximum likelihood using (16).
Note that a method of moments approach could alternatively have been be used.
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To calculate XIM(W1,W2,Y ) we think of X ,W2|W1,Y or X ,W1|W2,Y as hav-
ing a bivariate normal distribution, giving

E(X |W1,W2,Y ) =
W̄12var(X |W1,Y )+E(X |W1,Y )σ2

u1
var(X |W1,Y )+σ2

u1
,

var(X |W1,W2,Y ) =
var(X |W1,Y )σ2

u1
var(X |W1,Y )+σ2

u1
,

(18)

where W̄12 is the mean of W1 and W2.
For group-SIMEX (Section 2.3.4) in scenarios (a) and (b), σ2

u1
was es-

timated respectively by assuming bivariate normal distributions for (X ,W1) and
(W1,W2). This is as above, but removing the conditioning on Y . Method RC2 (Sec-
tion 2.3.1) is also performed using the above joint distribution, but again without
the conditioning on Y .

B Estimation of required parameters in scenario (c)
under different correction methods
We assume a joint normal distribution for W2,W3|Y to estimate µX |Y and σ2

X |Y ,
which are required to estimate misclassification probabilities (Section 2.2.2), and
to obtain moment reconstructed values (Section 2.3.3). As outlined in Appendix A,
this enables estimation of E(X |Y ), var(X |Y ) and σ2

u1
by maximum likelihood.

To fit the MI model in (12) in scenario (c) (Section 2.3.2) we assume a
bivariate normal distribution for W2,W3 conditional on W1,Y :

W2,W3|W1,Y ∼N
{(

E(X |W1,Y )
E(X |W1,Y )

)
,

(
var(X |W1,Y )+σ2

u2
var(X |W1,Y )

var(X |W1,Y ) var(X |W1,Y )+σ2
u2

)}
E(X |W1,Y ) and var(X |W1,Y ) can be estimated by maximum likelihood, letting
E(X |W1,Y ) = α0 +α1W1 +α2Y , var(X |W1,Y )+σ2

u2
= exp(θ1), and var(X |W1,Y ) =

exp(θ1 +θ2)/(1+ exp(θ2)) (Freedman et al., 2008).
To find XIM(W1,W2,W3,Y ) we think of X ,W2|W1,W3,Y or X ,W3|W1,W2,Y

as having a bivariate normal distribution and use results similar to those given in
(18).

For group-SIMEX in scenario (c) σ2
u1

can be estimated by assuming a mul-
tivariate normal distribution for W1,W2,W3.
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