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Abstract  

Malaria is a vector-borne disease that is still responsible for high human morbidity and 

mortality. Of the five Plasmodium species that can cause malaria in humans, 

Plasmodium falciparum is regarded the most virulent species. The most fundamental 

component of sustained control and eradication efforts is the development of effective 

drugs for malaria treatment and prophylaxis. Plasmodium falciparum’s sexual stages 

(gametocytes) are not associated with malarial pathogenesis or the clinical symptoms, 

but they are responsible for the transmission of the disease from human hosts to 

mosquitos. As such, the development of gametocytocidal interventions that targets the 

transmission stage to break the disease’s lifecycle forms the basis of efforts towards 

malaria elimination and eradication. However, despite the importance of this 

developmental stage, the biology and pharmacology of gametocytes are still very 

poorly understood. This thesis has set out to gain a better understanding of the identity 

of gametocyte-active antimalarials and a deeper understanding of the mechanisms 

underpinning the activity. Using a newly generated luciferase-reporting transgenic 

line, pharmacodynamic gametocyte studies could be performed to help characterise 

the activity of selected known reference antimalarials, new potential gametocyte 

inhibitors in pre-clinical development as well as newly developed fully synthetic 

compounds designed against the sexual stages. This novel assay revealed that the 

efficacy of active tested compounds is highly stage-specific. Of all the tested reference 

antimalarial drugs, MB and DHA were the most potent antimalarial across all 

gametocyte stages and importantly they were active at clinically relevant levels. These 

observations were progressed further, developing a time- dependent killing assay that 

was performed with different concentrations of targeted drug over discrete time 

intervals to determine the drug’s kill rate. These parameters were then used to simulate 

the PK/PD relationship of the drug in order to estimate gametocyte clearance profiles 

during the human treatment period (Chapter 3 and 4). A main focus of the thesis was 

conducted to better understand the mechanism of drug activity of the 8-

aminoquinolines against gametocytes. The ability of a series of 8-aminoquinolines 

(primaquine as the parent drug, synthesised metabolites in chapter 5, three novel 

analogues and tafenoquine in (chapter 6) to interact with CYP2D6 was tested by 

measuring their ability to specifically inhibit the metabolism of fluorescently-tagged 

tracer substrate by recombinant human CYP 2D6. Reaction products from the CYP 

metabolites and HLM were then used to test firstly their ability to kill gametocytes, 

and then to establish their ability to generate hydrogen peroxides and finally measure 

their haemolytic toxicity. At 10 µM, primaquine CYP metabolites showed activity 

against the gametocytes that was higher than that of the parent drugs, with the 

exception of tafenoquine which, interestingly, demonstrated good activity and 

haemolytic toxicity as a parent drug. These analyses are presented and discussed in 

the context of strategies that aim at the discovery and development of new 

transmission-reducing antimalarial drugs. 
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1 General introduction 
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1.1 Overview:  

Malaria is one of the main tropical diseases of major importance in several parts of the 

world. It remains the main source of morbidity and mortality in the tropical zones 

(Bruce-Chwatt, 1987, Murray et al., 2012, Guerin et al., 2002). Malaria is transmitted 

via infected female Anopheles mosquitos and is caused by the protozoan parasite 

species known as Plasmodium.  Part of the Plasmodium life cycle occurs in vertebrates 

(birds, animal, humans) whilst the transmission cycle occurs in mosquitos. Human 

beings are infected by various Plasmodium species including Plasmodium falciparum, 

Plasmodium vivax, Plasmodium ovale and Plasmodium malariae and lastly the 

primate parasite Plasmodium knowlesi that has recently been shown to infect humans 

(Cox-Singh and Singh, 2008, Cox-Singh et al., 2008, White, 2008a).  

In 2016, malaria continues to be one of the lethal infectious diseases in spite of the 

huge efforts to eliminate/eradication the disease during last decades. The 

disappointment results of malarial vaccine trials, the development of drug-resistant 

Plasmodium strains, insecticide resistance and the enormous global changes regarding 

population increase and the environment make the challenges towards disease 

elimination/eradication extremely complicated.  

This chapter reviews current knowledge regarding malaria disease, parasite biology, 

malaria chemotherapy, drug metabolism, and whole cell gametocytocidal activity 

assays. 
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1.2 Malaria as a disease: 

1.2.1 Malaria History: 

Malaria has been in existence for over 4000 years. The initial description of malaria is 

found in the ancient medical writings by the Chinese called Nei Ching around 2700 

BC.  The disease was documented by the Greeks in the 4th century BC where 

Hippocrates wrote about Malaria symptoms (Cox, 2010). A Sanskrit medical article 

documented malaria symptoms and linked the disease to an insect bite as the cause. In 

the 2nd century BC, the initial medication for treating malaria was discovered by the 

Chinese. Specifically, the use of Artemisia annua or the Qinghao plant for treating 

malaria was documented in a medical article called 52 Remedies. However, it was 

only until 340 CE that the description of the antifever properties of the plant was 

described in medical text. The Qinghao plant’s active ingredient is artemisinin that 

was isolated in 1971 by scientists from China. Presently, drugs with artemisinin 

compounds are utilised in treating malaria in areas where individuals have developed 

resistance to the chloroquine (CQ). In the 17 century, another medication was 

documented by Jesuit missionaries from Spain. The medication came from the bark of 

a tree in Peru. This was after the bark cured the wife of the Viceroy of Peru who had 

been infected with malaria.  The Peruvian bark is used in deriving quinine for treating 

malaria.  

On November 6, 1880, an army surgeon known as Alphonse Laveran which treating 

a patient suffering from malaria in Algeria discovered a parasite in the patient’s blood 

during examination.  The surgeon came to the conclusion that malaria was caused by 

a single parasite that he named as Oscillaria malariae (Cox, 2010). Furthermore, 

Laveran discovered part of the malaria’s lifecycle after observing how the male 
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gametocyte exflagellated in the blood. Based on this, he concluded that the parasite 

was a protozoon. Laveran was unable to detect the parasite in soil, water, or air, and 

deduced that the parasite lived inside a mosquito.  This was confirmed in 1884 by 

Angello Celli and Ettore Marchiafava who named it Plasmodium. In 1886, it was 

determined by Camillo Golgi that malaria presented itself in multiple forms. This 

conclusion was arrived at after observations of the fever trend in malaria patients.  

Particularly, one form of malaria was characterised by fever on each second day, while 

in another form the fever presented on each third day. Golgi connected the malarial 

fever to the rupturing of red blood cells because of the release of mature merozoites 

accumulated in red blood cells (Cox, 2010).  

In 1890, Raimondo Filetti, Giovanni Batista, and Grassi named initial species of 

plasmodium particularly Plasmodium malariae and Plasmodium vivax.  In 1897, 

Oscillaria malariae was renamed Plasmodium falciparum by William Welch. In 1897, 

the initial proof that mosquitoes transferred plasmodia to humans was done by Ronald 

Ross after observing how birds bitten by infected mosquitoes developed malaria. In 

1898, the occurrence of the sexual cycle of the plasmodium genus in the Anopheles 

mosquito was demonstrated by Guiseppe Bastianelli, Amico Bignami, Giovanni 

Battista Grassi, Camillo Golgi, Ettore Marchiafava, and Angelo Cell. These 

investigators gathered mosquitoes and allowed them to bite healthy individuals who 

went on to develop the disease. This resulted in the discovery of how the disease is 

transmitted in people. In 1922, Plasmodium ovale was described and named by John 

William Stephens. In 1931, Plasmodium knowlesi was discovered in a monkey by 

Biraj Mohan das Gupta and Robert Knowles. The initial malaria case due to P. 

knowlesi was reported in 1965. In 1948, Cyril Garnham and Henry Scott finished the 

lifecycle of Plasmodium by demonstrating that a stage of division in the liver preceded 
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the development of the parasite in the blood.  The long duration between being infected 

and the appearance of the parasites in blood was confirmed by the demonstration of 

the existence of a dormant phase in the liver by Wojciech Krotoski. 

1.2.2 Malaria Pathogenesis: 

Initially, patients are asymptomatic after being bitten by the infected anopheles 

mosquito during the incubation of the parasite in the liver. After the parasite starts 

intraerythrocytic development cycles, patients start manifesting splenomegaly, a fever 

cycle lasting for 48 h, and flu-like symptoms.  While developing in the erythrocyte, 

the parasite remodels the infected red blood cell to ensure survival within the human 

host (Haase and de Koning-Ward, 2010).  The red blood cell does not have the 

endogenous cellular mechanism required for protein trafficking and thus the parasite 

is involved in coordinating the transport and expression of proteins to the plasma 

membrane of the infected red blood cell for survival of the parasite.  These cellular 

changes enable host and parasite interactions that eventually contribute to the clinical 

manifestation of malaria (Goldberg and Cowman, 2010). Infected red blood cells are 

capable of adhering to other cells via particular host-cell receptor and parasite ligand 

interactions that result in the sequestration of the parasite (Rowe et al., 2009). The 

parasites sequester in vascular beds of various tissues and organs such as subcutaneous 

tissue, placenta, liver, kidney, lungs, and the brain, which prevent removal by the 

spleen (Buffet et al., 2011). Consequently, only the ring stage infected red blood cells 

circulate in the blood stream. Sequestration and severe disease is caused by particular 

parasite proteins.  Specifically, a parasite ligand that contributes to sequestration is the 

Erythrocyte Membrane Protein 1(PfEMP1) surface protein. PfEMP1 is responsible for 

the adhesion of the infected red blood cells to various host cells (Pasternak and 

Dzikowski, 2009).  Approximately 60 var genes encoded PfEMP1 protein that is 
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exported to the surface of the infected red blood cell.  The expression of a single 

PfEMP1 at a time occurs on the surface of the infected red blood cell in the 

intraerythrocytic development cycle (Buffet et al., 2011). Although the expression of 

PfEMP1 is homogenous on one infected red blood cell, its expression across a 

population is heterogenous and might affect pathogenesis and tissue distribution 

(Warimwe et al., 2012). PfEMP1 variants contain particular host-cell receptors for 

determining which types of cells they might bind (Claessens et al., 2012). Although 

all mature infected red blood cells can undergo sequestration, not all infections result 

in severe disease (Haldar et al., 2007). 

Sequestration together with related systemic and local cytokine release play a vital 

role in severe malaria (Taylor et al., 2013, Manning et al., 2012). Patients with severe 

malaria have hyperparasitemia and sever systemic complications including organ 

failure, shock, thrombocytopenia, and severe anaemia. Major complications of 

infection by P. falciparum    include cerebral malaria. Cerebral malaria is a fatal 

complication of malaria that leads to severe impairment of the neurological function 

(Ponsford et al., 2012). When infected red blood cells sequester in the brain’s 

microvasculature, they cause the blockage and the passage of the red blood cells 

thereby disrupting gas exchange, which causes inflation, haemorrhaging, and localised 

acidosis that impair the patient’s behaviour due to increased neurological damage that 

often culminates in coma, seizure, and death (Postels and Birbeck, 2013). In cerebral 

malaria, infected red blood cells bind CD36 and ICAM-1 scavenger receptors found 

of the surface of endothelial cells that line the brain’s microvasculature (Turner et al., 

2013).  Cerebral malaria accounts for the majority of malaria deaths especially in 

young children after initial exposure to the malaria parasite (Haldar et al., 2007). The 

mortality rate of patients with cerebral malaria is between 15% and 20%. 
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1.2.3 Malaria Epidemiology: 

An estimated 200 species of Plasmodium parasites infect mammals, birds, rodents, 

and reptiles. Human beings are infected by various Plasmodium species including 

P.knowlesi, P.ovale, P. malariae, P.vivax, and P. falciparum. According to WHO 

report in 2015, about 214 million malaria estimated cases in the world with the full of 

malaria deaths being approximately 438,000 people.  This report represents a 

reduction in the malaria reported cases and deaths since 2000 by 37% and 60%, 

respectively. Approximately 90% of the of disease deaths occur in Africa and over 

two-third of this cases taking place in children under five years old (WHO, 2015). The 

vast majority of the mortality and morbidity of malaria is attributed to P. falciparum 

and is found worldwide, but mainly in Africa in tropical and subtropical areas (Snow 

et al., 2005). 

P. vivax is geographically widespread and exist mostly in Latin America, Asia, and in 

some parts of Africa (Gunn, 2012). It is responsible for a many of disease cases and 

also a source of severe malaria disease and death (WHO, 2012, Kochar et al., 2005). 

Interstingly, P. vivax is linked to erythrocyte expressing Duffy blood group antigens 

(Fya and Fyb) and not found in people of West Africa because they mainly do not 

express those antigens on erythrocytes (negative duffy blood group) (Gunn, 2012).  P. 

vivax as well as P. ovale have dormant liver stages (hypnozoites) that can activate and 

invade the blood (relapse) several months or years after the infecting mosquito bite 

(Gunn, 2012). In addition, P. vivax parasites as well as P. ovale parasites are only able 

to develop in reticulocyte (Gunn, 2012) 

P. ovale is distributed generally in Africa, particularly West Africa and Western 

Pacific islands (Collins and Jeffery, 2005). This parasite species is similar to P. vivax 

physiologically and morphologically as they are only able to develop in reticulocyte 
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and can be dormant in liver stages (hypnozoites). However, P. ovale can infect people 

with negative duffy blood group antigens which is the case in Africa (Gunn, 2012). 

This contributes to the high prevalence of P. ovale in Africa more than P. vivax 

(Collins and Jeffery, 2005). 

P. malariae is distributed all over world and is the only the human parasites which has 

specific cycle with three-day cycle (Collins and Jeffery, 2007). It is common in human 

and chimpanzee and the dormant infection is able to continue in the body for years if 

untreated (Hayakawa et al., 2009).  

P. knowlesi is a primate malarial disease that is mostly found in Southeast Asia and 

causes the disease in long-tailed and pig-tailed macaques (reservoir hosts). Recently, 

P. knowlesi was shown to be an important cause of zoonotic malaria disease in that 

region, especially in Malaysia (Cox-Singh and Singh, 2008, Cox-Singh et al., 2008). 

Figure 1.1 shows the world distribution of malaria in 2014.  

 

Figure 1.1: Malaria distribution globally and confirmed malarial cases. 

Global map shows malaria confirmed malarial cases per 1000 population countries in 2014. 

Dark brown colour indicates countries with malaria cases >100. Brown indicates countries 

with malaria cases 50-100. Light brown indicates countries with malaria cases 10-50. Pink 

indicates countries with malaria cases 1-10. Light Pink indicates countries with malaria cases 

0-1. White colour indicates countries that are not affected by malaria. Grey colour is not 

applicable to any countries (Adapted from WHO,2014). 
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1.2.4 Malaria Control and prevention: 

The control and prevention of malaria involves a multi-faceted approach that include 

transmission interruption, treatment, vector control, and vaccines (Chambers, 2012).  

Vector control techniques through insecticide spraying and bed net are aimed at 

reducing the transmission of the disease by preventing bites from mosquitoes. 

Although these techniques have some effectiveness, bed nets have to be replaced on a 

regular basis and mosquitoes might develop insecticide resistance (Liu, 2015). 

Transmission interruption involves using lasting insecticide-treated nets.  The standard 

treatment for malaria is artemisinin-based combination therapies (ACTs).  ACTs 

augment malaria elimination and control efforts by reducing disease transmission and 

the spread of drug resistance at the population level (Abdul-Ghani and Beier, 2014). 

Specifically, ACTs significantly reduce the duration of gametocyte carriage after 

treatment and minimise the transmission potential in addition to rapid action in 

clearing asexual stages of the parasite (Abdul-Ghani and Beier, 2014). However, 

resistance to anti-malarial is rapidly developing in endemic regions (Abdul-Ghani et 

al., 2014). Currently, there is lack of an approved vaccine for malaria.  However, a 

vaccine being developed called, RTS, S that offers protection against the disease 

during the pre-erythrocytic parasite moderately protects against malaria (Crompton et 

al., 2010). Phase II clinical trials indicate that approximately 30% to 50% of malaria-

naïve individuals that got the RTS, S immunisation were protected following a malaria 

infection challenge (Guinovart et al., 2009). In addition, vaccine initiatives aimed at 

blocking malaria transmission by infecting people with genetically or irradiated 

attenuated sporozoites have been challenging because the vaccine offered protection 

only to a small population of people (Hoffman et al., 2010). The development of 

vaccine against malaria is hindered by deficient knowledge of the interactions between 



 

 

 

 

10 

 

the intrerythocytic forms and the host, particularly how the polymorphic parasite 

proteins found on the infected red blood cells cause the disease (Crompton et al., 

2010). 

1.3 Malaria parasite biology: 

1.3.1 Human malaria parasite life cycle: 

The malaria parasite has a complex life cycle that requires two hosts (Figure 1.2). In 

the human host, asexual replication of the parasite occurs, while sexual reproduction 

takes place in the anopheles’ mosquito. Malaria infection starts when an infected 

female anopheles mosquito feeds on human blood and injects sporozoites into the 

blood stream. After this, the sporozoites travel quickly and reach the liver where they 

mature within the hepatocytes for nearly 14 days followed by asexual multiplication 

to form merozoites (Hansen et al., 2014).  The merozoites exit the liver through the 

rupturing of hepatic tissues and enter into the bloodstream. In the blood stream, the 

merozoites invade the red blood cells. When inside the red blood cells, the parasite 

starts the intraerythrocitic development cycle that enables it to mature from a ring stage 

parasite to trophozoites and schizonts (Delves et al., 2012). Some of the merozoites 

are transformed into male and female gametocytes that circulate in the bloodstream.  

When an infected human is bit by a second mosquito, the gametocytes travel to the 

midgut of the mosquito where sexual development takes place. Fertilization of the 

gametocytes occurs to form zygotes that then develop into ookinetes, which then 

transform into oocyst inside the mosquito’s midgut (Miller et al., 2013b).  The parasite 

is released to the salivary gland as sporozoites that cause infections in new human 

hosts. This completes the transmission cycle of the malaria parasite. The figure below 

demonstrates the malaria lifecycle. 
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Figure 1.2: Human malarial parasite life cycle of P. falciparum. 

The infected female Anopheles mosquito bites a human and inoculates sporozoite. This 

sporozoite form invade hepatocytes in liver, and develop and rupture hepatocytes to produce 

liver stage (merozoite) as an exoerythrocytic and then released into the blood stream. During 

the presence of merozoites in blood stream, they invade erythrocytes. When inside the red 

blood cells (blood stage), the parasite starts the intraerythrocitic development cycle that 

enables it to mature from a ring stage parasite to trophozoites and schizonts. The schizonts 

rupture and release merozoites which reinvade new erythrocytes. Some of the merozoites are 

transformed into male and female gametocytes that circulate in the bloodstream. In Mosquito 

stage, when an infected human is bitten by a second mosquito, the gametocytes travel to the 

midgut of the mosquito where sexual development takes place. Fertilization of the 

gametocytes occurs to form zygotes that then develop into ookinetes, which then transform 

into oocyst inside the mosquito’s midgut. Finally, sporozoites that migrate to the salivary 

glands. Figure adapted from Cowman et al., 2012 (Cowman et al., 2012). 
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1.3.2 Malaria Physiology and bioenergetics process: 

The nanomotor ATP synthase is critical in the bioenergetics process of most 

organisms. Specifically, the ATP synthase is involved in the generation of ATP in the 

mitochondria. Plasmodium parasites have only one mitochondrion. The size and 

morphology of the mitochondria vary between sexual and asexual stages of 

plasmodium parasites. During the early trophozoite and ring phases of the sexual 

stage, the mitochondrion is a discrete, small and single organelled. Prior to 

transitioning between a mature trophozoite and schizont, the mitochondrion 

transforms into an elongated, branched and wider structure. When in the schizogony 

stage, the mitochondrion is highly branched prior to the onset of cytokinesis.  When 

cytokinesis begins, the mitochondrion with branches undergoes division by fission 

into various organelles with divided apicoplasts moving into newly created merozoites 

(Fisher et al., 2014). In the sexual stage, the mitochondria of the gametocyte develop 

unique cristae. Gametocytes can have varied mitochondrial features, including 

distinctive and branched, elongated and single, or rounded and multiple (Fisher et al., 

2014). Female gametocytes have a higher number of cristate mitochondria than males 

at phases III, IV, and V. The genome of the mitochondrion is 6kb linear mitochondrial 

DNA (mtDNA) that is the smallest among eukaryotes.  Hikosaka et al., 2011 noted 

that the mitochondrial genome of the plasmodium parasite is much conversed between 

the species with over 90% similarity between plasmodium species that infect human 

beings (Hikosaka et al., 2011). The mtDNA exists as various copies with nearly 30 in 

P. falciparum. The female gamete is responsible for transmitting the mtDNA when it 

mates with the male gametocyte in the gut of the mosquito. 

The physiology of the mitochondrion of Plasmodium is complex.  The Mitochondrion 

acts as the main cellular energy source as ATP in higher eukaryotes.  The contribution 
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and the function of the TCA (Tri-carboxylic acid) cycle in the bioenergetics of the 

malaria parasite have generated debate.  In high level eukaryotes, the TCA cycle takes 

place under specific aerobic conditions through various chemical reactions for 

generating energy through the consumption of acetyl-CoA. The required enzymes for 

the TCA cycle that undergo active synthesis during the asexual phases are encoded by 

the plasmodium genome. Conversely the non-existence of a mitochondrial pyruvate 

dehydrogenase is an indication that the TCA cycle in plasmodium parasites differs 

from other eukaryotes (Foth et al., 2005). Following entry into the parasite, the glucose 

molecule undergoes metabolism into pyruvate molecules via the glycolysis pathway.  

In high level eukaryotes, the pyruvate molecule is transported into the mitochondrion 

where conversion into acetyl-CoA occurs for integration with the TCA cycle. The 

malaria parasite does not have the pyruvate dehydrogenase in its mitochondrion and 

thus it lacks the ability of generating acetyl-COA from pyruvate that undergoes 

fermentation into lactate, which yields two ATP molecules for every molecule of 

glucose that is consumed (Foth et al., 2005).  Thus, the acetyl-CoA is only generated 

from phosphoenolpyruvate in the apicoplast for synthesising amino sugars in the 

endoplasmic reticulum (Fisher et al., 2014). Plasmodium species rely on an oxygen 

acquisition system and functional respiratory chain for survival and growth.  The 

electron transport chain in the sexual and asexual stages of the P. falciparum has been 

detected(Uyemura et al., 2004). The respiratory chain of the plasmodium contains five 

dehydrogenases including glycerol-3-phosphate dehydrogenase (G3PDH), 

dihydroorotate dehydrogenase (DHODH), and malate: quinine oxidoreductase 

(MQO), type II NADH dehydrogenase (PfNDH2), and succinate: quinine 

oxidoreducate (SDH). Other components of the electron transport chain include F1F0-

ATP synthase (complex v), bc1 complex (complex III), and cytochrome x oxidase 
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(complex IV). The respiratory chain is the main source of the potential generation of 

the mitochondrial membrane that is critical to the survival of the parasite. Plasmodium 

parasites are sensitive to electron transport chains (ETC) inhibitors. 

 

1.3.3 P. falciparum sexual blood stages (gametocytes) Structure: 

Gametocytogenesis is the necessary process for the formation of gametocytes for 

transmitting plasmodium.  Past studies have indicated that all merozoites from one 

schizont can become either sexual or asexual where those merozoites committed to 

sexual differentiation to form exclusively female or male gametocytes (Ikadai et al., 

2013). After the P. falciparum is committed to gametocytogenesis, it starts the pre-

stage 1 development. Particularly, sexual schizogony occurs in the committed parasite 

to produce sexually committed merozoites.  When these merozoites are released into 

the red blood cell of the host, they end up invading erythrocytes that lead to a sexually 

committed rings being formed. In a period of between 24 and 30 h, the committed ring 

parasites undergo differentiation to form a molecularly and morphologically 

recognised phase 1 gametocyte (Silvestrini et al., 2012). After the formation of the 

phase 1 gametocyte, post-phase I development follows where the gametocyte 

undergoes further maturation to form a mature male or female gametocyte. 

Studies have been conducted to examine the biology of gametocytogenesis in terms 

of molecular basis for this process.  Gametocytogenesis is triggered by both host and 

environmental factors that promote transcriptional changes through epigenetic 

changes in the blood-stage parasite (Guttery et al., 2015). Commitment to sexual 

development is influenced by AP2 genes (Painter et al., 2011, Hughes et al., 2010). 

ApiAP2 proteins have been shown to regulate various processes the cycle of a parasite 

including development inside hepatocytes (Iwanaga et al., 2012), maturation of 
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sporozoite (Yuda et al., 2010), and formation of ookinete (Yuda et al., 2009). AP2-G, 

a transcription factor has been demonstrated in studies of P. falciparum and P.berghei 

to activate a transcriptional flow that initiates gametocytogenesis and sexual 

commitment (Kafsack et al., 2014, Sinha et al., 2014). Utilising particular strains with 

loss of gametocyte production, a single mutation found in the ap2-g locus has been 

identified where deleting or disrupting ap2-g stopped sexual conversion and ap2-g 

expression in schizonts was associated with the up-regulation of various genes 

involved in the development of gametocytes (Sinha et al., 2014, Kafsack et al., 2014).  

Such studies show that commitment to gametocytes is regulated by AP2-G.  Another 

gene responsible for sexual commitment in P. falciparum    is the ATP-binding cassette 

transporter ABCG2 (Tran et al., 2014). In the study, disrupting the gene led to a 

threefold increase in the production of gametocyte in comparison with parental wild 

type.  

A transcriptional analysis of gametocyte parasite lines with defects demonstrated that 

the gametocyte development 1(pfgdv1) gene encoded a nuclear peri-protein necessary 

for sexual development (Eksi et al., 2012).  Furthermore, the study showed that early 

genes in gametocytogenesis specifically pfge was considerably down-regulated 

without the presence of pfgdv1 (Eksi et al., 2012), which shows that this protein is 

important in sexual commitment during gametocytogenesis. The application of 

transposon-mediated mutagenesis has been critical in screening for non-producers of 

gametocytes to establish the genes necessary for the development of the gametocyte 

(Ikadai et al., 2013). This approach led to the identification of 16 genes most of which 

were not implicated in the gametocytogenesis process in the past.  Some of the non-

producers of gametocytes lacked the ability to form initial stage gametocytes, while 

others had the ability to do this but could not achieve this in later stages of gametocyte 
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development. The complementation of 5 of the 16 genes, including pfhip (P. 

falciparum interacting protein; PF3D7_0527500/PFE1370w), pfmaf1, pfgeco 

(gametocyte erythrocyte cytosolic protein PF3D7_1253000/PFL2550w), pfsf3a3 

(splicing factor 3A subunit 3; PF3D7_0924700/PFI1215w), and PF3D7-

0532600/PFE1615c indicated that all but pfgeco restored the ability to form 

gametocytes (Josling and Llinas, 2015). The implication of this study is that these 

genes play a particular function in some phases of the development of gametocytes. 

 

1.3.4 P. falciparum gametocytes morphology development: 

The development of the gametocytes of the P. falciparum occurs in five phases as 

shown in Figure 1.3.  These phases focus on the changes in appearance occurring after 

a red blood cell has been invaded by a sexually committed merozoite. After this, the 

gametocyte undergoes growth and elongation to increasingly occupy most of the red 

cell of the host. In phase 1, the gametocytes cannot be easily differentiated from 

asexual trophozoites. However, the gametocytes have a roundish shape with a pointed 

end. A unique pigment pattern might also be visible. Between phases II and V, the 

gametocytes can be easily differentiated in Giemsa-Stained blood films.  In phase II, 

subpellicular microtubules start to form with few microtubules that give gametocytes 

pointed ends and elongated shape (Baker, 2010). In phase III, further elongation occurs 

in the gametocyte with ends becoming rounded.  In female gametocytes, Golgi bodies 

and mitochondria proliferate. Beginning from phase IV, sexual dimorphism is clear 

where the gametocyte has an elongated shape with pointed ends. While the female 

gametocyte has a comparatively small nucleus and concentrated pigment pattern, the 

male gametocyte has a larger nucleus and more diffuse pigment pattern (Baker, 2010).  

In male gametocytes, the occurrence of electron dense osmiophilic bodies at the 
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cytoplasm’s periphery is significant lower. Female gametocytes have higher densities 

or ribosomes than male gametocytes that accounts for the former’s blue appearance 

and latter’s pink appearance in Giemsa stained-blood films (Baker, 2010). In phase V, 

the gametocytes attain maturity and might be crescent-shaped and have rounded ends. 

 

 

Figure 1.3: The gametocyte development stages (I-V) in P. falciparum. 

Adapted from (Josling and Llinas, 2015). 

 

1.4 Gametocytes metabolism: 

Gametocytes rely on glycolysis and glucose uptake for ATP synthesis and survival 

(MacRae et al., 2013). Using the glycolytic pathway, gametocytes are able to convert 

glucose to lactate.  All the enzymes involved in the glycolytic pathway are encoded 

by the plasmodium genome (Bozdech et al., 2003). Trends towards a decrease in gene 

expression responsible for Hb catabolism, protein biosynthesis, and glycolysis have 

been observed in the late gametocyte development stages (Baker, 2010). TCA cycle 

also plays an important role in gametocyte metabolism. MacRae et al. (2013) 

examined the role of TCA cycle in gametocyte development and observed that 
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gametocytes catabolise the host’s glutamine and glucose in mitochondria via the TCA 

cycle.  The carbon skeletons generated from glucose drive this flux. The authors 

concluded that gametocytes demonstrated an increased level of TCA catabolism of 

pyruvate, glycolytic flux, and glucose utilisation (MacRae et al., 2013). It has been 

suggested that the switch to a more efficient energy generation method via the TCA 

cycle by gametocytes might be necessary for sustaining the development of 

gametocytes under hypoglycaemic conditions that are common among patients 

suffering from severe malaria (Daily et al., 2007). Furthermore, the increased 

utilisation of the TCA cycle in gametocytes might be an indication of the increased 

energy requirements in female gametes that are preparing for the stages after 

fertilisation when accessing glucose in the vector might be restricted (Talman et al., 

2004). Figure 1.4 below demonstrates the TCA cycle in malaria metabolism. 

 

Figure 1.4: The demonstration of TCA cycle in sexual gametocytes of malaria parasite 

P. falciparum. 

Adapted from (MacRae et al., 2013). 
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In addition, gametocytes need fatty acids during their development.  Plasmodium has 

the ability of generating some fatty acids de novo in its apicoplast (Lamour et al., 

2014); however, most of the parasite scavenges most of the fatty acids from the host 

serum (Mi-ichi et al., 2006). Transcriptomic analysis demonstrates the upregulation of 

the five of the six categories of the type II fatty acid pathway during the development 

of gametocytes (Young et al., 2005). It has also been demonstrated that the lipid 

transporter gABC2 is critical in neutral lipid accumulation within the parasite and this 

is expressed primarily in female gametocytes (Tran et al., 2014). Thus, this suggests 

that lipid metabolism is vital in gametocyte development.   
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1.5 Malaria Chemotherapy: 

In the absence of an effective malaria vaccine, antimalarial chemotherapy has been the 

sole treatment solution against malaria for decades. Malaria treatment basically 

involves parasite killing in the blood stream (treatment) and liver (radical cure and/or 

prophylaxis) while giving supportive treatment to human host (Winstanley, 2000). 

Five main groups of antimalarial drugs are available with regards to their biological 

activity and chemical structure (Table 1.1) (Antoine, 2012). These groups include the 

following: Endo peroxide compounds (artemisinin-type), antifolates, quinoline-

containing, antibacterial agents and (5) hydroxynaphthoquinones. All of these 

compounds have different mechanism of action within different subcellular organelles 

which interfere with their metabolic pathways processes that lead finally to parasite 

death (Table 1.1) (Greenwood et al., 2008, Biagini et al., 2003).    

Treatment failure has been demonstrated to all antimalarial drugs, the underlying 

causes include the generation of parasite drug resistance, and non-optimal 

pharmacokinetic/ pharmacodynamics (White, 2004). The usage of antimalarial drugs 

combinations between two or three compounds with different target and different 

modes of action have been introduced in an attempt to reduce the emergence of 

resistance and improve the drug action and efficacy (Table 1.1) (Kremsner and 

Krishna, 2004, White, 2004).
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Table 1.1: Antimalarial drug classes, their target locations, parasite stages and their possible combinations. 

Drug grups 
Target location Parasite stage 

Combination 
C M DV A BS LS GS HS SS 

Quinoline-Containing Drugs 

Quinine   ●  ●  ●   + Sulfadoxine-pyrimethamine (SP); + Tetracycline; + Clindamycin; + Doxycycline 

CQ   ●  ●  ●   + Sulfadoxine-pyrimethamine (SP) 

AQ   ●  ●  ●   + Sulfadoxine-pyrimethamine (SP) 

PPQ   ●  ●     + DHA 

PMQ   ●   ● ● ●   

TF   ●   ● ●    

Meflequine (MQ)   ●  ●  ●   + Sulfadoxine-pyrimethamine (Fansimef®) 

Halofantrine   ●  ●      

Lumefantrine   ●  ●     + Artemether (Coartem®, Riamet®) 

Antifolates 

Pyrimethamine ●    ● ●   ● + Sulfadoxine (SP) 

Sulfadoxine ●    ●     + Pyrimethamine (SP) 

Proguanil (PG) ●    ● ●   ● + ATQ (Malarone®) 

ChloroPG ●    ●     + Dapsone + Artesunate (Dacart®); + Dapsone (LapDap®) 

Dapsone ●    ●     + Artesunate + ChloroPG (Dacart®); + ChloroPG (LapDap®) 

Hydroxynapthaquinones 

ATQ  ●   ●    ● + PG (Malarone®) 

Antibiotics 

Doxycycline    ● ●     + Quinine 

Clindamycin    ● ●     + Quinine 

Tetracycline    ● ● ●    + Quinine 

Endoperoxide compounds 

Artemisinin ● ●? ●  ●  ●?    

Artemether ● ●? ●  ●  ●?   + Lumefantrine (Coartem®, Riamet®) 

Artesunate ● ●? ●  ●  ●?   + Dapsone + ChloroPG (Dacart®); + amadioquine (ASAQ); + MQ (ASMQ); + Sulfadoxine-pyrimethamine (SP) 

DHA ● ●? ●  ●  ●?   + PPQ 

 

Abbreviations: C, cytosol; M, mitochondrion; DV, digestive vacuole; A, apicoplast; BS, blood stage; LS, liver stage; GS, gametocytes stage; HS, hypnozoites 

stage and SS, sporozoites stage. (Adapted from Antoine, 2013). 
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1.5.1 Antimalarial drugs: 

Table 1.2 and Table 1.3 summarise the antimalarial drugs used against transmission 

stages of plasmodium. 

1.5.1.1 Endoproxide Compounds: 

Artemisinin (ART) is derived from the Artemisia annua plant (Chinese wormwood) 

and its active compounds called Qinghaosu which has been used as herbal cure in 

traditional Chinese medicine for fever treatment (White, 2008b). ART has a high 

potency and considered a safe drug with a low toxicity against all types of malaria 

parasites even the parasite strains which are resistance to conventional antimalarial 

drugs (Li et al., 1994, Krishna et al., 2008). Semi-synthetic ART, e.g. DHA, artesunate 

and artemether, are first generation derivatives that have been synthesized (Figure 1.5) 

with improved solubility and increased drug efficacy leading to high demand in 

cultivation to obtain more extract of Artemisia annua plant (O'Neill and Posner, 2004). 

These derivatives were used previously as monotherapy treatments and then were used 

in combination with other antimalarial drugs, known as Artemisinin-based 

combination therapy (ACTs) (White, 2008b).   

Endoproxide compounds are deemed one of the most important antimalarial drugs. It 

is considered to have originated from the ancient Chinese curative techniques 

(Butterworth et al., 2013). The rationality and the drug design are considered to be 

centred on artemisinin (Duez et al., 2015). This is due to the fact that the drug’s 

mechanism of action remains somewhat unresolved (O'Neill et al., 2010b, Mercer et 

al., 2011). The antimalarial drug has a specific way of working where it creates an 

intrusion with the catabolic pathway related to the plasmodial Hb. Moreover, it also 

creates a big hindrance towards hemepolymerization (Butterworth et al., 2013). The 
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propsed mode of action of this class in asexual stage of P. falciparum is shown in 

Figure 1.6 (Tilley et al., 2016). The antimalarial drug ensures there is complete and 

effective inhibition of the multiplication of the plasmodium pathogens (Duez et al., 

2015). Here, drug does not allow the sexual stages concerning the pathogen 

multiplication to take place, a condition that has helped to control the spread of 

malaria. Lucantoni et al. (2015) assert that the drug helps to mitigate the overall 

gametocyte carriage, thus, helping to reduce the overall spread of malaria (Lucantoni 

et al., 2015). 

 

Figure 1.5: Artemisinin and its semisynthetic derivatives chemical structures. 
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Figure 1.6: Proposed of cell-death and proceedings of cell survival after treatment with 

antimalarial artemisinins in P. falciparum. 

Antimalarial artemisinins are activated via a reduced iron source where mainly heme released 

from Hb digestion as well as biosynthesis. The nucleophile-harboring cellular components 

interacts with the activated drug and resulting to cellular damage and eventually cell death. P. 

falciparum are assumed to mount a stress response that engages the unfolded protein response 

(UPR), including the ubiquitin (proteasome system).  It is proposed that the chance of K13 

mutants stress response is increased, leading to parasite survival. The stress response is 

proposed to decrease in the presence proteasome inhibitors and consequently promoting 

parasite death (Tilley et al., 2016). 

 

1.5.1.2 Antimalarial quinoline-based class:  

Quinoline-based antimalarial drugs consist of roughly the common antimalarial drug 

classes. Chemically, quinolines are aromatic nitrogen compounds characterised by a 

central solid-ring structure, basically this ring forms benzene merged to pyridine at 

two adjacent carbon atoms (Figure 1.7, A). Nevertheless, the core molecule of 

quinoline can link to different functional groups that characterised by solubility 

improvement and drug efficacy. The quinolin-based drugs can be classified them into 

three different chemical classes as follows: the first class is 4-aminoquinolines such 

as CQ, AQ, PPQ. They are characterised by weak bases, deprotonated, and hydrophilic 
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at neutral pH. Second class is aryl-amino alcohols such as quinine, MQ, lumefantrine. 

This class also characterised by weak bases and lipid soluble at pH 7.0 (Olliaro, 2001, 

O’Neill et al., 2012). Finally, 8-aminoquinoline include the, PMQ (Figure 1.7). 

 

Figure 1.7: Chemical strucutrs of quinolone-based antimalarial drugs. 

(A) quinoline (core structure). (B) Aryl-amino alcohols drugs: quinine, mefloquine and 

lumifantrine. (C) 4-aminoquinolines drugs: chloroquine, amodiaquine and bis-quinoline 

piperaquine. (D) 8-aminoquinoline drug: primaqine and tafenoquine. 

 

Historically, the treatment value of cinchona (fever bark tree) was recognised before 

understanding the nature of malaria parasite (Achan et al., 2011). In 19th century, the 

active ingredient, quinine, was successfully isolated and synthesised to solve the main 

obstacle related to limit action of its supplies (Seeman, 2007, Foley and Tilley, 1998, 

Woodward and Doering, 1944). Understanding the quinine chemical structure has led 

to the identification quinoline as the crucial pharmacophore which resulted to the 

synthesis and development of quinoline class as seen in Figure 1.7, A.   

It is proper with drug of choice in malaria disease prophylaxis and treatment for many 

years, 4-aminoquinolines CQ (Muller and Hyde, 2010). The achievement of this drug 
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relies on its clinical activity, economic-effective, limited toxicity and simplicity to use 

and synthesise.  (Hyde, 2007, Muller and Hyde, 2010, Biagini et al., 2003). CQ has 

saved millions of peoples since it was introduced in 1940s, however its use has 

restricted to some areas due to reduction of its efficacy in the last 20 years, mainly 

because of the development and appearance of widespread of resistance in many 

regions where P. falciparum is ubiquitous (Muller and Hyde, 2010, Wellems and 

Plowe, 2001, O’Neill et al., 2012, Biagini et al., 2003, Payne, 1987). Thus, the 

essential need for other synthetic 4-aminoquinoline became the priority. This resulted 

in development and synthesised AQ and PPQ which have demonstrated activity 

against P. falciparum CQ-resistant strains (O’Neill et al., 2012, O'Neill et al., 1998, 

Biagini et al., 2003). Moreover, as a response to drug resistance, research has led to 

synthesis new generation of quinine called aryl-amino alcohols, including quinoline 

methanol: MQ, lumefantrine and halofantrine. In southeast Asia, for example, quinine 

is used in combination with tetracycline or doxycycline (antibiotics) as a results of 

emergence of quinine resistance in that regions (Ejaz et al., 2007).  

8-Aminoquinolines including PMQ have been used to be effective against malaria 

hypnozoites (liver stages) and for prophylaxis. In most cases, such condition is 

manifested in the liver, thus, becoming the main target whenever the antimalarial drug 

is used (Abdul-Ghani and Beier, 2014). However, it is worth noting the drug cannot 

be used by patients suffering from the G6PD deficiency (Graves et al., 2015b). This is 

due to the fact that 8-Aminoquinoline has very great potential of making the patients 

experience haemolysis, which can be fatal (Abdul-Ghani and Beier, 2014). 8-

Aminoquinolines are also effective at blocking malaria transmission of the parasite 

from an already infected person to the final vector, mosquito (Graves et al., 2015b). 
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The actual mechanism of action of quinoline-based compounds has not been 

completely explained but it is accepted that a vital step in its mode of action, with the 

exception of PMQ (used primarily to act against hypnozoite and sexual stages 

infection), is a binding of bi-product of Hb digestion in parasite food vacuole 

(ferriprotoporphyrin IX, or heme) to drug, although other targets may also be involved 

in some cases (Fitch, 2004, Muller and Hyde, 2010, Bray et al., 2005b, O’Neill et al., 

2012, Slater and Cerami, 1992). The unclear mode of action of this class of drug as 

well as the lack of sufficient knowledge of parasite physiology and biochemistry leave 

the mechanism of CQ resistance still ambiguous. 

Many evidence to support the essential role of a heme-dependent mode of action for 

both 4-aminoquinoline and aryl-amino alcohol (Mungthin et al., 1998). The ability of 

CQ to accumulate in the parasite’s food vacuole as a weak base allows it to raise the 

osmolality of the vesicles and pH, thus leading to swelling and membrane disruption 

(Krogstad and Schlesinger, 1987). CQ converts to deprotonate once it accumulates 

inside the parasite’s digestive vacuole and trapped in it (Olliaro, 2001). Therefore, the 

putative mode of action of CQ is to block the polymarization of heme (toxic) generated 

from Hb digestion into hemozoin, and thereafter monomeric heme accumulates to 

levels in the digestive vacuole that kill the parasite (Slater and Cerami, 1992). 

1.5.1.3 Antifolate:  

Anti-folate drugs are a category of chemotherapeutic agents utilised in treating 

infections caused by bacteria and protozoa such as malaria. Antimalarial anti-folate 

drugs include dapsone, chlorocycloguanil, pyrimethamine and sulphadoxine.  Folate 

derivatives are critical for the replication of DNA and protein synthesis and, hence, 

cell survival (Heinberg and Kirkman, 2015). In the treatment of malaria, antifolates 

work by disrupting the balance of metabolites in the folate pathway (Yuthavong, 
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2014). Malaria parasites acquire folate cofactors by scavenging them from the host or 

through de novo synthesis (Heinberg and Kirkman, 2015). Human beings depend only 

on diet as the external supply of folate cofactors as these are not produced by their 

bodies. Medications that target the folate pathway are vital in fighting against 

pathogens. The action of antifolates involves inhibiting the main enzymes in the folate 

cofactor synthesis as well as in the phases after the cofactors have been salvaged from 

an exogenous source (Yuthavong, 2014). The main enzymes targeted by antifolate 

drugs include dihydrofolate synthase (DHFS) and dihydropteroate synthase (DHPS) 

(Muller and Hyde, 2013) as seen in Figure 1.8. Therefore, anti-folates mechanism of 

action is characterised by the inhibition of DNA synthesis. 

Antilofates are considered as very effective antimalarial drugs, which create an 

interference with the metabolism of the folate (Beavogui et al., 2010). According to 

Chatterjee (2013), some of the drugs classified under this category include the 

therapeutic and causal prophylactic. These drugs can have some synergetic properties 

when used in combination. However, over the recent past, the antifolate drugs have 

proved to be highly susceptible towards some malarial causing parasites and they have 

become ineffective (Beavogui et al., 2010). The drug is very effective in creating 

resistance towards the transmission of the malarial parasites (Mharakurwa et al., 

2011). For instance, the ingestion of the drug is considered highly effective in reducing 

the rate of mutation of the ‘Plasmodium falciparum dihydrofolatereductase (DHFR) 

(Chatterjee, 2013). Therefore, this reduces the rate of the transmission of the malaria 

parasites. Apart from that, the antifolates have also been shown to be highly effective 

in trying to mitigate carriage of the gametocytes, thus, reducing the spread of malaria 

disease (Mharakurwa et al., 2011).  
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Figure 1.8: Chemical structure of antifolate drugs and their mode of action. 

The biochemical folate pathway in P. falciparum and site targeting the antifolate drugs. 

Abbreviations: DHF, dihydrofolate; DHP, dihydropteroate; PABA, para-Aminobenzoic acid; 

THF, tetrahydrofolate; DHFR, dihydrofolate reductase; DHPS, dihydropteroate synthase; 

GTP, guanosine triphosphate; mTHF, methyltetrahydrofolate; dUMP, deoxy-urinidine 

monophosphate; HMP-PP, hydroxymethyl-pteridine-PP; dTMP, thymidine monophosphate. 

 

1.5.1.4 ATQ (Hydroxynaphthoquinone): 

ATQ is a hydroxynaphthoquinone (2-[trans-4-(4’-chlorophenyl)cyclohexyl]-3 

hydroxy-1.4-napthoquinone) developed 20 years ago to selectively compete for 

coenzyme ubiquinone in electron transport chain of P. falciparum mitochondria 

(Nixon et al., 2013). It shows activity against malaria parasites (Hudson et al., 1991) 

and interestingly, it is more active against parasite mitochondria (1000 fold) than 

mammalian mitochondria (Fry and Pudney, 1992), specifically targeting the binding 

site of ubiquinone oxidation in bc1 complex as seen in Figure 1.9 (Syafruddin et al., 

1999, Birth et al., 2014).  
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Throughout parasite blood stage, a vital function of malarial mitochondrion is to 

deliver ortate for the purpose of pyrimidine biosynthesis through dihydroorotate 

dehydrogenase (DHODH) activity. The cytochrome bc1 complex, however, is 

inhibited by ATQ, leading to interruption of metabolites concentrations in pyrimidine 

biosynthesis (Seymour et al., 1997, Hammond et al., 1985). Transgenic parasites 

ubiquinone-independent yeast DHODH proved the resistant phenotype of ATQ 

(Painter et al., 2007). ATQ can kill the intra-erythrocytic parasiters stage relatively 

slower than other antimalarial drugs including CQ and artemisinin (Biagini et al., 

2012, White, 1997, Sanz et al., 2012). This leads to possible acting of this drug and 

other mitochondrial drugs only on late trophozoite with no action on early ring 

parasites (Biagini et al., 2012). Remarkably, ATQ has shown activity against liver 

stage, and as a result used as prophylactic treatment, even though no activity response 

has been shown against relapsing malaria Plasmonium vivax hypnozoites (Lalloo and 

Hill, 2008, Dembele et al., 2011). 

The combination of ATQ and PG (Malarone®) exhibited synergistic activity in 

clinical work and in-vitro (Looareesuwan et al., 1999a, Canfield et al., 1995, 

Looareesuwan et al., 1996). This combination is used largely as chemoprophylaxis for 

people used to travel endemic regions rather than for patients (Kessl et al., 2007, 

Looareesuwan et al., 1999b, Looareesuwan et al., 1999a). 
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Figure 1.9: Diagram of putative ATQ mechanism of action.  

(A) Chemical structure of ATQ and ubiquinone. (B) illustrates cytochrome bc1 complex 

reaction pathway and its inhibition by ATQ. Abbreviations: ATQ, ATQ; Q, ubiquinone; QH2, 

ubiquinol; bL, heme bL binding site; bH, heme bH binding site; FeS, iron-sulfur cluster; cyt c, 

cytochrome c; c1, cytochrome c binding site. (Adapted from Antoine, 2013). 

 

 

1.5.1.5 Methylene blue: 

MB is not a registered antimalarial drug but its antimalarial properties have long been 

known and the drug and related analogues are currently in clinical development.  

Methylene is known to kill asexual Plasmodium parasites and more recently it has 

been shown to kill sexual gametocyte stages (Pascual et al., 2011). Although the mode 

of action of MB is not completely understood, it is thought to inhibit the antioxidant 

glutathione reductase activity (Buchholz et al., 2008, Adjalley et al., 2011a). However, 

MB shows significant activity against Plasmodium parasites in which the antioxidant 

enzyme is missing (Pastrana-Mena et al., 2010).  

According to Delves et al. (2013), methylene can be used to suppress the 

multiplication of the malaria parasites by making sure they lack sufficient oxygen 



 

 

 

 

32 

 

necessary for their multiplication. This is due to the fact that methylene can be used to 

regulate the level of methemoglobin level in the patient’s blood (Delves et al., 2013a). 

However, one has to be careful in order to ensure the normal level of methemoglobin 

is maintained in the long run. Methylene is used to affect the production of the 

gametocytes in vivo. Thus, the move helps to reduce the increment in the rate of the 

transmission of the disease causing agents (Pascual et al., 2011). This is due to the fact 

that methylene is considered to be an inhibiting factor towards the proper biological 

functioning of the parasites, which, in turn, interferes with their multiplication 

(Pascual et al., 2011).   
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Table 1.2: Antimalarial drugs that have been described to exert limited improvement on gametocytes clearance/mosquito infectivity. 
Drug  Effect on gametocytes  Gametocyte infectivity to mosquitoes Reference 

Quinine Limited gametocytocidal effect on young gametocytes  Significant decline in oocyst numbers in A. dirus only at relatively high 

concentrations (over 600ng/ml) 

(Chotivanich et al., 2006) 

CQ  Partially inhibits gametocytogenesis 

 

High likelihood (by 4.4 times) of gametocytemia in drug resistant 

more than drug-sensitive parasites after treatment  

No noticeable impact on sporogony in A. stephensi mosquitoes 

 

Improved infectivity to A. arabiensis mosquitoes 

(Chutmongkonkul et al., 1992) 

(Hogh et al., 1998) 

Sulfadoxine-

pyrimethamine 

 

(SP)  

Peak in gametocytemia 12 days after a single dose treatment 

  

Peak in gametocytemia by day 7 following a single dose treatment 

 

Peak in gametocytemia 7 days after a single dose treatment   

 

Gametocytogenesis in mutant NF-135 strain but gametocytocidal 

impact on wild-type NF-54 strain  

No infectivity to A. arabiensis mosquitoes 

 

Infectivity of gametocytes from parasites with resistance-related 

mutations to A. albiminus mosquitoes 

Low infectivity to wild A. gambiae mosquitoes 

 

Reduced maturity of gametocyte and infectivity to A. stephensi 

mosquitoes  

(Govere et al., 2003) 

 

(Mendez et al., 2007) 

 

(Beavogui et al., 2010)  

 

(Kone et al., 2010) 

Lumefantrine  Reduced gametocytocidal activity on late-stage gametocytes 

 

Dose-dependent inhibition on early and late stage gametocyte 

development in vitro 

Noticeable inhibition of gametocyte infectivity to mosquitoes and 

decreases oocyst numbers  

 Dose-dependent reduction in oocyst numbers in A. stephensi 

(Adjalley et al., 2011b) 

 

(van Pelt-Koops et al., 2012) 

Halofantrine  Partially inhibits gametocytogenesis  Lack of effect on sporogonic development in A. stephensi (Chutmongkonkul et al., 1992) 

Pyronaridine Gametocytocidal activity restricted to stage I to II gametocytes Noticeably inhibits gametocyte infectivity to mosquitoes and reduces 

oocyst numbers 

(Adjalley et al., 2011b) 

PPQ Gametocytocidal activity restricted to stages I to II gametocytes Lack of effect on the decrease of oocyst numbers in mosquitoes or 

blocking transmission  

(Adjalley et al., 2011b) 

Monodesethyl-

AQ 

Rapid gametocytocidal activity limited to stages I to II gametocytes Lack of effect on the decrease in oocyst numbers in mosquitoes or 

blocking transmission  

(Adjalley et al., 2011b) 
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Table 1.3: Antimalarial drugs that have been described to exert significant reductions in gametocytes clearance/mosquito infectivity. 
Drug  Effect on gametocytes  Gametocyte infectivity to mosquitoes Reference  

Artemisinin  Significantly reduces gametocyte density between day 7 and 14 after 

treatment  

 

Reduces likelihood of gametocyte carriage 4 weeks after treatment on a 

six-dose regimen 

Reduces infectivity to A. dirus mosquitoes between 7 and 14 after 

treatment  

 

Decreases infectivity of gametocyte carriers of A. gambiae 

mosquitoes on day 7 

(Chen et al., 1994) 

 

 

(Sutherland et al., 2005b) 

Artemether-

lumefantrine 

artesunate 

 Gametocyte carriage for a mean period of 5.5 days Reduces infectivity to A. gambiae on day 7 following treatment 

 

Reduces infectivity to A. dirus, oocyst numbers, and infection rate  

(Sawa et al., 2013) 

 

(Chotivanich et al., 2006) 

DHA  Partially active against mature gametocytes Reduces oocyst numbers  (Adjalley et al., 2011b) 

DHA-pyranoridine Gametocyte carriage for a period of 15.3 days Higher infectivity(two-fold) to A. gambiae on day 7 following 

treatment in comparison with artemether-lumefantrine 

(Sawa et al., 2013) 

PMQ  Eliminates gametocytemia after a single-dose treatment  

 

Active against all gametocytes stages but marked against stages (I-IV) 

Prevents infection to A. gambiae mosquitoes 

Reduces oocyst numbers in A. dirus 

(Burgess and Bray, 1961) 

(Chotivanich et al., 2006) 

(Adjalley et al., 2011b) 

TF  Active against all gametocyte stages but marked against stages I to IV  (Adjalley et al., 2011b) 
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1.6 Combination therapy of malaria treatment: 

1.6.1 The non-Artemisinin-based combination therapy: 

WHO recommends the utilisation of non-artemisinin based combination therapy 

where artemisinin-based combination therapy is unavailable and where the component 

drugs are well tolerated and efficacious. Non-ACT drugs that have been used include 

sulphadoxine-pyrimethamine + AQ (SP +AQ). Studies have evaluated the efficacy of 

non-ACT drugs in the treatment of uncomplicated malaria. In a study in Mali, it was 

found that SP +AQ was more efficacious than SP alone in treatment uncomplicated 

falciparum malaria (Maiga et al., 2015). Similar results were found in a study in 

Malawi (Bell et al., 2008). In Equatorial Guinea, the efficacy of SP + AQ was found 

to be 96.5% compared to 97.5% for artesunate + sulphadoxine-pyrimethamine (Charle 

et al., 2009).  However, there is increased parasite resistance to sulphadoxine and 

pyrimethamine (SP). Despite this, SP combinations are still utilised in endemic areas 

as part of intermittent preventive treatment in pregnant women and children or 

seasonal chemoprophylaxis in children (Heinberg and Kirkman, 2015). 

1.6.2 The Artemisinin-based Combination therapy: 

The World Health Organisation recommends artemisinin-based combination therapy 

as the first line treatment for severe and uncomplicated falciparum malaria. To 

enhance acceptability and adherence, ACTs are formulated in fixed dose combinations 

(Visser et al., 2014). The artesunate derivative in combination treatments are active 

against all the phases of the asexual malaria parasite and result in considerably shorter 

parasite clearance time than other antimalarials (Visser et al., 2014). Furthermore, they 

demonstrate effects against gametocytes and thus minimise the risk of the perpetuation 

of the parasite’s lifecycle in patients after treatment, which is vital in optimising the 
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control of malaria in endemic regions (Douglas et al., 2013). ACTs are administered 

over a period of 3 days. The rationale is that the administration of two blood 

schizontocidal drugs with varied targets and mechanisms of action is highly effective 

than using only a single drug.  Thus, in the pre- existence of polymorphisms that confer 

resistance or the emergence of de novo mutations to one of the medications, the 

resistant parasite is killed by the other drug that is still effective (Visser et al., 2014). 

Furthermore, artemisinin derivates are administered in combination due to their short 

half-life. Thus, recrudescence might occur if administered as a single therapy for a 

short time. The current ACTs for malaria include diydroartemisinin-PPQ, artemether-

lumefantrine, artesunate-AQ, and artesunate-MQ, and artesunate-sulfadoxine-

pyrimethamine.  

Various studies have evaluated the efficacy of artemisinin-based combination 

therapies. Smithuis et al. (2010) performed a randomised trial that compared the 

effectiveness of the four ACTs and loose tablet combination of MQ and artesunate, 

and assessed the addition of a single dose of PMQ. The results indicated that 

recrudescent P. falciparum    infections were found in 14 patients on artesunate-AQ. 

This rate was significantly higher than that of DHA-PPQ, loose-artesunate-MQ, fixed 

dose artesunate-MQ, and artemether-lumefantrine where recrudescence was found in 

only two patients for each drug combination. P. falciparum    gametocyte carriage was 

substantially reduced after a single dose of PMQ (0.75mg/kg) was added. The 

researchers concluded that artesunate-AQ ought not to be utilised in Myanmar due to 

the effectiveness of other ACTs. Artesunate-MQ offered the greatest malaria 

suppression after treatment. Furthermore, adding a single dose of PMQ significantly 

reduces the potential for malaria transmission (Smithuis et al., 2010a). 
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Yeka et al. (2016) examined the effectiveness of artemether-lumefantrine versus 

artesunate-AQ in treating uncomplicated malaria in Uganda. The results demonstrated 

that the risk of recurrent parasitemia was lower in the artesunate-AQ group than in the 

artemether-lumefantrine cohort. Recrudescence occurred following treatment with 

artemether-lumefantrine. The researchers concluded that artemether-lumefantrine 

treatment is followed by more recurrences than treatment with artesunate-AQ (Yeka 

et al., 2016). In a related randomised study, Ndounga et al. (2015) compared the 

efficacy of artemether-lumefantrine versus artesunate-AQ in treating acute 

uncomplicated malaria among Congolese children aged below 10 years. The efficacy 

of the drugs expressed as percentage of adequate parasitological and clinical response 

was 96.4% for artemether –lumefantrine and 97% for artesunate-AQ. In both cohorts, 

the adverse events included diarrhoea, abdominal pain, vomiting, dizziness, headache, 

jaundice, and nausea. The frequency of adverse events was higher in the cohort on 

artesunate-AQ than in the artemether-lumefantrine group. It was concluded that these 

ACTs were effective in treating malaria among children (Ndounga et al., 2015). 

Gbotosho et al. (2011) evaluated the efficacy of artemether-lumefantrine and 

artesunate-AQ during the 5 years of adoption as the initial line of treatment for malaria 

in Nigeria (Gbotosho et al., 2011). The results showed that in comparison with 

artemether-lumefantrine, AQ-artesunate led to a significant reduction in the number 

of children with parasitemia and fever 1 day following treatment.  The number of 

children with parasitemia on day 2 and gametocytemia on presentation and carriage 

reduced considerably over the years.  The overall efficacy of the drugs was 96.5% and 

it did not change over 5 years. The researchers concluded that artemether-lumefantrine 

and artesunate-AQ were efficacious treatment for malaria 5 years after being adopted 

in Nigeria. In a related study, Oguche et al. (2014) examined the efficacy of artesunate-
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AQ and artemether-lumefantrine in a sample of 747 children aged below five years 

old (Oguche et al., 2014). The results indicated that the number of children with 

parasitemia 1 day following treatment was significantly lower in artesunate-AQ in 

comparison with artemether-lumefantrine.  However, a similarity in parasite clearance 

time was observed in both treatments. The overall efficacy of both treatment regimens 

was 96.3%. The parasitological cure rates on the 28th day were 98.3% for artesunate-

AQ and 96.9% for artemether-lumefantrine, suggesting that both treatments are 

efficacious in treating uncomplicated malaria in children in young. 

Although studies demonstrate the efficacy of ACTs in treating malaria, the malaria 

parasite has developed resistance to these drugs. P. falciparum parasite with lowered 

in-vivo susceptibility to derivatives of artermisinin was found in western Cambodia 

(Noedl et al., 2008, Dondorp et al., 2009). This is a threat to the control and the 

elimination of malaria across the globe. Artemisinin resistance involves slow parasite 

clearance (Phyo et al., 2012). Clearance of P. falciparum    is attained in 2 days in a 

majority of patients (95%) (Phyo et al., 2012). However, artemisinin resistance 

infection is still positive on the slide for 3 or more days where the failure of treatment 

is more frequent in such infections following artemisinin-based combination treatment 

in Thailand (Carrara et al., 2013) and Cambodia (Rogers et al., 2009, Denis et al., 

2006, Saunders et al., 2014).  The main causal determinant of artemisinin resistance 

in Southeast Asia has been identified as mutations that transform the main aminoacid 

sequence in the propeller region of the kelch motif containing gene called K13, which 

acts via upregulation of unfolded protein response pathways (Tun et al., 2015).   

Studies have documented several K-13 propeller mutations in southeast Asia being 

linked to delays in parasite clearance following treatment with artemisinin (Ariey et 

al., 2014, Ashley et al., 2014a, Thriemer et al., 2014, Takala-Harrison et al., 2015) and 
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lowered in-vitro responses. Studies have yet to identify frequently occurring mutations 

in the propeller region linked to normal parasite clearance rates (Ariey et al., 2014, 

Ashley et al., 2014a).  Evidence indicates that excluding arteminisin resistance areas, 

K13 propeller mutations are not present at considerable frequencies (Mohon et al., 

2014, Kamau et al., 2015, Conrad et al., 2014, Torrentino-Madamet et al., 2014, Taylor 

et al., 2015) and the total K-13 propeller mutation prevalence is less than 5% in surveys 

from various transmission contexts (Tun et al., 2015). 

1.7 Drug metabolism: 

Cytochrome P450 (CYP) is a family of enzymes that catalyses the oxidative 

biotransformation of majority of drugs (Zanger and Schwab, 2013). Out of the 57 

functional CYPs in humans, only about a dozen enzymes that belong to CYP1, 2, and 

3 families are responsible for drug metabolism (Zanger and Schwab, 2013). 

Polymorphisms in gene-encoding for drug transporters and metabolising enzymes are 

related to individual differences in responses to drugs (Shah, 2005).  Genetic 

polymorphisms in CYP450 genes have an influence on the safety and efficacy of drugs 

because of their effect on enzyme activity and/ or expression (Bains, 2013).  Nearly 

40 % of drug metabolism that is dependent on cytochrome P450 is attributed to 

polymorphic enzymes (Marwa et al., 2014). Polymorphism takes place in all the 

members of the CYP2C sub-family including CYP2C19, CYP2C18, CYP2C9, and 

CYP2C8. The genes for these sub-families are localised on chromosome 10q24 

(Marwa et al., 2014). The function of CYP genes in drug metabolism differs 

considerably. CYP2C plays a critical role in the metabolism for nearly 20% of clinical 

drugs (Goldstein, 2001). CYP2C8 constitutes 7% of the liver’s whole CYP content 

(Totah and Rettie, 2005) and is responsible in the metabolism of clinical drugs (Daily 
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and Aquilante, 2009).  The CYP3A sub-family is the most abundant CYP in the small 

intestine and liver (Marwa et al., 2014).  CYP3A4 participates in the metabolism of 

nearly 50% of clinical drugs (Marwa et al., 2014). CYP2B6 gene accounts for between 

2% and 10% of the total content of CYP (Wang and Tompkins, 2008). The most 

prevalent single nucleotide polymorphism within the CYP3AF family is CYP3A4*1B 

(Marwa et al., 2014).   

Variations in the expression and function of CYP450 lead to four clinical phenotypes 

including ultra-rapid metabolizers(UM), extensive metabolizers(EM), inter-mediate 

metabolizers(IM), and poor metabolizers(PM) (Zanger and Schwab, 2013). Poor 

metabolizers have two allele copies that minimise the expression of a specific 

CYP450. Thus, they lack a specific enzyme activity and inefficiently metabolize drugs 

in comparison with UM, IM, and EM (Zanger et al., 2008). Intermediate metabolizers 

are heterozygous for a single copy of a functional allele and null allele of a specific 

CYP450, which leads to minimal reduction in the activity of the enzyme (Bains, 2013). 

Ultra-rapid metabolizers have more than two active gene copies that results in 

increased expression of protein levels and rapid substrate metabolism (Bains, 2013). 

Finally, extensive metabolizers are homozygous for two functional alleles that causes 

rapid metabolism of drugs and higher drug concentrations that PM and IM (Bains, 

2013). 

The frequencies of variant alleles that encode CYP families differ among individuals 

based on ethnic background and race (Seripa et al., 2010). The CYP2C8*2 allele is 

rare in Caucasians and Asians but prevalent in Africans, while CYP2C8*3 is prevalent 

in Caucasians but rare in Asians or Africans. The CYP2C8*3 has been linked with a 

noticed reduction in the metabolism of AQ among Caucasians (Daily and Aquilante, 

2009).  The CYP2B6*6 allele is more prevalent in individuals of African descent than 
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Caucasians (Klein et al., 2005). This allele is linked with increased plasma 

concentrations of anti-malarial drugs such as artemisinin (Kerb et al., 2009). The 

CYP3A4*1B allele is linked to poor metabolism of quinine (Rodriguez-Antona et al., 

2005), and artemether lumefantrine (Staehli Hodel et al., 2013).  Evidence also 

indicates that various Cytochrome P450 genes are involved in the metabolism of 

antimalarial drugs. CYP2B6 and CYP2A6 are involved in the metabolism of 

artemisinins (Piedade and Gil, 2011), while CYP2C8 is critical in the metabolism of 

CQ (Projean et al., 2003), and AQ (Mehlotra et al., 2009), and CYP2C19 is involved 

in the metabolism of artemether (Marwa et al., 2014). CYP2D6 is important in 

metabolizing CQ (Projean et al., 2003) and PMQ (section 1.7.2), while CYP3A4 is 

involved in the metabolism of lumefantrine (Piedade and Gil, 2011), quinine, PMQ 

(Mehlotra et al., 2009), CQ (Kim et al., 2003), and artemisinins (Mehlotra et al., 2009). 

Finally, the activity of CYP3A5 influences the metabolism of lumefantrine and CQ 

(Mehlotra et al., 2009), and artemether (White et al., 1999). Therefore, different CYP 

450 isoenzymes are vital in the metabolism of antimalarial drugs and influence 

treatment outcomes. 

 

1.7.1 Artemisinin metabolism: 

The co-administration of various drugs in atermisinin-based combination therapy 

increases the risk of drug-drug interactions (Ericsson et al., 2014).  Such interactions 

are due to the changes in the enzymatic activity of CYP450 particularly via inhibitory 

effects. Various studies have shown that artemisinin inhibits the activity of various 

CYP450 enzymes. For instance, it has been shown that DHA and artemisinin inhibit 

the action of CYP1A2 (He et al., 2007, Bapiro et al., 2001). The inhibitory impact on 

CYP1A2 has been established in healthy individuals with an artemisinin exerting 66% 
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inhibition of this enzyme (Bapiro et al., 2005, Asimus et al., 2007). Such in vivo 

findings indicate high and medium risk for drug-drug interactions with artemisinin and 

dihydroartemisin, respectively, on CYP1A2 (Ericsson et al., 2014). Studies have also 

indicated that artemisinin compounds inhibit the activity of CYP2B6 (Therese et al., 

2012, Xing et al., 2012). Bapiro et al. (2001) found that the enzymatic activity of 

microsomal and recombinant CYP2C19 is inhibited by DHA and artemisin. In their 

study, Ericsson et al. (2014) found that artemisinin inhibited the activites of CYP3A4, 

CYP2C19, CYP2B6, and CYP1A2. The inhibitory activity of artemisins on these iso-

enzymes leads to drug-drug interactions that increase the risk of adverse effects. 

 

Figure 1.10: Metabolism of artemisinin and its semi-synthetic derivatives.  

Primary pathways in bold, minor contribution in parenthesis. This figure adapted from Kerb 

and his colleagues (Kerb et al., 2009). 

 

1.7.2 8-aminoquinoline metabolism (PMQ and TF): 

PMQ and TF are 8- aminoquinolines used for anti-hypnozoite activity against malaria 

caused by P. vivax (Krotoski et al., 1980, Potter et al., 2015b). The administration of 

PMQ at low doses is recommended for blocking malaria transmission because of the 

drug’s activity against gametocytes. Recent studies have shown that the metabolism 
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of 8-aminoquinolines is dependent on CYP2D in the liver stage anti-malarial activity 

in human and mouse studies (Potter et al., 2015b). Specifically, CYP2D6 converts the 

PMQ molecule into oxidized metabolites that are cause the anti-hypnozoite activity of 

the drug (Marcsisin et al., 2016). Pybus et al. (2012) showed that the metabolism of 

PMQ is primarily occurs through the MAO-A, and CYP2D6 pathways.  In this study, 

Pybus et al. (2012) demonstrated that CYP3A4, CYP2C19, MAO-A, and CYP2D6 

metabolised PMQ. However, CYP2D6 demonstrated the highest catalytic efficiency 

toward PMQ of all the MAOs and CYPs tested in the study (Pybus et al., 2012b). 

Thus, CYP2D6 plays a vital role in the metabolism of 8-aminoquinolines. Pybus et al. 

(2013) showed that PMQ was active only in mice with the capability of metabolizing 

substrates of CYP2D6.  Deleting the mouse enzyme that is closest to human CYP2D6 

in the mice led to a complete blockage of the liver stage antimalarial activity in vivo 

(Pybus et al., 2013).  Other studies have shown that stero-selectivity is critical in the 

metabolism of 8-aminoquinolines by CYP2D6 both in vivo and in-vitro (Tekwani et 

al., 2015, Fasinu et al., 2014). 

1.7.2.1 CYP2D6 metabolism effects on 8-aminoquinoline efficacy: 

The efficacy of 8-aminoquinolines depends on CYP2D6 metabolism.  Bennett et al. 

(2013) reported that therapy failures of PMQ in Plasmodium vivax challenge trial were 

directly attributed to CYP2D6 polymorphims of the null or intermediate phenotype 

(Bennett et al., 2013a).  Consistently, Pybus et al. (2013) showed how the efficacy of 

PMQ is dependent on CYP2D metabolism in a model involving a malaria mouse. In 

their study, Pybus et al. (2013) found that PMQ failed to exhibit any activity at a dose 

of 20mg/kg when it was administered to CYP2D knockout mice, which was 

challenged with P. berghei. The investigators attempted to associate particular 

metabolite to this impact by pre-incubating the human CYP2D6 inhibitor paroxetine 
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with recombinant CYP2D6 followed by monitoring of the production of the PMQ 

metabolite.  Results from the in vitro pre-incubation of CYP2D6 with paroxetine 

showed a noticeable decline in phenolic metabolite production (Pybus et al., 2013). 

Similarly, Potter et al. (2015) found that phenolic metabolite levels of PMQ were 

highest in mice with the capability of metabolizing CYP2D6 substrates.  Consistently, 

Vuong et al. (2015) found the same results for TF metabolism in mice (Vuong et al., 

2015). St. Jean et al. (2016) suggested that the reduced metabolism of CYP2D6 was 

not linked to relapse among intermediate metabolizers following the administration of 

TF for treating P. vivax in a phase 2b DETECTIVE trial of the drug (St Jean et al., 

2016). According to Marcsisin et al. (2016), PMQ hydroxylation via CYP2D6 results 

in unstable metabolites such as 5-hydroxyPMQ with the capability of redox cycling 

and the production of oxidative stress. The redox recycling of such metabolites and 

the oxidative stress from the metabolism of PMQ explains the efficacy of PMQ. 

However, the reliance of CYP2D6 metabolism for the efficacy of 8-aminoquinoline is 

a problem because of the high polymorphism of CYP2D6 in humans.  The activity of 

CYP2D6 in humans is highly changeable with over 74 CYP2D6 alleles having been 

reported so far (Potter et al., 2015b). The phenotypic and genetic differences in 

CYP2D6 contribute to significant differences in drug metabolism and efficacy among 

patients.  

1.7.2.2 CYP2D6 metabolism and 8-aminoquinoline toxicity in G6PD patients: 

Therapy with 8-aminoquinolines such as PMQ has risks especially for individuals with 

a glucose-6-phosphate dehydrogenase (G6PD) deficiency who have a diminished 

capacity for mitigating cellular damage due to oxidative damage (Marcsisin et al., 

2016). Treating G6PD-deficient individuals with PMQ increases the risk of 

haemolysis. The characteristics of haemolysis include mild jaundice, intra-vascular 
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haemolysis with dark urine, and severe anaemia (Ashley et al., 2014b).  The severity 

of G6PD deficiency and the dose of PMQ administered to an individual determine the 

clinical signs of hemolysis (Ashley et al., 2014b).  The mechanism through which 

PMQ exactly causes haemolytic effects and if or how CYP2D6 metabolism is involved 

in such effects is yet to be established. However, the toxicity of 8-aminoquinolines in 

G6PD deficient individuals is thought to be caused by CYP2D6-dependent phenolic 

metabolites such as 5-hydroxyPMQ (Marcsisin et al., 2016). Studies show that the 

production of 5-hydroxy-PMQ is dependent on CYP2D6 (Potter et al., 2015b, Pybus 

et al., 2012b), and that 5-hydroxy-PMQ is unstable in environments where oxygen is 

not carefully excluded and this has been shown to cause haemolysis both in vivo and 

in vitro (Marcsisin et al., 2016). Therefore, taking PMQ among G6PD deficient 

individuals increases haemolysis. 

1.8 Gametocytocidal activity assays development: 

1.8.1 Florescence indicator of metabolic activity: 

Bolscher et al. (2015) developed high throughput assays to screen for compounds 

against gametocytes.   The researchers cultured P. falciparum NF54 parasites followed 

by treating them with 50mM N-acetyl-d-glocosamine from day 4 to 7 to kill asexual 

parasites. A discontinuous 63% Percoll gradient centrifugation was used in isolating 

early and late stage gametocytes at day 7 and day 11, respectively. The researchers 

adapted a current gametocyte parasitic lactate dehydrogenase assay and used it in 384-

well plates together with a new homogenous immunoassay for monitoring the 

transition of female gametocytes into gametes.  The researchers screened 48 

antimalarials using these assays to test the effect on sporogony in the anopheles’ 

mosquito as a way of quantifying the transmission-blocking properties of anti-malaria 
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drugs in terms of their impact on gametogenesis. The results indicated that these 

screening assays revealed unique phase-particular kinetics and the dynamics of the 

drug effects. Peroxide demonstrated the most potent transmission –blocking effects 

with IC50 values that were 20 to 40 fold higher than the IC50 against the asexual phases 

that cause clinical symptoms of malaria (Bolscher et al., 2015).  

Tanaka et al. (2013) developed an assay based on fluorescent indicator of metabolic 

activity.  Gametocytogenesis was induced by culturing P. falciparum 3D7 following 

by selecting and enriching stage III to V gametocytes with 50mM NAG and Percoll 

density gradient centrifugation, respectively.  Malaria gametocytes were plated in a 

1,536-well plate using the Multidrop Combi followed by incubation for 72 h. The 

AlamarBlue dye was utilised for measuring cell viability.  After the addition of the 

AlamarBlue to the assay plates, the researchers measure fluorescence intensity at 4, 8, 

10, and 24 h time points. The assay was used in evaluating 1,280 malaria compounds. 

The results indicated that the miniaturised assay led to a significant reduction in the 

total number of reagents and gametocytes necessary for screening of large compound 

collections. The assay had a signal-to-basal ratio of 3.2 fold, and Z’-factor value of 

0.68. Furthermore, using the assay to evaluate 1,280 anti-malarial compounds 

demonstrated that two compounds Cyclohexyl-amine and Antabuse had 54 and 7.8-

fold potency towards gametocytes compared to their cell cytotoxicity effect in the SH-

SY5Y cell line (Tanaka et al., 2013). 

1.8.2 Florescence imaging: 

Duffy and Avery (2013) used two anti-gametocytes high throughput screening assays 

based on confocal fluorescence microscopy that utilised both a viability marker 

(MitoTracker Red CM-H2XRos) and a gametocyte particular protein (pfs16-Luc-GFP) 

in measuring anti-gametocytocidal activity.  Using this assay, the researchers obtained 
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IC50 values for 36 existing malarial compounds targeting the late and early stage 

gametocytes as well as the asexual stage. Screening of the MMV malaria box was 

undertaken to determine active compounds using IC50 assessment. The results 

indicated that 7% of the ``drug like’’ and 21% of the ``probe-like’’ compounds from 

the MMV malaria box showed comparable activity against both late stage gametocytes 

and the asexual phases of the parasite.  Thus, the two assays selectively identified 

compounds that targeted gametocytes and were suitable for screening large 

compounds (Duffy and Avery, 2013). 

Lucantoni et al. (2015) developed a predictive phenotypic high content imaging assay 

for identifying malaria compounds targeting mature gametocytes.  Strains of P. 

falciparum including 3D7-PFL1675c: GFP and 3D7A were cultured in-vitro. On day 

3, trophozoite parasites were isolated followed by the addition of fresh red blood cells. 

The residual asexual parasites were removed with the addition of 50mM N-acetyl 

glucosamine. On the fourth day, the researchers isolated the 3D7-PFL1675C: GFP 

gametocytes using magnetic purification, followed by incubation to obtain mature 

stage V gametocytes on day 14. 3D7A gametocytes utilised in the non-transgenic 

assay were diluted with fresh blood and incubated to achieve maturation at day 12. 

This was followed by incubation with compound in 384- well plates for 48 h then 

exposure to Acridine Orange fluorescent dye and Xanthurenic acid, and readout 

acquisition following 2 h of incubation. Cultures that showed an activation of 95% or 

above on day 12 were used in the assay. This HTS assay involved using non-transgenic 

parasite by staining gametocytes with a fluorescent dye. The resulting Acridine 

Orange Gamete assay was used in evaluating the activity of existing anti-malarial 

drugs. The results showed that PMQ, ATQ, artemisone, cycloheximide, and 

thiostrepton reduced the number of gametes more than the total numbers of the 
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parasite.  Furthermore, the assay was used in determining the activity of the 

compounds in the malaria venture box against mature gametocytes where standard 

membrane feeding assay tests were performed. The results of luminescence signals 

indicated that compounds MMVOO5830, MMV007591, and MMV006172 reduced 

the intensity of oocytes by over 85% at 10µM. The researchers concluded that the 

assay was robust and could be used in identifying quality hits with the likelihood to 

confirm the transmission blocking activity of malaria compounds (Lucantoni et al., 

2015). 

1.8.3 Chemiluminescence: 

Lucantoni et al. (2013) developed a luciferase-based high throughput screening assay 

to assess the chemical compound activity on stages I to III of gametocytes.  

Gametocytogenesis was induced by magnetically purifying trophozoite culture using 

a MACS column. The trophozoite culture was incubated for 24 h. Further magnetic 

purification was conducted to differentiate early stage gametocytes from asexual 

schizonts and trophozoites as well as late stage gametocytes. After this, the parasites 

were plated without further addition of red blood cells in 384-well white plates using 

a multidrop reagent dispenser and incubated for 72 h.  The researchers measured 

luminescence activity on the 4th day of gametocytogenesis using a luminescence 

reporter gene assay system. The HTS assay was developed using recombinant P. 

falciparum    line expressing green fluorescent protein luciferase. The assay was aimed 

at evaluating the initial phase gametocytocidal activity of the MMV Malaria Box that 

contains 400 malarial compounds targeting the asexual blood stage activity of the 

malaria parasite.  This collection was screened against stage I to III gametocytes and 

produced 64 compounds that were active against gametocytes with IC50s below 
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2.5µM.  Based on this, it was concluded that this assay is appropriate in screening 

large compound libraries (Lucantoni et al., 2013). 

Lucantoni et al. (2016) developed and validated a high throughput luciferase based 

assay to identify compounds that are active against gametocytes in stages IV and V. 

The researchers cultured the P. falciparum    NF54 gene for the production of 

gametocytes. Gametocyte production involved the isolation of the parasite at the 

trophozoite phase using a magnetic column followed by the addition of fresh red blood 

cells. On day 0 of gametocytogenesis, magnetic purification was done followed by the 

addition of NGA for clearing asexual parasites.  Clearing of asexual parasites using 

NAG was done daily until the 8th day where final magnetic purification was done on 

the gametocyte culture. The researchers utilised a luciferase reporter gene assay 

system where the luciferase signal was evaluated in 384-well plate after incubation for 

72 h. The researchers validated the assay by testing a panel of 39 antimalarial drugs 

and clinical candidates. The assay was also used in screening three chemical libraries 

(MMV Malaria Box, ERS_01, and GDB_04). The results showed that artemisinin and 

its derivatives inhibited late-stage gametocytes with IC50 values ranging between 5 

and 91nM. TF had weak gametocytocidal activity against late stage gametocytes with 

IC50s of 2.03±0.49 and 2.50±0.004 µM. However, PMQ did not have any effect on 

late stage gametocytes.  MQ and halofantrine had limited potency on late stage 

gametocytes with values between 2.31 µM and 3.39µM. Thiostrepton moderately 

inhibited late-stage gametocytes with IC50 1.00±0.07 and 2.31±0.13 µM. PPQ, 

napththoquine, AQ, hydroxyCQ and CQ did not inhibit late-stage gametocytes. High 

concentration of chlorPG inhibited late-stage gametocytes. MB was potent against late 

stage gametocytes with IC50 value of 38±14nM, while cycloheximide was moderately 

potent against stage IV and V gametocytes with IC50 of 2.31±0.13µM, and 
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pentamidine and pyronaridine weakly inhibited with IC50 values above 3 µM. The 

most active compounds from the MMV Malaria box with activity against stage IV and 

V gametocytes included MMV006172 with IC50 value of 1.364 µM, MMVO19918 

with IC50 values ranging between 0.32 µM and 0.89 µM, and MMV667491 with IC50 

value of 1.06 µM. Overall, this assay demonstrated the compounds that are active 

against stage IV and V gametocytes (Lucantoni et al., 2016b). 

1.8.4 Bioluminescence assay: 

Cevenini et al. (2014) developed a dual-colour (red and green) bioluminescence assay 

for gametocytes.  The researchers cultured P. falciparum 3D7A line followed by 

transfection of the ring stage parasites.  Transgenic lines with integrated luciferase 

cassettes in the pfelo 1 locus were produced by equipping the luciferase cassettes with 

pfelo 1 homology genes for Zinc Finger Nuclease-mediated genome editing.   The 

researchers treated Stage II gametocytes with 50mM NAG for eliminating asexual 

stages.  Stage IV and V gametocytes were also treated with NAG to allow maturation. 

The luciferase assay expressing green and red emitting luciferases were used in the 

study. Luciferase assays were performed to compare luciferase activities on stage III 

gametocytes following percoll purification. The assays were conducted   on six 

transgenic lines of the parasites in 96-well plates. Single-cell bioluminescence 

imaging was on done on gametocytes treated with CQ and epoxomicin as well as on 

a control sample. The results indicated that the single-cell bioluminiscence imaging 

assisted in visualizing live gametocytes in various stages. A weak Bioluminescence 

signal (BL) was seen in CQ-treated gametocytes, while a BL signal was not detectable 

in gametocytes treated with epoxomin, and strong BL signals were seen in the control 

parasites.   Dual luciferase assays were also on CBR and CBG99 expressing parasites 

at stage V and II of development in a 96-well plate. The findings of the dual luciferase 



 

 

 

 

51 

 

assay showed that epoxomin efficiently killed both stages V and II gametocytes. It 

was concluded that this assay that requires incubation for only 48 h and utilises a 

luminogenic substrate leads to a considerable reduction in the time and cost of assays 

(Cevenini et al., 2014). 

D’Alessandro et al. (2016) developed an assay for determining the activity of anti-

malarial compounds against early stage (I-III) and late stage (IV-V) gametocytes. The 

assay in the study was a high throughput screening assay with P. falciparum that 

gametocytes expressing a potent luciferase activity. The gametocyte lactate 

dehydrogenase assay and the luciferase assays were evaluated by screening 

antimalarial drugs to determine the IC50 Values of the compounds against 

gametocytes.  The results demonstrated that gametocyte lactate dehydrogenase and 

luciferase assays are vital in identifying anti-malarial compounds that are potent 

against gametocytes both in their late and early stages of development (D'Alessandro 

et al., 2016a). 

 

1.9 Thesis objectives: 

If we are to achieve a sustainable malaria elimination strategy, it is vital that malaria 

transmission is targeted within an integrated approach. To that end, targeting the 

malaria parasite gametocytes remains an attractive and tractable strategy.  The 

historical difficulty in culturing gametocyte stages and assaying gametocyte viability 

has resulted in a fragmented understanding of the gametocidal activity of the existing 

antimalarial armamentarium.  This thesis has therefore set out to gain a better 

understanding of the identity of gametocyte-active antimalarials and a deeper 

understanding of the mechanisms underpinning activity.  Specific objectives include: 
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1. To screen different known antimalarials and some selected newly developed 

compounds against P. falciparum gametocyte stages and validate their stage-

specific activity. This is followed by the development of time-dependant 

killing assays and subsequent Pharmacokinetic-Pharmacodynamic (PK-PD) 

simulations. This objective has been achieved successfully as described in 

Chapter 3.    

2. To assess the susceptibility profile to endoperoxides of P. falciparum 

gametocytes stages in both static and time-dependent assays and subsequent 

PK-PD simulations. This objective has been accomplished successfully and 

described in Chapter 4.    

3.  To determine the ability of PMQ and its metabolites to interact with 

recombinant human Cytochrome (CYP 2D6).  To test PMQ and PMQ-

metabolites following metabolism with CYP2D6 and HLM metabolites to test 

activity against late stages gametocytes. This work is described in chapters 5. 

4. To determine the ability of TF to interact with CYP2D6 and test the activity of 

TF as a parent drug, TF-metabolism with CYP2D6 and HLM metabolites for 

activity against late stage gametocytes. In addition, three novel 8-AQ structural 

analogues also investigated their gametocytocidal efficacy prior to and after 

CYP2D6 and HLM metabolites activation. This work is described in details in 

chapter 6. 
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Chapter 2 

 

2 Experimental Methods: 
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2.1 Introduction: 

The aim of the experimental methods chapter is to provide the information on P. 

falciparum culture system and the developmental methods of sexual (gametocytes) 

cultures. In addition, a description of the selected method of gametocitocodal viability 

assays (luciferase based) which have been utilized to generate the data of the thesis 

and the general steps of PK/PD methods are provided. More specific details and of 

methods and modifications to the general methods are provided within the 

experimental chapters.  

2.2 Culture system for P. falciparum maintenance: 

The parasite isolate of Plasmodium falciparum culturing in vitro was adjusted from 

(Trager and Jensen, 1976) and  (Jensen and Trager, 1977). The culture was 

accomplished using standard aseptic techniques in an Envair class II laminar flow 

safety cabinet. The biocidal cleaner (Biocleanse Concentarte, TEKNON, UK) was 

used to clean the laminar flow cabinet first and then with 70% ethanol in order to 

minimize the contamination. Consumables, for example: 75 cm² and 25 cm² Nunc™ 

polystyrene tissue culture flasks (Fisher Scientific, UK), 2.5 ml bijou bottles and 15 

ml and 50 ml centrifuge tubes. Solutions used for parasite culture were prepared with 

distilled water (dH2O) and sterilized by filter through a sterile bottle top filter unit 

with a 0.22 μm membrane (Fisher Scientific, UK). All pipette tips (10 μl, 100 μl, 200 

μl and 1000 μl) prior to use were sterilized by autoclaving (121 ºC, 15 psi for 30 min). 

Protective gloves were used and regularly covered with 70% ethanol when working in 

culture room to reduce contamination. Used RPMI-1640 complete culture medium, 

uninfected red blood cell (RBC), culture flasks, used pipettes and supernatants were 
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disinfected in biocidal cleaner (Biocleanse Concentarte, TEKNON, UK) first and then 

wasted in the specified trash. 

2.2.1 P. falciparum parasite strains: 

The P. falciparum strains used in this Project was the newly generated luciferase-

reporting transgenic line3D7elo1-pfs16-CBG99. This CBG99 were generously 

provided by Prof Pietro Alano lab (INBB, Istituto Nazionale di Biostrutture e 

Biosistemi, 00136 Rome, Italy) to  (Cevenini et al., 2014). The 3D7 strain was cloned 

from the isolate NF54 obtained from one of an airport staff in Amsterdam (Cowman 

et al., 1991).   

2.2.1.1 Culture medium: 

In all the experiments, RPMI-1640 (Roswell Park Memorial Institute) culture medium 

containing L-glutamine and sodium bicarbonate (NaHCO3) were used and purchased 

from Sigma (Sigma, UK). Complete culture medium was prepared by adding 12.5 ml 

of pre-sterilized 1 M HEPES (4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid), 

50 ml of pooled human AB+ serum and 200 μl of 50 mg/ml gentamicin (Sigma, UK) 

to a 500 ml bottle of RPMI-1640 culture medium. For the purpose of checking for 

contamination, the medium was incubated at 37 ⁰C overnight prior to use. The increase 

in turbidity and changing colour of medium from red/orange to yellow indicates the 

occurrence of contamination. The complete culture medium was used for up to one 

week and unused medium was discarded. 

2.2.1.2 HEPES: 

HEPES (4-(2-hydroxyethyl)-1-piperazine ethane sulfonic acid) was obtained from 

VWR International Ltd (UK). The preparation of 1 M stock of HEPES (MW = 238.03 

g) was as follows: 238.03 g of HEPES was dissolved in 700 ml of distilled water and 
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the pH was adjusted using 5 M NaOH to 7.4 after which the solution was made up to 

1 L using distilled water. The 1 M stock of HEPES was then sterilized through a sterile 

bottle top filter unit with a 0.22 μm membrane (Fisher Scientific, UK), labelled, and 

stored at 4 ⁰C. 

2.2.1.3 Gentamicin: 

A stock of 50 mg/ml Gentamicin was purchased from Sigma (Sigma, UK) and 

aliquoted into 2.5 ml bijou bottles, labelled and stored at 4 ⁰C. 

2.2.1.4 Serum:  

Ward 7Y and the Gastroenterology Unit, Royal Liverpool Hospital, Liverpool, UK, 

kindly supplied human AB+ serum.  

2.2.1.5 Gas Phase: 

The gas used in this study was composed of 3% O2, 4% CO2 and 93% N2 (British 

Oxygen Special Gases, UK). The flasks were gassed aseptically in the class II laminar 

flow safety cabinet. They were gassed separately by a pre-sterilized cotton plugged 

pipette fitted to the terminal acrylic filter for approximately 30 seconds per 25 cm² 

flasks and 1 min per 75 cm² flasks. 

2.2.2 Preparation of uninfected red blood cells: 

The North West Regional Blood Transfusion Service, Liverpool, UK, kindly supplied 

human O+ blood which is uninfected red blood cells (RBC). The whole blood was 

supplied in citrate-phosphate-dextrose bags and had been tested for HIV and HBV 

antibodies. The blood was aseptically aliquoted into sterile 50 ml centrifuge tubes and 

stored at 4 °C for only two weeks.  A 25 ml aliquot of whole blood was centrifuged 

aseptically at 3000 rpm for 5 min and then buffy coat layer and serum were carefully 

removed using a pre-sterilized 10 ml pipette. The remaining packed RBC was washed 
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three times in RPMI-1640 incomplete culture medium supplemented with 25 mM 

HEPES (pH 7.4) and 20 µM gentamicin and was collected by centrifugation at 3000 

rpm for 5 min. The washed packet RBC’s were labelled and stored at 4 °C for no more 

than one week and discarded the unused.  

2.2.3 Cryopreservation Procedure of parasite cultures: 

Firstly, the cryoprotectant solution was prepared as follows: 1.9 g of sodium chloride 

(Sigma Chemical Co, UK) was dissolved in 200 ml of distilled water to get 0.95% 

(w/v) physiological saline. To make 4.2% (w/v) sorbitol in physiological saline, 8.4 g 

of sorbitol (Sigma Chemical Co, UK) was then dissolved in the prepared saline. 

Subsequently, 70 ml of glycerol (Sigma Chemical Co, UK) was added to the solution. 

Then, the cryoprotectant solution was sterilized through a sterile bottle top filter unit 

with a 0.22 μm membrane (Fisher Scientific, UK), labelled, and stored at 4 °C.   

In order to freeze the parasite culture, a high parasitaemia (greater than 5%), mainly 

at ring stage, were transferred aseptically into sterile 50 ml centrifuge tubes and 

centrifuged at 2000 rpm for 5 min. The supernatant was discarded and an equal volume 

of cryoprotectant solution was added to the pellet and allowed to equilibrate for 5 min 

at room temperature. The suspension was placed into screw-capped cryotubes (Nunc, 

UK), labelled and then moved into liquid nitrogen tank (British Oxygen Special Gases, 

UK). 

2.2.4 Parasite Cultures Retrieve (Thawing): 

Cryotubes were retrieved as follows: cryotubes were taken from the liquid nitrogen 

storage tank and allowed to thaw at room temperature or quickly thawed at 37 °C. 

Prior to pouring the defrosted contents of cultures into a 15 ml centrifuge tube, 70% 

ethanol was used to wipe the rim of the vial to minimize any chances of contamination. 
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An equal volume of ice cold 3.5% (w/v) sodium chloride (Sigma Chemical Co, UK) 

was then added to 15 ml centrifuge tube and centrifuged at 2000 rpm for 5 min. The 

supernatant was removed and the cell pellet was washed once in an equal volume of 

RPMI-1640 complete culture medium, and centrifuged as before. The supernatant was 

removed and the cell pellet was re-suspended in 15 ml of RPMI-1640 complete culture 

medium which was then made up to the desired hematocrit with washed RBC. Cell 

pellet suspension was then transferred to a sterile 25 cm² culture flask, labelled, gassed 

and placed in an incubator at 37 ⁰C for 48 h. 

 

2.2.5 Routine monitoring of asexual stages parasitaemia: 

In order to monitor the asexual stage, the parasitemia were checked daily by making 

a thin blood film from every culture flask. The parasite cultures should be healthy, 

well synchronised and within the required parasitaemia (typically, 5-10%). Thin blood 

films were then fixed in absolute 100% methanol for 5-10 seconds (Fisher Scientific, 

UK) and placed into a 10% Giemsa stain solution (VWR International Ltd, UK) 

buffered at pH 7.2 for 15-20 min. The films were washed carefully and thoroughly 

under running tap water. After that, they were dried and examined under oil immersion 

at x1000 magnification on a light microscope (Zeiss, Germany). The parasitaemia was 

calculated by counting the cells in approximately 5-10 fields of the blood film and 

expressing infected cells as a percentage of the total number of cells film as shown 

below: 

𝑷𝒂𝒆𝒂𝒔𝒊𝒕𝒆𝒎𝒊𝒂(%) = ( 
𝑵𝒐. 𝒐𝒇 𝒊𝒏𝒇𝒆𝒄𝒕𝒆𝒅 𝑹𝑩𝑪′𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑹𝑩𝑪′𝒔
) × 𝟏𝟎𝟎 
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2.2.6 Synchronisation of parasite cultures: 

A sugar-based alcohol (Sorbitol, Sigma, UK), has a steadying effect on the RBC 

plasma membrane (Meryman and Hornblow.M, 1968) and changes the permeability 

of the later stages of asexual parasites (Lambros and Vanderberg, 1979). These 

alterations of permeability of the late stage parasites and its host allow sorbitol to enter 

through the new permeability pathway (NPP). The parasites swell as a result of 

osmotic effect and ultimately lyse and die. This process allows selection of the young 

ring forms which are unaffected, thereby synchronising the culture. 

In order to prepare 5% sorbitol (which is used for the purpose of synch.), 25 g of 

sorbitol was dissolved in 500 ml of distilled water.  The solution was then sterilized 

through a sterile bottle top filter unit with a 0.22 µm membrane (Fisher Scientific, 

UK), labelled and stored at 4⁰C. The synchronisation procedure was as follows: 

cultures with a high proportion of ring stage parasites were transferred aseptically to 

pre-sterilised centrifuge tubes and centrifuged at 2000 rpm for 5 min. at room 

temperature. The supernatant was discarded, and 5 ml of 5% (w/v) sorbitol was added 

to the pellet. The suspension was left in the laminar flow safety cabinet to stand at 

room temperature for approximately 20 min, with occasional shaking of the tube, and 

then centrifuged and the supernatant was discarded. The cell pellet was washed twice 

in 10 ml RPMI-1640 complete culture medium and centrifuged as before. The 

remaining cell pellet was re-suspended in 50 ml RPMI-1640 complete culture medium 

for the continuous culture for a minimum of 48 h prior to use in the different 

experiments.  

2.2.7 Culture procedure: 

To maintain the parasite in continuous culture in 75 cm² flasks (Nunc, UK), a 

modification of the method of (Trager and Jensen, 1976) and (Jensen and Trager, 
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1978, Jensen and Trager, 1977) was used. The hematocrit in the culture flasks was 

usually 2% unless otherwise stated. Cultures were started from parasitised cells 

retrieved from cryopreserved stocks or by seeding RBC’s in RPMI-1640 complete 

culture medium suspension with parasitized red cells from another flask. The culture 

flask was then gassed and placed in an incubator at 37ºC.  The culture medium was 

changed every 48 hrs when the parasitaemia was less than 1% and every 24 hrs when 

higher than 2%. The procedure for this was as follows: the culture suspension was 

transferred aseptically to a 50 ml centrifuge tube and centrifuged at 2000 rpm for 5 

min at room temperature. The spent medium was carefully removed and discarded. 

Pre-warmed RPMI-1640 complete culture medium was then added to make up the 

volume to 15 ml and 50 ml in 25 cm² and 75 cm² culture flasks, respectively. The 

culture flasks were then gassed and placed in an incubator at 37ºC.  The parasites were 

sub-cultured when the target parasitaemia had been reached (usually at ~10% 

parasitaemia). 

2.2.8 Sub-culturing Procedure of asexual stages: 

The main reason of sub-culturing the parasites is to produce a large volume of parasite 

pellets for the experiments. The procedure was as follows: the culture suspension was 

centrifuged at 2000 rpm for 5 min at room temperature and then the supernatant was 

discarded. A specific volume of cell pellet was added to a new flask. Fresh uninfected 

erythrocytes and RPMI-1640 complete culture medium were added to make the 

required hematocrit (usually 2%) and parasitaemia depending on size of the flask used. 

The culture flask was then gassed and incubated at 37 ⁰C. The rest of the parasitised 

cells were used either in an experiment, cryopreserved or thoroughly decontaminated 

and discarded.  



 

 

 

 

61 

 

2.3 P. falciparum Gametocytes (Sexual Stage) Culture: 

P. falciparum gametocyte cultures were prepared as described previously 

(D'Alessandro et al., 2016a) with some modification and optimization. Briefly, asexual 

stage of good gametocytes producing lines of P. falciparum were cultured in O-

positive RBCs at 5% hematocrit, in RPMI 1640 complete culture medium 

supplemented with 5ml of 4mM hypoxanthin. Parasites culture were initiated at 2% in 

mix stages of ring and trophozoites (~5% hematocrit) and grown until they reached 

high parasitemia. To trigger gametocytogenesis, the haematocrit was reduced by 

adding more medium in the flask to increase the stress factor.  

 

Figure 2.1: Gametocytes development of stage composition of the cultures used in the 

experiment. 

 

Giemsa-stained thin smears were used every day to monitor the development of the 

cultures until the stage I and II gametocytes are clearly recognised and the asexual 

stage parasites seem unhealthy. Gametocytes were grown in the presence of 50 mM 

N-acetylglucosamine (NAG) for four days to clear residual asexual parasites and 
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obtain a practically pure gametocyte culture. Development of the gametocytes culture 

was monitored by Giemsa-stained thin smears as shown in Figure 2.1. 

All previous steps were optimized in various conditions to influence gametocyte 

production. Mixed stage asexual parasites able to produce more gametocytes than the 

sorbitol synchronous parasites. Furthermore, the vertical position flasks and 5% 

haematocrit showed more gametocytes production than lower haematocrit and 

horizontal position flasks, indicating that the production of gametocytes in stress 

conditions can induce more gametocytes than normal (routine) steps of asexual 

culture.  Serum medium composition moderately increase in gametocytes production 

more than AlbuMax and NAG clear residual asexual parasites significantly more than 

sorbitol addition to the culture. 

Table 2.1: In-vitro gametocytogenesis of P. falciparum culture under various conditions. 

Conditions Gametocytaemiaa 

Asexual parasite synchrony to induce gametocytes 

Sorbitol sync. 2.3 ± 0.9 % (n = 3) 

Mixed stages (ring, trophozoite, schizont) 4.3 ± 1.02 % (n = 5) 

Flask position (Vertical / horizontal) and haematocrit percentage 

T25 cm2 / vertical 5% haematocrit 4.4 ± 1.0 % (n = 3) 

T25 cm2 / horizontal 5% haematocrit 3.0 ± 1.4 % (n = 3) 

T25 cm2 / vertical 2 % haematocrit 2.9 ± 0.9 % (n = 2) 

T25 cm2 / horizontal 2 % haematocrit 2.3 ± 1.1 % (n = 2) 

Medium composition (asexual, stationary gametocyte cultures T25 cm2) 

Asexual culture Gametocyte culture  

AlbuMAX AlbuMAX 3.2 ± 1.0 % (n = 2) 

Serum Serum 4.2 ± 1 (n = 3) 

Asexual parasite elimination 

Fresh NAG addition 4.5 ± 0.4 % (n = 6) 

Sorbitol synchronisation 2.4 ± 0.3 % (n = 2) 

Different strains of P. falciparum parasites in better conditions 

3D7elo1- pfs16-CBG99 4.3 ± 0.49 % (n = 4) 

3D7 0.9 ± 0.3 % (n = 3) 

HB3 0.26 ± 0.3 % (n = 2) 
 

a Day 12 from gametocytes induction 

The number of biological experiments is given by (n), with each biological experiment 

performed two or more times. 
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The kinetics of alteration from asexual stage to gametocytes followed the maturation 

to stage IV-V gametocytes were monitored as clearly seen in Figure 2.2. The number 

of parasitaemia increased up to maximum parasitaemia on days 0 (prior to NAG 

treatment) then double medium (DM) were add to reduce the haematocrit. Some 

sexual forms were first detected on day 0, and gametocytaemia reaching the maximum 

with average of 4 % on day 6-14. 

 

Figure 2.2: In-vitro production of P. falciparum gametocytogenesis in cuture flask. 

Kinetics of asexual stages (parasitaemia) in solid line and sexual stages (gametocytaemia) in 

dashed line during gametocytogenesis. The number of parasitaemia increased up to maximum 

parasitaemia on days 0 (prior to NAG treatment) then double medium (DM) were add to 

reduce the haematocrit. Sexual forms were first detected on day 0, with gametocytaemia 

reaching an average of 4 % on day 6-14. Data are from three independent experiments each 

experiment performed in triplicate and data represent mean ± SEM. 
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2.3.1 P. falciparum gametocytes drug treatments:  

The assay was performed on gametocytes at two different stages. For early (stage II-

III) gametocytes, induced cultures were treated for 48 h with 50 mM N-acetyl-

glucosamine (NAG) to eliminate asexual stages before drug treatment. Late (IV−V) 

stage gametocytes had been NAG-treated for 96 h and then allowed to mature. Drug 

treatments were performed at a final hematocrit of 1% in 100 μL final volume in 96-

well culture plates. The gametocytemias were routinely ranging between 2% and 3% 

3D7elo1- pfs16-CBG99 during the assay. Drugs were dissolved in dimethyl sulfoxide 

(DMSO) or any relevant solvent and control samples were treated with solvent at the 

highest concentration present in treated samples ≤ 0.1%. The incubation period of drug 

exposure is depending on the assay and is described in relevant chapter results section.  

2.3.2 Luciferase assay of gametocytocidal activity: 

All samples were tested in triplicate at least three times. Luciferase assay after drug-

activity experiments were performed after transferring samples to 96-well white 

microplates as describe previously (Cevenini et al., 2014). The measurement of 

samples in the 96- well white microplate was as shown in figure 2.3 below to reduce 

the interfering of luminesce lights between the samples. 

 

Figure 2.3: The 96- well white microplate use for tumescence reading of the luciferase 

assay. 

The black filled in well-plate represent the transferred gametocyte-treated samples to reduce 

any interference of luminesce between the samples.  
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The optimal D-luciferin substrate in citrate buffer 0.1 M, pH 5.2 was 1 mM D-luciferin 

(final concentration). Substrate was added directly to the samples at a 1:1 ratio, and 

plates were read, in plate reader, Varioskan ® Flash plate reader (Thermo Electron 

Corporation) at the stable kinetics enzyme at least between 8-18 min after addition 

(Figure 2.4).  

 

Figure 2.4: Luciferase kinetic intensities steady state characterization. 

Bioluminescence intensity and kinetic profile obtained from CBG99 expressing gametocytes 

(2% haematocrit; 2-4% gametocytemia/well) using D-luciferin substrate in citrate buffer 0.1 

M, pH 5.2. The measurement index pattern box shows the selected start and end reading time 

of test plates (8 to 18 mins) at the convenience steady state of enzyme activity. 

 

 

 

 



 

 

 

 

66 

 

2.3.3 Data analysis:  

The results from luminescence plate reader, Varioskan ® Flash plate reader (Thermo 

Electron Corporation) were expressed as the percentage viability compared with 

untreated controls according to the following:  

The average well reading for each drug concentration, the positive control wells 

(uninfected RBC’s) and the negative control wells (10µM of MB) were calculated. 

Then, the negative control value subtracted from all the other averages. After that, the 

percentage of gametocytes viability was calculated to uninfected RBC control well 

(100% viability) 

 

% 𝑉𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100 ×  
𝜇 𝑜𝑓𝑡𝑟𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒

𝜇𝑐+
 

 

where µ is the mean of luminescence reading LR and (c+) uninfected RBCs. To 

express the results of the dose-response experiments, the percentage of viability 

calculated using Prism 5 for windows (© 1992-2010 Graphpad software, Inc.) through 

nonlinear regression analysis using the log (agonist) vs. response (four parameter) 

built-in equation. 

 

2.4 Modelling Drug activity against Gametoctes 

2.4.1 Identification of kill rates and pharmacodynamic parameters of drugs 

The dynamics of gametocytes kill exerted by different drugs were systematically 

characterised by analysing the effects of each drug upon gametocyte counts at a range 

of clinically relevant concentrations. The kill rate exerted by each concentration was 
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calculated using Prism 5 for windows (© 1992-2010 Graphpad software, Inc.) through 

nonlinear regression using the “plateau followed by one phase decay” built-in equation 

as shown below in Equation 1.  

𝐺𝑎𝑚𝑒𝑡𝑜𝑐𝑦𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 = (𝐺0 − 𝑃𝑙𝑎𝑡𝑒𝑎𝑢) ∗ 𝑒(−𝑘∙𝑡) + 𝑃𝑙𝑎𝑡𝑒𝑎𝑢    …. Eq. 1 

Where (G0) refers to the initial number of gametocytes in culture, (Plateau) is the 

theoretical minimum level of gametocytes that can be achieved at the last time point, 

(k) is the kill rate per h and (t) is the time in h. When lag time is observed before 

activity the program would account for it using an IF statement which calculates the 

time at which activity is initiated. 

After measuring the kill rate (k) achieved by each concentration of the drug, the overall 

activity of the drug is then assessed using a sigmoidal Emax model which calculates the 

EC50 for each drug as well as its maximal kill rate (Emax). The kill rates were fitted 

using Prism 5 by applying the log(agonist) vs. response (three parameter) built-in 

equation in Prism as shown below in equation 2: 

𝐾𝑖𝑙𝑙 𝑟𝑎𝑡𝑒 (ℎ𝑟−1) =  𝐸𝑚𝑖𝑛 +
(𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛)

1+ 10𝐿𝑂𝐺(𝐸𝐶50−𝐶)                ……. Eq. 2 

Where (Emin) is the background effect achieved in negative controls, (Emax) the 

maximum possible kill rate that could be achieved at the highest concentrations, (EC50) 

is the concentration required to achieve 50% of Emax and (C) is concentration in Molar 

(M).   

Using equation 2 above the main pharmacodynamic properties (Emax and EC50) of each 

drug could be identified for use in further PK-PD predictions to identify the activity 

of each drug.  
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2.4.2 PK-PD modelling and predictions of clinical drug activity  

Prediction of clinical activity of drugs against gametocytes were generated using 

Monte-Carlo simulations using the program Pmetrics® (Neely et al., 2012a) where the 

PK parameters of each drug were collected from the literature as shown in the relevant 

sections discussing each drug and the concentration-time profile modelled using either 

one or two compartments PK model. 

To convert drug mass in blood to concentration in molar, the following equation is 

used below: 

𝐷𝑟𝑢𝑔 𝑐𝑜𝑛𝑐.  (𝑀) =  
𝑋2

𝑉𝑑
⁄

𝑀𝑤𝑡
       

      

Where (Vd) is the volume of distribution in litres, (X2) the mass of drug in blood and 

Mwt is the molecular weight of the drug.  

The overall kill profile of gametocytes is then defined by linking the dynamic 

concentration to the sigmoidal pharmacodynamic profile which has been characterized 

in the previous section in equation (2).  

For Monte-Carlo simulations, we assumed 1000 subjects where the pharmacokinetic 

parameters were set at a variability of 30% to account for natural variation in 

pharmacokinetic profiles in different humans. Final results were plotted showing the 

median profile for gametocyte kill in addition to the 5% and 95% percentiles to show 

the range given pharmacokinetic variability. 
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Chapter 3 

 

3 Screening of known and potential gamitocydocidal drugs 

and PK/PD validation of methylene blue 
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3.1 Introduction: 

Malaria control and elimination cannot be achieved exclusively through vector control 

or treatment of malaria patients, but will require the development of strategies to block 

the transmission process between the human hosts and mosquitoes (vector).  This goal 

can be accomplished by targeting the gametocyte stages in the human circulation and 

hepatic sporozoite and oocysts in mosquito midgut (Burrows et al., 2011a, Burrows et 

al., 2011b). Therefore, the most appropriate target that could block the host-vector 

transmission process is the gametocyte in the human host, which would result in 

interrupting the transmission and breaking the malaria cycle. To date, only a few 

known antimalarials have therapeutic activity against late gametocytes such as 

artemisinins and 8-aminoquinolines. However, toxicity and resistance emergence are 

serious obstacles that could impede the application of those classes of animalarial 

drugs in the field (Lucantoni and Avery, 2012). As a result, the development of new 

compounds as gametocytocidals has become urgent.  

In this chapter, screening of some known antilamalrial compounds against gametocyte 

stages and a selection of newly developed anti-malarial compounds were used to 

investigate their potential gametocytocidal activity at clinically relevant concentration 

levels. To achieve the main aim, gametocyte bioactivity assays are key to determine 

the activity of transmission-blocking compounds (Lucantoni and Avery, 2012, Reader 

et al., 2015).           

The process of in-vitro production of P. falciparum gametocytes in synchronised 

stage-specific high yields for screening assays is challenging. Recently, several 

methods have been published on the development gametocyte cultures (Fivelman et 

al., 2007, Lucantoni et al., 2013, Cevenini et al., 2014, D'Alessandro et al., 2016b, 
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Delves et al., 2016), however malaria isolates showed significant variability in their 

ability to generate gametocytes in vitro (Graves et al., 1984). 

The screening of known antimalarials; e.g. 4-aminoquinoline, 8-aminoquinoline, 

aminoalcohol, naphthoquinone, antifolates, thiazine dye (methylene blue), and the 

new potential gametocytocidal compounds such as spiroindolones, Mitotic Kinase 

Monopolar Spindle 1 (MPS1) inhibitors and aurora kinase inhibitor have been 

investigated to measure their activity against gametocyte stages. In the present study, 

a newly generated luciferase-reporting transgenic line 3D7elo1- pfs16-CBG99, 

derived from well generated gametocytes 3D7 lab strain, was used to introduce 

gametocytogenisis developmental stages in vitro. A highly sensitive luciferase-based 

gametocyte assay method was used in this study. This assay uses a newly generated 

luciferase-reporting transgenic line, and a non-lysing D-luciferin substrate formulation 

(Cevenini et al., 2014, D'Alessandro et al., 2016a) to monitor gametocyte viability 

during gametocytogenisis development and determine the stage-specific sensitivity 

and the kill rate of the antimalarials.   

Spiroindolones represent a new antimalarial class that targets a P-type Na+-ATPase 

enzyme (PfATP4) by inhibiting this plasma membrane protein of the parasite and then 

disrupting its sodium haemostasis leading to parasite death (Spillman et al., 2013, 

Flannery et al., 2013, Turner, 2016). This novel mode of action gives us a better 

understanding of the pathways involved in parasite biology and haemostasis and has 

resulted in the discovery of new antimalarial targets to face the emerging challenges 

of drug resistance. 

Although there is no Mitotic Kinase Monopolar Spindle 1 (MPS1) in P. falciparum, 

suspected MPS1 inhibitors (azaindoles, potential kinase) AWZ compounds screened 

in house have shown reasonable activity against P. falciparum asexual stages. The 
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activity of those kinase inhibitors has high level of structural similarities to the 1H-

pyrrolo [3, 2-c] pyridine scaffold (Naud et al., 2013).  

Pharmacodynamic dose-response curves and IC50 values have been established for the 

compounds showing significant activity during gametocyte stages. Thereafter, the kill 

rate of the most potent known antimalarial compound was determined by conducting 

a time-dependent killing assay, building a pharmacodynamic Emax sigmodal model and 

studying its pharmacokinetic/pharmacodynamic (PK/PD) properties in eliminating 

gametocytes when administered to patients at clinical levels.  
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3.2 Methods and materials: 

3.2.1 Reagents: 

P. falciparum 3D7elo1-pfs16-CBG99 were generously provided by Prof Pietro Alano 

lab (INBB, Istituto Nazionale di Biostrutture e Biosistemi, 00136 Rome, Italy). 4-

aminoquinolines, 8-aminoquinolines, antifolate, MB were purchased from sigma 

(DHA, artesunate and artemether) were purchased from sigma (Dorset, UK). 

Lumefantrine was purchased from TCI. The spiroindolones (SJ-7 & SJ-10) were kindly 

provided from Amy Matheny, St. Jude Children’s Research hospital (Memphis, TN 

USA) with no chemical structure provide. MPS1 inhibitors were provided in house 

from our medicinal chemistry team. Aurora kinase inhibitor from AstraZeneca. The 

chemical structures of these compounds are shown in Figure 3.1.  

3.2.2 Test compounds: 

Table 3.1: Known and new potential antimalarial drugs used in this chapter. 

 

Class Compound 
Molecular weight 

g/mol 
Solvent 

4-Aminoquinoline 
CQ 319.872 

50% MeOH 
PPQ 535.517 

8-Aminoquinoline 
PMQ 259.347 

75% MeOH 
TF 581.589 

Aminoalcohols Lumefantrine 528.939 DMSO 

naphthoquinones ATQ 366.837 50% MeOH 

Antifolates Pyrimethamine 248.71 DMSO 

Others (thiazine dye) Methylene blue 319.85 DMSO 

Dihydroisoquinolines 

(Spiroindolones) 

SJ000573359-7 457.38 
DMSO 

SJ000571311-10 457.38 

MPS1 inhibitor 
AWZ5019 401.48 

DMSO 
AWZ5023 376.43 

Aurora kinase inhibitor AZD3646 523.54 DMSO 
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3.2.3 Compounds chemical structures: 

 

Figure 3.1: Chemical structures of antimalarial drugs used in chapter 3.  

 

3.2.4 Methods: 

P. falciparum gametocytes culture and gametocytocidal assay were performed as 

described in methodology chapter 2, section 2.3 and then PK-PD model were 

performed as described in chapter 2, section 2.4. 
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3.3 Results: 

3.3.1 In-vitro anti-gametocytocidal activity screening of a panel of 13 known & 

potential antimalarial drugs and clinical candidates at 10 µM concentration: 

To begin the gametocyte luciferase assay, a newly generated luciferase-reporting 

transgenic line (3D7elo1- pfs16-CBG99) was used to determine the activity of the 

selected known and potential antimalarial compounds on gametocyte viability at two 

different stages. The main findings show the distinct stage-specific effects different 

compounds. MB has been used as a positive drug control in this study. MB exhibits 

complete inhibition of gametocytes at all stages (Figure 3.2 and Table 3.2). 

AWZ compounds (MPS1 inhibitor) used in this chapter resulted in elimination of 

gametocytes at all stages by about 100%. Two Spiroindolone compounds have also 

been tested against gametocyte stages. SJ000573359-7 and SJ000571311-10 showed 

significant activity against early stages by 92% and 86%, respectively. Similarly, both 

SJ compounds exhibited significant activity against late stages gametocytes by 74% 

and 70% respectively.   

At the concentration tested (10 µM), lumefantrine resulted in > 50% inhibition of 

gametocyte viability during early stages. However, the inhibition of late stage 

gametocytes by the same compound was less pronounced with only 26% inhibition 

observed. Among the 4-Aminoquinoline tested, CQ & PPQ at 10µM did not show 

significant activity during all stages, however the early stages still showed a more 

pronounced response in comparison to late-stage gametocytes.     

Although PMQ did not exhibit significant inhibitory activity against gametocytes, all 

tested 8-aminoquinoline compounds showed interesting results as they were more 

active against late stages in comparison to early stages. TF showed remarkable activity 
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in late stages (95.7 % inhibition) and in early stages, the drug resulted in inhibiting 

viability by 85.6%.   

ATQ resulted in the inhibition of 21 % of the immature gametocytes stages, whereas 

its inhibitory capacity against mature late stages was only 10.2% inhibition. The 

antifolate pyrimethamine did not show any activity against gametocytes at the test 

concentration (10 µM). Lastly, aurora kinase inhibitor, AZD3646 exhibited   ̴ 50% 

inhibition of early stage gametocytes, but late stages did not display any significant 

inhibition by this compound (Figure 3.2, Table 3.2).  

The results above have led us to examine the compounds that showed 50 

% or more inhibition at 10uM in the luciferase-based assay at a wide range of 

concentrations which includes clinically relevant blood exposures. 

 

Table 3.2: Gametocytocidal activity of 13 known and potential candidate antimalarials. 

 

Class Compound 
%inhibition ± SEM 

Early@ 10 µM Late@ 10 µM 

4-Aminoquinoline 
CQ 33.4 ± 3.8 11.4 ± 2.3 

PPQ 9.2 ± 2.4 2.5 ± 1.5 

8-Aminoquinoline 
PMQ 7.2 ± 4.1 15.6 ± 6.4 

TF 85.5 ± 4.3 95.7 ± 1.1 

Aminoalcohols Lumefantrine 52.5 ± 1.8 25.8 ± 1.2 

naphthoquinones ATQ 21.2 ± 3.7 10.2 ± 4.4 

Antifolates Pyrimethamine 4.01 ± 1.9 2.2 ± 2.1 

Others (thiazine dye) Methylene blue 97.1 ± 2.1 98.3 ± 1.7 

Dihydroisoquinolines 

(Spiroindolones) 

SJ000573359-7 92.5 ± 3.1 74.2 ± 3.2 

SJ000571311-10 86.7 ± 2.3 70.5 ± 3.2 

(MPS1) inhibitors 
AWZ5019 99.8 ± 2.1 100.2 ± 7.5 

AWZ5023 97.5 ± 7.1 96.8 ± 9.4 

Aurora kinase inhibitor AZD3646 53.3 ± 3.7 8.2 ± 4.6 
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Figure 3.2: Bar chart illustrate the inhibition profile of antimalarial at 10µM against 

early and late gametocyte stages. 

 

3.3.2 Dose-response of gametocytocidals activity profile during the gametocytes 

development (Early & late stages): 

Amongst the 13 compounds tested at 10uM, 7 showed promising response (>50%) 

against gametocyte stages (Table 3.2 and Figure 3.2). Therefore, the activity of these 

potential gametocytocidal drugs was assessed throughout the process of 

gametocytogenisis by measuring the inhibitory effects at a wide range of 

concentrations and determined the IC50 and maximal kill values at 2 time points: days 

2-4 (stage II-III) and days 10-12 (IV-V) during the development of gametocytes after 

48 h-long exposures to drugs (section 2.3). 

The selected compounds included a number of known antimalarials: MB, lumefantrine 

and TF. Additionally, less known compounds such as AWZ compounds (MPS1) 

inhibitors (AWZ5019 & AWZ5023) as well as spiroindolone compounds 
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(SJ000573359-7 & SJ000571311-10) have also shown >50% activity against 

gametocytes. 

The mean of the IC50 ± SEM values were determined by in-vitro gametocyte viability 

assay for both early and late stages gametocytes. The relative concentration-response 

curves of tested compounds in this chapter were illustrated in Figure 3.3, Figure 3.4 

and Figure 3.5. 

Table 3.3 shows the mean of the IC50 ± SEM values of all tested compounds which 

was determined by dose-response of gametocytes viability assay for both early and 

late gametocyte stages. In general, the determined IC50 levels against early stage 

gametocytes (II-III) were significantly lower than IC50 levels calculated against late 

stage gametocytes (indicating a significantly higher potency in eliminating 

gametocytes during early stages in comparison to late stages). TF, however, showed 

more active against late stages in comparison to early gametocytes where the IC50 of 

early gametocytes was 6.45 ± 0.4µM and in late stages was 4.8 ± 0.2 µM. 

Table 3.3: IC50 values for the gametocytocidal activity of 7 current and candidate 

antimalarial drugs.  

* indicates P < 0.05 (Student’s t-test, one-tailed, n=3 separate experiments, each in triplicates). 

 

Class Compound 
IC50 (nM) ±SEM 

Early Late 

Thiazine dye Methylene blue 38.05* ± 2.7 622.1 ± 8.8 

8-Aminoquinoline TF 6450* ± 413 4800 ± 201 

Aminoalcohols Lumefantrine 187.4* ± 6.6 579 ± 7.3 

Dihydroisoquinolines 

(Spiroindolones) 

SJ000573359-7 467.2* ± 3.7 2361 ± 31 

SJ000571311-10 586.5* ± 2.6 3150 ± 7.1 

(MPS1) inhibitors 
AWZ5019 669.7* ± 6.1 3530 ± 21.1 

AWZ5023 575.3* ± 8.6 1351 ± 5.5 
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Figure 3.3: Early and late gametocytes stages showing different profile activities. 

Typical curves show the dose response of (A) MB, (B) TF and (C) Lumefantrine compounds against gametocyte stages. IC50 values were calculated through 

nonlinear regression using the “log (inhibitor) vs. response -- Variable slope (four parameters)” model in Prism 5. The error bars represent the standard error of 

the mean (SEM) of three independent experiments each in triplicates (N= 3).
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Figure 3.4: Early and late gametocytes stages showing different profiles activity with 

spiroindolones. 

Typical carves show the dose response of spiroindolones (A) SJ000573359-7 or SJ-07 and (B) 

SJ000571311-10 or SJ-10 compounds against gametocyte stages. IC50 values were calculated 

through nonlinear regression using the “log (inhibitor) vs. response -- Variable slope (four 

parameters)” model in Prism 5. The error bars represent the standard error of the mean (SEM) 

of tree independent experiments each in triplicates (n= 3). 

 

 

Figure 3.5: Early and late gametocytes stages showing different profiles activity with 

MPS1. 

Dose response curves of (suspected) Mitotic Kinase Monopolar Spindle 1 (MPS1) inhibitors 

(A) AWZ5019 and (B) AWZ5023 compounds against gametocyte stages. IC50 values were 

calculated by nonlinear regression using the “log (inhibitor) vs. response -- Variable slope 

(four parameters)” model in Prism 5. The error bars represent the standard error of the mean 

(SEM) of tree independent experiments each in triplicates (n= 3).  



 

 

 

 

81 

 

The IC50 of MB increased significantly (P<0.05) from early stage to late stages by ̴ 18 

folds from 38.05 ± 2.7 nM to 622.1 ± 8.8 nM, respectively (Table 3.3 and Figure 

3.3A). Lumefantrine demonstrated moderate activity against gametocytes in both 

stages by reducing the parasite viability to 53.5% and 75.9 %, and the IC50 values were 

3 fold higher in late stages in comparison to early stages (187.4 ± 6.6 to 579 ± 7.3 nM) 

as seen in Table 3.3 and Figure 3.3C. 

Spiroindolone compounds used in this study demonstrate a significant response to kill 

gametocytes and showed stage-specific inhibitory responses using our luciferase 

viability assay. SJ-07 & SJ-10 exhibited higher potency against early gametocytes in 

comparison to late gametocytes (> 5-fold increase in IC50). The IC50 values of SJ-07 

is 467.2 ± 3.7 nM in early stages and 2361 ± 31 nM in late stages, whereas SJ-10 IC50 

values in early and late stages gametocytes were 568.5 ± 2.6 nM; 3150 ± 7.1 nM 

respectively indicating that SJ-07 is significantly more potent than SJ-10 at inhibiting 

gametocytes during all stages (Table 3.3 and Figure 3.4). 

Similarly, AWZ compounds have also demonstrated significant activity against 

gametocytes and have also shown a stage-specific inhibitory response with IC50 values 

3 to 5 times higher in late stages than in early stage gametocytes. The IC50 values of 

AWZ5019 in early and late gametocytes were 669.7 ± 6.1 and 3530 ± 21.1 nM 

respectively. Additionally, AWZ5023 is more potent against early and late 

gametocytes than AWZ5019 with IC50 of 575.3 ± 8.6 nM and 1351 ± 5.5 nM (P<0.05) 

as shown in Table 3.3 and Figure 3.5. 

Figure 3.3, Figure 3.4 and Figure 3.5 demonstrate the discrepancy in activity against 

early and late stage gametocytes for all drugs.  
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3.3.3 Identification of kill rates and pharmacodynamic parameters of drugs: 

Of all tested known and potential antimalarial drugs, MB was selected to perform 

time-dependent killing assays, as it showed the highest potency against all gametocyte 

stages, and because it has been used for malaria therapy in patients. The IC50 level for 

MB against late stage gametocytes was also clinically relevant: (622.1 ± 8.8 nM), 

indicating a possibility for the drug to significantly reduce gametocytes in patients 

when administered at standard doses. The determination of kill rates for MB was done 

as described in chapter 2 section 2.4.1. 

The dynamics of gametocyte kill exerted by different drugs was systematically 

characterised by analysing the effects of MB upon gametocyte counts at a range of 

clinically relevant concentrations (10, 8, 4, 2, 1, 0.5, 0.25, 0.1, 0.05 and 0.001 µM) 

over discrete time intervals (0, 6, 12, 24, 48, 72, 96 h). The kill rate exerted by each 

concentration was calculated using Prism 5 for windows through nonlinear regression 

using the “plateau followed by one phase decay” built-in equation as shown below in 

Equation 1 (Figure 3.6). 

 

𝐺𝑎𝑚𝑒𝑡𝑜𝑐𝑦𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 = (𝐺0 − 𝑃𝑙𝑎𝑡𝑒𝑎𝑢) ∗ 𝑒(−𝑘∙𝑡) + 𝑃𝑙𝑎𝑡𝑒𝑎𝑢    …. Eq. 1  
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Figure 3.6: Time-dependent killing assay of MB at different concentration against late 

stages gametocytes over discrete time intervals. 

Data show mean +/- SEM from three independent experiments performed in triplicate. 

 

 

Table 3.4: The kill rate measurement achieved by each concentration of Methylene blue. 

MB conc. Kill rate (K h-1) SEM N 

10 µM 0.101017 0.007560 3 

8 µM 0.1019 0.008613 3 

4 µM 0.08903 0.008214 3 

2 µM 0.0581 0.007143 3 

1 µM 0.03712 0.006749 3 

500 nM 0.02784 0.007657 3 

250 nM 0.02063 0.009032 3 

100 nM 0.01425 0.007433 3 

50 nM 0.006944 0.008742 3 

1 nM 0.002473 0.02483 3 

0 0.0002024 0.002584 3 
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As can be clearly seen in Figure 3.6, there was no delay or (lag time) on the effect of 

gametocyte kill starting from the first drug exposure. After measuring the kill rate (k) 

achieved by each concentration of MB (Table 3.4), the overall activity of the drug is 

then assessed using a sigmoidal Emax model which calculates the EC50 for MB as well 

as its maximal kill rate (Emax). The kill rates were fitted using Prism 5 by applying the 

log (agonist) vs. response (three parameter) built-in equation in Prism as shown below 

in equation 2: 

𝐾𝑖𝑙𝑙 𝑟𝑎𝑡𝑒 (ℎ𝑟−1) =  𝐸𝑚𝑖𝑛 +
(𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛)

1+ 10𝐿𝑂𝐺(𝐸𝐶50−𝐶)                …. Eq. 2 

The EC50 of MB for the Emax model as well as the Emax were determined. MB EC50 

equal to 3.22 µM with 95% confident interval CI (2.132, 4.853) µM and the Emax value 

which represents the maximal kill rate is 0.11 h-1 (Figure 3.7). 

 

Figure 3.7: Model of pharmacodynamics of MB to determine the kill rate per h. 

The figure shows relationship between MB concentration (X axis) and the kill rate exerted at 

each concentration (Y axis). The red line shows the sigmoidal fit of the data which is used to 

calculate an EC50 and an Emax value. Data show mean +/- SEM from three independent 

experiments performed in triplicate.  
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3.3.4 PK-PD modelling and predictions of clinical drug activity: 

3.3.4.1 Pharmacokinetic profile of MB in human: 

The clinical activity prediction of MB against late gametocyte stages were generated 

using Monte-Carlo simulations using the program Pmetrics® (Neely et al., 2012b). 

The PK parameters of MB were collected as reported in clinical PK studies in the 

literature as shown in Table 3.5 using a 2 compartment PK model defined by the 

following two differential equations: 

 

𝑑𝑋1

𝑑𝑡
=  −𝑘𝑎 ∙  𝑋1                                                                …… Eq. 3 

 

𝑑𝑋2

𝑑𝑡
=  𝑘𝑎 ∙  𝑋1 − (𝑘𝑒 + 𝑘𝑐𝑝) ∙ 𝑋2 + 𝑘𝑝𝑐 ∙  𝑋3                   ..….. Eq. 4 

 

𝑑𝑋3

𝑑𝑡
=  𝑘𝑐𝑝 ∙ 𝑋2 − 𝑘𝑝𝑐 ∙  𝑋3                                                 …… Eq.5 

Where (X1) represents drug mass in the gut in grams, Ka the rate of absorption, (X2) 

the mass of drug in blood, (X3) the mass of drug in the peripheral compartment, Ke the 

rate of elimination, KCP rate constants for transit from central to peripheral 

compartments, KPC the rate peripheral to central compartment, t sand (t) the time in h. 

The drug mass of MB in blood was converted to concentration in molar using the 

following equation: 

𝐷𝑟𝑢𝑔 𝑐𝑜𝑛𝑐.  (𝑀) =  
𝑋2

𝑉𝑑
⁄

𝑀𝑤𝑡
                                                    .….. Eq.6 
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Table 3.5: PK parameters of MB for adult patients as reported in the literature. 

Parameter Predictable value References 

Dose (mg) 
500mg given twice daily 

for 3 days 

(Walter-Sack et al., 

2009) 

Central Volume distribution/F 

(Vc) [L] 
33.4 

Peripheral Volume of 

distribution/F (Vp) [L]* 
209.7 

Inter-compartmental Clearance 

(Q/F) [L/hr] ** 
20.3 

Central Clearance/F (CL) (L/h) 8.4 

Absorption rate (ka) (h-1) 0.72 

 

∗  𝑄 = 𝐾𝐶𝑃 ∙  𝑉𝑐 

** 𝑉𝑝 = 
𝑄

𝐾𝑃𝐶
 

 

 

The PK exposure simulation in a population of 1000 people with 30% variation of PK 

parameters was used for the determination of PK profile in a typical human population. 

Solid black line in Figure 3.8 shows the median PK exposure whereas dashed red lines 

show the 5% and 95% of the population from the same simulation. Peak concentration 

(Cmax) and time to reach maximum concentration (Tmax) can be determined from the 

data of the PK profile as follows: median Cmax of MB is 18.1 µM and Tmax value of 2.0 

h. The threshold of MB activity shown in Figure 3.8 starting from IC50 level as dashed 

in blue. The dug concentration can reach the IC50 levels with a safe dosing level 

(500mg twice daily for 3 days).   
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Figure 3.8: Simulation of PK exposure in a population of 1000 people given a 30% 

variation on all reported PK parameters of MB. 

Solid black line shows the median PK exposure whereas dashed red lines show the 5% and 

95% from the same simulation. IC50 and IC99 levels of MB are shown in the graph as dashed 

blue and green lines, respectively.   
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3.3.4.2 The prediction model of MB effect on late gametocytes: 

The prediction model of MB kill profile on late gametocytes clearance is then defined 

by linking the dynamic concentration (calculated using equations 3-5 for PK profile) 

to the sigmoidal pharmacodynamic profile (Figure 3.7) which has been characterized 

in the previous section in equation (2). The final results plotted for the predication 

model showing the median profile for gametocyte kill in addition to the 5% and 95% 

percentiles to show the range given pharmacokinetic variability. The prediction graph 

of PK-PD relationship of MB shows dramatic levels of gametocyte reduction, 

achieving complete depletion within less than 3 days (Figure 3.9).   

 

Figure 3.9: PK-PD relationship of MB and its effect upon late stages gametocyte for three 

day-dosing regimens (every 12 h). 

The figure shows a simulation of MB effect upon gametocytes with a standard dose of 500mg 

twice a day for 3 days given the PK and PD properties reported earlier in this chapter. The 

green line shows the median effect upon gametocyte in a population of 1000 people while the 

dashed red lines show the 5% and 95% percentiles of the same population.  
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3.4 Discussion: 

The sustainability of malaria control needs combination of the treatment schemes 

targeting pathogenic malaria form (asexual) and transmission gametocyte form 

(sexual). The efforts to find gametocytocidal compounds are disrupted by the limited 

understanding of the fundamental biology of gametocytogenisis. During Gametocyte 

development,  the parasite morphologically differentiates and tends to be less 

metabolically active during this process (Peatey et al., 2011). Also, a replication 

processes does not occur in the gametocyte genome in all stages as gametocyte 

arrested in phase G0 of cell cycle (Raabe et al., 2009). The action nucleic acid synthesis 

is more likely limited to RNA synthesis and this is genetically proven by the haploid 

of gametocytes.  After day 6 of gametocytogenisis the RNA synthesis is terminated as 

reported in previous studies, leading to the lack of Hb digestion or protein synthesis 

in late stage gametocytes (Canning and Sinden, 1975, Sinden et al., 1978). 

Here, the aim was to determine the pharmacodynamic response (in-vitro) of selected 

known antimalarials and a panel of new inhibitor compounds against P. falciparum 

gametocyte–specific stages. In addition, a pharmacodynamic sigmoidal model of MB 

was developed to measure the gametocytes kill rate to use it for the PK-PD simulation 

methods to predict the efficacy of MB as gametocytocidal in malaria patients.     

3.4.1 Panel of known antimalarials activity as gametocytocidal:   

The selected reference antimalarial compounds that were tested using our luciferase-

based assay showed significant agreement with other recently published existing 

assays. Our results using MB, showed that this compound displayed a high potency 

against all gametocyte stages. Interestingly, we observed that the gametocytocidal 

activity of MB against early stage gametocytes is more potent than that against late 
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stages, with IC50 concentrations of approximately 38 nM and 622 nM, respectively. 

MB is used mostly in humans for methemoglobinemia, where the ferrous ion (Fe2+) 

undergoes an oxidation process and is converted to ferric (Fe3+). MB treats this by 

acting as an electron donor which reduces the oxidation. In the parasite, the actual 

mode of action of MB is still ambiguous (Vennerstrom et al., 1995, Schirmer et al., 

2003). One hypothesis is that MB interferes with the oxidation-reduction cycling of 

glutathione reductase (Adjalley et al., 2011b). However, this hypothesis was not 

supported in one study which demonstrated that MB retains significant activity against 

Plasmodium parasites in which the antioxidant enzyme (glutathione reductase) is 

missing (Pastrana-Mena et al., 2010).  

MB is considered chemically as a weak base and can accumulate in acidic organelles 

such as the digestive vacuole (Goodman et al., 2011). Other studies suggest that MB 

interferes with the formation of hemozoin in Plasmodium food vacuole (Schirmer et 

al., 2003). The asexual P. falciparum parasite is assumed to share its major metabolic 

activities with early stage gametocytes with respect to Hb degradation (Sinden, 1982). 

Although this could interpret the high sensitivity of MB to kill the early stage 

gametocytes, the mechanism of action would be similar to CQ (4-aminoquinoline) as 

it is thought to be causative agent supporting the significant activity of 4-

aminoquinoline drug class. However, the mode of resistance of 4-aminoquinoline, 

defined by PfMDR1 and PfCRT (Sa et al., 2009, Valderramos et al., 2010), doesn’t 

convey cross-resistance to MB (Vennerstrom et al., 1995, Pascual et al., 2011).  

In mature gametocytes, the male and females are in cell cycle arrest and are effectively 

quiescent in blood circulation and ready for uptake by mosquitos during a blood meal 

(Sinden and Smalley, 1979).  Consequently, once the gametocyte becomes entirely 

mature and infectious, its metabolic activity is concentrated (reduced) to the main 
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housekeeping metabolic processes such as redox activity and generation of ATP 

(Tanaka and Williamson, 2011, Lelievre et al., 2012). Hb digestion will also stop 

according to Hanssen and colleagues in their previous study to measure the Hb content 

by soft X-ray microscopic analysis (Hanssen et al., 2012). This is supported by the 

idea of the different mechanisms of action underlying MB activity against late 

gametocytes, as the drug still exhibit significant activity in late stage gametocytes by 

IC50 > 17 fold lower than that in early stages (Table 3.3). 

Lumefantrine is amino alcohol antimalarial used as partner drug in Coartem, the most 

commonly used ACT (Wells et al., 2009).  Lumefantrine displayed moderate 

gametocytocidal activity against early stages of gametocyte development by inhibiting 

52 % of gametocyte viability. This is consistent with a recent study using GFP-

luciferase reporters as viability assay (Adjalley et al., 2011b). In mature late 

gametocytes, however less gametocytocidal activity was exhibited by lumefantrine 

compared to the early stages with about 25 % inhibition of the gametocytes viability 

at 10 µM (Figure 3.3C). 

The significant inhibition of gametocytes viability with lumefantrine was at 

concentration (10 µM) approximately equal to the average peak plasma concentration 

in malaria patients which was described in previous studies to be about 11 µM and 

half-life of 4-5 days (Eastman and Fidock, 2009, Djimde and Lefevre, 2009). 

Interestingly, lumefantrine has been observed to significantly inhibit P. falciparum 

oocyst numbers in mosquitoes fed on drug-treated gametocytes (Adjalley et al., 2011a) 

and to also moderately inhibit the oocyst production in a rodent malaria model (Delves 

and Sinden, 2010). These data indicate that the decrease in the number of oocysts by 

lumefantrine may not only inhibit exflagellation of male gametocytes, but 

lumefantrine may also have an influence upon female gametocytes, gamete formation, 
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and the development of oocysts in mosquitos through a hitherto unknown mechanisms 

of action.   

PMQ is an 8-aminoquinoline that is widely used to treat P. vivax and P. ovale malaria 

infection and is also used to prevent relapse cases as it has efficacy against hypnozoites 

or liver stages (Bousema and Drakeley, 2011). A single dose of PMQ given to malaria 

patients with ACT can significantly reduce the gametocyte carriage period (Smithuis 

et al., 2010a, Bousema et al., 2010). Here, PMQ does not display significant inhibitory 

activity against gametocytes at 10 µM. However, PMQ is rapidly metabolised to 

different reactive intermediates which are supposed to be responsible for antimalarial 

activity as well as erythrocytes (haemolysis) toxicity (Idowu et al., 1995, Vale et al., 

2009). Therefore, the Data are consistent with the hypothesis that the parent compound 

does not possess inhibitory activity and that inhibitory activity is only displayed by 

the metabolites of PMQ.  The inhibitory activity of PMQ metabolites is explored in 

more detail in Chapter 5.   

The gametocytocidal activity of TF was also examined. TF is 8-aminoquinoline 

compound that is a promising clinical candidate with potentially less toxicity and 

possessing a longer half-life compare to primaqine, at 14 days and 5 h respectively 

(Mihaly et al., 1984b, Ward et al., 1985, Brueckner et al., 1998).  Our results showed 

gametocytocidal activity for TF in all gametocytes stages compared to PMQ. Also, it 

is noted that the potency of TF against late stage gametocytes is significantly more 

pronounced than its activity against early stages. TF and its metabolic activity against 

plasmodium transmission stages will be further investigated and described in Chapter 

6. 

The 4-aminoquinoline CQ, (former first line malaria therapy), and PPQ are reported 

to exert gametocytocidal activity only against early stage gametocytes, as their mode 
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of action allows the drug to inhibit the hemozoin formation in parasite digestive 

vacuole (Butcher, 1997, Peatey et al., 2009, Buchholz et al., 2011, D'Alessandro et al., 

2016b). The luciferase-based assay used in our study is consistent with these reports 

and shows a moderate, albeit not significant, activity against early stages gametocytes 

with only 33 % inhibition of the viability and no activity against mature late stages. 

PPQ, a bisquinoline which is used as a partner drug with the first line malaria drug 

ACT, failed to demonstrate significant activity upon early and late stage gametocytes. 

The luciferase viability assay used in our experiment has been used in the study of 

D'Alessandro and her colleagues as they have shown excellent gametocytocidal 

activity of CQ and PPQ against early gametocytes in contrast to what we have 

previously described in this chapter (D'Alessandro et al., 2016b). The incubation 

period of drug exposure used in their work was 72 h compared to 48 h incubation in 

our results. This could interfere with the activity of drug in the final readings. 

Consequently, we should mention that the immature stage gametocytes are assumed 

to share metabolic activity (Hb digestion) with asexual stages (Sinden, 1982) which is 

the targeted mode of action of 4-aminoquinloines. Another study according to Hanssen 

and his colleagues confirms that early gametocytes still generate and maintain the Hb 

digestion (main metabolite pathway) by 50% whereas in later stage III digestion 

appears to be completed in mature stages (Hanssen et al., 2012).     

Enzymes involved in nucleotide synthesis pathways, such as dihydrofolate reductase 

are not active after gametocytogenesis induction, where DNA replication is absent.  

This is supported by the failure of the antifolate drug, pyrimethamine, to exert 

gametocytocidal activity against all gametocytes stages in our data and in the recently 

published studies in the literature using luciferase-based assay and pLDH 

(D'Alessandro et al., 2016b).    
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ATQ is naphthoquinone antimalarial that targets the mitochondrial respiratory chain 

by inhibiting cytochrome bc1. This pathway plays a significant role in cell proliferation 

(Fleck et al., 1996). In this study, ATQ did not display gametocytocidal activity against 

any gametocyte stages. These results are in agreement with recent studies that describe 

a reduction in the mitochondrial metabolite activity of sexual stage gametocytes 

(Adjalley et al., 2011a, D'Alessandro et al., 2016b). 

3.4.2 Activity of recent potential anti-malarial compounds against gametocytes: 

A number of potential antimalarial compounds have been tested for the first time 

against P. falciparum gametocyte stages. Those include two spiroindolones, two 

MPS1 inhibitors and one aurora kinase inhibitor, and it is worth mentioning that all of 

them were tested against asexual stages (in house) and showed significant activity as 

antimalarials against asexual stages. Although membrane transport inhibitors are 

generally less effective to treat infectious diseases, spiroindolone, a recent compound 

in a  new generation of antimalarial compounds (Rottmann et al., 2010, White et al., 

2014) which targets  Na+-efflux ATPase (PfATP4) in parasite plasma membrane and 

disrupts Na+ haemostasis (Spillman et al., 2013), has confirmed the susceptibility of 

ion transport mechanism of parasites to chemical drug attack.   

SJ000573359-7 and SJ000571311-10 have already been investigated in house against 

asexual stages and demonstrated significant activity with IC50 values at nanomolar 

ranges: 1.5 and 10.2 nM respectively. In our results, both compounds showed 

significant activity at 10 µM being more active against early stages compare to late 

gametocytes. The shift in IC50 values from asexual stages to sexual stages in more than 

100 fold, however the sensitivity of these compounds against transmission stages 

indicate the consistency of PfATP4 being essential in sexual stages. As those 

compounds have been tested for the first time against gametocytes and displayed 
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gametocytocidal activity, a previous study showed that the spiroindolone compound 

(KAE609) also inhibits gametocytes development as well as oocyst formation (van 

Pelt-Koops et al., 2012), indicating the potential of this class to be gametocytocidal.    

The MPS1 inhibitors (azaindoles, potential kinase) AWZ compounds were 

investigated against gametocyte stages for the first time, and they have displayed good 

activity in asexual stages (in house). Interestingly, there is no MPS1 in P. falciparum, 

but the suspected MPS1 inhibitors demonstrate significant activity as antimalarial 

class in all intraerythrocytic stages. The activity of kinase inhibitors shares high levels 

of structural similarity to the 1H-pyrrolo [3, 2-c] pyridine scaffold (Naud et al., 2013).  

A preclinical aurora kinase inhibitor (AZD3646) has also been tested against 

gametocyte stages. It displayed moderate activity against early stages gametocyte (at 

high concentration, 10µM) and no effect against late stages. The aurora kinase 

contains serine/threonine kinases which is important for regulation of the cell cycle in 

mitotic processes (Bischoff et al., 1998, Giet and Prigent, 1999, Bavetsias and 

Linardopoulos, 2015). As a result, gametocytes are not able to respond to this kind of 

inhibitors as no replication processes occur in gametocyte genome in all stages as 

gametocytogenesis arrested in phase G0 of cell cycle (Raabe et al., 2009). 

3.4.3 PK-PD Modelling of MB towards Gametocytes Clearance: 

In this chapter, our data revealed that MB demonstrated high potency as a 

gametocytocidal compound in all stages in-vitro. MB has also been able to reduce the 

mosquito infection prevalence dramatically by reducing the oocyst numbers (Adjalley 

et al., 2011a). In 1891, the antimalarial properties of MB that has been reported by the 

chemist Paul Ehrlich as the first synthetic drug used in clinical treatment (Guttmann 

and Ehrlich, 1891, Schirmer et al., 2011). Recently, the interest of using MB in 
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combination with other antimalarial agents has been increasing to assess its advantage 

in reducing gametocyte carriage (Coulibaly et al., 2009, Bountogo et al., 2010).  

Therefore, we have studied the pharmacodynamic profile of MB upon gametocyte 

clearance by studying its activity against gametocytes across a wide range of clinically 

relevant concentrations. A simulation method of the PK-PD model, which could 

provide a good understanding of drug efficacy on mature stages gametocyte has been 

developed in this study. MB was selected from all of the tested compounds because of 

its significant activity against all gametocyte stages; MB is also already clinically 

registered compound with known and pulished PK parameters.  

The pharmacodynamics of gametocyte kill were systematically characterised by 

analysis of the effect of MB drug upon gametocyte counts at a range of clinically 

relevant concentrations over discrete time intervals. For the desirable PD model, PD 

parameters derived from the time-killing dependent assay were conducted to define 

gametocyte kill rate and calculate Emax and IC50. The dynamic measurement shows a 

significant reduction of gametocyte viability starting from the first time point of 6 h. 

This reflects the high potency of MB against P. falciparum gametocytes even in late 

stages. PK parameters of MB were collected from the literature to identify the 

concentration-time profile modelled using a two-compartment PK model (Walter-

Sack et al., 2009). During the gametocytogenisis, the gametocytes tend to be 

sequestered somewhere in the body (usually bone marrow and spleen) and once they 

mature to late stages, they are released to the bloodstream and become ready to be 

infectious to mosquitoes (Smalley and Sinden, 1977, Smalley et al., 1981, Rogers et 

al., 2000). Here, we are targeting the drug plasma concentration (CP) in blood 

circulation, as gametocytes exist in the peripheral bloodstream, by using a two-

compartment PK model.  
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Using aqueous formulation of oral MB, the drug can readily and safely achieve blood 

levels that are higher than MB’s IC50 levels identified in-vitro (Walter-Sack et al., 

2009).  Linking the activity of MB as constructed in the PD model (Figure 3.7) to its 

simulated PK profile (Figure 3.8) results in a PK-PD model that shows the potential 

activity of this drug against gametocytes (Figure 3.9). The PK-PD simulation predicts 

a complete elimination of gametocytes from the blood stream in less than 3 days when 

administered twice daily at a dose of 500mg using the aqueous oral formulation.  

Due to the limited clinical studies of measuring the effect of MB on transmission stage, 

the agreement of whether MB could have the ability to help reducing the gametocyte 

carriage or not is still debatable. One recent study from Burkina Faso detected strong 

clinical efficacy of MB-AQ when trialled in children with P. falciparum in 

uncomplicated malaria (Zoungrana et al., 2008) and another study suggested moderate 

effect of MB as monotherapy in reducing gametocyte carriages (Bountogo et al., 

2010). 

3.4.4 Conclusion: 

In this chapter, we investigated some reference antimalarial drugs and new potential 

antimalarials against intraerythrocytic transmission stages and measured their activity 

as gametocytocidal compounds. All active compounds against gametocytes 

demonstrate stage-specific activity during gametocytogenesis development. Briefly, 

MB, spiroindolones and MPS1 inhibitors showed significant gametocytocidal activity 

at all stages. TF is the only 8-aminoquinoline that demonstrates gametocytocidal 

activity during all gametocyte stages, however TF was more potent against late 

gametocytes in comparison to early gametocytes which is the contrary from all other 

compounds as they have activity in early stages more than late stages. Lumefantrine 

displayed moderate gametocytocidal activity upon early stages by inhibiting 52 % of 
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gametocytes viability and about 25 % inhibition of the mature late stages. This 

suggests that lumefantrine as a partner drug of choice with artemisinin (Coartem), the 

most commonly used ACT (Wells et al., 2009), would display moderate 

gametocytocidal activity. 4-Aminoquinoline tested compounds, ATQ and antifolate 

(pyrimethamine) failed to display good activity against gametocytes, apart from CQ 

which exhibited about 50 % inhibition against early gametocyte stages.  

A time-dependent killing assay has been developed and conducted to measure the 

exposure-effect relationship of MB on P. falciparum gametocytes. Thereafter, the 

PK/PD relationship of MB in a clinical context has been established to estimate the 

rate of clinical gametocyte clearance with the clinical treatment dose and shown to 

result in a 100% reduction of gametocytes from the blood stream in less than 3 days. 
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Chapter 4 

4 In-vitro pharmacodynamics of antimalarial endoperoxides 

against P. falciparum gametocytes and PK/PD validation of 

DHA 
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4.1 Introduction: 

There have been major strategic alterations in international efforts to control malaria, 

and eradicate the disease. This major shift has revealed significant knowledge gaps. 

From this perspective, the identification of the stage specificity of new potent 

antimalarial drugs is being prioritised. Effective malarial disease elimination 

programmes must aim at reducing gametocyte carriers at the critical disease 

transmission stages.      

Endoperoxide compounds, such as artemisinin and its derivatives, are considered to 

be the most important antimalarial drugs and the first line of defence against malaria, 

currently including all drug resistant malarial parasite strains (Winzeler and Manary, 

2014).  Due to the effectiveness of this class of drug, the following question arises: 

Does this drug class help to decrease the prevalence of malaria by targeting the 

transmission stages in the human body? A suggested answer is that all artemisinin 

combination therapies (ACTs) have reasonable effects, with some variation, on 

gametocyte carriage (Bousema et al., 2006, Group, 2016). However, it remains unclear 

as to whether the difference in gametocytocidal activity is directly related to the 

endoperoxides themselves or to the combination of antimalarial agents used in 

combination chemotherapy (Group, 2016).          

Chemically, artemisinin is a tetracyclic 1,2,4-trioxane comprising an endoperoxide 

bridge but without the nitrogen ring system that exists in most antimalarial compounds 

(Meshnick et al., 1996, Van Geldre et al., 1997). The key pharmacophore of the 

artemisinin endoperoxide bridge was identified and is believed to be entirely 

responsible for the drug's mode of action (Klayman, 1985, Avery et al., 1993, Avery 

et al., 1996). To avoid the issue of solubility and enhance the pharmacological 
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properties of the parent drug, artemisinin, semi-synthetic artemisinin derivatives have 

been synthesised based on a similar backbone and alterations at the C10 position, 

producing either ether or ester derivatives, then most notable of which are the 

clinically deployed drugs artesunate and artemether. The active metabolites of these 

semi-synthetics being dihydroartemisinin (DHA) (Figure 4.1). 

Due to the emergence of drug and parasite resistance against most antimalarials, now  

including artemisinins (Jambou et al., 2005), extensive studies have been conducted 

to synthesise and generate novel classes of endoperoxides, such as OZ439 (trioxlane), 

RKA-182 and the recently developed tetraoxane, TDD-E209, based on the important 

peroxide bridge structure  (O'Neill et al., 2010a, Charman et al., 2011). In 2011, RKA-

182, a '1,2,4,5-tetraoxane' developed by the Liverpool group, was scheduled for 

preclinical development in phase I trials (Marti et al., 2011). However, some safety 

concerns (Copple et al., 2012) and the very short predicted half-life in man prompted 

the search for an alternative. In response to this challenge, TDD-E209 was developed 

(Wells et al., 2015). 

In this chapter, we investigate the potential activity of three different classes of 

endoperoxides—the semi-synthetic artemisinins (plus the parent), the trioxolanes and 

the tetraoxanes—during gametocytogenesis at the malarial transmission stage. A 

highly sensitive luciferase-based gametocyte assay method was used in this study. 

This assay uses a newly generated luciferase-reporting transgenic line, and a non-

lysing D-luciferin substrate formulation (D'Alessandro et al., 2016a). The method was 

selected to assess the susceptibility profile of endoperoxides in terms of their structure 

activity and the ability of the assay to allow the measurement of gametocyte stage-

specific sensitivity and development as well as the kill rate.    
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Pharmacodynamic response curves and IC50 values were established using a series of 

endoperoxide compounds: artemisinin, semi-synthetics DHA, artesunate and 

artemether, and fully-synthetic ozonide OZ439 and the tetraoxane TDD-E209. In 

addition, the kill rate of the most potent endoperoxides was determined using a time-

dependant killing assay using the variables of exposure time and drug concentration. 

Finally, a predictive pharmacokinetic/pharmacodynamic (PK-PD) model was 

developed using gametocyte counts in order to facilitate a broader understanding of 

the DHA bioactivity at the transmission stage in humans.      
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4.2 Material & Methods: 

4.2.1 Reagents: 

P. falciparum 3D7elo1-pfs16-CBG99 were generously provided by Prof Pietro Alano 

lab (INBB, Istituto Nazionale di Biostrutture e Biosistemi, 00136 Rome, Italy). 

Artemisinin and its semi-synthetic derivatives (DHA, artesunate and artemether) were 

purchased from TCI. The fully synthetic endo-peroxides (OZ439 and TDD-E209) 

were kindly provided in house from our medicinal chemistry team. The chemical 

structures of these compounds are shown in Figure 4.1. 

4.2.2 Test Compounds: 

 

Table 4.1: Endoperoxides antimalarial drugs that are used in this chapter. 

 

  

Class Compound Molecular weight g/mol Solvent 

E
n

d
o

p
er

o
x
id

es
 Artemisinin 282.332 

DMSO 

OZ439 469.622 

TDD-E209 501.63 

DHA 284.35 

Artesunate 384.421 

Artemether 298.374 
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4.2.3 Compounds chemical structures: 

 

 

Figure 4.1: Chemical structure of endoperoxides. 

Atremisinin, semi-synthetic derivatives (Sodium arteunate, artemether and 

dihydroartemisinin) and the fully-synthetic trioxane (OZ439) and tetraoxane (TDD-E209). 

 

4.2.4 Methods: 

P. falciparum gametocytes culture and gametocytocidal assay were performed as 

described in methodology chapter 2, section 2.3 and then PK-PD model were 

performed as described in chapter 2, section 2.4. 
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4.3 Results: 

4.3.1 In-vitro gametocytocidal activity of selected endoperoxide compounds at 

a single concentration (5 µM) against specific gametocyte life-cycle stages: 

A newly generated luciferase-reporting transgenic parasite line 3D7elo1- pfs16-

CBG99 was used to determine the activity of the selected endoperoxides on 

gametocyte viability at two different life-cycle stages, early gametocytes (stages (II-

III) and late stages (IV and V). The main findings are the distinct stage-specific 

kinetics and the dynamics of the compounds' effects (Figure 4.2). It can be clearly seen 

in Figure 4.2 that all compounds are inhibitory against the early stage gametocytes at 

5 µM, which is considered the high human drug exposure level in the blood. All 

endoperoxides tested showed >75% inhibition of early-stage viable gametocytes, 

however, only the semi-synthetic compounds (DHA, artesunate and artemether) 

exhibited significant potency (>98% inhibition) compared to the other compounds; 

artemisinin, OZ439 and TDD-E209 showed inhibition in early stage gametocyte 

viability of 89%, 76% and 88%, respectively (Figure 4.2). 

In contrast, the same compounds showed much lower activity against late-stage (V) 

gametocytes, which are responsible for transmission of malaria to the vector, 

compared to the early stages (II and III). Only DHA showed significant activity of 

72% against the late-stage gametocytes at 5 µM; artesunate and artemether inhibited 

the late stages by approximately 40%. Artemisinin and the fully synthetic OZ439 and 

TDD-E209 behaved the same way showing no significant inhibition of late-stage 

gametocytes (< 20% inhibition). 

The results from this single concentration exposure experiment implies that 

endoperoxoides have different inhibition profiles against the various gametocyte 
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stages and suggests their differential potencies. This prompted the examination of 

these compounds at different concentrations to determine their concntration-responses 

against gametocytes at early and late stages. 

 

 

Figure 4.2: Bar chart illustrates the inhibition profile of antimalarial peroxides against 

early and late gametocyte stages at 5 µM concentration.  

Data show mean +/- SEM from three independent experiments performed in triplicate. 
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4.3.2 Assessment of the dose-response relationship of selected endoperoxide 

against early and late stage gametocytes: 

A new profiling method was used to assess the IC50 of endoperovides at distinct 

gametocyte stages (II-III, IV-V). The activity of four artemisinin based (artemisinin, 

artesunate, artemether and DHA) and two fully synthetic endoperoxides (OZ439 and 

TDD-E209) were assessed. The effect of drug on gametocyte viability, measured over 

48h was determined for stage II and II gametocytes (collected day 2-4 post invasion) 

and stage IV and V gametocytes) collected day 10-12 post invasion). The mean IC50 

± SEM values are presented in Table 4.2. In addition, the relative dose-response curves 

for the selected endoperoxides (artemisinin, OZ439, TDD-E209, DHA, artesunate and 

artemether) are illustrated in Figure 4.3and Figure 4.4. 

 

Table 4.2: Gametocytocidal activity of 6 current and candidate endoperoxide drugs. 

Compound 
IC50 (nM) ±SEM %Viability ± SEM 

Early Late Early@ 1 µM Late@ 10 µM 

Artemisinin 13.9 ± 2.8 24.2 ± 1.4 13.3 ± 2.4 81.1 ± 0.3 

OZ439 9.4 ± 4.0 63.3 ±0.7 26.1 ± 2.4 89.9 ± 1.7 

TDD-E209 20.3 ± 4.6 168.9±2.3 14.8 ± 2.1 82.9 ± 2.5 

DHA 6.19 ±1.9 54.1 ±5.5 4.8 ± 3.3 31.1 ± 4.1 

Artesunate 6.7 ± 2.04 45.3 ± 1.4 4.5 ± 2.6 56.6 ± 0.8 

Artemether 10.6 ± 2.3 51.2 ±1.7 9.1 ± 5.3 55.9 ± 0.3 
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Figure 4.3: Typical curves showing the dose response of (A) artemisinin, and the fully 

synthetic peroxides (B) OZ439 and (C) TDD-E209 against early (black) and late (red) 

gametocyte stages. 

IC50 values were calculated through nonlinear regression using the “log (inhibitor) vs. response 

-- Variable slope (four parameter model)” model in Prism 5. The error bars represent the 

standard error of the mean (SEM) of three independent experiments each in run as triplicates 

(n= 3).  
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Figure 4.4: Typical curves showing the exposure-effect relationship of the semi-synthetic 

derivatives of artemisinin (A) DHA, (B) Artesunate and (C) Artemether against early 

(black) and late (red) gametocyte stages. 

IC50 values were calculated through nonlinear regression using the “log (inhibitor) vs. response 

-- Variable slope (four parameters)” model in Prism 5. The error bars represent the standard 

error of the mean (SEM) of tree independent experiments each run in triplicate (n= 3). 
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Table 4.2 shows the sensitivity of the stages of Plasmodium falciparum gametocytes 

to the different endoperoxide compounds including artemisinin, its semi-synthetic 

derivatives, artesunate, artemether and DHA, as well as the fully synthetic 

endoperoxide candidates OZ439 and TDD-E209. The table also shows the mean IC50 

± SEM values determined from the dose-response curves from the gametocyte 

viability assays for both early and late gametocyte stages. 

All compounds were potent inhibitors of early gametocyte (stage II-II) development 

with IC50s in the nanomolar range (6.19 to 20.25 nM). In terms of parasite viability at 

and exposure of 1 µM the semisynthetic enodoperoxides DHA, artesunate and 

artemether reduced early gametocyte stage viability >90 % with the artemisinin and 

the synthetic peroxisdes OZ439 and TDD-E209 reducing by 87%, 74% and 85%, 

respectively. 

In comparison there was a substantial decrease in gametocytocidal potency of all the 

tested endoperoxide compounds against late-stage gametocytes. As shown in Table 

4.2 and Figure 4.4, the reduction in potency was least for artemisinin with a reduction 

of 1.7 fold up to near 9 fold for DHA. In terms of parasite viability, in this instance at 

a high drug exposure of 10 µM only DHA exhibited a substantial reduction in late-

stage gametocyte viability of 31%. The other semi-synthetic compounds, artesunate 

and artemether, exhibited moderate activity against late-stage gametocytes reducing 

the parasite's viability to 56.6% and 55.9 % (mean value at the highest test 

concentration, 10µM), with IC50s of 45.26 ± 1.35 and 51.21 ± 1.72 nM, respectively. 

Remarkably, neither artemisinin nor the fully synthetic peroxides, OZ439 and TDD-

209, showed any real activity against late-stage gametocyte viability after exposure at 

10µM, with a 20% or less reduction in viability. 
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4.3.3 Determination of kill rates and characterisation of key pharmacodynamic 

properties of endoperoxides against late stage gametocytes: 

DHA was selected for the pharmacodynamic study from among all the tested 

endoperoxide drugs as it showed relatively high potency at all gametocyte stages at 

clinically relevant levels (IC50 late stage: 54 nM). The dynamics of gametocyte kill 

rate was systematically investigated by analysing the effect of DHA upon gametocyte 

counts across a range of clinically relevant concentrations (4, 2, 1, 0.5, 0.25, 0.1, 0.05, 

0.01 and 0.001 µM) over discrete but therapeutically relevant time intervals (0, 6, 12, 

24, 48, 72, 96 h). The kill rate exerted at each concentration was calculated using Prism 

5 for Windows through nonlinear regression using the 'plateau followed by one phase 

decay' built-in equation, as shown in Equation 1 below (Figure 4.5). 

 

𝐺𝑎𝑚𝑒𝑡𝑜𝑐𝑦𝑡𝑒 𝑐𝑜𝑢𝑛𝑡 = (𝐺0 − 𝑃𝑙𝑎𝑡𝑒𝑎𝑢) ∗ 𝑒(−𝑘∙𝑡) + 𝑃𝑙𝑎𝑡𝑒𝑎𝑢    …. Eq. 1  
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Figure 4.5: Time-dependent killing assay of DHA at different concentrations against late 

stages gametocytes over discrete time intervals. 

Data show mean +/- SEM from three independent experiments performed in triplicate. 

 

 

Table 4.3: The measured DHA dose dependent kill rates: 

DHA conc. Kill rate (K h-1) SEM N 

4 µM 0.041030 0.006182 3 

2 µM 0.046640 0.004379 3 

1 µM 0.048150 0.009398 3 

500 nM 0.050090 0.007175 3 

250 nM 0.051820 0.013650 3 

100 nM 0.037390 0.009770 3 

50 nM 0.018850 0.018340 3 

10 nM 0.001517 0.001421 3 

0 0.001002 0.0012745 3 
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Figure 4.5 shows that for the first 24 h of drug exposure in the late gametocyte stages, 

there was no effect of drug on viability (lag time). Thereafter there was a dose 

dependent effect on parasite viability. The kill rates (k) achieved by each concentration 

of DHA (Table 4.3), was used in a pharmacodynamic sigmoidal Emax model which 

calculates the EC50 for DHA as well as its maximal kill rate (Emax). The kill rates were 

fitted using Prism 5 by applying the log (agonist) vs. response (three parameter) built-

in equation in Prism as shown below in equation 2: 

𝐾𝑖𝑙𝑙 𝑟𝑎𝑡𝑒 (ℎ𝑟−1) =  𝐸𝑚𝑖𝑛 +
(𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛)

1+ 10𝐿𝑂𝐺(𝐸𝐶50−𝐶)                …. Eq. 2 

The EC50 and maximal kill rates (Emax) values for DHA were determined in the 

pharmacodynamic model. DHA EC50 was 60.22 ± 2.7 nM and the Emax value which 

represents the maximal kill rate was 0.05182 h-1 (Figure 4.6). 

 

Figure 4.6: Dynamic concentration-kill rate response of DHA. 

The figure shows relationship between DHA concentration (X axis) and the kill rate over time 

exerted at each concentration (Y axis). The dashed red line shows the sigmoidal fit of the data 

which is used to calculate the EC50 and Emax values. Data show mean +/- SEM from three 

independent experiments performed in triplicate. 
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4.3.4 PK-PD modelling and predictions of clinical drug activity: 

4.3.4.1 Pharmacokinetic profile of DHA in human: 

The clinical activity of DHA against late gametocyte stages in the blood stream was 

predicted using Monte-Carlo simulations using the program Pmetrics® (Neely et al., 

2012b). The PK parameters of DHA were collected as reported in clinical PK studies 

in literature as shown in Table 4.4 using a 1 compartment PK model defined by the 

following two differential equations: 

𝑑𝑋1

𝑑𝑡
=  −𝑘𝑎 ∙  𝑋1                                                                 …… Eq. 3 

𝑑𝑋2

𝑑𝑡
=  𝑘𝑎 ∙  𝑋1 − 𝑘𝑒 ∙ 𝑋2                                                     …… Eq.4 

Where (X1) represents drug mass in the gut in grams, Ka the rate of absorption, (X2) 

the mass of drug in blood, Ke the rate of elimination and (t) the time in h. 

The drug mass of DHA in blood was converted to concentration in molar using the following 

equation: 

𝐷𝑟𝑢𝑔 𝑐𝑜𝑛𝑐.  (𝑀) =  
𝑋2

𝑉𝑑
⁄

𝑀𝑤𝑡
                                                    .….. Eq.5 

 

Table 4.4: PK parameters of DHA for adult patients as reported in the literature. 

Parameter Predictable value References 

Dose (mg) 4 mg/kg given once daily for 3 days 

(Tarning et al., 

2012) 

Volume distribution (L/kg) 2.15 

Elimination half-life (h) 1.55 

Elimination rate (ke) (h-1) 0.6 

Clearance (L/h/kg) 1.3 

Absorption rate (ka) (h-1) 1 (fixed) N/A 
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The PK exposure simulations in a population of 1000 people with 30% variation of 

PK parameters was used for determination of DHA PK profile in the human 

populations. The solid black line in Figure 4.7 shows the median PK exposure whereas 

dashed red lines show the 5% and 95% percentiles of the population from the same 

simulation. Median peak concentration (Cmax) was predicted to be 5.36 µM and time 

to reach maximum concentration (Tmax) predicted to equal 1.0 h which agrees with 

previous literature studies. Antimalarial activity levels of DHA are pointed out in 

Figure 4.7 between the IC50 and IC99 levels as dashed blue and green lines, 

respectively. DHA concentration in the systemic circulation can reach the effective 

levels with the standard dose (4 mg/kg once daily for 3 days) but those concentrations 

cannot be maintained above the IC99 or IC50 levels for the dosing interval due to the 

drug’s short half-life. 

 

Figure 4.7: Simulation of PK exposure in a population of 1000 people given a 30% 

variation on all reported PK parameters. 

Solid black line shows the median PK exposure whereas dashed red lines show the 5% and 

95% values from the same simulation. IC50 and IC99 levels of DHA are shown in the graph 

as dashed blue and green lines, respectively.  
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4.3.4.2 The prediction model of DHA effect on late gametocytes: 

The predictive model of DHA gametocyte killing (a measure of gametocyte clearance) 

is then defined by linking the dynamic drug concentrations (calculated using equations 

3-5 for PK profile) to the sigmoidal pharmacodynamic profile (Figure 4.6), 

characterized in the previous section in equation (2). The final results plotted for the 

predication model showing the median profile for gametocyte kill in addition to the 

5% and 95% percentiles which represent the range of activity resulting from 

pharmacokinetic variability in the population are shown in (Figure 4.8). The first 24 h 

of drug exposure indicated no effect on viable gametocyte counts, this accounts for 

the lag time that was observed in the in-vitro experiments. After the second and third 

doses there is a predicted 25% reduction in gametocyte count in each dosing interval, 

achieving a total 50% reduction in gametocyte viability by the end of the 3 dose 

standard dosing regimen, with a range of 20-65 % viability reduction (Figure 4.8). 

 

Figure 4.8: PK-PD relationship of DHA and its effect upon gametocytes. 

The figure shows a simulation of the DHA effects upon gametocytes with a standard dosing 

regimen of 4mg/kg for 3 days given the PK and PD properties reported earlier in this chapter. 

The green line shows the median effect upon viable gametocyte carriage in a population of 

1000 people while the dashed red lines show the 5% and 95% percentiles of the same 

population. 
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4.4 Discussion:  

The global eradication of malaria disease will require new interventions and the 

development of transmission-blocking drugs to prevent transmission from human 

hosts to mosquitoes (Alonso et al., 2011). This chapter focused on the in-vitro activity 

of four endoperoxides known to be effective in human malaria infections (artemisinin, 

artesunate, artemether, and DHA) and two promising fully synthetic endoperoxides 

(OZ439 and TDD-E209) against P. falciparum gametocytes. Here, the relative 

potency and stage-specific sensitivity of gametocytes is established. The resultant data 

have been used to develop a comprehensive PK-PD model that predicts the activity of 

the active metabolite, DHA as a transmission blocking tool under clinically relevant 

conditions. DHA was selected because it was the most potent of the drugs tested 

against late stage gametocytes (Table 4.2).  

 

4.4.1 Stage-specific kinetics and dynamics of Endoperoxides: 

The most significant activity of all tested endoperoxides was observed against the 

early stages of gametocytes, whereas late-stage gametocytes displayed relative 

resistance to all tested endoperoxides except for DHA.  

Endoperoxides are thought to exert their pharmacological action through the activation 

of their peroxide bridge in the presence of heme, which results in the production of 

cytotoxic metabolites, causing oxidative cell damage (Hartwig et al., 2009, Klonis et 

al., 2011).  

Another theory suggested is that a direct interaction with PfATP6 occurs when 

endoperoxides interfere with calcium homeostasis inside the parasite (Eckstein-

Ludwig et al., 2003, Krishna et al., 2010). Endoperoxides have been known to reduce 
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gametocyte carriage in infected humans and in early gametocyte stages (Price et al., 

1996, Targett et al., 2001, Bolscher et al., 2015, Adjuik et al., 2004). This is consistent 

with what we have found in this study for the artemisinin based compounds, OZ439 

and the newly generated tetraoxane TDD-E209, all of which show significant activity 

against early stages and show activity patterns that are archetypal of the endoperoxide 

class. 

The early stages (II–III) and asexual stages are thought to share considerable metabolic 

overlap, including the use of Hb digestion as a source of amino acids (Sinden, 1982). 

It is the digestion of Hb and the resultant generation of heme and malaria pigment 

which is thought to be a causative process underpinning the significant activity of the 

endoperoxides. Once the gametocytes become mature in the late stages (IV–V) and 

are ready to be infectious, metabolite activity is reduced substantially, Hb digestion is 

thought to stop (or diminish to minimal levels) and the parasites are deemed to be 

quiescent reliant on what is called “housekeeping” metabolism, such as the oxidation-

reduction activity (Tanaka and Williamson, 2011) and ATP generation (Lelievre et al., 

2012). 

 

4.4.2 Dose-Response Endoperoxide Activity Profiles: 

The characterization of gametocytocidal activities for these clinical and preclinical 

endoperoxides demonstrates in all cases a loss of potency as the gametocyte matures 

that is largely reflected in the viability loss (Figure 4.3 and Figure 4.4). This 

observation is in agreement with other work in the literature, such as flow cytometry–

based and luciferase-based studies that describe the abrupt decline in antimalarial 

efficacy after stage III gametocytogenesis (day 7), including for the endoperoxides 

(Lucantoni et al., 2016a, Wang et al., 2014). 
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The biological activity of endoperoxides depends on the reactivity of the endoperoxide 

bridge, which is found in all artemisinins and the fully synthetic peroxide compounds 

(Figure 4.1). Data regarding the activity of the endoperoxides against P. falciparum 

asexual stages (responsible for pathogenesis) have already been reported in the 

literature. The IC50 values are different based on the compounds structure but is 

generally around 10 nM or less (Mariga et al., 2005, Sharma et al., 2000, Fivelman et 

al., 2004, Anderson et al., 2005, del Pilar Crespo et al., 2008, Co et al., 2009). In this 

work, early-stage gametocytes displayed similar drug susceptibilities toward these 

selected endoperoxides as is seen in asexual stage parasites with IC50 in the range of 

6–20 nM (Table 4.2). In contrast, marked decreases in sensitivity occurred with all 

tested endoperoxides in late-stage gametocytes. Only DHA had any real effect on late 

stage parasites. Interestingly, neither artemisinin nor the full synthetic endoperoxides 

(OZ439 and TDD-E209) display any significant effect upon that stage. This decrease 

in drug susceptibility in late stages is clear and reflected in a 5 to9-fold increase in IC50 

values in comparison with early stages, and this observation to some extent is in 

agreement with the findings of recent studies (Lucantoni et al., 2016a, D'Alessandro 

et al., 2016b) for artemisinin and OZ439 against late stage parasites. 

Interestingly, when early-stage gametocytes are still being generated, they will have 

already produced the main metabolic pathways, particularly Hb digestion by 50% 

(Sinden, 1982, Klonis et al., 2011, Hanssen et al., 2012). As mentioned earlier the Hb 

pathway is considered central to the activity of the endoperoxides by providing the 

iron environment that can activate the peroxide bridge, and hence delivering its 

pharmacological activity. Conversely, Hb digestion appears to be complete at the late 

stage gametocyte (stage IV), according to a previous study measuring Hb content by 

soft X-ray microscopic analysis (Hanssen et al., 2012).   
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DHA is the primary active metabolite of the semi-synthetic artemisinins and is the 

most active compound among artemisinins currently used clinically, followed by 

artesunate and artemether (Klayman, 1985, Haynes et al., 2002, Gautam et al., 2009, 

Jansen, 2010). It could be argued therefore that the molecular target of DHA in late 

stages could be different from asexual and early gametocyte stage targets although a 

more plausible explanation would be around potency and efficiency of iron dependent 

peroxide lability.  

Although gametocyte populations are sexually dimorphic, with males and females, 

both sexes are required for malaria transmission. In our results, the activity of DHA in 

late-stage gametocytes was significant, but with no distinguishing findings between 

male and female sensitivity. Therefore, a better understanding of the drug sensitivity 

of each sex is important, as all endoperoxides have been reported to be specifically 

more active against male gametocytes than against female gametocytes (Delves et al., 

2013b). Endoperoxides’ activity against male gametocytes may target residual heme 

of male-specific rather than female-specific gametocytes, and resultant toxic species 

could then affect parasite mitochondrial function (Baker, 2010, Delves et al., 2013b). 

4.4.3 PK-PD Modelling of DHA and Gametocytes Clearance Predictions: 

In this chapter we have reported the PD effect of DHA on gametocyte clearance using 

a simulations based on a PK/PD model that can help provide a broad understanding of 

the effect of DHA on transmission of mature gametocytes in a clinical setting. An in-

vitro study has been conducted to determine the PD of DHA on mature gametocytes. 

DHA was selected from all tested endoperoxides because of its significant activity 

upon mature stages (Table 4.2 and Figure 4.4A). 

DHA is the primary active metabolite of all semi-synthetic artemisinins, and is 

considered to be an antimalarial drug on its own. The dynamics of gametocyte kill 
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were systematically characterised by analysing the effect of DHA on gametocyte 

counts and viability at a range of clinically relevant concentrations over discrete 

therapeutically relevant time intervals. In order to build up the desired model, PD 

parameters derived from the time- dependent kill assay were used to define 

gametocyte kill rates over this wide range of concentrations. Interestingly, the 

dynamic measurements illustrate a 24-h delay (lag time) in gametocyte kill, which 

would significantly affect the final gametocyte clearance rates measured in patients.   

PK parameters of DHA were collected from the literature in order to define the 

concentration-time profile modelled using a one-compartment PK model (Na-

Bangchang et al., 2004). Mature, late-stage gametocytes (stage V) are known to be 

released from the bone marrow and spleen to the bloodstream in order to become 

infectious to mosquitoes (Smalley and Sinden, 1977, Smalley et al., 1981, Rogers et 

al., 2000). Here, we are targeting the drug plasma concentration (CP) in blood 

circulation, as these transmission competent gametocytes exist in the peripheral 

bloodstream, by using a one-compartment PK model. The main finding from 

simulating the PK exposure with a standard dosing regimen of the drug was to show 

that while 4 mg/kg administered daily can achieve efficacious concentrations, those 

levels could not be maintained throughout the treatment duration with significant 

periods of time below the required kill concentrations. This is due to the short 

elimination half-life of DHA of about 1.2 h (Na-Bangchang et al., 2004, Djimde and 

Lefevre, 2009). Exposure to sub therapeutic levels of drug could also potentially 

increase the chances of resistance developing, especially if the drug is used as a 

monotherapy. To avoid that possibility all artemisinin derivatives should be used in 

combination with other, long-acting antimalarial agents with totally different modes 

of action as recommended by the WHO (WHO, 2014).  
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Linking the PD sigmoidal model of DHA (Figure 4.6) to its clinical pharmacokinetic 

profile (Figure 4.7) allows the generation of the final PK-PD simulations, which 

reflects the activity of DHA in reducing gametocyte carriage from patients with 

standard doses. The lag-time effect still appears in the first 24 h from dose one, 

indicating that the first day of treatment is not enough to induce any gametocytocidal 

activity. Thereafter, the 50% reduction in viable gametocyte carriage after a standard 

three-day treatment predict a moderate effect of DHA on gametocyte clearance and 

carriage. These results are strongly in agreement with clinical studies which showed 

that artemether-lumefantrine and other ACTs significantly reduce the post-treatment 

prevalence of malaria transmission to mosquitoes and can limit or delay the time 

period of gametocyte carriage after treatment (Sutherland et al., 2005a, Bousema et 

al., 2006, Group, 2016). Gametocyte-carriage reductions in previous clinical studies 

is probably because of the fast-acting ability of endoperoxides to eliminate asexual 

and early-stage gametocytes, especially for long-term detection of late-stage 

gametocytes. Our data predict that about 50% of late gametocytes would be killed with 

active metabolite endoperoxide (DHA) and this direct reduction of gametocytes is 

highly likely to be biased towards inhibition of male gametocytes in exflagellation, as 

endoperoxides are reported to have more specific activity against male gametocytes 

than female gametocytes (Delves et al., 2013a). 

 

4.4.4 Conclusion:  

In this chapter we aimed to characterise the activity of selected antimalarial 

endoperoxides against the P. falciparum sexual stages (gametocytes) looking toward 

developing interventions to block malaria transmission. In general, the PD responses 

of peroxide compounds demonstrate stage-specific efficacy during 
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gametocytogenesis. All test compounds were potent against early-stage gametocytes, 

including the fully synthetic peroxides (OZ439 and TDD-E209), which have better 

PK profiles with longer elimination half-lives than artemisinin and semi-synthetic 

derivatives (Copple et al., 2012, Moehrle et al., 2013, Wells et al., 2015). All semi-

synthetic artemisinins show better activity against late stages than artemisinin and 

fully synthetic peroxides against that stage. However, only DHA demonstrated 

potency against gametocyte at all stages and especially late stages that might have 

important transmission blocking potential.  

A time-dependent killing assay has been developed to determine the exposure-effect 

relationship of DHA. In addition, the PK/PD relationship of DHA in a clinical context 

has been established in order to estimate clinical gametocyte clearance rates with 

standard treatment regimes. The predicted model suggests that DHA exposure is 

suboptimal in terms of gametocyte clearance. The data in this chapter are discussed in 

the context of the strategies that aim at the discovery and development of new 

transmission-reducing antimalarial drugs. 
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Chapter 5 

5 Gametocytocidal activity of primaquine and Its CYP2D6 

metabolites 

  



 

 

 

 

125 

 

5.1 Introduction: 

The 8-aminoquinoline primaquine (PMQ) is the only drug registered by the FDA to 

treat relapsing malaria, caused by the reactivation of dormant liver forms, or 

hypnozoites, of P. vivax and P. ovale (Krotoski et al., 1980, Potter et al., 2015a). 

Through its usage as a standard treatment of relapsing malaria, PMQ has also become 

vital tool in blocking the malaria transmission by targeting the stage V gametocytes 

(Graves et al., 2015b).   

PMQ structure consists of an aromatic quinoline as a core main component and two 

substituents, which are a methoxy group and an amino side-chain at position 6 and 8 

respectively (McChesney and Sarangan, 1984). The structure of PMQ allows it to be 

metabolised in the liver by cytochrome P450 enzymes, and this metabolism appears 

to be important to its activity against hypnozoite stages (Pybus et al., 2012a, Bennett 

et al., 2013b, Pybus et al., 2013, Deye and Magill, 2014, Marcsisin et al., 2016, Potter 

et al., 2015b). In addition, it has been shown that the metabolism of 8-aminoquinolines 

is dependent on CYP2D for its activated as anti-malarial in the liver stage studies of 

human and mouse (Pybus et al., 2012b, Pybus et al., 2013, Bennett et al., 2013a, Potter 

et al., 2015a, Marcsisin et al., 2016). It was shown that PMQ was active only in mice 

with the capability of metabolizing substrates of CYP2D6.  Deleting the mouse 

enzyme that is closest to human CYP2D6 led to a complete blockage of the liver stage 

antimalarial activity in vivo (Pybus et al., 2013). Similarly, it was found that phenolic 

metabolite levels of PMQ were highest in mice with the capability of metabolizing 

CYP2D6 substrates (Potter et al., 2015b). 

PMQ administration in single or low doses is recommended for blocking malaria 

transmission of P. falciparum by reducing the gametocytemia and gametocyte 
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transmission to mosquitoes in children (Potter et al., 2015a, Goncalves et al., 2016, 

Dicko et al., 2016). Although the exact mechanism of action of PMQ is not fully 

understood (Myint et al., 2011a), a recently proposed mode of action for its 

antimalarial activity in hypnozoites is shown in Figure 5.1. The hypothesised 

hydroxylation of PMQ by CYP2D6 metabolism results in unstable metabolites (e.g. 

5-hydroxyPMQ) with the capability to undergo spontaneous redox cycling, resulting 

in the production of oxidative stress. The redox recycling and the production of 

reactive oxygen species, may account for the observed activity and toxicity of PMQ 

(Bennett et al., 2013b, Pybus et al., 2013, Potter et al., 2015a). 

 

 

Figure 5.1: The proposed mechanism of action of PMQ bio-activation via CYP 2D6 

metabolism and antimalarial efficacy. 

 

The aim in this chapter is to determine the ability of PMQ, and a series of related 8-

aminoquinoline compounds to interact with recombinant human cytochrome P450 

2D6 (CYP 2D6) enzyme, and to investigate any resulting metabolites generating from 

either CYP2D6 and liver microsomes (consist of CYP450 enzyme) for 

gametocytocidal activity. In this chapter, the interaction of PMQ and some proposed 

metabolites (5 hydroxyPMQ and 5,6 hydroxyPMQ, PQQI and 6 hydroxyPQQIin 

quinoneimine form and hydroxyl-carboxyPMQ) synthesised in the Chemistry 
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Department, Liverpool University in collaboration with Prof. Paul O'Neill, with 

CYP2D6, has been determined via competition assays using the Vivid® CYP450 

Screening Kit, and a fluorescent CYP2D6 substrate as a tracer. These experiments 

were then repeated in the absence of tracer, and any potential CYP and HLM 

metabolism products were assayed for gametocytocidal, in comparison with parent 

compounds.   

  



 

 

 

 

128 

 

5.2 Material and Methods: 

5.2.1 Reagents: 

P. falciparum 3D7elo1-pfs16-CBG99 were generously provided by Prof Pietro Alano 

lab (INBB, Istituto Nazionale di Biostrutture e Biosistemi, 00136 Rome, Italy) 

(Cevenini et al., 2014). PMQ diphosphate was purchased from sigma and other PMQ 

metabolite compounds were synthesised in the Chemistry Department by Dr Michael 

Wong and Dr Shirley Leung (Prof Paul O’Neill group), University of Liverpool, UK 

(Table 5.1 and Figure 5.2). The Vivid® CYP450 2D6 Screening Kit was obtained 

from Life Technologies (Paisley, UK). Pooled Human Intestinal Microsomes, 

NADPH Regenerating System, Solution A and NADPH Regenerating System, 

Solution B were obtained from Corning ® Gentest™ (Corning B.V. Life Sciences, 

Netherland). The Oxytherm system and O2 View software was obtained from 

Hansatech Instruments Ltd. (King’s Lynn, UK). Catalase, from bovine liver was 

obtained from Sigma (C1345; Dorset, UK).  
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5.2.2 Test compounds: 

Table 5.1: PMQ and its metabolites used in this chapter. 

8-AQ class Compound name 

Molecular 

Weight 

Solvent 

 

M
et

a
b

o
li

te
s 

C
o
m

p
o
u

n
d

s 

PMQ diphosphate 455.3 g/mol 

5
0
 %

 M
eO

H
 

 

5-hydroxyPMQ 275.35 g/mol 

MW-01-034 (PQQI) 273.33 g/mol 

5,6-hydroxyPMQ 261.33 g/mol 

MW-01-034 (6OHPQQI) 259.30 g/mol 

MW-01-036 

(5-hyroxy caboxyPMQ) 

290.31 g/mol 

CarboxyPMQ 274.32 g/mol 
DMSO 
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5.2.3 Compounds chemical structures: 

 
 

Figure 5.2: Chemical structure of primaquin and selected PMQ metabolites. 

Abbreviations: 5-hydroxyPMQ (5-OH PMQ), PMQ quinoneimine (PQQI), 5,6 hydroxyPMQ 

(5,6-OH PMQ), 6 hydroxyquinoneimine (6-OH PQQI), carboxyPMQ (carboxyPMQ) and 5 

hydroxycarboxyPMQ (5-OH carboxyPMQ). 
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5.2.4 Experimental Methods:  

P. falciparum gametocytes culture gametocytocidal viability assay was performed as 

described in methodology chapter 2, section 2.3. 

5.2.4.1 Enzyme kinetic assay to measure the interaction between test 

compounds and CYP2D6: 

The Vivid® CYP450 Screening Kit, Vivid® CYP2D6 Blue (ThermoFisher, UK) was 

used to measure the interaction between test compounds and cytochrome P450 

enzymes (CYP2D6) according to the manufacturer's protocol. Briefly, Vivid® 

substrate (CYP2D6) EOMCC was reconstituted using 205 µl anhydrous acetonitrile 

to make 2 mM stock solution and stored at -20oC. CYP450 BACULOSOMES®, 

Regeneration System, and NADP+ were thawed at room temperature for 10-15 min, 

then stored on ice until ready to use. In 15 ml falcon tubes, Vivid® CYP450 Reaction 

Buffer I was prepared by diluting (1:1 v/v): 5 ml buffer I in 5 ml nanopure water to 

make final concentration of 100 mM (1X buffer). The diluted buffer was used for the 

preparation of inhibitors, Master Pre-Mix, and Vivid® substrate/ NADP+ solutions. To 

prepare the test compounds, positive inhibition control and solvent control, 2.5 X of 

positive control (quinidine 10µM), solvent or vehicle control (30µM) and test 

compounds (serial dilution: 30µM, 10µM, 3.3µM, 1.1µM, 0.11µM) in 1X reaction 

buffer. Only 40 µl of the 2.5 X solution prepared above was added to clear bottom 96-

well plate (black) and the samples were duplicated in each experiment. The Master 

Pre-Mix was prepared for full 96-well plate as follows: 4800 µl 1X buffer plus 100 µl 

Regeneration System (100 X) and 100 µl CYP450 BACULOSOMES®. 50 µl of 

Master Pre-Mix was added to assay plate. The assay plate was then incubated for 10 

min at room temperature to allow the interaction between the compounds and P450 in 

the absence of enzyme turnover. In the meantime, 10X mixture of tracer/substrate 
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NADP+ was prepared by using 50 µl of reconstituted substrate plus 30 µl NADP+ 

added to 920 µl of buffer I. The reaction was started by adding 10 µl per well of the 

10X Vivid® substrate/ NADP+ mixture to assay plate. Within less than 2 min the assay 

plate was transfer into Varioskan ® Flash plate reader (Thermo Electron Corporation) 

and the florescence monitored over time at excitation 415 nm and emission 460 nm. 

The reading was in 1 min intervals for 120 min as a kinetic assay mode (Table 5.2). 

 

Table 5.2: Summary of CYP2D6 reaction procedure. 

Reagents for one 96-well plate Volume (µl) 

Master Pre-Mix preparation  

1 1X Vivid® CYP450 Reaction Buffer I 4800 

2 Vivid® Regeneration System (100 X) 100 

3 CYP 2D6 BACULOSOMES® 100 

Total volume: 5000 

10X Vivid® substrate/ NADP+ mixture  

1 1X Vivid® CYP450 Reaction Buffer I 920 

2 Vivid® substrate EOMCC 50 

3 Vivid® NADP+ 30 

Total volume: 1000 

1 Test Compounds & Controls 40 

2 Master Pre-Mix 50 

3 Vivid® substrate/ NADP+ 10 

Total volume: 100 
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5.2.4.1.1 Endpoint analysis: 

The percentage inhibition by the test compounds or positive control at the end point 

was calculated using the equation below: 

% 𝐼𝑛ℎ𝑖𝑏𝑡𝑖𝑜𝑛 = (1 −
𝑥−𝑏

𝑎−𝑏
) × 100%  

a= the florescence intensity (FI) in the absence of inhibitor (solvent control) 

b= the florescence intensity (FI) in the presence the positive control (quinidine). 

x= the florescence intensity (FI) in the presence of test compounds. 

Then, Michaelis-Menten equation was used to fit the enzyme inhibition and determine 

the Km and Vmax using the following equation: 

Y = Vmax*X/ (Km + X) 

5.2.4.2 PMQ/CYP 2D6-mediated hydrogen peroxide generation: 

5.2.4.2.1 Calibration of the Oxytherm System: 

The Oxytherm system was calibrated to give the concentration of dissolved O2 in 

nmol/ml, by defining the maximum O2 concentration and the complete absence of 

dissolved O2 in distilled water, under normal atmospheric pressure and the appropriate 

experimental temperature settings. Fully aerated distilled water was produced by 

adding 5 mL distilled water to a 1 L conical flask, sealing the opening with parafilm, 

and shaking vigorously for 3 min. 2 mL of fully aerated water was added to the 

reaction chamber which was then sealed. The calibration mode within the O2 view 

software package was enabled and data were recorded until the trace reached a plateau, 

defining the maximum O2 concentration. An excess of the reducing agent sodium 

dithionite was then added and the data were again recorded until the trace reached a 

plateau, defining the complete absence of dissolved O2. 
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5.2.4.2.2 Measurement of PMQ/CYP 2D6-mediated H2O2 generation: 

The ability of the PMQ parent drug and the PMQ metabolites to generate hydrogen 

peroxide after interaction with the VIVID® CYP450 2D6 screening kit was assessed 

indirectly by measuring catalase-mediated oxygen release. Catalase is an enzyme 

which catalyses the decomposition of hydrogen peroxide to water and oxygen. Test 

compound (30 µM) or vehicle control was incubated with the VIVID® CYP450 2D6 

screening kit as per the User Guide* in a final volume of 600 µL per reaction at 37 °C 

for 120 min. At the end of the incubation period, a subsample of the mixture (400 µL) 

was transferred to the reaction chamber of a previously calibrated Oxytherm System 

(Hansatech, UK), and recording commenced immediately. Once the kinetic trace for 

oxygen concentration within the mixture had reached a plateau for at least 3 min, 

catalase enzyme (from bovine liver, prepared in 50 mM potassium phosphate buffer, 

pH 7.05; final assay concentration 10 µg/ml) was added, after which data were 

recorded for a further 6 min. Appropriate controls were performed with each 

individual reaction, including addition of addition of catalase buffer to assess addition 

artefact, and a repeat of experiments with non-Vivid® CYP450 2D6-treated test 

compounds to assess enzyme-independent hydrogen peroxide generation. 

*All concentrations are final assay concentrations. The VIVID® CYP450 2D6 

screening kit in this instance is comprised of a reaction buffer (100 mM potassium 

phosphate, pH 8.0), BACULOSOMES® [insect cell-derived microsomes 

recombinantly expressing human cytochrome P450 2D6 (10 nM) and human 

cytochrome P450 reductase], regeneration system [glucose-6-phosphate (3.33 mM) 

and glucose-6-phospahte dehydrogenase (0.3 U/mL) in 100 mM potassium phosphate, 

pH 8.0] and NADP+ (30 µM). 
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5.2.4.2.3 Data analysis: 

Oxygen concentration was recorded as nmol/ml using the O2 View software package 

v.2.06 (Hansatech Instruments Ltd., UK). Raw data files were transferred to GraphPad 

Prism v.5 for graphical presentation. To allow for easier comparison of individual 

traces, the x axis was adjusted by defining the addition of catalase as t=0, and the 

corresponding y axis value defined as 0 nmol/ml. 

The following equation describes the decomposition of hydrogen peroxide to water 

and oxygen, where 2 moles of hydrogen peroxide produce 1 mole of diatomic oxygen. 

2𝐻2𝑂2  → 2𝐻2𝑂 +  𝑂2 

The concentration of hydrogen peroxide present therefore is twice the peak increase 

in oxygen concentration, post-catalase addition. 

 

5.2.4.3 Gametocytocidal activity of non-CYP and CYP-treated compounds: 

5.2.4.3.1 CYP-treated compounds preparation: 

For test compounds and controls, 2.5 X of 30 µM of compounds were prepared (1 µl 

drug/Control + 133 µl of 1 X reaction buffer in 1.5 ml eppendorf tube, with vortexing). 

Then, 60 µl of prepared drugs/controls were transfer to 96-well plate. Master Pre-Mix 

was also prepared to be suitable for experiment as follows: 1200 µl reaction buffer 

added to 25 µl regeneration system and 25 µl CYP 2D6 BACULOSOMES® and 

mixed gently by inversion. Then a 75 µl of Master Pre-Mix was transferred to each 

well in assay plate. The assay plate was incubated for 10 min at 37oC to allow the 

compounds to interact with CYP2D6 in absence of Vivid® NADP+. During the 

incubation time, the Vivid® NADP+ mixture was prepared by adding7.5 µl of NADP+ 

to 242.5 µl reaction buffer in 1.5ml Eppendorf tube and vortexed in the absence of 

Vivid® substrate. To start the reaction, 15 µl of NADP+ was transferred to each well 
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in the assay plate. Immediately, the plate was incubated at 37oC for 120 min (Table 

5.3). 

 

Table 5.3: Summary of the CYP-reaction constituents used in the late stage gametocyte 

assay. 

Reagents for one 96-well plate Volume (µl) Volume/ well in assay plate 

Drugs/controls dilution 

1 Drug/ MeOH 1 µl  

60 µl 2 1 X Reaction buffer 133 µl 

Master Pre-Mix preparation 

1 1 X Reaction buffer 1200 µl  

75 µl 2 Vivid® Regeneration System (100 

X) 

25 µl 

3 CYP 2D6 BACULOSOMES® 25 µl 

10X Vivid® NADP+ mixture 

1 1 X Reaction buffer 242.5 µl  

15 µl 2 Vivid® NADP+ 7.5 µl 

 

5.2.4.3.2 Human liver microsoms-treated compounds preparation: 

A new protocol for the generation of compound metabolites using HLMs for testing 

against gametocytes was established. The assay buffer was prepared using potassium 

phosphate buffers at pH 7.4 as following: 1M of K2HPO4 plus1M of KH2PO4 were 

combined 1:1, and then diluted 10X in distilled H2O. Typically, 10 ml of assay buffer 

was prepared. For test compounds and controls, 2 X of 30 µM of compounds were 

prepared (1.2 µl drug/Control + 200 µl of assay buffer in 1.5 ml eppendorf tube, with 

vortexing). Then, 50 µl of prepared drugs/controls were transfer to 96-well plate. 
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Master Pre-Mix was also prepared to be suitable for the experiment as follows: 2075 

µl reaction buffer was added to 250 µl regeneration system solution A and 50 µl 

regeneration system solution B. the mixture was subdivided into two equal parts 

(1187.5 µl). HLM were mixed gently by inversion. The mixture tubes were labelled 

as (+) HLM and (-) HLM. To the (+) HLM, 62.5 µl of HLM was added; to (-) HLM 

62.5 µl of assay buffer was added. A 50 µl of Master Pre-Mix was transferred to each 

well in the assay plate and then the reaction was started. Immediately, the plate was 

incubated at 37oC for 120 min. 

 

5.2.4.3.3 Luciferase assay of CYP-traded and HLM-treated compounds: 

After 120 min incubation of parent compounds with VIVID CYP450 kit (subsequently 

referred to as CYP2D6-treated compounds) or following HLM-treatment as described 

above, the incubation 96-well plates were centrifuged for 3 min at 1500 rpm. A 125 

µl aliquot of reaction product was taken and added to individual wells of a dilution 

plate containing 62.5 µl per well of complete medium (CM) to give a total volume of 

187.5 µl per well (20 µM final compound concentration).  

In the luciferase gametocytes plate assay, 50 µl of 20 µM CYP-treated compounds 

were added in triplicate. After that, 50µl of 2% haematocrit of 2-3.5 % gametocytemia 

were added to each well of the assay plate (see section 2.3.1 and 2.3.2). The final 

volume of each well was 100 µl, which consist of 10 µM of compounds/controls 

concentration, 1% haematocrit and 2-3.5 % gametocytemia. The plate was then placed 

in humidified chamber gassed it for at least 2 min and incubated 72 h before reading. 

 

 



 

 

 

 

138 

 

5.2.4.3.4 Gametocyte viability assay reading and data analysis: 

Data were generated from three independent biological replicates performed in 

triplicate are. Luciferase assay after drug-treatment experiments were performed after 

transferring samples to 96-well white microplates as describe previously (Cevenini et 

al., 2014). The measurement of samples in the 96- well white microplate to reduce the 

interfering of luminescence between the samples (Chapter 2, section 2.3.1 and2.3.2). 

The optimal D-luciferin substrate in citrate buffer 0.1 M, pH 5.2 was 1 mM D-luciferin 

(final concentration). The substrate was added directly to the samples at a 1:1 ratio, 

and the plates were read in luminescence reader, Varioskan ® Flash plate reader 

(Thermo Electron Corporation) at the stable kinetics enzyme at least between 8-18 

min after addition D-luciferin substrate (chapter 2, Figure 2.4).  

  



 

 

 

 

139 

 

5.3 Results: 

5.3.1 CYP2D6 enzyme kinetic inhibition: 

To determine the interaction of the 8-aminoquinoline drug PMQ and its proposed 

metabolites compounds with the human CYP450 2D6 enzyme a Vivid® CYP450 

screening fluorescence-based assay was used. Quinidine (10 µM), a known inhibitor 

of CYP2D6, was used as a positive control, while 50% methanol (solvent) was the 

negative control. In the absence of any other compound, the recombinant CYP2D6 

enzyme metabolises the tracer, producing a kinetic fluorescent signal (Figure 5.3A 

black trace). The positive control quinidine inhibits the function of CYP 2D6, 

preventing the metabolism of the tracer and leading to a reduction in the kinetic 

fluorescent signal (Figure 5.3A green trace). Figure 5.3 A shows clearly that control 

(methanol). CarboxyPMQ produced very limited inhibition of the tracer metabolism, 

indicating it does not interact with CYP 2D6 at 10 µM concentration (Figure 5.3, A 

red trace). PMQ diphosphate (10 µM) inhibited the tracer metabolism by about 50 % 

(Figure 5.3A purple trace). Figure 5.3 used here as an example to show the inhibition 

of tracer metabolism of controls and positive (PMQ) and negative (carboxyPMQ) drug 

response.   

Thereafter, the concentration-response data were subjected to a steady-state kinetic 

analysis using the Michaelis-Menten equation, to determine Km and Vmax, as illustrated 

in Figure 5.3, B. PMQ showed complete inhibition of the tracer metabolism with Vmax 

= 105 ± 11% and Km equal to 12.9 ± 3.1 µM. This indicates that PMQ can interact 

with CYP 2D6 and inhibit the tracer.   
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Figure 5.3: CYP2D6 steady-state kinetics and inhibition of tracer metabolism vs. PMQ 

concentration. 

A) 50% methanol (MeOH) and quinidine were used as controls (negative and positive 

respectively). PMQ and carboxyPMQ shown in this figure as an example of kinetic monitoring 

over time. B) Concentrations of PMQ were from 0 to 30 µM. The concentration response data 

was fitted to the Michaelis-Menten equation. 
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As shown in Figure 5.4 and Figure 5.5, a concentration-dependent enzyme kinetic 

assay was performed for the proposed PMQ metabolites compounds to test their 

interaction with CYP2D6. The data was then subjected to steady-state kinetic analysis 

to determine Km and Vmax. The two hydroxyquinine compounds, 5 hydroxyPMQ and 

5, 6 hydroxyPMQ, showed a pronounced inhibition of the tracer metabolism (Km = 2.7 

± 0.4 µM, Vmax = 79 ± 13% and Km = 4.5 ± 1 µM, Vmax = 90 ± 5% as seen in Figure 

5.4and Figure 5.5, respectively).   

Two other metabolites (quinoneimine) compounds, PQQI and 6-OHPQQI, were 

tested. These compounds are derived from spontaneous oxidation of the previously 

hydroxylated compounds, where PQQI is derived from the oxidation of 5 

hydroxyPMQ and 6-OHPQQI from 5,6 hydroxyPMQ (Figure 5.4 and Figure 5.5). All 

compounds displayed an inhibition tracer of the CYP2D6 enzyme with varying 

potency. With PQQI, the result was Km = 2.0 ± 0.5 µM, Vmax = 58 ± 2%, whereas with 

6OH-PQQI, the inhibition of tracer metabolites was higher, with Km = 12.0 ± 8.6 µM, 

Vmax = 90 ± 22%. Interestingly, the potency of 5, 6-HPMQ and its quinoneimine form 

(6OH-PQQI) to inhibit the metabolism tracer more than 5-HPMQ and its 

quinoneimine form (PQQI). 
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Figure 5.4: CYP2D6 steady-state kinetics of PMQ metabolites 5OH PMQ and PQQI. 

Inhibition of tracer metabolism vs. compound concentrations. All compounds concentrations response data were fitted to the Michaelis-Menten equation.   
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Figure 5.5: CYP2D6 steady-state kinetics of PMQ metabolites 5,6-OH PMQ and 6-OH PQQI. 

Inhibition of tracer metabolism vs. compound concentrations. All compounds concentrations response data were fitted to the Michaelis-Menten equation. 
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In the case of carboxy PMQ (carboxy-PMQ), it was found to be non-toxic (Link et al., 

1985) and had no effect on tracer metabolism. In addition, MW-01-036 

(hydroxycarboxyPMQ) failed to inhibit the tracer and interact with the CYP2D6 

enzyme, as illustrated in Figure 5.6. 

 

 

Figure 5.6: CYP2D6 steady-state kinetics of carboxy and 5-hyroxycaboxyPMQ 

compounds. 

Inhibition of tracer metabolism vs. compound concentration at 30 µM (highest drug conc. 

used), where the CarboxyPMQ and MW-01-036 don’t display significant inhibition. 
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5.3.2 Hydrogen peroxide production through CYP drug metabolites reaction: 

Our hypothesis is that the metabolism of PMQ via CYP2D6 results in unstable 

hydroxylated metabolites with the capability of spontaneous redox cycling and the 

production of hydrogen peroxide (H2O2). To test this, indirect detection of H2O2 

produced by the compound-CYP2D6 interaction was performed by measuring the 

oxygen (O2) released after adding catalase enzyme, using the Oxytherm system. In the 

case of non-CYP2D6 treated compounds, no O2 released after catalase addition was 

detected in all tested compounds, indicating no H2O2 production in the absence of 

CYP2D6 enzyme (Figure 5.7A). 
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Figure 5.7: Catalase-mediated oxygen release from PMQ and its metabolites compounds 

before and after CYP2D6 metabolism prior to normalization (adjustment). 

Catalase-mediated oxygen release before CYP metabolism (A) and after CYP2D6 metabolism 

(B) of primquine and its hydroxylated metabolites. The dashed line at 0 min represent the 

addition of catalase. MeOH in red trace line, PMQ in purple line, 5-OH PMQ in green and 

5,6-OHPMQ in blue. 

 

 

As shown in Figure 5.7B with CYP2D6-treated compounds, there was a release  of O2  

after catalase addition. The measuremnt of the O2 level for all test compounds and the 

control  was started immediately after two h incubation of the CYP reaction. 

Interestingly, O2 level (nmol/ml) for the various compounds, prior to addition of 
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catalase, was not at the same level Figure 5.7B. The starting O2 level of negative 

control 50% methanol (MeOH) was 195 nmol/ml, whereas, PMQ and 5-OH PMQ 

were at 190 nmol/ml and 5,6-OH PMQ at 183 nmol/ml. To compare the maximum 

level of O2 released after catalase addition for all test compounds, the y-axis was 

normalized to zero and oxygen released after adding catalase  plotted as shown in 

Figure 5.8. 50% methanol was used as solvent negative control in CYP2D6-treated 

condition and adding catalase to it showed no O2 released. However, addition of 

catalase to the CYP 2D6-treated compounds PMQ and 5 hydroxyPMQ produced a 

clear O2 release of 6.1nmol/ml and 6.3 nmol/ml, respectivly (Figure 5.8, purple and 

green trace). Furthermore, addition of catalase to the CYP 2D6-treated compound of 

5,6 hydroxyPMQ produced a clear O2 release of 11 nmol/ml with 2 fold more than 

parent compounds (Figure 5.8, blue trace). 

 

 

Figure 5.8: Normalized catalase-mediated oxygen release post CYP2D6 metabolism of 

PMQ and its metabolites. 

The dashed line at 0 min represent the addition of catalase. MeOH in red trace line, PMQ in 

purple line, 5-OH PMQ in green and 5,6-OHPMQ in blue. 
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5.3.3 Gametocytocidal activity of PMQ compounds vs CYP 2D6-treated 

compounds: 

PMQ was tested against late-stage P. falciparum gametocytes in vitro, using the 

compound before and after metabolism by the CYP2D6 reaction system. It was clearly 

observed that after 72 h incubation, PMQ at 10 µM displayed only moderate inhibitory 

activity against gametocytes with mean of 70.13% viability.  However, following prior 

incubation with CYP2D6, PMQ displayed significantly more potent inhibition of 

gametocytes, with a measured viability of 38.7% after 72h incubation (Figure 5.9). 

The results obtained from the luciferase-based gametocytocidal assay of proposed 

PMQ metabolites showed pronounced enhancement of gametocytocidal activity of 

CYP-treated compounds, compared to the non-CYP condition. To be specific, 5-OH 

PMQ and its quinoneimine form, PQQI, exhibited a similar pattern of activity with the 

CYP-treated condition with mean values of 62.25% and 57.3% viability, respectively. 

The non-CYP-treated PQQI showed little effect (86.2% viability) and no activity at 

all with the non-CYP-treated 5-OH PMQ. 

It can also be clearly seen that 5, 6-OH PMQ and its quinoneimine, 6-OH PQQI, 

showed the same pattern of response activity against the gametocytes. For the CYP-

treated compounds at 10 µM, the mean viability values of 5, 6-OH PMQ and 6OH-

PQQI were 29.25% and 46.9% respectively. The same non-CYP treated compounds 

also showed gametocytes viability with mean values of 66.2% and 77.16% viability 

against gametocytes. Remarkably, carboxyPMQ did not show any activity against 

gametocytes in both conditions for the CYP-treated and non-CYP compounds with 

mean of 95.25% and 94.38 % gametocytes viable, respectively. 
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Figure 5.9: %Viability of P. falciparum gametocytes after exposed to PMQ metabolites 

compounds in the context of CYP 2D6 metabolism. 

PMQ and its metabolites were tested at a concentration of 10µM in two conditions: non-CYP 

compound and drug after metabolites activation CYP. The data represent comparison between 

conditions in each compounds. The midline of each box-plot is the median, with the edges of 

the box representing 1st and 3rd quantiles. Whiskers delineate the 5th and 95th percentiles. 

*** indicates P < 0.001, (Welch’s t-test, two tail, n=7 separate experiments, each in 

triplicates). 

 

From the statistical view, the results obtained from the gametocytocidal assay for 

PMQ and the proposed metabolites activity against gametocytes, showed there was a 

statistically significant increase in the gametocytocidal activity of all the CYP-treated 

compounds, compared to the non-CYP condition, except for carboxy PMQ, which 

failed to kill the gametocytes in either condition (. 

Table 5.4). 

Table 5.4: The summery of statistical significances between (-) CYP and (+) CYP activity 

against late gametocytes (Welch’s t-test, two tail).  
Compound 

@ 10µM 

% Survival No 

CYP 

(Mean) 

%Survival 

CYP 

(Mean) 

P-value 95% CI Significance 

PMQ 70.1 38.7 0.00049 16.1, 46.8 *** 

5-OHPMQ 104.8 62.3 5.74E-07 31.3, 53.9 *** 

PQQI 86.3 57.3 0.00049 15.5, 42.4 *** 

5,6-OHPMQ 66.2 29.3 0.00035 19.6, 54.3 *** 

6OH-PQQI 77.2 46.9 0.00046 15.6, 44.8 *** 

C-PMQ 95.3 94.4 0.82101 -6.4, 8.1 ns 

 

*** Statistically significant at p<0.001. 

p values were corrected for false positives using the benjamini and hochsberg method. 

*** *** 
*** *** *** 
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5.3.4 Gametocytocidal activity of PMQ compounds vs HLM-treated 

compounds: 

To further investigate the physiological relevance of PMQ metabolism in relation to 

inhibitory gametocytocidal activity, the experiments were repeated with compounds 

incubated with HLM. Unlike the baculosomes, the HLM contains a full complement 

of CYP450 enzymes. The 8-aminoquinoline PMQ and its proposed metabolites were 

tested against late-stage P. falciparum gametocytes in vitro, both before and after 

incubation with the human HLM reaction system. As with the previous experiments 

using the VIVID system, the gametocytocidal activity of each compound was tested 

under two conditions: (-) HLM that contains the compound and reaction mixture 

without liver microsomes and (+) HLM that have the compound and reaction mixture 

with liver microsomes.  

After 72 h incubation, PMQ in the condition of (-) HLM at 10 µM did show moderate 

activity against gametocytes (53.32% gametocytes viability) as seen in Figure 5.10. 

Incubation of PMQ with the HLM, prior to exposure to the parasites, produced a 

significant increase in the compound gametocytocidal activity with survival mean of 

18.6%, viability (Table 5.5. and Figure 5.10). 
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Figure 5.10: %Viability of P. falciparum gametocytes after exposed to PMQ metabolites 

compounds in the context of HLM metabolism. 

PMQ and its metabolites were tested at a concentration of 10µM in two conditions: (-) HLM 

compound and drug after metabolites activation (+) HLM. The data represent comparison 

between conditions in each compounds. The midline of each box-plot is the median, with the 

edges of the box representing the 1st and 3rd quantiles. Whiskers delineate the 5th and 95th 

percentiles. *** indicates P < 0.001, (Welch’s t-test, two tail, n=3 separate experiments, each 

in triplicates). 

 

5-OH PMQ and its quinoneimine form (PQQI) exhibited statistical significant activity 

in (+) HLM-treated condition by a mean of 27.9 % viability and 8.3 %, respectively. 

In the (-) HLM-treated condition of the former two metabolites drugs, PQQI showed 

moderate activity against gametocytes by reducing the viability to 53.7% and only 

81.6 % in 5-OH PMQ (Figure 5.10). 

5,6-OH PMQ and its quinoneimine, 6-OH PQQI, exhibited a similar pattern of 

gametocytocidal activity.  Both (+) HLM-treated compounds at 10 µM, were able to 

totally kill gametocytes with 0.05% and 0.5% gametocytes viability, respectively. The 

*** *** *** *** *** 
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(-) HLM-treated compounds also reduce the gametocytes viability to the mean value 

of 20.4% and 24.6% respectively. 

As in the recombinant CYP 2D6-treated experiments, carboxy PMQ did not show any 

activity against gametocytes in both conditions. All the statistical differences between 

the two conditions in all compounds are listed in the Table 5.5.  

 

Table 5.5: Summary of statistical significances between (-) HLM and (+) HLM activity 

against late gametocytes (Welch’s t-test, two tail). 
Compound 

@ 10µM 

% Survival 

(-) HLM 

(Mean) 

%Survival 

(+) HLM 

(Mean) 

P-value 95% CI Significance 

PMQ 53.3 18.6 1.78E-04 21.3, 48.1 *** 

5-OHPMQ 81.6 27.9 8.85E-07 45.7, 61.6 *** 

PQQI 53.8 8.4 1.12E-12 42.7, 48.1 *** 

5,6-OHPMQ 20.4 0.1 2.32E-06 17.9, 22.8 *** 

6OH-PQQI 24.6 0.5 2.81E-08 22.7, 25.5 *** 

 

*** Statistically significant at p<0.001. 

p values were corrected for false positives using the benjamini and hochsberg method. 
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5.4 Discussion: 

PMQ is a vital component in the fight against malarial disease, as it is the only 

registered drug that is used treat relapsing malaria infection caused by 

P. vivax and P. ovale. Also, in view of its gametocytocidal efficacy against P. 

falciparum late stages, it is strategically important in malaria eradication/ elimination 

programs by blocking parasite transmission (Maude et al., 2012, Eziefula et al., 2012, 

Graves et al., 2015a).  Although the actual mode of action of PMQ is not well 

understood, its efficacy is thought to be linked to biotransformation of the compound 

to its active metabolites (Vasquez-Vivar and Augusto, 1992, Tekwani and Walker, 

2006, Vale et al., 2009, Pybus et al., 2012a, Bennett et al., 2013b). The suspected 

candidates for the PMQ activity are phenolic metabolites (hydroxylated), as they have 

been linked to hemolytic toxicity in G6PD-deficienct individuals (Link et al., 1985, 

Bolchoz et al., 2002). In this chapter, PMQ and different selected metabolites were 

investigated in the context of their ability to interact with CYP 2D6, their capability 

to generate hydrogen peroxide via the recombinant CYP2D6 system and the effect of 

CYP2D6 and HLM metabolism on their gametocytocidal activities. 

5.4.1 PMQ and its phenolic metabolites can inhibit the metabolism of a 

CYP2D6 enzyme substrate and generate H2O2: 

The steady-state enzyme kinetic data of PMQ and its proposed phenolic metabolites 

showed a clear interaction between the drugs and the human CYP 2D6 enzyme. 

CYP2D6 BACULOSOME (microsomes prepared from insect cells expressing a 

human P450 CYP 2D6 isozyme) offer a discrete benefit over HLM as they express 

only a specific CYP450, thereby avoiding metabolism by any other CYP450 enzyme.  

The main reason for investigating the role of CYP 2D6 in isolation is because of its 
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suspected role in PMQ metabolism to redox active metabolites which lead to the 

antimalarial activity of this compound (Vale et al., 2009, Pybus et al., 2012a, Bennett 

et al., 2013a). CYP 2C19 and CYP 3A4 show the capacity to metabolise PMQ and 

PMQ metabolism mostly derives through mono-amine oxidase (MAOs) pathways, 

however the generation of the proposed redox active metabolites is thought to proceed 

via CYP 2D6 (Baker et al., 1990, Pybus et al., 2012b). The most abundant PMQ 

metabolite in human plasma is carboxy-PMQ, which is generated through the MAO-

A pathway, and therefore carboxy-PMQ is the main elimination metabolite of PMQ 

(Mihaly et al., 1984a, Pybus et al., 2012b). In the present study, we have tested the 

ability of PMQ and the proposed metabolites to interact with the CYP 2D6 isoenzyme 

and then tested the generated products for their gametocytocidal activity.  

The steady state data showed PMQ inhibited the tracer metabolism by CYP2D6 with 

the highest Vmax/Km compare to its metabolites (Figure 5.3). To some extent, this 

result supports the catalytic efficiency of CYP2D6 towards PMQ reported in a 

previous study which demonstrated the highest Vmax/Km ratio for 2D6 compared to 

other CYP450 isoenzymes (Pybus et al., 2012a). In fact, CYP2D6 concentrations tend 

to be comparatively lower than other relevant CYP450s isoenzyme in liver, however 

it is still thought to be notes the important.  

An orthoquinone of hydroxyl metabolites was identified as the major metabolites 

produced by CYP2D6 and is considered a marker of 5-OH PMQ generation  (Fasinu 

et al., 2014). In this study, the hydroxylated metabolite (5-OH PMQ) and its 

quinoneimine PQQI inhibited CYP2D6 dependent metabolism.  

The second hydroxylated metabolite 5,6-OH PMQ and its oxidised quinoneimine form 

6-OH PQQI also displayed inhibition the CYP2D6 isoenzyme, but in this case the 

inhibition was greater (by about 90 %) compared with 5-OH PMQ and PQQI.  
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The oxidation reduction cycling of hydroxylated metabolites is thought to generate 

H2O2 molecules and it is suggested that this H2O2 represents one of main oxidative 

agents responsible for the hemolytic effects of the 8-aminoquinolines (Vasquez-Vivar 

and Augusto, 1992, Vasquez-Vivar and Augusto, 1994). The indirect (sensitive) and 

direct measurement methods used for determining H2O2 production through CYP2D6 

in this chapter were used to confirm the capability of redox cycling of hydroxylated 

metabolites to generate oxidative agent H2O2. The 5,6-OH PMQ generated much 

higher amounts of H2O2 than other tested compounds.  

It is known that the generation of dihydroxy PMQ is stereospecfic and as such each 

enantiomer behaves differently (Fasinu et al., 2014, Tekwani et al., 2015). 

Interestingly, in the case of CYP2D6 metabolite generation, the dihydroxyPMQ that 

is then converted to a dihyroxy product could only be identified with the - enantiomer 

(Fasinu et al., 2014).  

Through the MOA-A pathway, carboxyPMQ, the major human plasma metabolite is 

generated (Mihaly et al., 1984a, Pybus et al., 2012a). Again enantiomeric differences 

on PQ metabolism have been reported previously (Schmidt et al., 1977, Fasinu et al., 

2014) and it was noted that carboxyPMQ is a non-active metabolite (Peters W, 1984, 

Link et al., 1985, Fasinu et al., 2014). Our results indicate that carboxyPMQ and its 

oxidative form hydroxy carboxyPMQ (MW-01-036) fails to interact with CYP2D6 

and cannot generate H2O2. Carboxy PMQ is known to be further metabolized to ring-

hydroxylated forms (Fasinu et al., 2014) which, similar to hydroxycarboxyPMQ 

(MW-01-036) compound, acted similarly as caroboxy PMQ and all of them failed to 

interact with CYP2D6.  
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5.4.2 Gametocytocidal activity of PMQ is CYP2D6-dependant metabolism: 

A single dose of PMQ has a clinical impact on gametocyte carriage reduction and a 

clear impact on microscopically identifiable gametocytes when given in combination 

with ACTs (Bousema et al., 2010, Smithuis et al., 2010b, Okebe et al., 2016). It has 

been indicated previously that the efficacy of PMQ is reliant upon biotransformation 

of the parent compound to generate the active redox cycling metabolites via a CYP 

2D6-dependent pathway (Tekwani and Walker, 2006, Vale et al., 2009, Myint et al., 

2011b, Pybus et al., 2012a, Bennett et al., 2013b). Phenolic metabolites, that are 

mostly produced via the CYP2D6-dependant pathway (Pybus et al., 2012a), are highly 

likely to demonstrate such activity due to their reactive nature of oxidation reduction 

cycling thereby generating oxidative stress within the parasite.  

In this chapter, we have used recombinant CYP2D6 and HLM to generate PMQ 

metabolites in-vitro and harvested the product to investigate their gametocytocidal 

activity against late stages of P. falciparum gametocytes. Here, incubation of parent 

drug and metabolites with either HLMs or the CYP2D6 metabolising system 

significantly reduced gametocyte viability with exception of carboxyPMQ, which was 

failed to kill the gametocytes in all conditions. The effects for PMQ and CYP2D6 were 

significant (. 

Table 5.4). All other hydroxylated metabolites and their quinoneimine equivalents also 

exhibited significantly greater activity after CYP2D6-treatment. A similar pattern was 

observed using HLM to drive metabolism.  Although there appears to be some 

inhibitory effect of the buffer components of the non-HLM-treated compounds on 

gametocytes viability, the efficacy of (+) HLM-treated compounds were always 

statistically significant. One possible cause of the inhibitory effect in the control (-) 

HLM treatments, is the presence of NADP+ reductase activity in the regeneration 
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system, which may in itself generate reactive oxygen species.  These results are in 

strong agreement with the effect of PMQ in reducing the gametocyte carriages in-vivo 

as well as their link to biotransformation of the compound to its active phenolic 

metabolites via interaction with CYP 450s particularly CYP2D6 isoenzyme. 

     

5.4.3 Conclusion: 

PMQ is an important antimalarial drug for the treatment of relapsing infections (P. 

vivax and P. ovale) and its potential clinical impact in reducing gametocyte carriage. 

The effectiveness of PMQ has been linked to Cytochrome P450 (CYP)-mediated 

metabolism, and recent studies suggest that in particular, the CYP isoform 2D6 is 

important to generate redox-active metabolites. Although the mechanism of action of 

this class of antimalarial drugs (8-AQ) is still not well understood, the interaction of 

PMQ and its metabolites with CYP2D6 were conducted to measure the inhibition 

potential of each compound against CYP2D6 as a surrogate for being a potential 

substrate. The results indicate there to be interaction between the CYP2D6 enzyme 

with PMQ and its phenolic metabolites and this linked with their capacity for redox 

cycling of hydroxylated metabolites to generate the oxidative agent H2O2. Carboxy 

PMQ and MW-01-036 failed to inhibit the tracer metabolism at all, which indicated 

the failure of the interaction with the CYP2D6 enzyme. 

To investigate the efficacy of 8-AQ metabolites against late-stage gametocytes, an in 

vitro metabolite activation method was developed under two conditions that mediated 

metabolism, i.e.  CYP2D6-mediated and HLM-mediated metabolism. In general, 

PMQ and its hydroxylated and quinone imine compounds showed significant activity 

against gametocytes in both conditions. Carboxy PMQ and MW-01-036 had no 

activity against gametocytes in all conditions. These data were discussed in the context 
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of understanding the mechanism of action of PMQ and its metabolites which are 

important for developing and designing new transmission-reducing antimalarial drugs. 
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Chapter 6 

6 Tafenoquine and novel 8-aminoquinoline analogues: 

Gametocytocidal activity, haemolytic toxicity in the role of 

CYP2D6-dependent drug metabolism 
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6.1 Introduction:  

The 8-aminoquinoline class are an old and important antimalarial drug class that have 

proven activity against the exoerythrocytic liver stages of malaria, supporting their 

potential use in the treatment of relapsing malaria (Krotoski et al., 1980, Potter et al., 

2015a). PMQ as the only drug actually registered to treat malarial relapsing, has been 

proposed as a vital tool in malaria transmission, blocking malaria and control strategies 

(Graves et al., 2015b, Rieckmann et al., 1968, Pukrittayakamee et al., 2004, 

Shekalaghe et al., 2007). However, long term safety concerns over PMQ, especially 

in G6PD deficient patients, has promted the development of new 8-aminoquinoline 

analogues with a better safety and tolerability profile (Vennerstrom and Eaton, 1988, 

Bray et al., 2005a, Pradines et al., 2006).  

Tafenoquine (TF), although invented several decades ago by the US military, is seen 

as a new 8-aminoquinoline analogue related to PMQ that has progressed to Phase III 

clinical trials as a potential new anti-relapse and chemoprophylactic agent (Dow et al., 

2014, Llanos-Cuentas et al., 2014).  This analogue has a significantly longer 

elimination half-life more than that in PMQ (Brueckner and Fleckenstein, 1991, 

Brueckner et al., 1998, Li et al., 2014). Therefore, single dose of TF has used for 

radical cure in humans (Llanos-Cuentas et al., 2014). Another advantage, and unlike 

primaquine, TF is active against asexual stages of P. falciparum at pharmacologically 

achievable blood concentrations (Vennerstrom et al., 1999, Pradines et al., 2006). 

In spite of the pharmacokinetic benefits of TF compare to PMQ, both drugs seem to 

have similar pharmacogenomic dependency on CYP2D6-mediated metabolism for 

their hypnozoite (dormant liver) stage activity (Pybus et al., 2013, Pybus et al., 2012a, 
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Marcsisin et al., 2014) and both drugs can cause haemolytic toxicity in G6PD deficient 

patients (Miller et al., 2013a).  

Although the precise mechanism of action of TF is not yet known, it is thought to share 

features with PMQ. The accepted view is that 8-aminoquinoline metabolism generates 

as yet unidentified   unstable metabolites with the capacity to undergo spontaneous 

redox cycling with P. falciparum enzymes such as ferredoxin-NADP+ reductase and 

diflavin reductase enzymes, resulting in the production of oxidative stress (hydrogen 

peroxide and hydroxyl radicals). The spontaneous redox recycling and the production 

oxidative stress via metabolism can be used to describe the antimalarial activity and 

the toxicity of the 8-aminoquinolines (Researches council UK (2016).  

Like blood schizonticides such as the 4-aminoquinoline CQ, TF can inhibit asexual 

parasite growth via inhibitions of heme polymerisation as another mode of action in 

P. falciparum asexual stages. This could explain the ability of TF to be active against 

blood stages while PMQ is not (Vennerstrom et al., 1999).   

The main aim of this chapter is to determine the ability of TF and a series of novel, 

but related structurally to 8-aminoquinoline, to kill malaria gametocytes and by use of 

recombinant enzymes and liver microsomes to establish the importance of human 

cytochrome P450 2D6 (CYP 2D6) enzyme in antimalarial activity and red cell 

hemolytic toxicity. In addition to TF, the structural analogues SL-6-41, SL-6-46 and 

SL-6-56 were also investigated for their gametocytocidal activity and the role of 

CYP2D6 metabolism in their antimalarial activity.  
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6.2 Material and Methodes: 

6.2.1 Reagents: 

P. falciparum 3D7elo1-pfs16-CBG99 were generously provided by Prof Pietro Alano 

lab (INBB, Istituto Nazionale di Biostrutture e Biosistemi, 00136 Rome, Italy) 

(Cevenini et al., 2014). TF succinate was purchased from Sigma and other novel 8-

aminoquinoline compounds were synthesised in the Chemistry Department by Dr 

Michael Wong and Dr Shirley Leung (Prof Paul O’Neill group), University of 

Liverpool, UK (Table 6.1 and Figure 6.1). The Vivid® CYP450 2D6 Screening Kit 

was obtained from Life Technologies (Paisley, UK). Pooled Human Intestinal 

Microsomes were generated in Liverpool and a NADPH Regenerating System was 

obtained from Corning ® Gentest™ (Corning B.V. Life Sciences, Netherland). The 

Oxytherm system and O2 View software was obtained from Hansatech Instruments 

Ltd. (King’s Lynn, UK). Catalase, from bovine liver, was obtained from Sigma 

(C1345; Dorset, UK). 

 

6.2.2 Test Compounds: 

Table 6.1: TF and the newly synthetic 8-aminoquinoline compounds studied. 

Class Compound name Molecular Weight Solvent 
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SL-6-41 275.35 g/mol 

SL-6-56 273.33 g/mol 

SL-6-46 261.33 g/mol 
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6.2.3 Compounds chemical Structures: 

 

Figure 6.1: Chemical structure of PMQ, TF and newly synthetic 8-aminoquinoline (SL-

6-41, SL-6-46 and SL-6-56). 

 

  



 

 

 

 

164 

 

6.2.4 Methods: 

P. falciparum gametocytes culture gametocytocidal viability assay was performed as 

described in methodology chapter 2, section 2.3. Enzyme kinetic assay, H2O2 

generation of CYP-treated compounds and gametocytocidal assay of CYP-treated and 

HLM-treated compounds were conducted as described in detail previously in chapter 

5 section 5.2.4.   

6.2.4.1 In-vitro hemolysis assay: 

Test and control compounds at 20µM concentration were prepared in isotonic 

phosphate buffer under two different conditions: with and without recombinant 

CYP2D6 enzyme system, and diluted 2:3 in isotonic phosphate buffer (150mM NaCl 

in 10 mM phosphate buffer). Incubations were carried out at 37°C for 24 h in a shaking 

water bath, with a suspension of human erythrocytes (RBC, 1% hematocrit) obtained 

from either normal or glucose-6-phosphate dehydrogenase (G6PD)-deficient donors. 

The reaction was stopped by cooling at 4ºC and the mixtures were centrifuged at 1000 

g for 10 min, and the absorbance of the supernatants was measured at 540 nm in a 

plate reader, Varioskan ® Flash plate reader (Thermo Electron Corporation). The 

hemolytic rate was calculated using 10 mM phosphate buffer as the positive control 

for hemolysis of human RBC, which was considered 100% hemolysis (Fraser and 

Vesell, 1968, Wang et al., 2010).  
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6.3 Results:  

6.3.1 TF autoflorescence spectrum: 

The overlapping of the TF auto-florescence could interfere with fluorescence-based 

assay (Vivid® CYP450 screening assay). Using a Varioskan ® Flash plate reader 

(Thermo Electron Corporation) multimode reader, fluorescence intensity was 

monitored to detect the precise excitation and emission wavelength characteristic of 

TF (Figure 6.2).  

 

Figure 6.2: Spectrum auto florescence excitation and emission detected at high 

concentration of TF. 

 

  



 

 

 

 

166 

 

6.3.2 CYP2D6 enzyme kinetic inhibition:  

To determine the interaction of the 8-aminoquinoline drug TF and other 8-

aminoquinoline analogues with the human CYP450 2D6 enzyme, a Vivid® CYP450 

screening fluorescence-based assay was used. Quinidine (10 µM), a known inhibitor 

of CYP2D6, was used as a positive control, while 50% methanol (solvent) was the 

negative control. In the absence of any other compound, the recombinant CYP2D6 

enzyme metabolises the tracer, producing a fluorescent signal that changes with time 

(Figure 6.3, A & B sliver trace). The positive control quinidine inhibits the function 

of CYP 2D6, preventing the metabolism of the tracer and leading to a reduction in the 

kinetic fluorescent signal (Figure 6.3, A & B black trace). TF produced auto-

florescence that overlapped with the tracer metabolism (Figure 6.3). To correct for the 

auto-florescence of TF, the experiment was conducted with and without the tracer 

substrate in the incubation as shown in Figure 6.3, A. The inhibition kinetics caused 

by TF was established after subtracting the auto-florescence contribution from the 

total signal as shown in Figure 6.3, B. Inhibition of CYP2D6 dependent substrate 

metabolism was minimal up to 30 µM TF (mean inhibition of 67.7% ± 3.7 (Figure 6.3, 

B red trace).  

Thereafter, the concentration-response data was subjected to a steady-state kinetic 

analysis using the Michaelis-Menten equation, to determine Km and Vmax, as illustrated 

in Figure 6.3, C. TF showed “non-specific” inhibition of tracer metabolism and the 

typical Menten curve could not be generated from the data collected. 



 

 

 

 

167 

 

 

Figure 6.3: The ability of TF to compete for CYP2D6 via competition with the metabolism of a fluorescent probe substrate. 

A. shows the florescent signal generated by TF alone and in the presence of the CYP2D6 substrate (with tracer). B. shows the kinetics of TF induced inhibition 

of CYP2D-dependent tracer metabolism after subtracting the autoflouresence signal from Tafenoauine.  C. Michaelis-Menten fit of the data. 
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Figure 6.4, highlights the Michalie Menton curves generated using the novel 8-

aminoquinolines in the CYP2D6 metabolism experiment. SL-6-46 and SL-6-56, 

showed a pronounced inhibition of the tracer metabolism (Km = 6.7 ± 1.2 µM, Vmax = 

96 ± 2% and Km = 0.5 ± 0.1 µM, Vmax = 92 ± 1%, respectively as seen in). The 

inhibitory potency of the structural analogue SL-6-56 was superior to SL-6-46 

achieving Vmax at 10 µM (Figure 6.4B & C). 

 In the case of SL-6-41, the compound had no clear effect on tracer metabolism for 

10µM or less. However, SL-6-41 display non-specific inhibition at higher 

concentration (30 µM) by mean 66.7% ±2.67 (Figure 6.4, A) similar to the profile seen 

with TF.  
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Figure 6.4: The ability of three 8-minoquinoline PMQ analogues to compete for CYP2D6 via competition with the metabolism of a fluorescent probe 

substrate. 

Inhibitor concentrations ranged from 0 to 30 µM. SL-6-41 display non-specific inhibition at higher concentration (30 µM). All compounds concentrations 

response data were fitted to the Michaelis-Menten equation. 
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6.3.3 CYP metabolism dependent hydrogen peroxide production: 

One proposed hypothesis is that the metabolism of TF, like PMQ, via CYP2D6 

generates metabolites with the capacity for spontaneous redox cycling leading to the 

production of hydrogen peroxide (H2O2) which contributes the drugs mechanism of 

action. To test this, the Oxytherm system was used to indirecty measure H2O2 

production. The assay measured oxygen released in the presence of catalase. In the 

absence of the CYP2D6 drug metabolising system, there was no oxygen released when 

incubated with the control methanol of TF or PMQ (Figure 6.5, A).   

However, in the presence of the CYP2D6 enzynme, there was a measurable release of 

oxygen (Figure 6.5, B) in support of the working hypothesis.   
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Figure 6.5: Catalase-mediated oxygen release before and after CYP2D6 metabolism of 

TF compared to PMQ prior to normalization (adjustment). 

Catalase-mediated oxygen release before CYP metabolism (A) and after CYP2D6 metabolism 

(B) of primquine and its hydroxylated metabolites. The dashed line at 0 min represents the 

addition of catalase. MeOH as control in red trace line, PMQ in blue line and TF in green. 
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To directly compare the peak O2 release after catalase addition for TF and primaqine, 

the y-axis was normalized to zero and the oxygen released after adding catalase  

plotted as shown in Figure 6.6. Methanol 50% was used as solvent negative control 

and in the CYP2D6 assays after the addition of catalase there was no O2 released. 

However, addition of catalase to the CYP 2D6-treated compounds TF and PMQ 

produced a clear O2 release of 6.08nmol/ml and 6.1 nmol/ml, respectively (Figure 6.6, 

green and blue trace).  

 

 

Figure 6.6: Normalized catalase-mediated oxygen release post CYP2D6 metabolism of 

TF compare to PMQ. 

The dashed line at 0 min represents the addition of catalase. MeOH as control in red trace line, 

PMQ in blue line and TF in green. 
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6.3.4 Hemolysis in red blood cell G6PD deficient: 

The hemolysis of human red blood cells (normal and G6PD-deficient) was 

investigated after incubation with 10µM drug in the absence of presence of a CYP2D6 

drug metabolising system. Compared to the negative control (50% methanol), PMQ 

(at 10µM) did not cause any hemolysis either in normal or G6PD blood donors either 

in the presence or absence of the matabolising system (Figure 6.7). In contrast TF in 

the absence of the matabolising system induced pronounced lysis in both normal and 

G6PD deficient red ceels that was signifucantly reduced in the presence of the 

CYP2D6 metabolising system (Figure 6.7). 

 

Figure 6.7: In-vitro hemolysis induced by PMQ and TF.  

The figure illustrates the haemolytic effect of PMQ and TF in either normal or G6PD deficient 

red cell under two reaction conditions i.e. in the presence (black) or absence (red) of the 

CYP2D6 drug metabolising system (A) normal blood donors and (B) G6PD blood donors. 
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6.3.5 The role of CYP2D6 specific metabolism and gametocytocidal activity: 

TF was tested against late-stage P. falciparum gametocytes in vitro. In the absence of 

any CYP2D6 metabolising system it can be seen that after 72 h incubation tafenoquine 

(10 µM) reduced gametocyte viability substantially (mean viability reduction of 

22.06%). Under equivalent conditions PMQ was much less potent with viability 

reduced to a mean of 70.12%. In the presence of the CYP2D6 drug metabolising 

system the effect of TF on gametocyte viability was significantly reduced (P<0.001), 

while that of PMQ was enhanced (Figure 6.8). Using the 8-aminoquinoline analogues 

in similar experiments demonstrated that SL.6.41 was gamotocytocidal in its own 

right, reducing viability by 37.26% in the absence of the CYP2D6 system and 22.45% 

in the presence of CYP2D6 (Figure 6.9). SL-6-46 had a weak effect on gametocyte 

viability in either the presence (81.99%) or absence (83.08) of the metabolising 

system. Finally, SL-6-56, exhibited no effect on gametocyte viability in the absence 

of the enzyme system but reduced viability to 73.36% in the presence of the 

metabolising system (Figure 6.8, Table 6.2).   
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Figure 6.8: The effect of CYP2D6-dependent metabolism on the viability gametocytes 

after exposure to TF vs PMQ. 

TF and PMQ were tested under two conditions: without exposure to a CYP2D6 drug 

metabolising system and after incubation with a CYP2D6 drug metabolising system. The data 

represent comparison between conditions in each compound. The midline of each box-plot is 

the median, with the edges of the box representing the 1st and 3rd quantiles. Whiskers 

delineate the 5th and 95th percentiles. *** indicates P < 0.001, (Welch’s t-test, two tail, n=7 

separate experiments, each in triplicates). 

 

 

 

Figure 6.9: The effect of CYP2D6-dependent metabolism on the viability of gametocytes 

after exposure to novel synthetic 8-aminoquinoline analogues. 

8-aminoquinoline analogues were tested under two conditions: without exposure to a CYP2D6 

drug metabolising system and after incubation with a CYP2D6 drug metabolising system. The 

data represent comparison between conditions in each compound. The midline of each box-

plot is the median, with the edges of the box representing the 1st and 3rd quantiles. Whiskers 

delineate the 5th and 95th percentiles. *** indicates P < 0.001, (Welch’s t-test, two tail, n=7 

separate experiments, each in triplicates). 

 

*** *** 

*** 
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Table 6.2: The summary of statistical analysis between (-) CYP and (+) CYP incubations 

with TF, primaquone and the 8-aminoquinoline analogues in terms of effects on viability 

of late gametocytes (Welch’s t-test, two tail). 

Compound 

% Survival No 

CYP 

(Mean) 

%Survival 

CYP 

(Mean) 

P-value 95% CI 
Significa

nce 

TF 22.1 74.8 2.45E-12 -61.6, -43.7 *** 

PMQ 70.1 38.7 0.00049 16.1, 46.8 *** 

SL-6-41 37.3 22.5 0.0710 -0.46, 30.1 ns 

SL-6-46 81.9 83.1 0.821 -11, 8.8 ns 

SL-6-56 102.3 73.4 2.01E-07 21.8, 35.9 *** 

 

*** Statistically significant at p<0.001. 

p values were corrected for false positives using the benjamini and hochsberg method. 

 

 

6.3.6 The role of microsomal metabolism on gametocytocidal activity: 

To further investigate the physiological relevance of metabolism of 8-aminoquinolines 

and their gametocytocidal activity, the experiments outlined in section 1.3.5 were 

repeated with compounds incubated with HLM in place of a specific recombinant 

CYP2D6 system. Unlike the Baculosome CYP2D6 system, the HLM contain a full 

complement of CYP450 enzymes. TF and other 8-aminoquinoline structural 

analogues were tested against late-stage P. falciparum gametocytes in vitro, both 

before and after incubation with the HLM reaction system. As with the previous 

experiments using the VIVID system, the gametocytocidal activity of each compound 

was tested under two conditions: (-) HLM that contains the compound and reaction 

mixture without liver microsomes and (+) HLM that have the compound and reaction 

mixture with liver microsomes.  

After a 72 h incubation, TF (at 10 µM) under both conditions did not show significant 

activity against gametocytes with mean parasite viabilities of 85.2% and 87.5%. In 

contrast, PMQ still exhibited statistically significant activity (P<0.001) in (+) HLM-
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treated condition reducing mean parasite viability to 18.6% compared to HLM- 53.3% 

viability in the absence of HLM (Figure 6.10).  

The structural analogue, SL-6-41, again exhibited statistically significant (P<0.001) 

activity in the absence of HLM (mean of 23.1 % viability) (Figure 6.11). In the (+) 

HLM-treated condition of the former analogue, showed moderate activity against 

gametocytes by reducing the viability to 51.9%. In the case of SL-6-46, this structural 

analogue exhibited a similar pattern of gametocytocidal activity before and after HLM 

incubation with mean viability of 63.05% in (-) HLM and 57.6% in (+) HLM.  

Similarly, the structural analogue, SL-6-56, displayed slight gametocytocidal activity 

in (-) HLM compare to (+) HLM condition with mean of 61.5% and 74.4% viable 

gametocytes, respectively (Figure 6.11).  

 

Figure 6.10: The effect of HLM-dependent metabolism on the viability gametocytes after 

exposure to TF vs PMQ. 

TF and PMQ were tested under two conditions: without exposure to a HLM drug metabolising 

system and after incubation with a HLM drug metabolising system. TF were tested in two 

conditions: (-) HLM compound and drug after metabolites activation (+) HLM. The data 

represent comparison between conditions in each compound. The midline of each box-plot is 

the median, with the edges of the box representing the 1st and 3rd quantiles. Whiskers 

delineate the 5th and 95th percentiles. *** indicates P < 0.001, (Welch’s t-test two tail, n=3 

separate experiments, each in triplicates). 

 

 

*** 



 

 

 

 

178 

 

 

Figure 6.11: The effect of HLM-dependent metabolism on the viability gametocytes after 

exposure to new synthetic 8-aminoquinoline analogues. 

8-aminoquinoline analogues were tested under two conditions: without exposure to a HLM 

drug metabolising system and after incubation with a HLM drug metabolising system. The 

data represent comparison between conditions in each compound. The midline of each box-

plot is the median, with the edges of the box representing the 1st and 3rd quantiles. Whiskers 

delineate the 5th and 95th percentiles. *** indicates P < 0.001, (Welch’s t-test two tail, n=3 

separate experiments, each in triplicates). 

 

 

All the statistical differences between the two conditions in all compounds are listed 

in the Table 6.3.  

Table 6.3: The summary of statistical significances between (-) HLM and (+) HLM of 

TF, primaquone and 8-aminoquinoline analogues against late gametocytes (Welch’s t-

test, two tail). 

Compound % Survival 

No HLM 

(Mean) 

%Survival 

HLM 

(Mean) 

P-value 95% CI Significance 

TF 85.2 87.5 0.67402 -14.1, 9.5 ns 

PMQ 53.3 18.6 0.000178 21.3, 48.1 *** 

SL-6-41 23.2 51.9 8.27E-05 -38.9, -187 *** 

SL-6-46 63.1 57.7 0.416085 -7.2, 17.9 ns 

SL-6-56 61.5 74.5 0.265975 -34.7, 8.8 ns 

 

*** Statistically significant at p<0.001. 

p values were corrected for false positives using the benjamini and hochsberg method. 

 

  

*** 
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6.4 Discussion: 

TF is the only new 8-aminoquinoline that is close to clinical use in the field having 

come a long way in clinical trials to demonstrate is potential to be a radical cure for 

human malaria. It is a proposed as a single dose treatment that is an alternative 

analogue to PMQ. The longer half-life that allows single dose use is big advantage 

over PMQ. However, the requirement for hepatic metabolism in the mechanism of 

action and toxicity of TF is poorly understood and in comparison with PMQ it is 

differentiation in these areas of pharmacology that will be important clinically 

(Marcsisin et al., 2014, Vuong et al., 2015).  

The definite connection between TF liver stage anti-malarial activity and the need for 

hepatic metabolism to active metabolites (via CYP 2D6 or other enzymes) has so far 

been established in humans but is currently being actively investigated (St Jean et al., 

2016). Thus, the aim of this chapters is to investigate if TF and a small number of 

other novel 8-aminoquyinolines can interact with CYP2D6, measured through 

inhibition of a CYP2D6 probe substrate in a CYP2D6 recombinant enzyme assay 

described in section 5.2.4.1. Thereafter, the link between the metabolism of these 

potential gametocytocidal drugs (investigated using HLMs and a specific CYP2D6 

system) and their effects on late stage gametocyte viability were studied.   

6.4.1 The interaction between selected 8-aminoquinolines and CYP2D6: 

Clinical data indicate that PMQ is metabolised by CYP2D6 in man (Tekwani and 

Walker, 2006, Vale et al., 2009, Pybus et al., 2012a, Deye and Magill, 2014, Marcsisin 

et al., 2016). Furthermore, CYP2D6 poor metabolisers fail to achieve radical cure with 

PMQ (Bennett et al., 2013a) suggesting an intimate relationship between antimalarial 

effects in the liver and CYP2D6 specific routes of metabolism (De Gregori et al., 2010, 
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Marcsisin et al., 2016). The question that remains is whether this is the case for all 8-

aminoquinolines and is it important for their effects against gametocytes.  The in vitro 

enzyme inhibition data suggest that all the 8-aminoquinoines can interact with 

CYP2D6 but with different mechanisms. As mentioned in chapter 5, using 

BACULOSOME (microsomes expressing a human CYP2D6 isozyme) offers a benefit 

of using only the metabolism from a specific CYP450 in isolation. The data generated 

indicate that TF causes a non-specific inhibition of tracer metabolism at 30µM. Failure 

of inhibition of tracer metabolism by TF at lower concentrations demonstrates that TF 

might not be dependent on CYP2D6 metabolism to the same level as PMQ and the 

failure to show pure competition suggests it may not be a 2D6 substrate although this 

cannot be definitively concluded. This data are in agreement with a recent study in 

which it was concluded that TF activity against P.vivax might not be linked to 

CYP2D6 metabolism (St Jean et al., 2016). In addition, the reduced metabolism in 

CYP2D6 from the same study was not linked to relapse among intermediate 

metabolizers following the administration of TF for P. vivax (St Jean et al., 2016). In 

contrast to this clinical data other studies have supported a link between TF liver stage 

anti-malarial activity and CYP 2D6 metabolism based on altered TF pharmacokinetics 

dependent on CYP 2D metabolizer status in mice (Vuong et al., 2015). Similarly, TF 

achieved the efficacy in CYP 2D metabolizer status in mice and also in humanized 

CYP2D6 mice with high dose (2-fold of ED100) (Marcsisin et al., 2014).  

We have extended the investigation of CYP2D6 to look at other related 8-

aminoquinolines currently under investigation in Liverpool as alternatives for 

development.  Two analogues, SL-6-46 and SL-6-56, clearly inhibited the metabolism 

of the tracer, and thus showed their capability to interact with CYP2D6 and possibly 

be substrates. However, the structural analogue SL-6-41 displayed non-specific 
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inhibition of tracer metabolism at 30µM, similar to that observed with TF. This results 

could guide structure activity studies. The common trifluoromethyl (CF3) at 5 position 

could be driving the orientation of the interaction with CYP2D6.      

It is hypothesised that redox cycling of hydroxylated metabolites generated from 8-

aminoquinoline metabolism is capable of generating H2O2 which has a role in drug 

action. Furthermore, it is suggested that this H2O2 represents one of main oxidative 

agents responsible for unacceptable toxic hemolytic effects associated with PMQ and 

related molecules (Vasquez-Vivar and Augusto, 1992, Vasquez-Vivar and Augusto, 

1994). In this study, we have been able to confirm that the CYP2D6 dependent 

generation of metabolites from both PMQ and TF that lead to the formation of the 

oxidative agent H2O2.  It is worth noting the reported stereoselective differences seen 

with PMQ (Schmidt et al., 1977, Fasinu et al., 2014), which should be studied in the 

future using TF enantiomers.  

  

6.4.2 Gametocytocidal activity of TF is not associated with CYP2D6-dependent 

metabolism:  

In comparison to PMQ, TF has a significantly longer elimination half-life (Brueckner 

and Fleckenstein, 1991, Brueckner et al., 1998, Li et al., 2014), thus, a single dose is 

used for radical cure in humans (Llanos-Cuentas et al., 2014). Another advantage is 

the ability of TF to be active against asexual stages of P. falciparum (Vennerstrom et 

al., 1999, Pradines et al., 2006). TF has also shown clear activity as a gametocytocidal 

compound and we looked closely at the dose response of this drug in early and late 

stages gametocytes in chapter 3.  

The conclusive link between TF liver stage anti-malarial activity and CYP 2D6 

metabolic activation has yet to be firmly established in humans, although it is currently 
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a hot topic of investigation (St Jean et al., 2016), however the emerging data from 

human trials and preclinical models are somewhat contradictory (Vuong et al., 2015, 

Marcsisin et al., 2014).  

In this chapter, we have used recombinant CYP2D6 and HLM (HLM) to generate 

natural metabolites of TF and other structural analogues in-vitro. These metabolic 

products have then been used to investigate their gametocytocidal activity compared 

to relevant controls. In the context of CYP2D6 metabolism, and unlike PMQ, the 

activity of normal drug exposure without the CYP2D6 metabolising system indicated 

that TF was statistically significant active against late stages gametocyte compared to 

the situation following incubation with the CYP2D6 system as shown in Figure 6.8. 

However, this was not the case when using HLM to generate TF metabolites (+) HLM 

and with (-) HLM. A possible explanation of this is that CYP2D6 converts TF to 

metabolites with inferior gametocytocidal properties compared to parent drug and as 

such it is protective. In the case of HLM it must be assumed that the 2D6 pathway is 

relatively trivial for TF with other routes predominating and producing inactive 

metabolites. However, this does not explain why in type CYP2D6 environment 

without the enzyme we observed significant reductions in gametocyte viability that 

was not present in the HLM cultures without the HLPMs. This will require further 

investigation of the effects of the underlying culture conditions.  

SL-6-41 is the only structural analogue that has clear activity against late stage 

gametocytes. However, unlike TF, the activity of this analogue was increased 

following incubation with CYP2D6. Under HLM incubation conditions the analogue 

still demonstrated significant activity in (-) HLM, however after addition of the 

microsomes, the gametocyte viability was reduced to 51.9 %.  
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SL-6-56 showed some effect on gametocyte viability that was enhanced in the 

presence of CYP2D6. Compared to PMQ, SL-6-56 and SL-6-46 failed to demonstrate 

gametocytocidal activity even though they showed a clear interaction with CYP2D6. 

Hemolytic toxicity, measured as hemolysis was studied after addition of drug (10µM) 

in the presence and absence of a CYP2D6 metabolising system. Remarkably, TF 

demonstrated the ability to lyse erythrocytes of normal and G6PD-deficient blood 

even without metabolic activation. Whereas, PMQ did not displayed lysis effect 

compare to negative control in any set of conditions. This is strongly in agreement 

with a very recent study which revealed that TF can trigger eryptosis or suicidal 

erythrocyte death in normal blood samples. TF-treated blood sample collected in this 

study were tracked by the presence of the two main markers for the eryptosis; cell 

membrane scrambling with phosphatidylserine translocation and cell shrinkage (Al 

Mamun Bhuyan et al., 2016). This eryptosis effect due to TF dose may be increased 

in some clinical conditions such as malaria and G6PD deficiency (Lang and Lang, 

2015). However, our observation from TF and PMQ at specific concertations, after 

CYP2D6-mediated metabolism, failed to show hemolytic toxicity.    

6.4.3 Conclusion:  

8-aminoquinoline antimalarial drugs play an important role in the treatment of 

relapsing infections and in reducing the gametocyte carriages of P. falciparum. The 

activity of 8-aminoquinoline is thought to be linked to Cytochrome P450 metabolism, 

in particular, CYP isoform 2D6 that is thought to be important in the generation of 

redox-active metabolites. The main finding from this chapter is the converging 

evidence that TF gametocytocidal activity is not totally reliant on CYP2D6 

metabolism. TF, after CYP2D6 metabolism, can generate H2O2. In addition, TF, under 
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the conditions used here can lysis erythrocytes of normal and G6PD blood even in the 

absence of CYP2D6.    

SL-6-41 shows clear activity against gametocytes with notable improvements in 

gametocyte activity after CYP2D6 metabolism. Both TF and SL-6-41 demonstrate a 

similar pattern of interaction with CYP2D6 (non-specific inhibition of tracer 

metabolism at 30µM). The structural analogues SL-6-46 and SL-6-56, confirmed as 

inhibitors of CYP2D6 dependent metabolism failed to have any they have impact on 

gametocytocial activity.  

Overall, some but not all 8-aminoquinolines are potential CYP2D6 metabolism. 

Metabolism can have a profound impact on both gametocytocidal activity and 

haemolytic toxicity which is drug specific. The big question is whether it is possible 

to find an 8 amnioquinoline that can kill gametocytes in a non CPYP2D6 dependent 

manner without causing red cell toxicity.  
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Chapter 7 

7 Conclusion, Limitations and Future Perspectives 
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7.1 Summary and conclusion: 

The aim of this chapter is to summarise the main findings from the thesis and set out 

how the information can be integrated to gain a better understanding of the important 

features of gametocyte-active antimalarials of P. falciparum with a focus on 

understanding of the mechanisms underpinning the activity of some of the agents 

tested.  

Malaria still main reasons a disease that causes serious mortality and morbidity in the 

world, especially in tropical areas. With the ambition of accomplishing a sustainable 

strategy for malaria eradication/elimination, malarial transmission has to be a priority 

within an integrated approach that will include vector control, mass treatment etc. 

Therefore, targeting gametocytes remains pharmacologically attractive and 

strategically essential in the current efforts to eliminate malaria.    

Starting with the screening of selected reference antimalarial drugs as well as new 

potential compounds against two distinct stages of the gametocyte life cycle (early 

stage II and III and late stages IV and V), the main findings are that all compounds 

known to be active have stage specific activity profiles, even within a specific class 

there are subtle differences. This suggests differences in the underlying biochemical 

pathways that are exploitable in early and late stage gametocytogenesis. This is in line 

with accepted thinking that the early stages are metabolically very active whereas the 

late stages are essentially almost dormant and just carrying out essential functions to 

remain viable prior to ingestion by the next feeding mosquito. These 

pharmacodynamic differences could be helpful in directing future studies aimed at 

providing a deeper understanding of the mechanisms underpinning the activity of 

specific compounds. Briefly, MB, the spiroindolones and MPS1 inhibitors showed 
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significant gametocytocidal activity against all four stages. TF was the only 8-

aminoquinoline that demonstrated gametocytocidal activity during all four studied 

gametocyte stages. However, even then, TF was much more potent against late stage 

gametocytes in comparison to early gametocytes. This is the only molecule with this 

type of profile, for all other compounds active against early and late stages, it was the 

early stages that appeared to be most susceptible. Lumefantrine displayed moderate 

gametocytocidal activity against early stages, inhibiting gametocyte viability by 52% 

compared to about 25 % inhibition of the mature late stages. This indicates that 

lumefantrine as a partner drug of choice with artemisinin (Coartem), the most 

commonly used ACT (Wells et al., 2009), would display moderate gametocytocidal 

activity through the actions of both components. In contrast, the 4-Aminoquinolines, 

ATQ and the antifolate (pyrimethamine) failed to display any substantial activity 

against gametocytes, apart from CQ which caused 50 % inhibition against early 

gametocyte stages, which is in line with data in the literature (Chapter 3). 

The PD responses of the endoperoxide compounds also demonstrated stage-specific 

differences during gametocytogenesis. All test compounds were potent against early-

stage gametocytes. This included the fully synthetic peroxides (OZ439 and TDD-

E209), which have better PK profiles and significantly longer elimination half-lives 

(>1day) than artemisinin and the semi-synthetic derivatives (Copple et al., 2012, 

Moehrle et al., 2013, Wells et al., 2015). However, all the semi-synthetic artemisinins 

showed better activity against late stages than artemisinin and fully synthetic 

peroxides against that stage. DHA, the common antimalarial metabolite of the semi-

synthetics and an antimalarial in its own right, demonstrated potency against 

gametocytes at all four stages. This was particularly noticeable against late stages and 

would support the argument that DHA (either from the pro-drugs artesunate or 
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artemether or directly) might have an important role in disease eradication based on 

its transmission blocking potential (Chapter 4). 

The newly developed of time-dependent killing assay was used to investigate the 

exposure-effect relationship and gametocyte kill rates of MB and DHA against P. 

falciparum late stage gametocytes. Subsequently, the PK/PD relationship of the drugs 

as used in a clinical context was used to estimate the rate of clinical gametocyte 

clearance that could be achieved after clinically relevant treatment doses. The 

predicted gametocyte clearance potential with MB was total clearance of gametocytes 

from the blood stream in less than 3 days, whereas with DHA current dosage regimens 

are predicted to be suboptimal in terms of gametocyte clearance, although they would 

have a minor impact on carriage (Chapter 3 & 4). 

A significant portion of the thesis is dedicated to the study of the 8-minoquinolines 

notably PMQ and its key predicted metabolites, TF and three novel 8-aminoquinoline 

analogues. The stage-specific gematocytocidal activities of all compounds was 

assessed and differences in potency and stage specificity were observed between the 

analogues. There is strong evidence that the 8-aminquinolines exert their antimalarial 

effects via one or more metabolites and this has been linked to Cytochrome P450 

metabolism, in particular, the CYP isoform 2D6, an enzyme that is polymorphic in 

humans with populations identified as either poor or extensive metabolisers of 

substrates that utilise this enzyme. Recent clinical evidence suggests that metabolism 

through CYP2D6 is important to the eventual generation of redox-active metabolites 

that kill the parasite. 

Although the detailed mechanism of action of this class of antimalarial drugs (8-AQ) 

is still not well understood even after nearly 70 years of investigation, a role for 

CYP2D6-dependent metabolism era to be important. As a consequence, the interaction 
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of PMQ and its key metabolites with purified human CYP2D6 was investigated. The 

idea was to see if any of these molecules could inhibit the metabolism of a test 

substrate that was metabolized by this enzyme. Any type of inhibition was interpreted 

as meaning that the compound interacted with the enzyme but it could not be 

interpreted definitively as being a substrate for the enzyme. The results indicated that 

with the exception of the inactive corboxy metabolite, PMQ and all its metabolites 

could inhibit CYP2D6 activity to some degree. Furthermore, the suggested interaction 

of PMQ and its hydroxylated matabolites with CYP2D6 was shown to liberate redox 

cycling of hydroxylated metabolites to generate the oxidative agent H2O2. To 

investigate the activity of 8-AQ metabolites generated by CYP2D6 or HLMs against 

late-stage gametocytes, an in vitro assay allowing metabolite generation and activation 

was developed. Using this procedure to generate active metabolites from a starting 

substrate (PMQ or its known metabolites), the overall pattern was that enzyme 

activation increased gametocyte activity compared to that observed with the substrate 

prior to metabolic activation. The implication of this observation was discussed in the 

context of understanding how PMQ and its metabolites work and highlights some 

important features that should be considered when designing the next generation of 

transmission-reducing antimalarial drugs (Chapter 5). 

An intriguing finding was several lines of evidence that suggest that TF 

gametocytocidal activity is not totally reliant on CYP2D6 metabolism. In comparison 

to PMQ, TF has demonstrated minimal hepatic metabolic turnover in many recent 

studies (Pybus et al., 2013, Pybus et al., 2012b, St Jean et al., 2016). This is in keeping 

with its long half-life.  This would support the argument that in contrast to PMQ, 

metabolism of TF may not be as important a factor in the drug’s activity either against 

gametocytes, as seen in the in-vitro data presented in this thesis or in vivo based on 



 

 

 

 

190 

 

data with P. vivax presented in the recent study of St Jean and his colleagues (St Jean 

et al., 2016). However, as note of caution, TF after CYP2D6 incubation with TF was 

shown to generate H2O2, indicating there may be some overlap with PMQ in the area 

of redox cycling of metabolites under certain conditions.  

Further evidence that TF activity might be independent of CYP2D6 activation was the 

demonstration that TF was capable of causing lysis of erythrocytes from normal and 

G6PD deficient patient in the absence of the metabolising system. This is strongly in 

agreement with very recent study which revealed that TF can trigger eryptosis or 

suicidal erythrocyte death in normal blood samples (Al Mamun Bhuyan et al., 2016). 

Of the new 8-aminoquioline analogues investigated, SL-6-41 showed a clear activity 

against gametocytes with a notable enhancement in the presence if the CYP2D6 

metabolising system. Both TF and SL-6-41 analogue demonstrated a similar pattern 

of inhibition against CYP2D6 (non-specific inhibition of tracer metabolism at 30µM). 

The structural analogues, SL-6-46 and SL-6-56, validate their ability to inhibit the 

tracer metabolism and interact with CYP2D6, however failed to demonstrate clear 

activity against gametocytes (Chapter 6). These data are discussed in the context of 

understanding the mechanism of action of 8-aminoquinolines may provide important 

insights for developing and designing new transmission-reducing antimalarial drugs 

(Chapter 6). 
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7.2 Study limitations and future perspectives:  

Although this work generated data that contributed to the understanding of the 

pharmacodynamic response of P. falciparum gametocytes to a range of compound 

classes and gives new insights into the mechanisms of action and predicted PK-PD 

modelling, there are limitations in the study which need to be considered in the design 

and development of the future experiments. These include: 

I. The thesis provides data that confirms the stage specific effect of different 

drugs against early and late stage gametocytes, but it doesn’t really shed much 

light on the underlying biochemical processes that are being targeted. It should 

be possible to build on these observations by employing some new 

technologies that are currently being validated in the lab. These include 

metabolomics and proteomic studies of different gametocyte stages in the 

presence and absence of drugs and metabolites. A good study example of this 

approach using a chemical proteomic approach with asexual stages parasites 

from our group research has recently been described for the endoperoxides  

(Ismail et al., 2016). 

II. All the experiments carried out in this thesis were performed using one selected 

method using a luciferase-based transgenic parasite line to test for gametocytes 

viability. This limits the studies that can be carried out and excludes studies 

with patients isolates or other strains with interesting drug susceptibility 

phenotypes.   

III. The PK-PD model offers and interesting way to assess the potential impact of 

drugs and drug combinations on transmission blocking. It will be important to 

look at all currently available drugs and drug combinations in use and rank 
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their potential for transmission blocking prior to formal evaluation in patients 

and vector populations.  

IV. It is noted that all the thesis PD findings were obtained from gametocytes in 

vitro using two different defined age ranges stages during the 

gametocytogenesis (early stage II and II and late stage IV and V). Whilst there 

is nothing wrong with this, it would be a more complete analysis with broader 

relevance if these findings could be replicated through to direct measurement 

of transmission-blocking potential. Most important will be the demonstration 

of the ability of these compounds to prevent transmission to the mosquito using 

the standard membrane feeding assay or other currently validated methods that 

measure the functional viability of the P. falciparum mature gametocytes 

(functional viability of the P. falciparum mature male and female stage V 

gametocytes) such as the P. falciparum dual gamete formation assay 

developed by Ruecker and his colleagues (Ruecker et al., 2014). 

V. The need for understanding the mechanism of action and activation of 8-

aminoquinolines appears to be important due to different PD responses of 

PMQ and TF against gametocytes. TF did not need any metabolic activation 

to show activity against malaria blood stages, where PMQ did need this 

activation via CYP450 enzymes, particularly CYP2D6. TF is known to 

demonstrate minimal hepatic metabolic turnover compare to PMQ as 

mentioned in recent studies (Pybus et al., 2013, Pybus et al., 2012b, St Jean et 

al., 2016). Therefore, a comprehensive study to identify the metabolites of this 

drug using recent advanced technologies in liquid chromatography-mass 

spectrometry instrumentation after activation via recombinant CYP2D6 

isoenzyme and HLM need to be conducted. Currently, some initial data from 
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our group indicate the involvement of two parasite enzymes in the mode of 

action of PMQ. This enzyme known as P. falciparum ferredoxin-NADP+ 

reductase (PfFNR) and a novel diflavin reductase (PfCPR). This should be the 

starting point for more detailed mechanism of action studies. 

There has been nearly 70 years of intense study looking at the biochemistry, cell 

biology and pharmacology of drugs active against asexual malaria parasites. Studies 

focussing on gametocytes have been rare. If we wish to generate new drugs that 

specifically target these stages it will be important to develop new ways of 

investigating this challenging life cycle stage of the parasite and invest time and 

resources in understanding their biochemistry.  
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