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Highlights: 

 Fundamental diseases are rare diseases that help elucidate mechanisms of common disorders. 

 Alkaptonuria (AKU), an iconic Mendelian disease, is a prototypic fundamental disease. 

 Studying AKU has identified new disease mechanisms in osteoarthritis including the exposed 

collagen hypothesis. 

 HDMPs, identified in AKU and then OA, constitute a newly discovered mechanism of joint 

destruction. 
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Abstract 

“Fundamental diseases” is a term introduced by the charity Findacure to describe rare genetic disorders 

that are gateways to understanding common conditions and human physiology. The concept that rare 

diseases have important lessons for biomedical science has been recognised by some of the great 

figures in the history of medical research, including Harvey, Bateson and Garrod. Here we describe 

some of the recently discovered lessons from the study of the iconic genetic disease alkaptonuria 

(AKU), which have shed new light on understanding the pathogenesis of osteoarthritis. In AKU, 

ochronotic pigment is deposited in cartilage when collagen fibrils become susceptible to attack by 

homogentisic acid (HGA). When HGA binds to collagen, cartilage matrix becomes stiffened, resulting 

in the aberrant transmission of loading to underlying subchondral bone. Aberrant loading leads to the 

formation of pathophysiological structures including trabecular excrescences and high density 

mineralised protrusions (HDMPs). These structures initially identified in AKU have subsequently been 

found in more common osteoarthritis and appear to play a role in joint destruction in both diseases. 

 

1. Introduction: What are Fundamental Diseases? 



“Fundamental diseases” is a term introduced by the charity Findacure, which promotes research into 

development of new treatments for rare diseases (1). They coined the term “fundamental diseases” to 

capture the concept that rare diseases, especially those that have a genetic cause, are gateways to 

understanding common conditions and human physiology. Findacure regards the usual terminologies 

“rare”, “orphan” and “neglected” as contributing to why this group of diseases has been relatively 

overlooked. However, the concept that rare diseases have important lessons for biomedical science is 

not new. William Harvey the great English physician of the 17th century wrote in a frequently quoted 

letter that “careful investigation of cases of rarer forms of disease” was the best way “to advance the 

proper practice of medicine” (2). Nearly two and a half centuries later, William Bateson, who was a 

major advocate of the work of Mendel and first coined the term genetics, repeated Harvey’s advice in 

his inaugural lecture at the University of Cambridge when he urged young scientists to “Treasure your 

exceptions” (3). Bateson had a major influence on his colleague Archibald Garrod, the father of 

metabolic disease who introduced the term inborn errors of metabolism. Through discussions with 

Bateson, Garrod came to recognise that the ultra-rare disease alkaptonuria (AKU) was a recessive 

disorder and thus became the first human disease shown to follow Mendelian inheritance (4). Garrod 

also was aware of the wider benefit of the study of rare diseases. In his article “The Lessons of Rare 

Maladies,” Garrod paraphrased Harvey, “The study of nature’s experiments is of special value; and 

many lessons which rare maladies can teach could hardly be learned in other ways” (4). 

In this chapter, we describe some of the recently discovered lessons from the study of AKU (OMIM 

203500) which have shed new light on understanding the pathogenesis of osteoarthritis (OA). AKU is 

one of around 8,000 Mendelian diseases and for every patient in the UK with AKU there are around 

100,000 with OA. However by studying rare diseases like AKU which are characterized by severe 

phenotypes with rapidly developing pathologies, it is easier to identify earlier molecular and 

microanatomical changes that are also fundamental to the pathogenesis of more common disorders 

like OA. Pathological changes in OA are less conspicuous because they are not as abundant and 

progress more slowly. An additional benefit of investigating Mendelian diseases is that it is possible to 

trace the succession of pathological changes back to the altered function of a single gene. 

2. Genetics and Pathophysiology of Alkaptonuria 

Half a century after Garrod’s recognition that AKU was a genetic disease with recessive inheritance, La 

Du and colleagues discovered that the disorder was caused by a deficiency of homogentisate 1,2 

dioxygenase (HGD) [E.C.1.13.11.5], an enzyme in the metabolism of tyrosine and phenylalanine (5). 

The single-copy human HGD gene maps to chromosome 3q21–q23, encompassing 14 exons and 

encoding a protein of 445 amino acids (6). AKU arises from homozygous or compound heterozygous 

mutations in the HGD gene, with more than 130 different human mutations now identified (7,8). The 

prevalence of AKU is calculated to be 1:100,000-250,000 in most ethnic groups. However, in several 

hotspots including the Dominican Republic and the north western region of Slovakia, the incidence is 

greater than 1:20,000. Whereas the high incidence in the Dominican Republic appears to be a classical 

founder effect, the high regional incidence in Slovakia is a baffling result of more than 12 distinct 

mutations (6). Increased international interest in AKU research over the past few years through the 

FindAKUre and DevelopAKUre (www.developakure.eu/) (9) consortia has led to the identification of a 

high incidence of the disease in some regions of Jordan (10) and in specific ethnic groups in India (11). 

It is likely that there is a vast reservoir of undiagnosed AKU worldwide, particularly in developing 

countries. 

Loss of HGD enzyme activity increases the circulating concentration and urinary excretion of 

homogentisic acid (HGA), causing urine to darken on exposure to air. Raised HGA levels eventually 

lead to ochronosis, the deposition of polymers of HGA as pigment in connective tissues including 

cartilage, heart valves and sclera (12) (see Fig.1). Patients present with disease in early adult life and 

they are markedly affected in the fourth and fifth decades of life. Over time, patients develop the 

characteristic external features of ochronosis, blue-black pigmentation of the ear cartilage and sclera 

http://www.developakure.eu/


of the eyes. Ear ochronosis can lead to pain in the external ear whilst scleral ochronosis may affect 

vision. Aortic and mitral valve disease is also common and may require valve replacement (13). 

3. Osteoarthropathy in AKU 

Joint ochronosis and the subsequent osteoarthritis appear to be an inevitable consequence of AKU 

causing considerable disability and pain in the peak of adulthood due to premature joint and spine 

disease. Ochronotic disease of the intervertebral disc develops in the third decade of life causing severe 

pain, and progressive kyphoscoliosis. Disc degeneration impacts on spinal and thoracic mobility with 

consequent respiratory problems. Pain due to joint disease is progressive, eventually affecting most 

synovial joints in the body. Multiple joint replacements are almost inevitable. Other musculoskeletal 

manifestations of AKU include tendon and ligament ruptures, osteopenia and fractures (13). 

4. The Initiation of Ochronotic Pigmentation – the Exposed Collagen Hypothesis 

A series of studies on tissue samples from patients with AKU (14,15), an in vitro model of ochronosis 

(16) and a mouse AKU model of the disease (17,18) have revealed that tissues are initially resistant to 

pigmentation but become susceptible following biomechanical and biochemical influences on the 

composition or structure of the extracellular matrix. Although these changes have not yet been fully 

elucidated, early pigmentation has been shown to be associated ultrastructurally with the periodicity of 

collagen (14), somewhat reminiscent of proteoglycan (PG) binding (19). This pattern strongly indicates 

that there are specific sites on collagen where HGA can bind but which are protected in native collagen 

in undamaged extracellular matrix (ECM). PGs and other molecules decorating collagen would repel 

HGA, an acidic molecule with a pKa of 3.57. However, following structural and compositional changes, 

including loss of PGs, the potential binding sites become exposed allowing HGA to bind (see Fig. 2). 

The initial binding appears to be similar to a nucleation event which is followed by rapid deposition of 

HGA as a pigmented polymer (16). Binding of HGA-derived pigment to the collagen fibres makes them 

stiffer and susceptible to more mechanical damage. This leads to further ultrastructural changes in 

collagen, increased exposure of binding sites to HGA and a downward spiral of pigmentation. 

Transmission electron microscopy (TEM) findings are supported by solid state nuclear magnetic 

resonance (ssNMR) studies which revealed loss of order at the nanoscale and loss of PGs (20). 

Ultrastructural and biochemical studies suggest that collagen fibril damage and proteoglycan loss 

precede pigmentation (14,16 and Taylor et al in preparation). Further support for the exposed collagen 

hypothesis comes from observations on pigmentation in an in vitro model of ochronosis in which bone 

cells are grown in the presence of HGA at concentrations similar to those observed in AKU. In these 

cultures pigmentation occurs in days rather than the years it takes to see extensive ochronosis in vivo 

(20). Deposition of ochronotic pigment in vitro is much more rapid than in vivo because during the 

synthesis of matrix by cultured cells, the ECM components are not assembled correctly into the highly 

organised matrix seen in vivo in which fibrous proteins, proteoglycans and glycosaminoglycans are 

arranged. Instead a less well ordered matrix is laid down and thus factors protecting ECM from 

pigmentation in situ are absent and pigmentation is accelerated. 

Anatomically, the initial sites of ochronosis are the tissues which have been subjected to the most 

mechanical loading. In effect HGA behaves like an endogenous marker of repetitive load-induced matrix 

damage. 

In AKU it is possible to follow the process of ECM degeneration which allows pigmentation and 

eventually leads to joint destruction. However the changes in organisation and composition of the ECM 

which precede ochronotic pigmentation are not dependent on the presence of HGA. These are 

independent changes which occur in tissues as a result of ageing, overloading, trauma and 

degeneration. These changes also occur in non-AKU tissues and just as binding sites become available 

for HGA to bind, it is likely that other reactive small molecules will form adducts with collagen fibres 

once the protective molecules have been lost. One example is the formation of advanced glycation end 

products (AGE) formed by the reaction of ribose and other monosaccharides. As for the reaction with 



HGA, AGE modifications affect the biochemistry, the ultrastructure and the mechanical properties of 

the collagen (21). Thus it is likely that the loss of PGs and other molecules and subsequent exposure 

of binding sites on collagen underlies degeneration in non-AKU connective tissues. 

6. Pathogenesis of Joint Destruction in AKU 

Histological studies show that in cartilage, initial pigmentation is focal and located in individual 

chondrocytes and their territorial matrix in calcified cartilage (15,17,18) but then proliferates throughout 

the hyaline cartilage in either granular or homogenous conglomerates (15). Once hyaline cartilage is 

extensively pigmented it becomes stiff and brittle. This is followed by aggressive osteoclastic resorption 

of the subchondral plate (15). Pigmented unmineralised cartilage becomes impacted on the underlying 

trabecular bone and embedded in the marrow space. Fragments of pigmented cartilage also become 

embedded in synovial tissue. Pigmented cartilage is stiffer than normal cartilage, and leads to altered 

load-distribution within joints including aberrant transmission of loading to the underlying bone. The 

subchondral plate is subjected to direct damage as a result of the aberrant loading and to load-induced 

remodelling. Following the resorption of the subchondral bone, the pigmented shell of the remaining 

articular cartilage eventually fails catastrophically (15). 

7. Altered Bone Remodelling – Formation of Trabecular Excrescences 

In addition to focal loss and focal sclerosis of the subchondral plate in ochronotic joints, there is also 

aberrant remodelling of the underlying trabecular bone which leads to further structural changes 

including the formation of trabecular excrescences (22). These are novel microanatomical structures 

that were first identified in AKU where they are abundant but have been found subsequently in 

osteoarthritis but at a lower frequency than in AKU (22). Interestingly adipocytes seem to play a role in 

the formation of trabecular excrescences either by direct contribution to synthesis or by templating the 

formation of bone by osteoblasts.  

8. Formation of High Density Mineralised Protrusions  

Perhaps the most significant lesson from ochronosis to date has been identification of high density 

mineralised protrusions (HDMPs) (23,24). The first detection of these structures in human joints was in 

a 50 year old male with AKU who had hip arthroplasty because of lancinating pain in his hip joint. 

Anatomical examination of his femoral head ex vivo revealed no significant loss of cartilage from the 

articular surface. Subsequent investigation by microCT, MRI and scanning electron microscopy 

revealed regions of ultra-dense material arising from the mineralising front of calcified cartilage and 

protruding into the hyaline cartilage. The HDMPs appeared to arise from fluid extruded through 

microscopic cracks appearing in the subchondral plate which subsequently calcified forming hard, 

abrasive structures embedded in the hyaline cartilage but not reaching the articular surface (see Fig.3). 

Initially it was thought that these structures were disease specific for AKU but subsequent studies have 

revealed that they are present in joints in human OA. They appear to be analogous to mineralised 

structures previously identified in joints of Thoroughbred racehorses (24) and subsequently in Icelandic 

horses (25) and Standardbred race horses (26). The protrusions could play a major role in the 

destruction of cartilage from the subchondral aspect. HDMPs might also be partially responsible for the 

discordance between pain and cartilage loss in OA. Their formation constitutes a newly recognised 

mechanism of joint destruction in AKU and in OA and provides potential targets for drug therapy. 

Furthermore the ability to detect HDMPs in joint tissues in situ by MRI holds out the prospect that these 

recently discovered structures might be a useful imaging biomarker of joint disease progression in AKU 

and OA. 

9. What will be the Future Lessons from AKU and Ochronosis? 

One of the the major breakthroughs in AKU research has been the recognition that nitisinone, a drug 

repurposed from another rare disease, hereditary tyrosinaemia 1 (HT1) (OMIM 276600)  might be an 



effective treatment. Although there is currently no licensed therapy for AKU there is optimism that 

Nitisinone is completely effective at lowering HGA and preventing ochronosis in the AKU mouse (18). 

Nitisinone has also been shown to lower circulating HGA in AKU patients (27). An international clinical 

trial of the efficacy and safety of nitisinone in AKU is currently underway (www.developakure.eu/).  This 

trial includes a comprehensive metabolomic survey of control and treated patients, which could lead to 

the discovery of novel biomarkers not just to monitor the progression and response to therapy of AKU, 

but also has the prospect of identifying markers of cartilage degeneration which might be useful in OA. 

Despite its potential beneficial effects, nitisinone causes a large increase in circulating tyrosine. The 

tyrosinaemia resembles hereditary tyrosinaemia type 3 (OMIM 276710) and can lead to corneal and 

dermal toxicity (28), and potential neurological damage. Nitisinone will be at best a treatment and the 

search for a cure should continue. 

Mutations causing genetic disease can be repaired or replaced at different levels of biological 

organisation. Currently there is much excitement about the potential of CRISPR-Cas9-mediated 

genome editing in Mendelian diseases. If this promise is fulfilled we might be on the brink of a new era 

in treatment of genetic diseases including AKU. 

10. Conclusions 

The biomedical literature contains many interesting examples of how lessons from rare diseases have 

contributed to a better understanding of physiology and pathophysiology. Knowledge gained from rare 

disease research has also made a significant impact on the discovery of new therapeutic agents. In this 

article the concept of fundamental disease has been explored with specific focus on how investigating 

AKU, the first human disorder shown to follow Mendelian inheritance, is contributing to the elucidation 

of disease mechanisms in the common disorder OA. Joint destruction in OA is one of the major causes 

of disability worldwide. More focus on the study of the fundamental disease AKU is a good strategy to 

make progress in OA. 
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Figures 

Fig 1 Ochronosis in tissues of a patient with AKU a). sclera of the eye and b). knee joint. HGA is 

deposited in collagenous tissues forming pigmented polymers. The pigment cause the extracellular 

matrix to become stiff leading to severe pathophysiological changes. 

 

 

 



 

Fig 2. Schematic representation of the exposed collagen hypothesis. Diagrams represent progressive 

disease progression from upper panel to lower panel. Upper panel. Homogentisic acid (HGA) is 

present in the extracellular environment but cannot bind to the undamaged collagen fibrils which are 

decorated with protective molecules including proteoglycans (PGs). Middle panel. Protective 

molecules including PGs are lost from the collagen fibrils as a result of repetitive mechanical loading, 

chemical attack or ageing and degeneration. The exposed collagen fibrils are then susceptible to 

attack from small molecules such as HGA. Lower panel. The initial binding of HGA functions as a 

nucleation event and is followed by further rapid deposition of HGA as a pigmented polymer. Binding 

of HGA-derived pigment to the collagen fibres makes them stiffer and susceptible to more mechanical 

damage. This leads to further ultrastructural changes in collagen, increased exposure to HGA and a 

downward spiral of intense pigmentation and severe ochronosis. 

 

 

 

 

 



Fig 3. A-D Schematic representation of the stages in formation of high density mineralised protrusions 

(HDMPs).A. Diagram of hyaline articular cartilage (orange), calcified cartilage (grey) and underlying 

subchondral and trabecular bone (pink) prior to degeneration. The subchondral plate is intact. B. 

Collagen in cartilage becomes pigmented (represented by shading) and stiffened leading to aberrant 

transmission of mechanical loading (large white arrows). Repetitive loading leads to cracking of the 

subchondral plate (small dark arrows). In addition dysregulated remodeling of underlying bone leads 

to focal sclerosis and lysis. C. Extrusion of mineralizable matrix through the cracks leads to the 

formation of HDMPs (stippled grey). D. HDMPs are sharp abrasive and brittle leading to extensive 

mechanical destruction of the hyaline cartilage (small white arrows). 

 

 

 


