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Abstract Nitryl chloride (ClNO2) measurements from theWeybourne Atmospheric Observatory (WAO) are
reported from March to April 2013 using a quadruple chemical ionization mass spectrometer with the I�

ionization scheme. WAO is a rural coastal site with generally low NOx concentrations, a type of location poorly
studied for ClNO2production. Concentrations of ClNO2 exceeded that of the limit of detection (0.8 ppt) oneach
night of the campaign, as did concentrations of N2O5, which was also measured simultaneously with the
Cambridge Broadband Cavity Enhanced Absorption Spectrometer. A peak concentration of 65 ppt of ClNO2 is
reported here. Vertical profiles of ClNO2 from early- to middle-morning flights in close proximity to WAO are
also reported, showing elevated concentrations at low altitude. The photolysis of observed ClNO2 and a box
model utilizing the Master Chemical Mechanismmodified to include chlorine chemistry was used to calculate
Cl atom concentrations. Thismodel utilized numerous VOCs from the second Tropospheric Organic Chemistry
project in 2004, at the same location and time of year. From this the relative importance of the oxidation of
three groups ofmeasuredVOCs (alkanes, alkenes, and alkynes) byOH radicals, Cl atoms, andO3 is compared. Cl
atom oxidation was deemed generally insignificant at this time and location for total oxidation due to the
much lower concentration of ClNO2 observed, even following the night of greatest ClNO2 production.

1. Introduction

Oxidation reactions in the troposphere govern the fate of primary trace gaseous pollutants and have an
important influence on air quality and climate (Prinn, 2003). Recent studies have shown that Cl atoms from
photolysis of nitryl chloride (ClNO2) may contribute significantly to the total oxidizing capacity (Bannan
et al., 2015; Osthoff et al., 2008; Phillips et al., 2012; Tham et al., 2014). Cl atoms are highly reactive toward
VOCs, and rate coefficients for reactions with alkanes are generally 2 orders of magnitude larger than OH.
Calculations show that Cl atoms from ClNO2 photolysis were an important oxidiser in London during the sum-
mer ClearfLo campaign where amaximum value of 724 ppt of ClNO2 was observed with mean nighttime con-
centration of 84 ppt (Bannan et al., 2015). In that study calculations showed that Cl was responsible for up to
11% of alkane oxidation, 10% of alkyne oxidation, and was generally insignificant in terms of alkene oxida-
tion. Tham et al. (2014) also showed that Cl production from ClNO2 photolysis exceeded that of OH produc-
tion from O1(D) by a factor of 3 in the morning, thus having a significant influence on photochemistry during
this period. Cl-induced oxidation may have a more significant global influence than initially considered, often
enhancing tropospheric ozone production (Sarwar et al., 2012, 2014; Simon et al., 2009).

Heterogeneous reaction of N2O5 and chloride containing aerosol was first shown in laboratory to produce
ClNO2 by Finlayson-Pitts et al. (1989), and recently, field measurements in both continental and polluted
costal sites have reported concentrations ranging between a few ppt and 4 ppb (Bannan et al., 2015;
Kercher et al., 2009; Mielke et al., 2013, 2015, 2011; Osthoff et al., 2008; Phillips et al., 2012; Riedel et al.,
2012; Tham et al., 2014; Thornton et al., 2010; Wang et al., 2016). Global modeling studies of ClNO2 have
now shown the importance of this species with one area of predicted high production being western
Europe, especially in the winter months (Sarwar et al., 2014).
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As well as being a source of reactive Cl atoms, ClNO2 production also alters the lifetime of NOx by reducing
the production of nitric acid in favor of ClNO2 production. ClNO2 acts to recycle the NOx in comparison with
nitric acid production that is regarded as a terminal sink (Finlayson-Pitts et al., 1989). Therefore, it is important
to measure nitric acid in conjunction with N2O5 and ClNO2 so that the efficiency of the production of ClNO2

can be compared. The release of NOx from ClNO2 has a potentially significant effect on tropospheric ozone
production in the early morning (Riedel et al., 2014), with up to 22% of NOx cycling coming from this source
alone (Osthoff et al., 2008). This may have significant implications in regions where local emissions of NOx are
minimal, an example being a remote coastal site.

As well as spatially limited ground-based measurements, with only two reported measurements in Europe
(Bannan et al., 2015; Phillips et al., 2012), there are also very limited airborne data other than Young et al.
(2012). Vertical profiles presented from the Los Angeles Basin show a relatively constant concentration
between approximately 1 and 2 ppb within the nocturnal boundary layer (Young et al., 2012). Cl activation
is less well understood in low NOx conditions (Lawler et al., 2011) such as those that would be expected in
a rural marine environment. Hence, measurements in locations including Weybourne are imperative.

In order to assess the impact that ClNO2 has on tropospheric chemistry around the UK, measurement cam-
paigns were set with the aim of measuring ClNO2, N2O5, and other species influencing their production using
a quadrupole chemical ionization mass spectrometer (CIMS). The first new set of measurements were made
during a 3 week deployment at the Weybourne Atmospheric Observatory (WAO), a remote costal site in
Norfolk, and this was made in conjunction with the Cambridge Broadband Cavity Enhanced Absorption
Spectrometer (BBCEAS) that measures N2O5 (Kennedy et al., 2011). Nitric acid, among other species, was con-
currently measured with CIMS. Aircraft measurements using CIMS on board the BAe-146 research aircraft in
fairly close proximity to the WAO were made also in order to provide insight into the vertical profiles of these
species around this location. As in Bannan et al. (2015) study the effect that Cl from the photolysis of ClNO2

has on the total tropospheric oxidizing capacity at WAO is evaluated.

2. Measurement Locations and Analytical Techniques
2.1. Weybourne Atmospheric Observatory

The Weybourne site is situated on the North Norfolk Coast (52.950490oN, 1.122017°E) around 150 m from the
shoreline of the North Sea and more than 1 km away for the nearest small town of Weybourne. The site
details are described in detail in Penkett et al. (1999). Plumes of polluted air masses from the UK and conti-
nental Europe are common with influence from the Arctic also observed, thus indicating the wide variety
of air masses that can be sampled at this site. Between 14 March 2013 and 4 April 2013, an intensive observa-
tion period was undertaken where the CIMS and BBCEAS ran an intercomparison study at this site. NOy at this
site is measured by the Thermo Fisher Model 42i (NO-NO2-NOx) analyzer and O3 is measured by the Thermo
Fisher Model 49i ozone analyzer.

2.2. BAe-146 Airborne Measurements

Research flight B822 was undertaken on 1 January 2014, taking off from Cranfield Airport. The flight track
took was first to the North Norfolk Coast at an altitude of 3,000 m, and once the coastline was reached low
level runs to 30.5 m were made so that altitude profiles could be obtained. All low level runs were over the
North Sea in close proximity to the East Anglian coastline.

2.3. Chemical Ionization Mass Spectrometry

A chemical ionization mass spectrometer (CIMS) was used to make measurements of ClNO2 and N2O5, at 1 Hz
frequency for all groups of measurements. The Manchester ground CIMS as described by Bannan et al. (2014,
2015) was used for ground-based measurements, and the Manchester flight CIMS as described by Le Breton
et al. (2014) and Jones et al. (2014; 2017) was utilized for airborne measurements on board the Facility for
Airborne Atmospheric Measurements (FAAM) British Aerospace 146 (BAe-146) research aircraft.

Both CIMS instruments were constructed and designed by the Georgia Institute of Technology and have
been described in detail by Nowak et al. (2007), see also the schematic of Figure 1 for the ground CIMS and
Figure 2 for the aircraft CIMS. Briefly, the CIMS detects trace gases in the atmosphere by selectively ionizing
specific molecules and then detecting ions using mass spectrometry (Nowak et al., 2007).
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The airborne measurements were made with the exact methods as described by Le Breton et al. (2014) and
Jones et al. (2014, 2017). The procedures used to make the ground-based measurements with the CIMS are
identical to that reported in Bannan et al. (2015) other than the inlet design. At the Weybourne atmo-
spheric observatory there is a permanent 10 m high glass inlet with a diameter of approximately 30 cm.
The flow rate within this inlet was in excess of 200 standard liters per minute (slm), from which we
subsampled 18 slm by the use of the fast inlet pump illustrated in Figure 1. The glass inlet was chosen
to make these measurements due to the high flow rate, and large volume of air sampled to surface area
ratio in order to minimize possible surface reactions. The 3/8″ PFA connection between the glass inlet
and CIMS was heated to 40°C, roughly 30 cm in length and was regularly changed (approximately
every 2 days).
2.3.1. Calibrations, Sensitivity, and Limit of Detection of the CIMS
The ion molecule chemistry using iodide ions (I�) to detect N2O5 as NO3

� (m/z = 62) has been described
in detail by Le Breton et al. (2014) and was also employed for measurements of N2O5 in this study. ClNO2

was measured at the mass I.ClNO2 (m/z 207.9) as in Osthoff et al. (2008) and Bannan et al. (2015). Studies

such as Wang et al. (2014) and Veres et al. (2015) have noted that measurements of N2O5 at m/z 62 are not

Figure 1. Schematic of the Manchester ground CIMS instrument.

Figure 2. Schematic of the Manchester flight CIMS instrument.
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interference free, with HNO3 and HO2NO2 being identified as key species that could cause interference.
Possible interferences from HNO3 at both atmospherically relevant and very high concentrationsm/z 62 have
been extensively studied in the laboratory, and no evidence for this has been observed. Possible interferences
from PAN or HO2NO2 at m/z 62 have not being specifically checked for this work; however, both absolute
concentrations and time series against the BBCEAS show a good agreement in N2O5 measurements in past
intercomparisons (Le Breton et al., 2014) and this study. Such interferences are therefore not deemed impor-
tant in here.

Final calibration of the CIMS was completed post campaign for both N2O5 and ClNO2, relative to formic acid,
which was calibrated and measured throughout the campaign. This is completed assuming the ratio
between formic acid and ClNO2 sensitivity remains constant throughout. Procedures for calibrations and
determination of backgrounds for N2O5 and ClNO2 are described in detail by Bannan et al. (2015).
Calibration of N2O5 was completed by flowing dry N2 over solid purified N2O5 into the CIMS and a NOx ana-
lyzer (Thermo Fisher, model 42i NO-NO2-NOx Analyzer), with the concentration determined by the stoichio-
metric ratio of NO2:N2O5, in R5. There have been reported instances where NO3 is sensitive on the NOx

analyzer, thus having the potential to influence the concentrations of N2O5 that are reported in this study.
However, numerous intercomparisons with the BBCEAS, including this and the Le Breton et al. (2014) study,
show that this calibration method works well, producing very good agreements in total concentrations
reported, in part due to the high purity of N2O5 that was synthesized. The possible interference of NOy on
the NOx analyzer is therefore not deemed important in terms of our reported concentrations. ClNO2 was pro-
duced by flowing a known concentration of N2O5 in dry N2 through a wetted NaCl scrubber. Conversion of
N2O5 to ClNO2 can be as efficient as 100% on sea salt, but it can also be lower, for example, if ClNO2 were
to convert to Cl2 (Roberts et al., 2008). For NaCl the conversion efficiency has however been as low as 60%
(Hoffman et al., 2003). In this calibration we have followed the accepted methods of Osthoff et al. (2008)
and Kercher et al. (2009) that show a conversion yield of 100% and have assumed this yield in the calibrations
of this study.

For the Weybourne measurement campaign the sensitivity of ClNO2 was determined to be 3.9 counts ppt�1,
and for N2O5 15.9 counts ppt

�1 is reported. The 3σ ClNO2 LOD during the summer Weybourne campaign was
0.8 ppt and the 3σ LOD of N2O5 was 1.5 ppt. For the airborne measurements a sensitivity of 33 and
650 counts ppt�1 is reported with a 3σ LOD of 4 and 2 ppt for ClNO2 and N2O5, respectively. Using the error
in the individual slope of the calibrations results in a total uncertainty of 30% for both N2O5 and ClNO2.

As described in Bannan et al. (2015) no normalization was required for N2O5 or ClNO2 as the I�

(mean = 1.6 × 106 cps, standard deviation = 2.8 × 104 cps) and I.H2O
� (mean = 7.7 × 105 counts per second

(cps), standard deviation = 3.2 × 104 cps) cps were well in excess of what is required for N2O5 and ClNO2 to be
independent to the small changes (<5%) in the reagent ions that were observed throughout the campaign.

The CIMS produced 1 Hz data from sampling and calibration cycles that were averaged to 30 s. Correlation
with meteorological data was completed with 5 min averaged data for the ground-based campaign.
Throughout the Weybourne Campaign automatic hourly mass scans were utilized in order to give a complete
mass spectrum between 0 and 300 amu.

2.4. Filter Sampling

Filter samples were run at a 24 h time resolution using a high-volume sampler at a flow rate of 1 m3 per min-
ute. Conductively coupled plasma optical emission spectrometry (ICP-OES) was used to measure the total
chloride deposited on the filter over the 24 h period.

2.5. Master Chemical Mechanism Model Runs

A zero-dimensional Facsimile box model was employed to calculate Cl atom concentrations during the cam-
paign so that the rate of oxidation of VOCs by Cl atoms can be compared with oxidation by modeled OH
(which compared well to OH observed during second Tropospheric ORganic CHemistry (TORCH 2)) and mea-
sured ozone. The model was constrained to pressure, temperature, ClNO2, N2O5, O3, SO2, NO, NO2, and HNO3

from the field measurement made in March 2013 combined with VOC data and adapted photolysis rates
measured from TORCH 2 (April–May 2004) at the same location (WAO). The TORCH 2 VOC data were repre-
sentative of the time of year. It was also from an intense measurement campaign and gave measurements
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of 27 different C2–C10 nonmethane hydrocarbons and C2–C4 oxygenated volatile organic compounds. This
allows for a more comprehensive estimate of the oxidation capacity of Cl, OH, and O3. The photolysis rates of
key species were first calculated under clear-sky conditions and then compared with those measured in
TORCH 2 to obtain a scaling factor for March 2013J(ClNO2) was calculated using the Tropospheric
Ultraviolet and Visible Radiation Model, version 4.1, neglecting any upwelling radiation, and then scaled in
order to match the measured J(NO2) as has been used in previous studies such as Stone et al. (2010).
Measurements of downwelling actinic flux as a function of wavelength across the full actinic range were
made using a 2-π solid angle detection spectral radiometer (Edwards & Monks, 2003). The photolysis
frequency for NO2 was calculated from these measurements using laboratory data for NO2 absorption
cross sections, and photodissociation quantum yields to generate O(3P) atoms.

The box model used to calculate Cl atom concentrations during the campaign contained a subset of the
Master Chemical Mechanism v3.2 (Jenkin et al., 2012), including the Cl atom oxidation of seven measured
alkanes (C1–C8). As previously reported in Bannan et al. (2015) the Master Chemical Mechanism (MCM) does
not contain a mechanism for the Cl atom initiated oxidation of alkenes (C2–C5) or alkynes (acetylene).
Reactions of Cl atoms with these measured species were added to MCM v3.2 mechanism using rate coeffi-
cients taken from the National Institute of Standards and Technology (NIST) database (Manion et al., 2014).
For H-atom abstraction channels the reported yield was used to generate HCl, but for other channels the
reaction was treated as a simple loss for Cl atoms.

The model does not contain an inorganic mechanism for chlorine, so similar chemistry reported by Riedel
et al. (2012) and utilized in the box model of Bannan et al. (2015) was included (R1–R9).

ClNO2 þ hv→Clþ NO2 (R1)

HClþ OH→Clþ H2O (R2)

Figure 3. Time series of ClNO2, N2O5, and HNO3 from the Manchester ground CIMS, N2O5 from the BBCEAS for the com-
plete Weybourne campaign. NOy, O3, and temperature are also shown.
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Clþ O3→ClOþ O2 (R3)

ClOþ NO2→ClONO2 (R4)

ClOþ HO2→HOClþ O2 (R5)

ClOþ NO→Clþ NO2 (R6)

ClONO2 þ hv→Clþ NO3 (R7)

ClONO2 þ hv→ClOþ NO2 (R8)

HOClþ hv→Clþ OH (R9)

Twomodels were developed: one constrained to the measured ClNO2 data with additional chlorine reactions
and a chemically identical model without any Cl sources (hence, Cl atom concentrations were zero). This way
a comparison was made between the rate of oxidation of VOCs by Cl atoms with the rate of oxidation by
modeled OH and measured ozone.

The only source of Cl atoms considered in the model was the initial photolysis of ClNO2, and hence, HCl and
other gas-phase inorganic Cl species in the reaction mechanism described previously are only generated by

Figure 4. Average diurnal cycle of N2O5, ClNO2, NOy, and HNO3 for the complete Weybourne campaign.
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the model with an assumed initial concentration of zero. Chlorine atom concentrations were then calculated
by the box model using a Facsimile integrator (Curtis & Sweetenham, 1987) and constrained with measured
concentrations of VOCs, pressure, temperature, ClNO2, N2O5, O3, SO2, NO, NO2 and HNO3, and photolysis fre-
quencies with a time step of 900 s. Additional details regarding the box model methodology can be found in
Whalley et al. (2010). For all unconstrained modeled intermediates a first-order loss rate (k) was included. This
loss rate varied as a function of the average measured boundary layer height, h, from TORCH 2 (k = Vd/h),
where Vd represents a deposition velocity that was taken to be equal to 1 cm s�1 for all of the model-
generated species. The average measured boundary layer height was varied within the model from 300 m
at night increasing to 1,300 m in the morning as the boundary layer collapses and 1,800 m in the afternoon.
The boundary layer was measured by vertical wind profile data from the Universities’ Facility for Atmospheric
Measurement’s 1290 Megahertz (MHz) Degreane Mobile Wind Profiler.

3. Results and Discussion
3.1. Ground ClNO2 Measurements

The complete time series of ClNO2, N2O5, and HNO3 as measured by CIMS are shown in Figure 3 for the
Weybourne Campaign. ClNO2 and N2O5 exceeded the limit of detection on every night of the measurement
campaign during nighttime hours. A mean nighttime (sunset-sunrise) ClNO2 concentration of 10.5 ppt was
observed with a maximum peak of 65 ppt. The peak concentration of N2O5 is similar to that of ClNO2 at
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Figure 7. Rate of removal of alkanes, alkenes, and alkynes by reaction with the oxidants OH (modeled), O3 (measured, cam-
paign average), and Cl atoms calculated for 15March 2013, when the calculated Cl atom concentration was at its maximum.
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68.5 ppt, on the same night as the maximum ClNO2; but the mean nighttime peak is lower at 6.7 ppt. A time
series of measured chloride from filter sampling at a 24 h time resolution is presented in Figure S1.

Measured results are substantially lower than that of other reported U.K. measurements of ClNO2 in London
(Bannan et al., 2015), where a mean nighttime ClNO2 concentration of 84 ppt was observed, together with a
median value of 34 ppt and a maximum peak of 724 ppt. This seems to have been mainly caused by signifi-
cantly higher NO3 production rate (7.8 × 10�6 molecules cm�3 s�1) in London than those in Weybourne
(3.5 × 10�6 molecules cm�3 s�1) because of the higher NOx (~13 ppb) levels in London compared with that
(~3 ppb) in Weybourne. A campaign high N2O5 concentration in Weybourne was ~67 ppt, as measured by
the CIMS, also significantly lower than that reported for London. Intercomparison between the CIMS and
BBCEAS for N2O5 measurements is presented in Figure 3. The R2 of the relation of the CIMS to BBCEAS
N2O5 measurements is 0.8 ([N2O5] CIMS = 1.06 × [N2O5] BBCEAS + 0.81 pptv), which can be compared with
the airborne measurements of Le Breton et al. (2014) showing the reliability of the measurements made.

Comparable to the measurements in Bannan et al. (2014), a very obvious diurnal profile was observed
in the ClNO2 throughout that is representative of this species (Kercher et al., 2009; Mielke et al., 2011;
Osthoff et al., 2008; Thornton et al., 2010). Concentrations of ClNO2 above the limit of detection were
measured, on average, until 11 A.M. and then built up following sunset. ClNO2 concentrations peak, on
average, at 15.1 ppt and drop below the LOD at approximately midday (Figure 4). As in the Bannan
et al. (2015) study, photolysis rates and lifetimes have been calculated for each night of the measure-
ment campaign. During the London campaign an average lifetime of 2.6 h, with respect to photolysis,
was calculated. In Weybourne a very similar lifetime of 2.5 h was calculated, despite the seasonal dif-
ference. Both lifetimes with respect to photolysis are in range of the values presented by Ganske
et al., (1992) (0.73–31 h, depending on solar zenith angle) and Ghosh et al. (2011). The average diurnal
profile of N2O5 is similar to that of ClNO2. The exception to this trend is seen in the nitric acid average

diurnal trend where a daytime maximum is seen. This is as would
have been expected based on nitric acid production pathways.

However, there are exceptions to the diurnal trend of ClNO2 where
morning peaks were observed, such as on 17 March (Figure 5). This
is analogous to that reported in Bannan et al. (2015) where concentra-
tions rose up to 140 ppt following sunrise. In Weybourne the daytime
peak increased to a comparatively lower concentration of 15 ppt but
was still significant relative to the concentrations seen at this mea-
surement site. At the time of increased ClNO2 during the morning of
17 March there was a very slight increase in N2O5, approximately
2 ppt, which was not observed in the BBCEAS time series, potentially
suggesting a sensitivity change in the CIMS at this time. However,
other masses such as HCN (m/z 154) and nitric acid (m/z 189.9) that
were simultaneously measured with the CIMS did not show this

Table 1
Relative Importance of Cl, OH, and O3 to the Oxidation of Three Groups of VOCs From Both London Average and Maximum
(Bannan et al., 2015) and the Weybourne Average and Maximum

London (max) London average Weybourne (max) Weybourne average

Alkane Cl% 14.46 3.51 1.85 0.98
Alkane OH% 85.54 96.49 98.15 99.02
Alkane O3% - - - -
Alkene Cl% 2.64 0.62 0.69 0.35
Alkene OH% 76.33 77.92 77.98 78.25
Alkene O3% 21.03 21.46 21.32 21.39
Alkyne Cl% 24.95 6.96 4.99 2.58
Alkyne OH% 74.04 91.97 94.28 96.67
Alkyne O3% 1.01 1.25 0.73 0.75

Note. VOC concentrations data used for the calculations for London are included as well as for Weybourne, using mea-
sured VOC data.
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trend, and we are therefore unsure of the source of discrepancy
between BBCEAS and CIMS.

The timing of the enhancement seen in ClNO2 correlates well with the
largest NO concentration observed (up to ~2 ppb) during the mea-
surement period (Figure 5). NO, an indicator of anthropogenic activ-
ity, increased significantly at this time indicating that a change in air
mass that was being measured at the site was one with a possible
urban origin. Enhancement of NOx species from an urban environ-
ment could enhance N2O5 production and when mixed with chloride
containing aerosol produce relativity large concentrations of ClNO2 at
this site.

Given that the average lifetime of ClNO2 was calculated to be
2.5 h (i.e., a loss rate of 3.57 × 10�4 s�1), should the loss rate
be the same as measured at the surface, a concentration of
309 ppt would have been required to see such a peak at
9:20 A.M., over 4 h after sunrise on 17 March. There are other
examples, including 23 and 25 March as well as at the final day
of sampling on 4 April where there is a small enhancement fol-
lowing sunrise but none as defined at 17 March. Of these exam-

ples it is only 17 March where a correlation with enhancing NO is observed. It is therefore possible
that the early-morning enhancements could also be due to mixing down of ClNO2 from an elevated
layer, resulting in a peak in mixing ratios as surface level.

On all days where a ClNO2 concentration enhancement was observed following sunrise, the wind direction
originated from the ocean possibly indicating that production over the ocean, especially on the shore where
waves are creating the particulate chloride aerosol, is more efficient. However, there are also days where the
wind direction is from the sea and no daytime enhancement is observed. The height of the marine boundary
layer is a parameter that was not measured throughout the campaign, but the varying height of this may
have had an effect on these daytime increased in ClNO2 concentrations.

3.2. Implications for VOC Oxidation at WAO

As in the Bannan et al. (2015) study the total rate of removal of alkanes, alkenes, and alkynes by reaction with
the oxidants OH, O3, or Cl atoms at a given time during the campaign was calculated using

�d alkanes½ �=dt ¼ X½ �∑
i
kXþalkane;i alkane; i½ � (1)

�d alkenes½ �=dt ¼ X½ �∑
i
kXþalkene;i alkene; i½ � (2)
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Figure 9. The FAAM BAe146 flight track on 8 January 2014 around East Anglia and
its surrounding coastline. ClNO2 mixing ratios are color coded from 0 ppt to
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�d alkynes½ �=dt ¼ X½ �∑
i
kXþalkyne;i alkyne; i½ � (3)

where [X] is the concentration of modeled OH, measured O3, or the
calculated one of Cl atoms using the MCM at a given time in the cam-
paign, and [alkane,i], [alkene,i], and [alkyne,i] represent the correspond-
ing measured speciated concentration of each alkane, alkene, and
alkyne, and kX is the individual bimolecular rate coefficient for the
reaction of X with each species at the measured pressure and tem-
perature. Rate coefficients were taken from those used in the MCM
(Jenkin et al., 1997; Saunders et al., 2003) or from the NIST database
(Manion et al., 2014). Two model runs were performed using this
method, one with the maximum Cl atom production following the
greatest night of ClNO2 production (65 ppt) and the other using the

average diurnal variation of ClNO2. A baseline model was also run without the Cl chemistry being
included in order to show the effect of the inclusion of Cl chemistry has to the RO2 production and
consequently O3 production following a night of ClNO2 production.

For both runs the campaign averaged diurnal concentrations for O3 at the time of the ClNO2 measurements
were integrated with modeled OH and VOCs measurements from TORCH 2 to calculate the rates of oxidation.
The measured O3 concentration from this study, modeled OH concentration, and the average and maximum
Cl atom concentration calculated using the MCM from ClNO2 photolysis are shown in Figure 6.

Figure 6 shows that, as would have been expected and in agreement with other studies of this type, calcu-
lated Cl atom concentrations rise rapidly after sunrise (5 A.M. local time). For 15 March 2013, concentrations
reached 6 × 103 atoms cm3, which is about 5 times lower than the maximum calculated for London and just
under 1,000 times lower than the modeled peak concentration of OH. As in Bannan et al. (2015) study
although ClNO2 concentrations in this study are very low by noon, Cl atoms are recycled via reactions
(R1–R9) and do not reach zero again until later in the afternoon.

The chemical turnover rates for the oxidation of the sum of measured alkanes, alkenes, and alkynes by
reaction with OH, O3, or Cl atoms, as calculated by equations (1)–(3), are shown in Figure 7 for 15
March, when Cl atoms peaked. By summing the oxidation rate across this 24 h period shown in
Figure 7 (maximum Cl concentration), the total percent removed by reaction with the three oxidants
for each type of VOC was calculated (Table 1). The relative importance of Cl from ClNO2 in terms of total
oxidation at this site is negligible and much less important in comparison with the London study. This is
also reflected in the amount of extra RO2, which at maximum is only 9% higher at 7:30 A.M., with only
very little increase in HO2 (7%) and OH (5%) concentrations, even following the night of greatest
ClNO2 production (Figure 8). This shows that ClNO2 is generally insignificant in terms of the oxidation
capacity at this site and time.

3.3. Airborne ClNO2 Measurements

ClNO2 concentrations and the flight altitude for the FAAM BAe-146 B822 flight around the East Anglian
coast are illustrated in Figure 9. Figure 10 shows the flight track, altitude of measurement, and ClNO2,
N2O5, and HCl concentrations throughout the complete flight. There are no NOx data available for this
flight. The time series shows that a peak concentration of 95 ppt of ClNO2 was observed, with
Figure 11 showing the vertical profile of these species. Figures 9–11 show much elevated ClNO2 concen-
trations close to the sea surface, reaching very low concentrations above 500 m in altitude. The altitude
profile presented here is similar to that of Young et al. (2012), in that the highest concentrations were
observed at the surface with a reduction in concentration seen after approximately 600 m in height.
Altitude profiles of ClNO2 in Young et al. (2012) were only reported between 0–1000 m and did not
include measurements of N2O5 or other species.

The time of measurements for B822 should be noted. Concentrations of ClNO2 up to 95 ppt were measured
above the sea surface up tomidday, suggesting that nighttime concentrations of this species, in a region with
a large amount of ship activity and surrounding land emissions, and thus high NOx emissions, would have
been significant. Daytime peaks have already been observed in this region as illustrated in Figure 5. Very
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Figure 11. Altitude profile of ClNO2 from measurements around East Anglia
and its surrounding coastline.
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small concentrations of N2O5 were observed during the flight, with only very small spikes being observed
throughout, suggesting a shorter lifetime in conjunction with possibly a lower concentration of N2O5 during
the flight.

There are two major peaks in ClNO2 observed in this flight, Figure 10, both of which are taken in a very
similar location and altitude as the return flight track mirrored the outbound (Figure 10). The first peak is
observed at 11:44:30 A.M. where a peak concentration of 95 ppt was measured, and on the second leg at
11:57:30 A.M., 91 ppt was observed. The loss rate of ClNO2 calculated, assuming the same parcel of air
was sampled, resulted in a lifetime of 4.8 h, about 50% slower than that of the average calculated from
the Weybourne campaign.

4. Conclusions

Concentrations of up to approximately 70 ppt of ClNO2 have beenmeasured simultaneously with N2O5 at the
Weybourne Atmospheric Observatory between 14March 2013 and 4 April 2013. An intercomparison with the
Cambridge BBCEAS instrument for N2O5 measurements against the CIMS atm/z 62 reveals very good agree-
ment in both trends and reported concentrations from independent calibrations, again revealing the reliabil-
ity of this method. The diurnal profile of both measured ClNO2 and N2O5 are similar to previous
measurements (e.g., Osthoff et al., 2008), but early-morning elevations of ClNO2 are observed in this study.
This daytime elevation is consistent with a change in air mass as depicted by a sharp increase in NO at the
same time and likely not daytime production of this species. Vertical profiles of ClNO2 have also been
reported here on board the Bae-146 research aircraft, showing much elevated concentrations at the surface
of the East Anglian Coast.
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