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Highlights:  

 Plasma concentrations of DBP, albumin, 25(OH)D & 1,25(OH)2D exhibited significant diurnal 

rhythms (DR) 

 DRs were similar in British, Gambian and Chinese men and women aged 60 – 75 years 

 The free 1,25(OH)2D DR was attenuated compared to that of total 1,25(OH)2D 

 The magnitude of the free 25(OH)D DR was not different to that of total 25(OH)D 
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Abstract  

Vitamin D binding protein (DBP) concentration is known to influence the availability and bioactivity 

of vitamin D metabolites but its diurnal rhythm (DR), its inter-relationships with the DRs of vitamin D 

metabolites and its influence on free vitamin D metabolite concentrations are not well described.   

The DRs of plasma total 25(OH)D, total 1,25(OH)2D, DBP, albumin and calculated free 25(OH)D and 

free 1,25(OH)2D were measured in men and women aged 60-75 years and resident in the UK (n 30), 

Gambia (n 31) and China (n 30) with differences in lifestyle, dietary intake and vitamin D status.  Blood 

samples were collected every 4 hours for 24 hours and DRs statistically analysed with Fourier 

regression.  

Gambians had significantly higher plasma concentrations of vitamin D metabolites and lower albumin 

concentration compared to the British and Chinese. Significant DRs were observed for all analytes and 

calculated free vitamin D metabolites (P<0.01).  The pattern of DRs was similar between countries. The 

magnitude of the DRs of free 1,25(OH)2D was attenuated compared to that of total 1,25(OH)2D whereas 

it was not different between total and free 25(OH)D.  Relationships between the DRs were generally 

weak. There was no phase shift between 1,25(OH)2D and DBP with the strongest cross correlation at 0 

hour time lag (r=0.15, P=<0.001). In comparison, 25(OH)D correlated less well with DBP (1 hour time 

lag, r=0.07, P=0.12).   

These data demonstrate a relationship between the DRs of 1,25(OH)2D and DBP, possibly to maintain 

free 1,25(OH)2D concentrations. In contrast, the DRs of total and free 25(OH)D appeared to be less 

influenced by DBP, suggesting that DBP has comparatively less effect on 25(OH)D concentration and 

25(OH)D availability. This work highlights the importance of standardisation in timing of sample 

collection particularly for the assessment of plasma protein concentrations. 

 

Abbreviations: DBP, vitamin D binding protein; DR, diurnal rhythm; CCV%, coefficient of cyclic 

variation % 

 

Keywords: 25(OH)D, 1,25(OH)2D, Fourier regression, bioavailability, Africa, diurnal,  

 

1. Introduction 

Vitamin D is important in calcium, phosphate and bone metabolism and may be important in other 

aspects of human health.  The total plasma concentration of the pro-hormone 25-hydroxyvitamin D 

(25(OH)D) is measured to determine vitamin D status. The majority of 25(OH)D in the circulation is 
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bound to vitamin D binding protein (DBP) or albumin with only around 1% circulating in its free form. 

On the basis of the free hormone hypothesis it is this free fraction that has access to the majority of 

tissues, thus the concentration of free 25(OH)D may provide a marker of 25(OH)D availability to cells 

and tissues [1, 2].  Some tissues, including the kidney, internalise DBP-bound 25(OH)D via the plasma 

membrane transporter protein, megalin. The relative importance of bound and free 25(OH)D for 

different organ systems remains an area of active research. A stronger association between serum 

calcium, PTH, bone and vascular outcomes and inflammation with free 25(OH)D concentration are 

reported by some but not all studies (reviewed in [3, 4]). However, many of these studies were 

confounded by the use of particular assays [5].  In addition, 1,25(OH)2D, rather than 25(OH)D, is the 

biologically active vitamin D molecule that activates the vitamin D receptor (VDR) in cells.  Like 

25(OH)D, the majority of 1,25(OH)2D in the circulation is bound to DBP and some tissues internalise 

DBP-bound 1,25(OH)2D. Thus free 1,25(OH)2D concentration may provide better information on the 

systemic biological activity of 1,25(OH)2D than its total plasma concentration [6, 7]. 

There is pronounced 24-hour variation or diurnal rhythm (DR) in the plasma concentrations of calcium 

and phosphate regulating hormones, in particular PTH which is the main regulator of systemic renal 

1,25(OH)2D production [8, 9]. Reports of a DR in the plasma concentration of 1,25(OH)2D and other 

vitamin D metabolites are less consistent. This may be partly due to the potential influence of a 

simultaneous DR of DBP. The DRs of vitamin D metabolites and DBP and their inter-relationships may 

impact on the concentration and proportion of free or bound vitamin D metabolites available to tissues 

for internalisation.  The influence of this variation will depend on the extent to which cells or tissues 

rely on the megalin-mediated or megalin–independent mechanisms for vitamin D uptake and 

availability to activate the VDR.  Data on the DRs of 25(OH)D, 1,25(OH)2D and DBP are required to 

determine variations in the free fractions to understand vitamin D metabolism, particularly availability 

for extra-renal metabolism, and the potential importance of the timing of sample collections in research 

studies of clinical populations.   

Here, combining novel data on 25(OH)D and DBP with data from a previous study of 1,25(OH)2D [9], 

we describe the DRs of plasma 25(OH)D, 1,25(OH)2D, DBP, albumin and free vitamin D metabolites.  

The data were derived from studies in three different ethnic groups that allowed exploration of the 

consistency of DRs in groups despite genetic and environmental differences that influence  DBP 

subtype [10] and vitamin D status.   

2. Methods 

Descriptions of participants, study design and statistical analyses have been published previously in full 

[9] and are described in summary below. 

2.1 Study location 
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The studies were conducted at three research centres: (1) MRC Human Nutrition Research, Cambridge 

UK, (2) MRC Keneba, The Gambia and (3) Shenyang Medical College, Shenyang, PR China. The 

characteristics of each population were described previously [9, 11, 12]. The British and Chinese studies 

were performed in winter when there is no cutaneous synthesis of vitamin D.  The Gambia has two 

seasons, a ‘wet’ or ‘rainy’ season between June and October characterised by cloud and heavy rain and 

a ‘dry’ season characterised by largely clear skies and little, if any rainfall. This study was performed 

in the dry season during which there is expected to be little variation in UVB supply or potential UVB 

exposure.  The study in each country was approved by their respective Ethics committee [9] and all 

participants provided written, informed consent.  All research was performed in accordance with the 

Declaration of Helsinki.  

2.2 Study participants 

Participants were apparently healthy, free-living men and women aged 60 to 75 years recruited from 

the local community. Exclusion criteria were any known pathological disorder that may alter calcium 

or bone metabolism [11], haemoglobin < 10 g/dL and plasma creatinine > 115 μmol/L [9]. 

2.3 Study design 

This was a secondary analysis of samples and data collected in a study designed to investigate 

differences in the DRs of PTH and bone metabolism markers [9].  The sample size of 15 individuals 

per sex from the original study was based on the ability to detect a 6% difference between the peak and 

nadir of PTH concentration (significance level of 5% and power of 80%) [9].  Participants were studied 

over a 24 hour period and encouraged, as far as possible, to maintain normal activities and eating and 

sleeping routines. Sample collections were performed at standardised times at the participants’ homes 

and/or respective research centres as per the arrangements for each country [9].  Fasting blood samples 

were collected from all participants in the early morning.  Subsequent blood samples were collected in 

the non-fasting state every 4 hours. Participants were assigned to one of two groups whose blood 

collections were staggered by two hours and the data combined to derive a  group level DR (see section 

2.5 Data analysis) [9]. 

2.4 Biochemical analysis 

Plasma samples for biochemical analysis were transported from The Gambia and China on dry ice and, 

as with the UK samples, were stored at -80°C until analysis. Plasma total 25(OH)D was measured by 

Liaison (Diasorin Ltd, Dartford, UK), total 1,25(OH)2D by radioimmunoassay (IDS Ltd, Tyne and 

Wear, UK), as described previously [9] and DBP by polyclonal antibody ELISA (Immunodiagnostik 

AG (Oxford Biosystems, Oxford, UK)) and albumin with an automated colorimetric method (Kone Lab 

20i clinical chemistry, Thermo Scientific, Vantaa, Finland).  All samples were measured in duplicate 

and analysis repeated if the CV was more than 10%. Assay performance was measured using kit and 
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in-house controls and performance was in acceptable limits. External quality assurance was obtained 

through DEQAS (www.deqas.org) for plasma 1,25(OH)2D and 25(OH)D and traceable to NIST 

standards for 25(OH)D. This Diasorin Liaison assay in our lab has been calibrated against standardized 

LC-MS/MS reference measurement procedures developed by NIST and Ghent University. The 

relationship between the two methods is described by the equation: Diasorin Liaison = 1.023*LC-

MS/MS  - 2.52 nmol/l (r2=0.8751, n=186). 

 

2.5 Data analysis 

Data are presented as the mean (SD) or geometric mean (95% CI). For consistency with DR model 

parameters which are logged for analysis, baseline 25(OH)D, 1,25(OH)2D, DBP and albumin are 

presented as geometric means. Free concentrations of 25(OH)D and 1,25(OH)2D were calculated using 

published mathematical models [13] that include concentrations of total 25(OH)D, total 1,25(OH)2D, 

DBP and albumin. Group differences in baseline characteristics and early-morning fasted blood samples 

were tested by ANOVA with Scheffé post-hoc test or χ2 test. We made no adjustment for multiple 

testing.  

Fourier regression was used to model diurnal variation as previously described [9, 14].  All 

concentration data were logged before analysis and data were modelled by country.  The Fourier model 

uses two pairs of sine and cosine terms as independent predictors of the rhythm and a random effect to 

allow for individual intercepts and within-individual correlation of data from the multiple data points 

per individual.  The significance of the rhythm was determined by testing the null hypothesis that all 

Fourier coefficients were zero. Different methods are available to measure and compare the amplitudes 

of cyclic rhythms [15]. We used a method that allows the assessment and comparison of the magnitude 

of the amplitude on a common scale.  It was expressed as a mean (95% CI) coefficient of cyclic variation 

(CCV%), calculated as the square root of half the sum of the squared coefficients of the Fourier terms 

[15]. Differences in CCV% were compared between countries and between bound and free metabolites 

using the z-test.  Country differences in 24-hour means were tested by including country in a regression 

model of the plasma concentration of the analyte of interest against the sine and cosine parameters.  

Cross-correlation analysis on a per country basis was used to examine the relationship between variables 

and the strongest correlation, r, and lag time are presented.  Statistical analysis and modelling was 

performed in Stata 13 SE (Stata Corp, TX, USA) and z-tests in Microsoft Excel. 

3. Results 

Participant characteristics and measured fasting, baseline biochemistry are shown in Table 1.  
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Values are mean (SD) or geometric mean (95%). Group differences were tested by one-way ANOVA with Scheffé 

post-hoc tests or Chi-squared test. Free 25(OH)D and free 1,25(OH)2D are calculated values. Superscripts indicate 

differences between countries (B-Britain; G-Gambia; C-China); * P < 0.05, ** P < 0.001 

 

Gambians had significantly higher total 25(OH)D and total 1,25(OH)2D plasma concentrations and 

significantly lower albumin concentrations compared to the British and Chinese.  DBP was slightly 

lower in Gambians but was only significant when compared with the British (Gambia vs China, 

P=0.16).  Albumin concentration was lowest in the Gambians and highest in the Chinese and differences 

were significant between all countries. Free 25(OH)D and free 1,25(OH)2D were higher in the 

Gambians compared to the other groups and there were no differences between the British and Chinese.  

Results of the Fourier regression are shown in Figure 1 and Table 2.  The 24-hour mean concentrations 

derived from the DR analysis were generally similar to the fasting, baseline concentrations (within 0-

15%) with vitamin D metabolite concentrations consistently higher in Gambians compared to the 

British and Chinese (Table 2and Figure 1). In contrast to the fasting values, 24-hour mean 

concentrations of total 25(OH)D, DBP and albumin were higher in the British compared to the Chinese 

(Tables 1, 2).  

 

A significant DR was present for all analytes in each country, with the exception of free 25(OH)D in 

the Chinese.  Total 25(OH)D, total 1,25(OH)2D, DBP and albumin had lower values during the night 

and higher values during the day in all groups. The DR of free 1,25(OH)2D was attenuated compared 

to that of total 1,25(OH)2D as evidenced by the significantly lower CCV% (all P<0.01).  In contrast, 

the CCV%s between total 25(OH)D and free 25(OH)D were not different for any country (P>0.05). 

There were no country differences in the magnitude of the rhythm (assessed by CCV%) for DBP, 

albumin or free 25(OH)D and there were no consistent country differences between the other 

metabolites.  

In all countries, the strongest and most consistent cross correlation was between predicted values for 

DBP and albumin (all countries 0 hour time lag, r 0.94 – 0.98, P <0.0001 and DBP and total 1,25(OH)2D 

(all countries 0 hour time lag, all r 0.95 P <0.0001).   The cross correlation between total 25(OH)D and 

DBP was also highly significant (r 0.84 – 0.92; all P <0.0001) but the lag times were less consistent, 

varying between 0 and 3 hours, compared to cross correlation between DBP and total 1,25(OH)2D. We 

examined the cross correlation between PTH and total and free 1,25(OH)2D in each country (all P< 

0.0001) and found similar patterns for both total and free 1,25(OH)2D. 

 

4. Discussion 
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We have shown significant diurnal rhythms (DR) in total 25(OH)D, total 1,25(OH)2D, DBP, albumin 

and the free concentrations of both 25(OH)D and 1,25(OH)2D.  In this study, although the magnitude 

of the free 1,25(OH)2D DR was significant, it was attenuated compared to total 1,25(OH)2D as reflected 

by its smaller magnitude (CCV%).  This suggests that total and free 1,25(OH)2D concentrations respond 

to variation in DBP concentration and that the free 1,25(OH)2D concentration is maintained within a 

relatively narrow range through known feed-back mechanisms such as upregulation of CYP24A1, 

which catabolizes 1,25(OH)2D.  This is in accordance with the strict metabolic control of the circulating 

concentration of 1,25(OH)2D and the rapid feedback mechanism upon its activation of the VDR. There 

are reports of a DR of 1,25(OH)2D in some [9, 16] but not all human studies [17-19].  These differences 

may be due to the methods of analysis of the rhythm, sample size or the study population [16].  Only 

one study has reported a significant DR in the plasma concentrations of DBP, a study that showed no 

DRs in the calculated free-1,25(OH)2D index [16]. A single study has demonstrated a DR of 25(OH)D 

in humans [20]. 

Evidence of the potential influence of the DBP concentration on plasma of 1,25(OH)2D also comes 

from other human and animal studies. A significant positive association between plasma DBP and 

1,25(OH)2D concentration has been reported in a cohorts in Denmark [21] and Sweden [4] and in 

pregnancy an increase in DBP is associated with an increase in 1,25(OH)2D [22]. In DBP-null mice, 

circulating total 1,25(OH)2D was only 1% of that in the wild-type but cellular uptake and biological 

activity were not compromised [23] potentially because free 1,25(OH)2D is regulated and thus was 

maintained within narrow ranges.   

In contrast, there was no difference in the CCV% between total 25(OH)D and free 25(OH)D and the 

DR pattern of both total and free 25(OH)D poorly reflected that of the DRs of DBP and albumin. This 

indicates that free and total 25(OH)D do not respond as strongly as those of 1,25(OH)2D to changes in 

the plasma concentrations of its binding proteins, possibly because the concentration of free 25(OH)D 

is more dependent on 25(OH)D concentration than DBP concentration [24]. This is also consistent with 

the long plasma half-life of 25(OH)D (2 – 3 weeks) [25] and the limited metabolic control of the plasma 

concentration compared to 1,25(OH)2D that has a much shorter plasma half-life (~3 d) [26].  This 

observation may be surprising given that, of all the vitamin D metabolites, 25(OH)D has the highest 

affinity for DBP.   

The relationship between vitamin D metabolites and DBP and their free fractions may influence vitamin 

D availability, their half-lives and biological activity. Vitamin D metabolites are thought to be 

transported into cells predominantly by two mechanisms (1) DBP interaction and internalisation with 

the plasma membrane transporter protein, megalin, and (2) diffusion of the free metabolite across the 

cell membrane. In the kidney the megalin route is thought to be predominant but uptake of 25(OH)D 

into other cell types (e.g. monocytes [27]) is thought to be dependent on the diffusion of the free fraction. 
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These and many other cell types express CYP27B1 and can produce 1,25(OH)2D for intra- or paracrine 

effects.  Our understanding of the relative importance of these two mechanisms and their regulation in 

other tissue and cell types is in its infancy.   

The absence of a pronounced DR of free 1,25(OH)2D is of interest in the context of the rhythmicity of 

PTH and earlier reported significant cross correlations between PTH and total 1,25(OH)2D [9].  These 

data may imply that PTH regulates the production of total 1,25(OH)2D but may not influence its free 

fraction.  The latter may be predominantly controlled by feedback mechanisms upon VDR activation 

and/or the rate of 1,25(OH)2D internalisation and catabolism. There may be differences in the DRs of 

PTH and bone turnover markers in people with pathological conditions such as osteoporosis [28, 29] 

and diabetes [20] but this has so far not been shown for 1,25(OH)2D.  Plasma concentrations of 

1,25(OH)2D reflect the renal rather than the extra-renal production of 1,25(OH)2D.  Other cell types 

which express the CYP27B1 and CYP24A1 may produce and catabolize 1,25(OH)2D intracellularly 

and thus may have an independent DR. Further investigation is needed to understand whether systemic 

or intracellular rhythmicity are involved in the regulation of the circadian rhythm of bone remodelling 

and other cell types, such as adipose-derived stem cells [30, 31]. 

DBP and albumin exhibited significant DRs similar to those reported in previous studies [16, 32, 33] 

and their patterns were similar for all three groups. Since these two molecules have very different half-

lives (DBP ~ 2-3 d [34]; albumin ~ 20 d [35]) it is surprising that the DRs are similar and suggests that 

the DR in these plasma proteins may be related less to metabolism and more to other factors affecting 

their concentration.  For example, circadian rhythms in glomerular filtration rate may affect and 

influence the daily rhythm of higher molecular weight proteins such as albumin and DBP [33].  Also 

hydration status, posture and nocturnal haemodilution (whereby blood volume is greater at night than 

in the daytime [16]) may alter the volume of distribution, or transfer and the distribution between 

interstitial and intravascular fluid compartments. Such a change in dilution volume and tissue 

distribution could produce variability in plasma DBP and albumin concentration leading to variability 

in total 1,25(OH)2D concentration and maintenance of free 1,25(OH)2D.  

Fasting baseline and 24-hour mean concentrations of total 25(OH)D and total 1,25(OH)2D were higher 

in Gambian compared to British and Chinese participants. Elevated 1,25(OH)2D in Gambians is well 

documented and is probably related to their low dietary calcium intake and high PTH concentration as 

well as potentially the supply of 25(OH)D [9, 11, 36].  Lower plasma albumin in black populations has 

been observed previously in some studies in the US [37] and in previous comparative studies in The 

Gambia [38].  The lower albumin concentrations in Gambians may be due to genetic factors, higher 

levels of inflammation or lower dietary protein intake.  Slightly higher plasma albumin was reported in 

Asians in the US [39] but the reasons for the higher albumin in our Chinese group are unclear. Whist 

albumin circulates at much higher concentrations than DBP it’s contribution as a carrier of vitamin D 
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metabolites is relatively minor due to a much lower binding affinity.  Consequently, variation in 

calculated free 25(OH)D or 1,25(OH)2D concentration attributable to albumin is much lower than that 

of 25(OH)D, 1,25(OH)2D or DBP concentration.  For DBP concentrations, large differences between 

populations were influenced by the assay used for quantification [40] and data generated using other 

assays and mass spectrometric-based methods suggest less variation in DBP concentration due to race 

or genotype [5]. The timing of the peak and nadir of the DRs of DBP were similar between groups 

despite differences in lifestyle, diet and vitamin D status [9]. This suggests that these DRs are influenced 

by factors in common between countries, including those discussed above, and potentially an 

endogenous circadian component. Known environmental and genetic differences between groups did 

not appear to have an influence on the observation that the DR magnitudes were different between free 

1,25(OH)2D and total 1,25(OH)2D.  

This exploratory study has some limitations. DRs were calculated based on a limited number of data 

points and although, as much as practicable, participants were asked to follow their normal routines, by 

the nature of these types of studies this was not entirely possible [9].  By their nature, invasive studies 

of this type are relatively small and this study was no exception. The study results for each group may 

therefore not be fully representative of their respective populations. The use of calculated free 25(OH)D 

and 1,25(OH)2D for assessing free concentrations of vitamin D metabolites may only be suitable for 

use in healthy populations. Where vitamin D metabolite or DBP concentrations are significantly altered 

due to physiological or pathophysiological conditions they may be less applicable [6, 25, 41]. We used 

a calculation that includes concentrations of 25(OH)D, 1,25(OH)2D, DBP and albumin but did not 

consider DBP genotype. DBP genotype, by affecting binding affinity for 25(OH)D, is suggested to 

affect the free 25(OH)D concentration [13]. However, other studies have shown that there are no 

differences in the affinity of 25(OH)D for DBP (summarised in [24]).  Adjustment for DBP genotype 

would likely make only minor differences to the calculated free metabolite concentrations [13] and no 

difference to patterns within an individual.  

In conclusion, we have shown significant DRs in vitamin D metabolite and DBP concentrations. These 

data show the importance of standardisation of the timing of sample collection in studies. The 

significant correlation between 1,25(OH)2D and DBP and lower CCV% for free 1,25(OH)2D compared 

to total 1,25(OH)2D suggests that 1,25(OH)2D may respond to changes in DBP possibly to maintain 

free 1,25(OH)2D concentrations. In contrast, the DRs of total and free 25(OH)D appeared to be less 

influenced by DBP, suggesting that DBP has comparatively less effect on 25(OH)D concentration.  
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Figure 1. Vitamin D metabolites and their binding proteins exhibit significant diurnal rhythms that are attenuated 

for calculated free 1,25(OH)2D.  Diurnal rhythms were assessed in British (orange circles), Gambian (blue 

diamonds) and Chinese (green triangles) older people. Lines represent the fitted values following Fourier 

regression and the error bars 2 * the upper and lower standard error. 
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Table 1. Baseline participant characteristics and fasting, early-morning biochemistry 

 Britain (n 30) Gambia (n 31) China (n 30) 

Age, y 65.5 (3.9) 66.1 (4.3) 64.4 (3.5) 

Weight, kg 79.1 (73.3, 85.4)G**, C** 56.1 (53.1, 59.2)B**, C* 62.9 (60.1, 65.9)B**, C* 

Height, m 1.72 (0.11)G**, C* 1.62 (0.10)B** 1.64 (0.08)B* 

BMI, kg/m2 26.9 (25.0, 28.9)G**, C* 21.4 (10.5, 22.4)B** 23.0 (22.1, 24.0)B* 

Sex, female/male 14/16 17/14 14/16 

25(OH)D, nmol/L 37 (30,44)G** 59 (52, 65)B**, C** 32 (27, 38)G** 

1,25(OH)2D, pmol/L 124 (110, 140)G** 186 (172, 201)B**,C** 123 (110, 137)G** 

DBP, µmol/L 8.0 (7.5, 8.5)[n 29], G* 7.2 (6.9, 7.6)B* 7.8 (7.4, 8.2) 

Albumin, µmol/L 571 (557, 585)G**, C** 495 (481, 510)B**, C** 660 (646, 674)G**, C** 

Free 25(OH), pmol/L 11.1 (9.1, 13.4) [n 29],G** 19.5 (17.5, 21.8)B**, C** 9.7 (8.2, 11.4)G** 

Free 1,25(OH)2D, pmol/L 0.85 (0.76, 0.95)[n 29],G** 1.42 (1.31, 1.54)B**, C** 0.83 (0.74, 0.93)G** 
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Table 2. Diurnal rhythm parameters 

 Britain (n 30) Gambia (n 31) China (n 30) 

25(OH)D 

24 h mean, nmol/L 37 (31, 43)G**, C* 62 (56, 69)B**, C** 29 (25, 35)B*, G** 

Rhythm significance, P 0.002 <0.0001 <0.0001 

CCV% 2.2 (1.1, 3.4)C* 3.0 (2.1, 3.8)C* 5.7 (3.5, 7.9)G*, B* 

1,25(OH)2D 

24 h mean, pmol/L 118 (105, 132)G** 183 (169, 198)B**, C** 116 (106, 127)G** 

Rhythm significance, P <0.0001 <0.0001 0.001 

%CCV 7.1 (6.3, 8.0)G**, C** 4.4 (3.5, 5.4)B** 3.8 (2.6, 4.9)B** 

DBP 

24 hour mean, µmol/L 7.8 (7.5, 8.2)G*, C* 7.2 (7.0, 7.5)B*, C* 7.4 (7.0, 7.7)B*, G* 

Rhythm significance, P <0.0001 0.001 <0.0001 

%CCV 4.5 (3.3, 5.6) 3.1 (1.9, 4.3) 4.8 (3.6, 6.0) 

Albumin 

24 hour mean, µmol/L 553 (544, 562)G*, C* 482 (472, 492)B*, C* 602 (589, 616)B*, G* 

Rhythm significance, P <0.0001 <0.001 <0.0001 

%CCV 4.1 (3.4, 4.7) 4.0 (3.4, 4.5) 4.7 (3.2, 6.2) 

Free 25(OH)D 

24 h mean, pmol/L 11.2 (9.7, 13.0)G** 20.8 (18.9, 22.9)B**, C** 9.4 (7.9, 11.3)G** 

Rhythm significance, P 0.008 0.005 0.1 

%CCV 2.6 (1.2, 4.1) 3.0 (1.7, 4.4) 3.1 (0.5, 5.7) 

Free 1,25(OH)2D 

24 h mean, pmol/L 0.83 (0.75, 0.92)G** 1.41 (1.30, 1.52)B**, C** 0.84 (0.76, 0.93)G** 

Rhythm significance, P <0.0001 0.01 0.04 

%CCV 3.2 (2.2, 4.2)G*,C* 1.4 (0.3, 2.6)B* 1.3 (0.1, 2.5)C* 

 

Values are geometric mean (95% CI). The CCV% (coefficient of cyclic variation) is the standardized magnitude 

of the rhythm. Free 25(OH)D and free 1,25(OH)2D parameters are based on are calculated values. Superscripts 

indicate differences between countries (B-Britain; G-Gambia; C-China); * P<0.05, ** P<0.001 


