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Abstract 

Iron plays a crucial role in biochemistry and is an essential micronutrient for plants and humans 

alike. Although plentiful in the Earth’s crust it is not usually found in a form readily accessible 

for plants to use. They must therefore sense and interact with their environment, and have 

evolved two different molecular strategies to take up iron in the root. Once inside, iron is 

complexed with chelators and distributed to sink tissues where it is used predominantly in the 

production of enzyme cofactors or components of electron transport chains. The processes of 

iron uptake, distribution and metabolism are overseen by tight regulatory mechanisms, at the 

transcriptional and post-transcriptional level, to avoid iron concentrations building to toxic 

excess. Iron is also loaded into seeds, where it is stored in vacuoles or in ferritin. This is 

important for human nutrition as seeds form the edible parts of many crop species. As such, 

increasing iron in seeds and other tissues is a major goal for biofortification efforts by both 

traditional breeding and biotechnological approaches.  

 

1 Introduction 

The redox properties of iron make it an essential element for practically all life. Iron is a 

component of cofactors that carry out electron transfer functions, or facilitate chemical 

transitions such as hydroxylations, radical-mediated rearrangements and (de)hydration 

reactions. Iron cofactors also function in oxygen transport, oxygen or iron sensing, or 

regulation of protein stability. The chloroplasts are particularly rich in iron-sulphur (FeS) 

proteins such as Photosystem I, ferredoxins and a range of metabolic enzymes. Mitochondria 

are another hotspot for iron enzymes, such as respiratory complexes containing multiple FeS 

clusters (complex I and II), a mix of FeS and haem (complex III) or haem and copper (complex 

IV). The peroxisomes and the endosplasmic reticulum contain haem proteins such as 

peroxidases and cytochrome P450s, whereas mono- and di-iron enzymes are found in all cell 

compartments.  
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Iron limitation severely affects plant growth and iron is often a component of agricultural 

fertilisers used to improve crop yields. Although iron is abundant in the Earth’s crust, it is 

usually present in an oxidised form that is not easily accessible for life. Plants, as primary 

producers, are the gateway for iron to enter the food chain. Iron-deficiency anaemia is a major 

human health issue, estimated by the World Health Organization to affect over 30% of the 

world’s population (http://www.who.int/nutrition/topics/ida/en/). On the other hand, excess iron 

is toxic to cells. Therefore, organisms have evolved intricate mechanisms to take up, 

metabolise and store iron, and regulate these processes to maintain homeostasis. Figure 1 

gives an overview of the main principles of iron homeostasis in plants. Research over the last 

decade has identified many key players that deal specifically with iron. These comprise high-

affinity uptake transporters and biosynthetic enzymes of organic chelators, transporters for 

distributing iron to other tissues and storage, enzymes for iron cofactor biosynthesis, plus a 

regulatory network of transcription factors. Often the finer details of these processes paint a 

complex picture that can be impenetrable for those new to the field. The aim of this review is 

to provide an overview of iron homeostasis and how this knowledge can be used to improve 

human nutrition. We intend it to be an entry-point for those with limited prior knowledge, and 

hope it may prove useful for teaching purposes. Readers wishing for more detail are referred 

to the comprehensive review by Kobayashi and Nishizawa  (2012),1 or to recent reviews 

covering specific aspects such as iron uptake and regulation,2 -omics studies applied to Fe 

deficiency,3 iron mobilisation from soil,4 iron cofactor biosynthesis5 and biofortification.6 

 

 

2 Iron uptake  

Iron uptake in plants has classically been divided into Strategy I and Strategy II, also known 

as reducing and chelating strategies, respectively.7 The main difference between both 

strategies is the oxidation state of iron when taken up by the plant:  ferrous Fe2+ for Strategy I 

and ferric Fe3+ for Strategy II. Iron in the rhizosphere is mainly present as Fe3+ oxyhydrates of 

low solubility. Tomato and Arabidopsis have served as models for Strategy I (Figure 2a), in 

which Fe3+ is reduced by Ferric Reduction Oxidase 2 (FRO2) at the plasma membrane8 before 

transport across the membrane by Iron-Regulated Transporter 1 (IRT1).9 In addition, plasma-

membrane proton pumps such as AHA2 help to acidify the rhizosphere and increase Fe3+ 

solubility.10 Barley, rice and maize in the grass family (Poaceae) represent Strategy II plants 

(Figure 2b), which secrete phytosiderophores, defined as plant-derived small organic 

molecules with a high affinity for iron.11 Deoxymugineic acid is the most abundant 

phytosiderophore and is exported by TOM1, the Transporter Of Mugineic acid family 
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phytosiderophores, in rice and barley.12 The Fe3+-phytosiderophore chelates are imported by 

the oligopeptide transporter YS1, first characterised in maize,13 and later in rice (YSL15).14  

However, the dichotomy of iron uptake into Strategy I and Strategy II plants is perhaps too 

simplistic when considering recent discoveries in the iron-deficiency response. Strategy I 

plants were found to export an array of metabolites including organic acids, phenolics, 

flavonoids and flavins.15 Phenolics were initially hypothesised to help with the solubilisation 

and reutilisation of apoplastic iron in red clover.16 This feature was not considered part of the 

uptake mechanism until coumarin-derived phenolics were observed in Arabidopsis under high 

pH conditions.17–19 Coumarins are synthesised using precursors from the phenylpropanoid 

pathway. The first coumarin in the pathway, scopoletin, is synthesised by the enzyme feruloyl 

CoA ortho-hydroxylase 1 (F6’H1).17,19,20 While there is some uncertainty about the next 

intermediate(s) and the precise biosynthetic steps, the active end product is most likely 

fraxetin.21 An important chemical feature of fraxetin for iron chelation and mobilization is the  

catechol moiety, two adjacent hydroxyl groups on a benzene ring (Figure 2a).19,21 The 

secretion of coumarin chelators is dependent on specific β-glucosidases to remove a 

glucoside group, such as BGLU42,22 and the ATP-binding cassette transporter 

PDR9/ABCG37.17,18 Other plant species such as alfalfa (Medicago) and sugar beet secrete 

flavins instead of coumarins, which also function to facilitate the reduction of ferric iron.17,23 In 

addition, secretion of the polyamine compound putrescine appears to improve mobilisation of 

iron inside the plant cell wall.24 Taken together, the results imply that Strategy I plants produce 

and secrete chelators to the rhizosphere, a characteristic of Strategy II plants. Having said 

that, mutant studies showed that to take up iron mobilised by coumarins, FRO2 and IRT1 are 

required, thus IRT1 remains the main route of iron uptake in Arabidopsis.25 Moreover, rice and 

barley have a functional homologue of IRT1, which mediates the uptake of Fe2+ under low 

oxygen,26,27 thus blurring the distinction between Strategy I and II even further. Two different 

uptake strategies for Fe2+ and Fe3+ in the same organism are widespread in Nature. For 

example, in animals, Fe2+ is transported by the Divalent Metal Transporter DMT1 and Fe3+ is 

captured by transferrin by the same cells.28 Bacteria take up both Fe2+ and Fe3+-chelates by 

specific transporters.29  

 

 

3 Iron distribution and storage 

 

Most iron enters the plant via the root and then needs to be transported to the sink tissues 

where it is required for iron-dependent enzymes. IRT1 is predominantly localised to the 

outward facing membrane of epidermal cells30 suggesting that is where iron first enters the 

symplastic pathway in which cells are connected by plasmodesmata. It is likely that efflux 
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transporters localise to the inner membrane domain of root epidermal cells, but these have 

not yet been identfied. 31 NRAMP1 is suggested to cooperate with IRT1 in iron uptake, possible 

as a low-affinity uptake system.32 Nutrients can also travel through the apoplastic space 

formed by the cell walls of epidermis and cortex cells to reach the endodermis. Here iron 

meets a barrier in the form of the Casparian strip, a layer of waterproof lignin, which forces all 

iron to pass into the symplast. The endodermis can therefore be considered a checkpoint for 

the translocation of iron into the plant.33 The amount of suberisation of the endodermis 

changes in response to environmental factors, with iron-deficient plants showing a marked 

decrease in suburisation that results in an increase in the permeability of the endodermis, 

allowing more iron to enter the vasculature.34  

Due to its toxicity and low solubility iron must be complexed to chelators to be translocated 

effectively without causing damaging redox reactions. In the symplast iron is thought to be 

transported in the form of Fe2+-nicotianamine (NA) complexes. NA is a non-protein amino acid 

produced from S-adenosyl methionine by nicotianamine synthase (NAS), encoded by a small 

gene family in most plant species.35–37 NA is a precursor of mugineic acid (see Section 2) and 

it also chelates Zn2+ and other divalent cations. Once iron has passed the endodermis, it can 

be loaded into the xylem for transport to the shoot. This is carried out by the pericycle, a layer 

of cells inside the endodermis. The xylem comprises dead cells that form a conduit, therefore 

iron needs to be exported from the symplastic space into the apoplast, possibly by YSL238 and 

ferroportin,39 although biochemical evidence from transport studies is currently lacking. The 

dominant form of iron in the xylem is Fe3+-citrate40 and consequently Fe2+ must be oxidised to 

Fe3+. In addition, citrate efflux is crucial for iron translocation, and this is mediated by the efflux 

transporter FRD3 in Arabidopsis41 and its orthologue FRDL1 in rice.42 

An important sink tissue for iron is the leaves, where it is needed for photosynthesis. Here iron 

re-enters the symplast and is reduced to Fe2+, mainly by the action of FRO proteins, and is 

again found as Fe2+-NA. A large proportion of iron is used in the plastids and mitochondria 

and iron transporters specific for each type of organelle have been identified, see recent 

reviews.43,44 Iron is remobilised from leaf tissues and reaches other sink organs through the 

phloem. In Arabidopsis the oligopeptide transporter family protein OPT3 is involved in this 

process and opt3 mutants have more iron trapped in leaves with less translocated elsewhere 

such as the seed.45,46  

Though present in many tissues, the terminal destination of iron is often considered to be the 

seed, where iron stores are important during germination before the seedling has developed 

a root and takes up nutrients from the soil. YSL transporters are involved in seed loading,47 

and there is evidence that iron can be delivered to pea embryos as a Fe3+-citrate/malate 

complex.48  
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Two major storage mechanisms for iron are proposed: sequestration into vacuoles and into 

ferritin. The Vacuolar Iron Transporter VIT1 was first identified in Arabidopsis as an orthologue 

of the yeast iron transporter CCC1. In vit1 mutants, the iron content of embryos is similar to 

wild type, but the iron no longer accumulates in the vacuoles of the root endodermis and 

veins.49,50 The action of the efflux transporters NRAMP3 and NRAMP4 releases iron into the 

cytosol during germination.51 A suppressor screen of nramp3/nramp4 mutants identified 

mutations in VIT1 that rescue their sensitivity to low iron.52 Genes from the VIT family are also 

known to be important for iron localisation in rice grains and Brassica seeds.53,54  

Ferritins are important iron storage proteins present across the biological kingdoms. Twenty-

four subunits form a shell able to store up to a maximum of 4500 Fe3+ ions, although purified 

plant ferritin, for example from legume seeds, tends to contain approximately 2500 ions.55 The 

proportion of total iron stored in ferritin in seeds varies among species with approximately 60% 

in peas, but less than 5% in Arabidopsis seeds.56 In plants, ferritin is predominantly located in 

the plastids. In cereal grains such as wheat and rice, most iron is present in vacuoles in the 

aleurone layer which is often removed during grain processing.57 The way in which iron is 

stored in seeds can affect its bioavailability when consumed, which is of great importance to 

biofortification studies (see Section 6). 

 

4 Biosynthesis of iron co-factors  

The most common forms of iron cofactors are haem, FeS clusters and di-iron centres.5,58 

Haem contains one iron atom inserted into an organic tetrapyrrole ring and is non-covalently 

or covalently (in the case of c-type cytochromes) bound to the protein. In FeS clusters, 2 or 4 

iron atoms are bridged by acid-labile sulphides and linked to at least one cysteine sulphur of 

the protein. The ligands of the iron atom are critical in modifying the precise catalytic properties 

of an enzyme. For example, all-cysteine FeS clusters occupy the lower range of redox 

potentials (approximately -300 to +100 mV) and haems the higher range (+50 to +400 mV).51 

Di-iron centres, also known as Fe-O-Fe centres, and mono-iron centres are generally bound 

by histidine, glutamate and aspartate residues and function in hydroxylation and oxygenation 

reactions, respectively. 

Because of the toxic nature of free iron, cofactor biosynthesis is a highly controlled process. 

The biosynthesis pathways of haem and FeS clusters are well characterised (Figure 3), but 

little is known about the delivery of iron to these pathways or to mono- and di-iron enzymes. 

Plants contain relatively little haem in comparison to animals, about 0.5 - 1% of total iron.59 

Haem biosynthesis takes place in the plastids, as a branch of chlorophyll biosynthesis. Both 

molecules have a tetrapyrrole ring but a different metal (Fe and Mg, respectively) and specific 

side groups. The starting point for the biosynthesis of tetrapyrrole is glutamate in the form of 
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glutamyl-tRNAGLU, and the pathway involves nine enzymes essentially conserved with 

bacteria, before insertion of iron by ferrochelatase (FC).60 Land plants express at least two 

isoforms of FC. Mutant studies in Arabidopsis have shown that FC1 provides haem at all 

growth stages, whereas FC2 boosts haem levels in chloroplasts during photosynthesis.59,61 

Haem is presumably transported from its site of biosynthesis to other cell compartments, but 

the transporters have not been characterised in plants. In fungi and metazoa, mitochondria 

are the site of haem biosynthesis, and it has been proposed that plant mitochondria harbour 

enzyme isoforms for the last two steps, although firm evidence is lacking.  

For the biosynthesis of FeS clusters, both plastids and mitochondria harbour complete 

assembly pathways (see reviews5,62). Cysteine serves as the source of acid-labile sulphur, 

which is transferred from the active site of the desulphurase enzyme to a scaffold protein 

where sulphide is combined with iron. The precise mechanistic details of the assembly process 

remain to be established, but it does require reducing equivalents provided by ferredoxin 

and/or NADPH.63,64 The plastid and mitochondrial cysteine desulphurases belong to different 

pathways, called SUF (SUlFur mobilization) and ISC (Iron Sulfur Cluster), respectively. The 

genes are mostly conserved with those in bacteria. The plastid pathway consists of 6 SUF 

proteins, all except SUFA essential for plant viability. SUFS and SUFE form the desulphurase 

activity65 and the SUFB2CD complex is the FeS cluster scaffold.66 SUFA and 3 partially 

redundant NFU proteins are involved in carrying FeS clusters from the scaffold to recipient 

FeS proteins. In the mitochondrial ISC pathway, a similar division in desulphurase activity 

(NFS1 and ISD11), scaffold (ISU) and carrier proteins (NFU4 and NFU5) can be made. FeS 

clusters cannot cross membranes - except as part of folded proteins through the twin-arginine 

pathway - and a separate set of at least 7 proteins for Cytosolic Iron-sulphur protein Assembly 

(CIA) are required for the activity of FeS enzymes in the cytosol and nucleus.67 The CIA 

pathway is functionally connected to the mitochondria, which are thought to provide sulphur 

exported by an ATP Binding Cassette transporter.68,69 Interestingly, forward and reverse 

genetics studies have highlighted the importance of Arabidopsis CIA proteins in plant 

development, because of the role of FeS enzymes in plant hormone biosynthesis, DNA 

demethylation and DNA repair.70–74 

 

5 Regulation of iron homeostasis  

An efficient regulatory system that senses the iron status of the plant, and adjusts homeostasis 

accordingly, is crucial for ensuring enough iron reaches the tissues where it is needed without 

accumulating to toxic levels. Plants adapt their root morphology to iron-limiting conditions by 

increasing the density of root hairs and the number of lateral roots. The greater surface area 
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extends contact between the epidermis and the rhizosphere, and the lateral roots help to 

explore fresh soil.75 These macroscopic changes have been studied mostly from the 

perspective of plant development.76 The entry of iron into the symplast is controlled at the 

endodermis (see Section 3). The precise molecular mechanisms that link iron availability to 

changes in root morphology or permeability are not yet known. 

Over the past 15 years, great progress has been made in identifying a large number of 

transcriptional regulators of iron homeostasis. However, this has led to a somewhat 

bewildering network of basic Helix-Loop-Helix (bHLH) transcription factors that regulate the 

iron deficiency response (see Table 1, Figure 4). The first transcription factor that was cloned 

was FER from tomato,77 followed shortly by its functional orthologue in Arabidopsis called 

FER-like Iron deficiency-induced Transcription factor (FIT). FIT is expressed in roots only and 

required for up-regulating iron uptake genes such as FRO2 and IRT1.78–80 FIT cannot act alone 

but must form a heterodimer with one of four other bHLH proteins, bHLH38, bHLH39, 

bHLH100 and bHLH101, to bind to the promoters of IRT1 and FRO2, as was elegantly shown 

in yeast.81,82 Mutant studies in Arabidopsis have shown that the four partner proteins are 

partially redundant,82 but they may fine-tune the response by activating different downstream 

genes.83  

A cell-type specific microarray study of iron-deficient Arabidopsis roots identified another 

bHLH protein POPEYE (PYE) which is part of a regulatory network independent of FIT.84 PYE 

interacts with two bHLH transcription factors, ILR3 (bHLH105) and bHLH115, and is itself 

regulated by dimers of ILR3 and bHLH104, or ILR3 and bHLH34.85,86 Other families of 

transcription factors have also been implicated in the iron deficiency response. MYB10 and 

MYB72 of the MYB family regulate expression of NAS487 and the production of coumarins.22 

Recently, a member of the WRKY family, WRKY46, was demonstrated to regulate expression 

of NAS2 and the VIT-Like 1 gene.88 

There is less information about the transcriptional networks governing iron uptake in 

monocotyledonous plants. Studies have focused on finding transcription factors that bind to 

the iron-responsive motifs in the promoter of Iron Deficiency Specific clone 2 (IDS2).89 This 

strategy led to the discovery of transcription factors IDEF1 and IDEF2 in rice,90,91 which control 

the expression of phytosiderophore biosynthesis and YSL2.92 Part of the transcriptional 

regulatory networks found in Arabidopsis, including members of the bHLH transcription family, 

are conserved in rice. IRO2 in rice is a close homologue of bHLH39 and positively regulates 

phytosiderophore biosynthesis and YSL15.91 IRO3 is the rice orthologue of PYE and 

negatively controls the transcript levels of IRO2 and NAS.93 

The iron-deficiency response results in an increase in iron uptake which could inadvertently 

lead to overload if iron becomes suddenly available in the environment, such as after rainfall. 

Several post-transcriptional mechanisms have been observed that rapidly stop iron uptake. 
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For example, IRT1 is continuously recycled from the plasma membrane via ubiquination and 

internalisation, and an E3 ligase responsible for its ubiquination has been identified.94 In 

addition to swiftly degrading the uptake machinery, it is also necessary to stop the 

transcriptional response. FIT has been reported to be actively turned over in response to 

ethylene and nitric oxide,83,95,96 but no E3 ligase responsible for FIT degradation has been 

found to date.  Ultimately, all these mechanisms must relate to the iron status in the cell, 

assuming the existence of Fe-binding regulators such as Fur in bacteria, Aft1 in yeast, or IRPs 

and FBXL5 in mammals. Recent studies in plants suggest that a small family of hemerythrin 

E3 ligases, including BRUTUS (BTS) in Arabidopsis97 and HRZ in rice,98 may sense iron and 

act as negative regulators of the iron deficiency response.  The three hemerythrin domains in 

the N-terminus of BTSand HRZ have conserved His-xxx-Glu motifs likely to bind a di-iron 

centre. The C-terminal domain has 45% homology to plant and mammalian E3 ligases that 

target transcription factors for ubiquitination and subsequent turnover. Interestingly, BTS was 

found to interact with selected bHLH proteins,97 but many questions remain. Such as how the 

hemerythrin domains sense intracellular Fe levels, why there are three hemerythrin domains, 

and how iron binding modulates the E3 ligase activity of the C-terminal domain. 

 

6 Biofortification of crops with iron 

As our understanding of the mechanisms of iron uptake, transport and homeostasis increase, 

more applications of this knowledge are being explored to biofortify crops. The five most 

widely-consumed crops in the developing world are maize, rice, wheat, pulses and cassava 

(http://www.fao.org/in-action/inpho/crop-compendium/en/), and as such biofortification efforts 

have focussed on these species. As mentioned previously, plants exhibit tight homeostatic 

control to prevent accumulation of iron where it is not needed, and this may limit iron 

redistribution to edible tissues such as seeds. Any successful biofortification strategy must 

bypass these mechanisms without causing physiological damage to the plant. Progress is 

being made through two main strategies: traditional breeding and modern technology 

including transgenics (Table 2). 

Traditional breeding methods have existed for thousands of years and given rise to many 

useful crop varieties. However, breeders have concentrated primarily on increasing yield, and 

as a consequence the levels of iron have been diluted by increased starch.99 One current drive 

in crop research is to restore old traits in modern varieties to make them more nutritious. For 

example, the NAM-B1 transcription factor has been lost from modern wheat but is present in 

older varieties where it advances senescence and leads to higher iron, zinc and protein 

content in the grain,100 a discovery which has since informed breeding programmes.101 In a 

separate approach, taking advantage of natural variation has made it possible to breed for 
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higher iron levels in crops such as beans and pearl millet.102,103 In pilot studies, in part funded 

by HarvestPlus (http://www.harvestplus.org), high iron varieties of these crops have been 

used successfully to improve iron status in iron-deficient and anaemic women and children in 

Rwanda and India.103–105 

Alternative approaches for iron biofortification use transgenic and cisgenic technologies. The 

advantage of these practices over traditional breeding is that it is possible to target genes of 

interest directly, altering expression of endogenous genes (cisgenics) or introducing genetic 

material from other species (transgenics). Such approaches have successfully biofortified rice 

by constitutively expressing endogenous NAS genes,106 and cassava by expressing 

Arabidopsis VIT1 in storage roots.107 Iron storage in both ferritin and vacuoles have been 

targeted by cisgenic strategies to biofortify wheat grain.108,109 Increasing VIT expression in the 

wheat endosperm redirects iron to this part of the grain (Figure 5). A concern about using 

transgenics in biofortification is that, mainly due to low substrate specificity of the IRT1 

transporter, levels of toxic metals such as cadmium may increase alongside iron.110 This has 

so far not been a problem, for example overexpression of barley Yellow Stripe 1 (HvYS1) led 

specifically to increases in iron.111  

One limitation is that only relatively few crop varieties can be transformed using current 

techniques, and so traits developed in “transformable” varieties must be introduced into elite 

varieties by potentially time-consuming crosses. Modern genetic technologies such as 

TILLING and CRISPR/Cas are not classed as transgenic, and could prove valuable in 

producing iron biofortified crops. TILLING populations have been produced in species such 

as wheat, which allow researchers to knock out the function of specific genes.112 As well as 

being a useful tool for studying gene function, this also unlocks the potential to suppress the 

function of negative regulators of iron accumulation in specific tissues.  

A further obstacle when biofortifying cereals is that iron and other minerals are often poorly 

bioavailable. The main reason for this is the presence of anti-nutrient compounds such as 

phytate (myo-inositol-1,2,3,4,5,6-hexakisphosphate) and polyphenols which chelate minerals 

and prevent them being absorbed by the gut.113 Phytate is a phosphate storage compound 

abundant in the aleurone and seed coat of cereal grains. Several strategies have been 

explored to decrease the level of phytate in crops, such as breeding programs aided by 

identification of relevant Quantitative Trait Loci (QTL)114 and  expression of phytase genes.115 

Recently published research into phosphate transport showed that rice mutants lacking the 

SPDT phosphate transporter had a sharp decrease in grain phytate levels as well as a modest 

increase in iron and other minerals.116 It should also be noted that the way plant material is 

processed post-harvest can affect bioavailability: iron in white flour is generally more 

bioavailable than wholemeal flour,117 sourdough bread is produced with bacteria that have 

naturally occurring phytases,118 and the micromilling of flour can aid bioavailability of 
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minerals.119 Future biofortification strategies would take account of all these factors, combining 

high iron in edible parts along with low phytate, and using post-harvest processes that increase 

bioavailability. Current research efforts tend to focus on one of these factors at a time, although 

more combinatorial studies are emerging (Table 2). 

 

 

7 Conclusions and future perspectives 

 

Great progress has been made over the past decade in understanding the mechanisms of 

iron homeostasis in plants. More studies are emerging where information gathered in model 

plants is being used to study crops, and to generate varieties with higher levels of iron. Many 

topics do remain to be addressed, however, which will influence future research directions. 

For example, the substrate specificities of the many transporters involved in iron transport - 

from cell-to-cell and between intracellular compartments – need to be demonstrated by 

biochemical studies. Long-distance signalling between shoots and roots has not been 

discussed in this review, because the components are unknown. The transcriptional networks 

involved in iron homeostasis have rapidly expanded, but many redundancies between gene 

functions have been reported and a unified model of the signalling cascade is lacking. Cis-

element prediction tools have recently been refined,120–122 but approaches such as ChIP-seq 

analysis would more clearly define transcriptional regulons and help establish the hierarchy of 

the different transcription factors. In addition, a tissue- or cell-specific view of iron homeostasis 

would be insightful, and the function of the cell wall is usually overlooked. A major unresolved 

question is how iron in plants is sensed, what the precise role of the BTS/HRZ proteins is, and 

how the iron status is signalled to permeability changes of the endodermis. There is also still 

limited information available on how the speciation of iron impacts on the bioavailability of iron 

in plant foods. Overall, these are exciting times, with traditional physiological and genetic 

studies of iron homeostasis being enhanced by genomics and metabolomics approaches.  
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Table 1. Transcription factors involved in iron homeostasis 

Gene Expression pattern Downstream genes References 

FIT1 Root 

 

Direct: FRO2, IRT1 

Other: MYB10, MYB72 

78–80 

Subgroup Ib:  

bHLH38, bHLH39 

bHLH100, bHLH101 

 

All tissues 

 

FRO2, IRT1, 

Phenylalanine metabolism 

 
81,83 

 

Subgroup IVc:  

bHLH034 

bHLH104 

bHLH105 (ILR3) 

 

Vasculature 

Vasculature 

Vasculature, meristems 

 

bHLH38/39/100/101 

PYE 

 
85,86 

MYB10 

MYB72 

Roots NAS4 

Coumarin biosynthesis, 

BGLU42 

22,87 

 

WRKY46 Roots Direct: VITL1 

NAS2? 

88 

PYE Roots and shoots Direct: NAS4, ZIF1, FRO3 84 

IDEF1a Roots (phloem) and 

leaves (mesophyll) 

Phytosiderophore 

biosynthesis, OsIRT1, OsIRO2 

92,123 

IDEF2a Roots and leaves 

(vasculature) 

YSL2 92,124 

IRO2a 

 

Roots and shoots Phytosiderophore 

biosynthesis, YSL15 

91 

IRO3a Roots and shoots NAS1, NAS2, IRO2 93 

a Rice genes. The closest homologue of IRO2 is bHLH39 in Arabidopsis. For IRO3, the closest 

homologue is PYE. There are no homologues of IDEF1 and IDEF2 in Arabidopsis. 
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Table 2. Selected examples of successful iron biofortification strategies in crops 

Crop Details Strategy employed Fe content (fold 

increase over 

control) 

Reference 

Cassava AtVIT1 with 

PATATIN promoter 

Transgenic: increased 

storage in target tissue 

3-4x in storage roots 107 

Rice Combination of 

overexpressing 

AtNAS1, OsNAS2, 

GmFERRITIN and 

AfPHYTASE  

Transgenic: increased 

translocation and storage, 

degradation of phytate 

6x in T4 polished 

seeds 

125 

Beans High iron landrace Traditional breeding for 

high iron content – 

molecular details unknown 

1.7x in whole beans 105  

Wheat OsNAS2 with 

ZmUBIQUITIN 

promoter 

Transgenic: increased 

translocation. Co-

transformation with ferritin 

had no synergistic effect 

2.5x in whole grains 126 
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Figure legends 

 

Figure 1. An overview of iron homeostasis in plants. 

Iron homeostasis is maintained through the action of five processes: high affinity uptake systems, 

transport and distribution, use in cofactors (metabolism), storage mechanisms and tight regulation of 

the first four processes. Red balls represent iron ions; yellow balls, sulphide; blue, oxygen. 

 

Figure 2. Iron uptake mechanisms in plant roots of (a) Arabidopsis, a dicotyledonous plant species 

and (b) rice, a monocotyledonous plant species.  

See text for more information on individual components.  

AHA2, H+-ATPase 2; FRO2, Ferric Reduction Oxidase 2; IRT1, Iron-Regulated Transporter 1; F6’H1, 

Feruloyl CoA ortho-hydroxylase 1; BGLU42, beta-glucosidase 42; PDR9 or ABCG37, ABC transporter 

G family member 37; TOM1, Transporter of Mugineic acid family phytosiderophores; SAM, S-

adenosyl methionine; DMA, 2-deoxy-mugineic acid; YSL15, Yellow Stripe-Like 15. 

 

Figure 3. Iron cofactor assembly pathways in Arabidopsis. 

Overview of the biosynthesis pathways for FeS clusters and haem and their localization in a typical 

plant cell. Iron is represented by red spheres, sulphur by yellow spheres. Please note that the 

concentration of ‘free’ iron or ‘free’ sulphur in cells is close to zero, as these elements will be chelated 

or form part of a larger molecule to avoid toxicity. Similarly, FeS clusters do not exist in free form, and 
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Figure 1. An overview of iron homeostasis in plants.
Iron homeostasis is maintained through the action of five processes: high affinity
uptake systems, transport and distribution, use in cofactors (metabolism), storage
mechanisms and tight regulation of the first four processes. Red balls represent
iron ions; yellow balls, sulphide; blue, oxygen
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Figure 2. Iron uptake mechanisms in plant roots of (a)
Arabidopsis, a dicotyledonous plant species and (b) rice, a
monocotyledonous plant species.
See text for more information on individual components.
AHA2, H+-ATPase 2; FRO2, Ferric Reduction Oxidase 2;
IRT1, Iron-Regulated Transporter 1; F6’H1, Feruloyl CoA
ortho-hydroxylase 1; BGLU42, beta-glucosidase 42; PDR9
or ABCG37, ABC transporter G family member 37; TOM1,
Transporter of Mugineic acid family phytosiderophores;
SAM, S-adenosyl methionine; DMA, 2-deoxy-mugineic acid;
YSL15, Yellow Stripe-Like 15.
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Figure 3. Iron cofactor assembly pathways in Arabidopsis.
Overview of the biosynthesis pathways for FeS clusters and haem and their
localization in a typical plant cell. Iron is represented by red spheres, sulphur by
yellow spheres. Please note that the concentration of ‘free’ iron or ‘free’ sulphur in
cells is close to zero, as these elements will be chelated or form part of a larger
molecule to avoid toxicity. Similarly, FeS clusters do not exist in free form, and
are only stable within a protein fold. Mono-iron and di-iron cofactors are not
depicted, but occur in all cell compartments. See the main text for more details.
ATM3, ABC Transporter of the Mitochondria 3; ER, Endoplasmic reticulum; FC,
Ferrochelatase; ISC, Iron-Sulphur Cluster; NFU, NifU-like protein; SUF, Sulfur
mobilization.
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Figure 4. Transcriptional regulation of the iron deficiency response in plants.
Diagram depicting the core transcriptional regulators and their functional relationship. The
rice homologs are given in parentheses, but note that downstream gene targets in rice
may differ. Further details can be found in the main text and in Table 1. bHLH, basic Helix-
Loop-Helix protein; BTS, BRUTUS; FIT, FER-like Iron deficiency-induced Transcription
factor; PYE, POPEYE.

FIT

FRO3, NAS4, …

FRO2, IRT1, …

BTS

(OsIRO2)

Fe distribution

Fe uptake

bHLH115 bHLH104

bHLH34 ILR3

bHLH38 bHLH39

bHLH100 bHLH101

bHLH38 bHLH39

bHLH100 bHLH101

bHLH115 bHLH104

bHLH34 ILR3
PYE

PYE

FIT

+
(OsIRO3)(OsHRZ)

+

protein

positive regulation of ..

negative regulation of ..

transcript



endosperm

aleurone

seed coat

scutellum

groove

embryo

Figure 5. Perls’ Prussian Blue staining for iron in wheat
grains from control line (top) and high-iron line
expressing TaVIT2 in the endosperm (bottom). Grains
were dissected longitudinally (left) or transversely (right)
using a platinum-coated blade. For further details see
Connorton et al., 2017.109 Scale bar = 1 mm.


