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Abstract

This paper investigates regenerative and frictional grinding chatters affected by mass eccentricity in the workpiece. Time delays and

velocity-soften friction coefficient are employed to represent regenerative and Stribeck effects in normal and tangential grinding

forces. Eigenvalue calculation and continuation scheme are used to find stability boundaries for both regenerative and frictional

instabilities, illustrating that a deep grinding enhances the regenerative stability but impairs the frictional one. Near each kind of

boundaries, numerical simulations and bifurcation analyses are adopted to present various chatter motions in the grinding, either

with or without mass eccentricity. It is found that the frictional chatter is prone to be quenched by the external excitation due to the

mass eccentricity. On the contrary, the regenerative instability still persists, but is perturbed to be quasi-periodic.
c© 2017 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of organizing committee of the IUTAM Symposium on Nonlinear and Delayed Dynamics of
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1. Description of the plunge grinding process

A typical plunge grinding process1 is depicted in Fig. 1(a). With its end (S = L) simply supported by a tailstock,

a workpiece has its head (S = 0) clamped and rotated by a chuck with an angular speed Ωw [rad/s]. In the middle of

the workpiece (S = P), a disc is lumped to be processed. On the right of the workpiece, a rotating grinding wheel is

mounted on a wheel holder which moves along a horizontal guide, with an angular speed Ωg [rad/s] and a feed speed

f [m s−1]. The workpiece has mass density ρ [kg m−3], Young’s modulus E [Mp], lateral damping cw [ N s m−2],

torsional viscous damping ct [ N s m rad−1], radius Rw [m] and length L [m]. The disc is of mass md [kg], moment of

inertia Jd [kg m2], mass eccentricity ed [m], width W [m] and radius Rd [m]. The mass of the grinding wheel is mg

[kg], and its equivalent stiffness and damping of the massless holder are kg [N m−1] and cg [N s m−1], respectively2.
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Fig. 1. (a) Schematic of the regenerative grinding process with mass eccentricity in the workpiece; (b) wheel-workpiece contact angle γ(t) intro-

duced by vertical workpiece displacement.

Under interactive grinding forces, the workpiece bends both horizontally (Xw(t, S ) [m]) and vertically (Yw(t, S )

[m]), while the wheel holder yield a horizontal displacement (Xg(t) [m]). Torsional movement of the workpiece is

represented by φw(t, S ). Driven by the chuck, the workpiece has φw(t, 0) = Ωwt. Denoting φp(t) = φw(t, P), one can

use θp(t) = φp(t) − φw(t, 0) to describe the torsional workpiece motion. Due to the vertical workpiece motion, as seen

in Fig. 1(b), the wheel-workpiece contact angle is

γ = tan−1
(a
b

)
= tan−1

(
Yw(t, P)

Rg + Rd − f − Xw(t, P) + Xg(t)

)
. (1)

Given the complex boundary conditions, the spatial-temporal continuum workpiece is discretized to yield the gov-
erning equation of the grinding process2:

mgẌg(t) + cgẊg(t) + kgXg(t) = Fx(t),

mwẌp(t) + cwẊp(t) + kwXp(t) = −Fx(t) + 2mded

(
φ̇p(t)
)2

sin
(
φp(t)
)
− 2mdedφ̈p(t) cos

(
φp(t)
)
,

mwŸp(t) + cwẎp(t) + kwYp(t) = Fy(t) + 2mded

(
φ̇p(t)
)2

cos
(
φp(t)
)
− 2mdedφ̈p(t) sin

(
φp(t)
)
,

Jtθ̈p(t) + ctθ̇p(t) + ktθp(t) = ctΩw +M(t) − 2mdedẌp(t) cos (φ) − 2mdedŸp(t) sin (φ) .

(2)

where mw, cw, kw, Jt, ct, kt are equivalent mass, lateral damping, stiffness, moment of inertia, torsional damping and

torsional stiffness of the workpiece, respectively. Here, an overdot indicates a derivative with respect to time t.
It should be remarked that the contact angle γ is introduced by the vertical workpiece motion. When only the

horizontal displacement is considered, which means the tangential frictional force and the workpiece imbalance do

not play a role and thus the workpiece does not bend vertically, the model is degenerated to that studied in Ref.3. Such

a model cannot be used to discuss the influences of wheel-workpiece friction and mass eccentricity on the grinding

dynamics. More comparison between the regenerative and frictional instabilities can be found in Ref.2.

The interactive wheel-workpiece grinding forces in Eq. (2), Fx(t), Fy(t) and M(t), are displayed in Fig. 2. In terms

of normal cutting force Fn(t) and tangential frictional force Ft(t), they are given by

Fx(t) = Fn(t) cos(γ(t)) + Ft(t) sin(γ(t)),
Fy(t) = Fn(t) sin(γ(t)) − Ft(t) cos(γ(t)),
M(t) = Ft(t)Rd.

(3)



148   Yao Yan et al.  /  Procedia IUTAM   22  ( 2017 )  146 – 153 

Fig. 2. (a) Grinding forces between the wheel and the workpiece; (b) Coulomb frictional coefficient with Stribeck effect; (c) Regenerative grinding

depth.

When a loss of wheel-workpiece contact occurs (negative grinding depth Dg < 0), there are no interactive forces

(Fn = Ft = 0). For a cutting (Dg ≥ 0), they are proportional to the grinding depth2:

Fn(t) = kμ
(
Ωw+θ̇p−γ̇
Ωg+γ̇

)2μ−1

Dμg,

Ft(t) = kf(Vf)Fn(t),
(4)

where kμ [N m−μ] is grinding stiffness, μ a dimensionless coefficient, kf the frictional coefficient of the frictional

velocity ,Vf.

In addition to the regenerative effect, the Stribeck effect in the tangential force is represented by the frictional

coefficient displayed in Fig. 2(b), which is

kf(Vf) = sign(Vf)
(
kd + (ks − kd) exp

(
− |Vf |

Vs

))
,

Vf = ΩgRg − ΩwRw − θ̇p(t)Rd + Ẏp(t) cos(γ(t)) −
(
Ẋg(t) − Ẋp(t)

)
sin (γ(t)) ,

(5)

where sign(Vf) is the sign function of Vf, |Vf| the absolute value of Vf, kd the dynamic frictional coefficient, ks the static

frictional coefficient and Vs the dimensionless Stribeck friction velocity, respectively6.

The grinding depth is represented by regenerative theory, which represents the instantaneous chip thickness by

current and previous tool displacement7. According to the doubly regenerative theory2,5,8,9, as seen in Fig. 2(c), the

instantaneous grinding depth is represented by

Dg(t) = f cos(γ(t)) + Xp(t) cos(γ(t)) − Xg(t) cos(γ(t)) − Yp(t) sin(γ(t))
−Xp(t − Tw) cos(γ(t − Tw)) + Xg(t − Tw) cos(γ(t − Tw)) + Yp(t − Tw) sin(γ(t − Tw))

−gXp(t − Tg) cos(γ(t − Tg)) + gXg(t − Tg) cos(γ(t − Tg)) + gYp(t − Tg) sin(γ(t − Tg)),
(6)

where Tw = 2π/Ωw and Tg = 2π/Ωg are rotational periods of the workpiece and the wheel and g is a small dimension-

less parameter representing a comparatively slow regenerative speed of the wheel. Here, g depends on the grinding

ratio Gr = Vw/Vg, where Vw is the volume of workpiece material removed and Vg the corresponding volume of the

wheel13. According to Ref.14, one has

g =
ΩwRd

GrΩgRg

. (7)

Due to the vertical and torsional motions of the workpiece (γ(t) � 0 and θp(t) � 0), Tw and Tg become state-

dependent10,11,12 and implicitly governed by

2π = φp(t) − γ(t) − φp(t − Tw) + γ(t − Tw)

= θp(t) − γ(t) − θp(t − Tw) + γ(t − Tw) + TwΩw,
2π = γ(t) − γ(t − Tg) + TgΩg.

(8)



 Yao Yan et al.  /  Procedia IUTAM   22  ( 2017 )  146 – 153 149

Fig. 3. Stability boundaries of the grinding process. For selected values of p (0.1, 0.5 and 0.9) and ν (0.002, 0.004 and 0.006), boundaries for

regenerative (black) and frictional (red) instabilities are displayed in τw0 − κμ plane. Arrows I (τw0 = 6.0 and κμ ∈ [1.5, 2.5]) and II (τw0 = 5.5 and

κμ ∈ [1.0, 2.5]) are marked for further analyses of the regenerative and frictional chatters.

2. Grinding stability

With the model of the grinding process, the linear grinding stability can be studied by eigenvalue analysis. Before

that, Eq. (2) is nondimensionlized by introducing the following dimensionless parameters

ξg =
cg√
mgkg

, ξw =
cw
√mg

mg

√
kg

, ξt =
cw
√mg

Jt

√
kg

, κμ =
kμ
κg

(
Rg + Rd

)μ−1
, κw =

kwmg

kgmw

, κt =
ktmg

Jtkg

,

γt =
mgRd(Rg + Rd)

Jt

, γw =
mg

w
, ν =

f
Rd + Rg

, rd =
Rd

Rd + Rg

, rg =
Rd

Rg + Rg

, p =
P
L
,

ωw = Ωw

√
mg

kg
, ωg = Ωg

√
mg

kg
, e = 2 md

mw
ed, τw = Tw

√
kg

mg
, τg = Tg

√
kg

mg
,

(9)

and variables

τ = t
√

kg

mg
, xg(τ) =

Xg(t)
Rg+Rd

, xp(τ) =
Xp(t)

Rg+Rd
, yp(τ) =

Yp(t)
Rg+Rd

, γ(τ) = tan−1
(

yp(τ)

1−ν−xp(τ)+xg(τ)

)
,

dg =
(
ν + xp(τ) − xg(τ)

)
cos (γ(τ)) − yp(τ) sin (γ(τ)) −

(
xp(τ − τw) − xg(τ − τw)

)
cos (γ(τ − τw))

+yp(τ − τw) sin (γ(τ − τw)) − g
(
xp(τ − τg) − xg(τ − τg)

)
cos
(
γ(τ − τg)

)
+ gyp(τ − τg) sin

(
γ(τ − τg)

)
.

vf = ωgrg − ωwrd − θ̇p(τ)rd + ẏp(τ) cos (γ(τ)) −
(
ẋg(τ) − ẋp(τ)

)
sin (γ(τ)) .

(10)

Omitting mass eccentricity (e = 0) and linearising Eq. (2) with considering Eqs (9) and (10), one can study linear

grinding stability with eigenvalue analysis and continuation scheme2,15. To begin with, the parameter values are
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Fig. 4. Bifurcation diagrams on Arrow I, where (a) maximum dg value and (b) minimum vf value are plotted as functions of κμ. Here, results of

forward and backward simulations are in red and blue dots, respectively. In addition, coexisting (c) stable grinding and (d) regenerative chatter for

κμ = 1.43 are displayed, while coexistence of (e) periodic regenerative and (f) quasi-periodic chatters for κμ = 2.1 is depicted as well

selected as

L = 1 [m], Rw = 0.1 [m], Rd = 0.25 [m], Rg = 0.25 [m], W = 0.03 [m],

mg = 20 [kg], ρ = 7850 [kg m−3], cg = 2 × 105[N s m−1] cw = 1.2 × 106[N s m−2],

ct = 822[N m s rad−1], kg = 3 × 108[N m−1], E = 2.06 × 1011[Pa], G = 7.93 × 1010[Pa].

(11)

Corresponding results are depicted in Fig. 3 to illustrate the boundaries for both regenerative (black) and frictional

(red) instabilities, which divide the planes into grey (stable) and white (unstable) regions. As seen, a small grinding

stiffness κμ and a large delay τw0 are wanted to maintain the linear stability. When the nominal depth ν is increased

from 0.002 to 0.006, the black curves move downwards but the red ones upwards, which indicates that the regenerative

stability is enhanced but the frictional one is impaired by deep grinding. When p increases from 0.1 to 0.9, corre-

sponding to the wheel moving from the head to the tail of the workpiece, the black regenerative ’lobes’ are flattened

and the red frictional boundaries are unchanged. Next, to demonstrate the grinding chatters near different boundaries,

Arrows I and II are marked for further bifurcation analyses.

3. Regenerative and frictional grinding chatters

On Arrow I, the stable and unstable regions are separated by the black boundary, corresponding with the regenera-

tive instability. Performing numerical simulations and bifurcation analyses yields Figs 4(a) and (b), where maximum

dg and minimum vf are plotted as functions of κμ. Results of forward (κμ increases from 1.5 to 2.5) and backward (κμ
decrease from 2.5 to 1.5) simulations are represented by red and blue dots, respectively.

It is seen that the grinding is linearly stable for κμ < 1.74, where it encounters the regenerative boundary and

incurs a subcritical Hopf bifurcation. This introduces a coexistence of the stable grinding and the regenerative chatter

for κμ ∈ [1.58, 1.73]. When κμ increases further, there only exists the periodic chatter until κμ reaches 2.05, where

the frictional instability is involved to introduce another quasi-periodic chatter coexisting with the periodic one. The
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Fig. 5. Bifurcation diagrams on Arrow II, where (a) maximum dg value and (b) minimum vf value are plotted as functions of κμ. Here, results of

forward and backward simulations are in red and blue dots, respectively. In addition, (c) the stable grinding for κμ = 1.43, and coexistence of (d)

the periodic frictional and (e) quasi-periodic chatters for κμ = 1.7 are displayed.

periodic motion disappears for κμ > 2.25, leaving only the quasi-periodic. To illustrate, phase portraits for the stable

grinding and the regenerative chatter for κμ = 1.7 and the periodic and quasi-periodic chatters for κμ = 2.1 are

displayed in Figs 4(c), (d), (e) and (b), respectively. In general, the chatter amplitude grows with respect to the

increase of κμ, and the regenerative and frictional stabilities introduce the fluctuations of dg and vf, respectively.

Next, the bifurcation pattern on Arrow II is depicted in Fig. 5, which is dominated by the frictional instability. The

grinding is stable for κμ < 1.46, where the grinding jumps to a frictional chatter with large fluctuation of vf but small

variation of dg. For κμ increasing further, the periodic frictional motion is unique before 1.61 is reached, where another

quasi-periodic is introduced to coexist for κμ ∈ [1.61, 1.76]. To illustrate, the stable grinding for κμ = 1.43 and the

periodic frictional and quasi-periodic chatters for κμ = 1.7 are plotted in Figs 5(c), (d) and (e), respectively. Compared

with the regenerative one, it is seen that the frictional instability does not induce any grinding chatter coexisting in the

linearly stable region.

4. Chatters with workpiece imbalance

Then, the influence of workpiece imbalance (e=0.05) on the grinding chatters are discussed, which involves both

the internal and external sources of instability. In this case, the workpiece can be regarded as a Jeffcott rotor16,17.

With respect to Arrow I, the bifurcation pattern in Fig. 4 is transformed into that in Fig. 6. As seen, the bi-stability

for κμ ∈ [2.05, 2.25] disappears, leaving a unique quasi-periodic chatter without frictional instability2. Besides, in

the vicinity of the Hopf bifurcation point (κμ = 1.74), the system shows a ’random’ selection between the forced

periodic vibration and quasi-periodic regenerative chatter. This phenomenon is similar to the result in our previous

work18, which has proved that the regenerative chatter can be quenched by artificially introduced sinusoid excitation.

To illustrate, a small-amplitude forced vibration for κμ = 1.65, and forced quasi-periodic regenerative chatter for

κμ = 1.66 and 2.1 are depicted in Figs 6(c), (d) and (e), respectively.
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Fig. 6. Bifurcation diagrams on Arrow I, where (a) maximum dg value and (b) minimum vf value are plotted as functions of κμ. Results of

forward and backward simulations are in red and blue dots, respectively. In addition, (c) the forced periodic vibration for κμ = 1.65 and (d-e) the

quasi-periodic regenerative chatter for κμ = 1.66 and 2.1 are displayed.

With the workpiece imbalance, the corresponding bifurcation pattern on Arrow II is presented in Fig. 7. It is seen

that the frictional chatter for κμ ∈ [1.46, 1.76] is quenched, and the afterwards quasi-periodic chatter is of no frictional

instability (no stick motion). To illustrate, a forced periodic chatter for κμ = 1.43 and a quasi-periodic regenerative

one for κμ = 1.7 are displayed in Figs 7(c) and (d), respectively.

5. Conclusions

Given internal (regeneration and friction) and external (workpiece imbalance), various grinding chatters involving

planar and torsional movements were discussed. Eigenvalue analysis reveal the linear stability of the process, showing

that a large grinding stiffness and a slow rotational workpiece speed benefit the stability. For a deep grinding, the

regenerative stability is enhanced but the frictional one is impaired. Further bifurcation analysis demonstrate that the

regenerative instability is subcritical, introducing a large-amplitude chatter coexisting with the stable grinding. By

contrast, the frictional chatter exists only in the linearly unstable region, which emerges suddenly to replace the stable

grinding. When the workpiece imbalance is involved, bifurcation analyses illustrate that the frictional instability is

always quenched. By contrast, the regenerative chatter persists and is perturbed to be quasi-periodic.
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Fig. 7. Bifurcation diagrams on Arrow II, where (a) maximum dg value and (b) minimum vf value are plotted as functions of κμ. Results of

forward and backward simulations are in red and blue dots, respectively. In addition, (c) the forced periodic vibration for κμ = 1.43 and (d) the

quasi-periodic regenerative chatter for κμ = 1.7 and 2.1 are displayed.
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