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Abstract—A positioning controller based on Spiking Neural
Networks for sensor fusion suitable to run on a neuromorphic
computer is presented in this work. The proposed framework uses
the paradigm of reservoir computing to control the collaborative
robot BAXTER. The system was designed to work in parallel with
Liquid State Machines that performs trajectories in 2D closed
shapes. In order to keep a felt pen touching a drawing surface,
data from sensors of force and distance are fed to the controller.
The system was trained using data from a Proportional Integral
Derivative controller, merging the data from both sensors. The
results show that the LSM can learn the behavior of a PID
controller on different situations.

Index Terms—Robot control, Sensor Fusion, Liquid State
Machine, BAXTER robot, PID controller.

I. INTRODUCTION

Multi-sensor data fusion is a largely disseminated subject
[1] employed in several fields, such as surveillance, controlling
robots, driving autonomous vehicles and others. In typical
applications, redundant and complementary data sensors are
blended in order to produce robust systems by increasing their
reliability. Generally, data fusion involves data association,
state estimation, and or decision fusion, by applying mathe-
matical tools such as Kalman filter [2], Bayesian networks [3],
fuzzy logic [4] and neural networks, among others [5].

Many applications employ neural networks. In [6], where
multi-sensor data are used as input and the system is trained
for monitoring of tool wear in drilling and milling. Also,
the authors of [7] present a model for sensory fusion using
an Echo State Network to predict object trajectories based
on the information from several radars. Other works such
as [8], [9] present models for sensor fusion using artificial
neural networks. Those works featured good results in their
applications, demonstrating that processing information from
several sensors using artificial neural networks can consider-
ably enhance process identification and monitoring.

The human brain is commonly used as inspiration when
working with artificial neural networks, mainly for its charac-
teristics of robustness and power efficiency. While a modern
computer in a common configuration needs a power supply

of about 500W, our brain spends only 20W [10]. In neuro-
morphic engineering [11], devices are inspired by the human
brain. Several projects based on neuromorphic computers are
currently in development, such as SpiNNaker [12], Darwin
[13], IBM-TrueNorth [14] and Spikey [15]. All of them are
based on Spiking Neural Networks (SNN), the artificial neuron
model that better represents the way our neurons work.

Researchers from University of Plymouth developed a
model [16] based on parallel, diverse and noisy sets of
biologically inspired Liquid State Machines (LSM) [17] to
control BAXTER [18], a collaborative humanoid robot, with
the intent of creating a framework that could later be imported
into a neuromorphic computer. The system is able to learn
the trajectories necessary to draw a two dimensional shape on
the surface of a table. However, this work does not have a
fine Z-axis control, since the proprioceptive feedback comes
only from the joint angles, and any changes on surface, robot
leveling or external noise introduce errors into the drawings.

In this paper, we propose a parallel control LSM framework
to work with the main robot control loop in order to reduce
the positioning error of the pen. The proposed system can
learn the behavior of a classic Proportional Integral Derivative
(PID) controller, maintaining a constant distance from the table
and applying a stable force and, therefore, keeping the pen
touching the table.

Experimental data showed that the controller was able to
significantly reduce the error previously observed at tracking
the square. For instance Figs. 1(a) and 1(b) present the results
of two drawn squares without the proposed Z-axis control
system on the Z-axis. In Fig. 1(a) the felt pen does not
touch the surface in some parts of the trajectory and touches
too hard in Fig. 1(b), causing a distortion on the drawing.
Fig. 1(c) shows the trajectory of a square performed with the
implemented LSM control on Z-axis. In this case, the felt pen
was neither floating nor dragging, which is the expected result.

Although the example is a simple square trajectory, the-
oretically the system could learn, and if necessary correct,
any 2D trajectory. The trajectory control system presented



(a) Low force (no control) (b) High force (no control)

(c) Stable force (LSM con-
trol)

Fig. 1. BAXTER Robot drawings on a hard surface (white board). On (a)
and (b) no Z-axis control is used, (c) presents our proposed LSM controller.

by Azambuja [16] also performed a triangle and circular
trajectory.

II. METHODOLOGY

The BAXTER robot was commanded using the Robot
Operating System (ROS) [19], the LSMs were created using
the BEE1 library and joint trajectories were calculated using
the Virtual Robot Experimentation Platform (V-REP) [20].
This project was developed using, and the entire source code
is available online2.

A brief summary of the methodology that was applied is
shown below:

1) The LSM training set is created using two PID con-
trollers;

2) N random liquids are created;
3) Training data is converted into train of spikes and feed

into the created liquids;
4) Readout weights for each of the N random liquids are

calculated;
5) Evaluate how each LSM performs individually through

real-world experiments using the BAXTER robot.
The training set was produced using a felt pen on a soft

surface, on three different configurations: one without any
inclination, one inclined by 5mm on X axis and by 5mm
on Y axis, as displayed in Fig. 2. The Liquid State Machines
were individually evaluated on soft surface (a notebook) and
a hard surface (white board - Fig. 1), both situations with and
without inclinations.

A. Liquid State Machines

A Liquid State Machine (LSM) [21] consists of neurons
randomly and recurrently connected (”the liquid”), to which

1Source code available at
https://github.com/ricardodeazambuja/LiquidStateMachine-Python

2Source code and data sets available at
https://github.com/davi-sala/I2MTC2017-LSMFusion

Fig. 2. Dispositions of the drawing surface for the creation of the training
set. Elevation of 5mm was used on the X and Y axis, separately, resulting
in an angle of 4◦ between the surface and table.

time series of spike patterns are sent. The liquid, or reservoir,
can be seen as a random function of the input.

The concept of LSM [17] can be explained as a reservoir
of recurrently iterative nodes, stimulated by an input u(t). A
state x(t) is obtained from the reservoir state and a reading
function fM maps the high dimensional state x(t) to an output
y(t). Fig. 3 shows a diagram of this architecture. The loops
created between nodes of the reservoir create a form of short-
term memory, where the effect of the inputs remain within the
network for a certain amount of time according to the liquid
parameters..

The LSM used in this work and in the robot’s main control
loop [16] employed the same parameters and neuron models
from [22] with a few modifications. However, our framework
does not make use of Short-Term Plasticity (STP) or forced
transmission delays.

Fig. 3. Diagram showing a model of Liquid State Machine. An input is
translated into a train of spikes, which stimulates the liquid layer. A readout
function maps the liquid state x(t) to an output y(t).

B. Square Trajectory

The collaborative robot BAXTER, from Rethink Robotics
Inc., is a safe robot designed to work among humans. The
developed LSM framework to control BAXTER in [16] was
designed using Joint Position Control3. This mode allows
all the robot’s safety mechanisms to be activated during
movement execution. In the main control loop, four joints
(S0, S1, E1 and W1) are controlled, pen orientation is kept
perpendicular to the surface and the trajectory is divided in
1000 steps. Joint angles for the square shape were generated

3See http://sdk.rethinkrobotics.com/wiki/Arm Control Modes



using inverse kinematics on the V-REP simulator, keeping a
constant Z-axis position.

The BAXTER robot uses Series Elastic Actuators (SEAs)
[23] introducing a spring between the motor elements and the
output of the actuator. This results in higher safety, as the
springs can be deformed by human level inputs, but adds noise
to the output. The SEAs also enable us to measure the torque
output from the actuators, which allows to estimate force on
each joint and also at the endpoint (felt pen in this case).
Alongside the noise introduced by the actuators, an outside
spring supporting S1 joint (see Fig. 4) also add interferences
on the arm movement.

Fig. 4. Disposition of the BAXTER robot to perform the task. The four joints,
with names highlighted, and the orientation of the coordinate system.

The noise introduced by BAXTER’s actuators results in Z-
axis positioning errors when moving the arm. Fig. 5 shows
the Z position registered by the robot, this value is estimated
by the robot’s internal model using joint positions. While
the V-REP simulation returned a fixed value at −160mm on
the Z-axis, as expected since the simulated BAXTER does
not have any kind of noise modeled, the value for the real
robot oscillates around the average value µ = −159mm
(values obtained in 10 trials) with a standard deviation of
σ = 1.27mm. The minimum and maximum peaks observed
in figure 5 were generated by movements of joint S1.

C. Generating the Training Data

Since a training set is necessary to find the readout function
of the LSM (see [21] for details), two PID controllers were
implemented to create a dataset containing 100 trials, each
with 1000 points of the square trajectory.

PID is a controller widely used for error reduction and faster
response in process control. The PID parameters were adjusted

Fig. 5. Z-axis distance measured by the robot’s built-in model when
performing the same square shape trajectory on simulator and real world.

using the Ziegler-Nichols method [24]. Fig. 6 shows how the
PIDs were inserted to the control system: one PID was utilized
to keep the range sensor at a setpoint of 15.7cm, the second
was set to keep the force at −2N . A negative value, as the
estimated force points towards the robots endpoint. The PIDs
compensates the Z positioning offset error.

Fig. 6. Diagram of the PID system used to generate the training set. Outputs
of the PIDs are summed and then multiplied compensated for each joint as
an offset.

The training set consists of 100 trials, divided in 50 trials
on a 0◦ surface, 25 trials with an inclination of approximately
4◦ on the X axis and the last 25 with the same inclination
on the Y axis, all drawn on a soft surface (see Fig. 2).
The trajectory was designed on V-REP with 1.0cm above the
drawing surface. The pen would not touch the surface at any
point by sending only the joint angles to the robot.

Average values of force, distance and final gains of the 100
trials using the PID controllers are showed in figure 7. The
average value of 10 trials without the controller is also shown
in Figs. 7(a) and 7(b).

D. Liquid State Machine Generation

Five liquids were created, each with 200 neurons, 100 for
each sensor input. These values were heuristically chosen after
initial pilot tests, not presented here. A simplified population
code was used to generate the spike inputs by discretizing
analog values, the same algorithm that was used in [16].
As the number of neurons is limited, each input signal was
conditioned between −10N to 2N and 15cm to 18cm, for
force and distance sensors, respectively. The neuron model



(a) Force sensor readings using the PID controller

(b) Range sensor readings using the PID controller

(c) Summed gain of the PIDs controllers

Fig. 7. Values of the training set for force (a), distance (b) and gains (c).
Blue, green and red lines represent the average value of 50 trials at 0◦, 25
at 4◦ on the X axis, and 25 with 4◦ on the Y axis, respectively. Black lines
on (a) and (b) represent the average values of 10 trials without the controller,
and dashed lines show the setpoints used for each PID.

and LSM parameters used in this work are the same as used
to control BAXTER in [16].

The liquids were simulated by receiving the discretized
input signals from the training dataset, containing the PIDs
trials. The output of the liquid’s membrane low-pass filter is
saved at each simulation step. This produces a matrix of size
1000× 200 for every dataset element (100).

In order to train the weights (w1 to w200) of the readout
function, a linear regression was implemented. The Ordinary
Least Squares (OLS) fits a model with coefficients w =
(w1, w2, ...wp) by solving the problem in (1), where matrix

X contains the low-pass filtered values of the liquid spikes
and y the final gain from the PIDs controllers for every trial.

min
w
||Xw − y||2

2 (1)

When data are correlated, the columns of X are approx-
imately linearly dependent. Consequently, the least-square
estimate becomes highly sensitive to random errors, producing
a large variance. The Ridge regression [25] was performed for
every liquid to find the corresponding LSM readout weight
vector, imposing a penalty (α ≥ 0) on the size of the
coefficients, as can be seen in (2). Even if X is not full rank,
the regression is still solvable.

min
w
||Xw − y||2

2
+ α||w||2

2 (2)

III. RESULTS

The goal of this study was to minimize the variability on
the endpoint by creating a LSM controller, enabling the robot
to maintain a constant force against the drawing surface and
decreasing the position error of the felt pen.

Results presented in [16] showed a difference of 1.93mm
between the minimum and maximum Z-axis distance readings,
when performing the square trajectory on the V-REP simulator.
However, when using the same networks on the real robot, we
measured fluctuations close to 6mm. The trajectory used to
validate our system presented a difference of approximately
7.6mm (see Fig. 5). The presented LSMs were evaluated
on the real robot, by running the same square trajectory on
different situations, changing parameters such as surface type
and inclination. From the five created LSMs, the one that
showed the better overall performance was selected and results
are presented here. The values of average and variance from
the LSM controller output were compared to the PID controller
results.

Fig. 8 shows the average value of force from 50 exper-
iments using the PID controller on the soft surface and the
average value of 50 trials with the proposed LSM controller,
on a hard surface. Mean values of 10 trials without any control
are also presented for comparison. Through a simple visual
inspection it is possible to observe that the LSM solution
proposed in this work is able to follow the behavior of a PID
controller.

Individual results of each data set were also analyzed.
Table I shows the average values and standard deviations of
the resulting force from all the trials performed using one LSM
controller. Last column of the table shows the percentage of
values that were found within the 95.44% Confidence Interval
(CI) of the PID controller force data, considering a gaussian
distribution. This comprehends all the force values measured
between −3.763N and −0.567N . Last row presents results of
all the trials combined.

Considering that the felt pen would not be touching the
surface when estimated force was above 0N . From all trials,
11, 12% of force values were found above 0N , i.e. not
touching the table.



Fig. 8. Mean values of force sensor readings on three situations: without any control (blue curve), using the PID controller (red dashed curve) on a soft
surface and LSM controller (green curve) on a hard surface. The PID setpoint is represented by the blue dashed line.

TABLE I
FORCE RESULTS OF LSM CONTROLLER PERFORMING

IN FOUR DIFFERENT TEST SETS.

Test set Mean value
µi

Standard dev.
σi

Values within
PID’s CI (95%)

Soft surface
at 0◦ −1.392N 1.666N 73.52%

Hard surface
at 0◦ −1.982N 1.566N 87.42%

Hard surface
at 4◦onY −3.881N 3.348N 62.14%

Hard surface
at −4◦onX

−2.648N 1.773N 75.38%

Combined −2.162N 2.418N 74.15%

Both LSM and PID controllers performed the trajectory
similarly, as one can see on Fig. 9, on the average distance
values. Table II presents the average values and standard
deviations of the distance measured by the Infrared distance
sensor. Last column also shows the percentage of values
found between the 95.44% CI of the PID controller data,
considering a gaussian distribution. This includes all distance
values ranging from 15.43cm to 16.21cm.

TABLE II
DISTANCE RESULTS OF LSM CONTROLLER PERFORMING

IN FOUR DIFFERENT TEST SETS.

Test set Mean value
µi

Standard dev.
σi

Values within
PID’s CI (95%)

Soft surface
at 0◦ 15.79cm 0.51cm 97.09%

Hard surface
at 0◦ 15.87cm 0.28cm 97.87%

Hard surface
at 4◦onY 15.83cm 0.35cm 97.82%

Hard surface
at −4◦onX

15.88cm 0.33cm 97.56%

Combined 15.83cm 0.41cm 97.49%

The LSM, on average, produced similar results as the
PID controller, but presented a high variance on force read-
ings. While the PID showed an average force value of
µPIDf

= −2.165N and standard deviation of σPIDf
=

0.799N , the LSM controller displayed µLSMf
= −2.162N

and σLSMf
= 2.418N . As for distance, readings from both

approaches were similar, the PID controller presented an
average distance of µPIDd

= 15.82cm and standard deviation
of σPIDd

= 0.39cm while the LSM controller displayed
µLSMd

= 15.83cm and σLSMd
= 0.41cm.

IV. CONCLUSION

A framework based on Liquid State Machines, to control the
Z-axis distance and force of a BAXTER robot, was presented
in this paper. The proposed system was able to learn the
behavior of a PID controller and showed to be able of assisting
the robot to perform a trajectory on top of a flat surface,
reducing the error by following a force and distance signals.

The trajectory used to benchmark the system here was the
worst-case scenario. With an error of 100%, that is, the felt pen
would never touch the drawing surface. Considering a Normal
distribution, the presented system was able to correct the joints
offset and keep within the PIDs 97.49% and 74.15% of the
total points to the working distance and force respectively,
inside a confidence interval of 95%.

Our approach was designed with the intent to work on a
neuromorphic computer, in parallel to the main LSM control
system. Future works would include the combination of both
systems and the migration to the SpiNNaker neuromorphic
system. We believe the accuracy could be improved by in-
cluding different situations and trajectories in the training set.
Further research on how a more complex training set can
impact on the performance of the proposed system is another
avenue to be pursue.



Fig. 9. Mean values of range sensor readings on three situations: without any control (blue curve), using the PID controller (red dashed curve) on a soft
surface and LSM controller (green curve) on a hard surface, both without any inclination. The PID setpoint is represented by the blue dashed line.
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