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Summary 

The thesis work is part of a project that aims to develop a reliable CFD model to investigate the fluid-

dynamics of a fluidized bubbling bed during gasification of refuse derived fuel (RDF) from sorted 

municipal solid waste (MSW).  

Gasification is a thermochemical process that converts carbon-containing materials into syngas. In 

this specific context scaling up is challenging because it implies dealing with a complex chemistry 

combined to heat and mass transfer phenomena in a multi-phase fluid environment. CFD modeling 

could represent a potential tool to predict the impact of the reactor configuration and operating 

conditions on gas yield, composition and potential contaminants.  

Validation of CFD simulations for such systems has been so far possible using different sophisticated 

experimental tools, allowing to link the model with experimental data. However, such high tech 

equipment may not always be available, especially at industrial scale.  

Hence, this work focuses on investigating the accuracy and numerical sensitivity of two different 

CFD models employed in the characterization of dense solid-particle flows in bubbling fluidized 

beds. The key parameter adopted to describe and quantify the dynamic behavior of this multiphase 

system is the power spectral density (PSD) distribution of pressure fluctuations. This PSD function 

was used to assess the accuracy of CFD models using one set of operating condition. The same type 

of analysis, extended to a wider range of operating conditions, may lead to a robust validation of the 

numerical models presented in this work. In spite of his measurement simplicity, pressure drop data 

present a strong connection with the bed fluid-dynamics and its interpretation could help to improve 

the fluidized bed technologies very fast, pushing CFD models closer to applications.   
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Résumé 

Le but de ce projet est de développer un modèle CFD fiable pour étudier la dynamique des fluides 

d'un lit fluidisé en régime bullant pendant la gazéification de combustibles solides de récupération 

(CSR) triés à partir de déchets solides municipaux (DSM).  

La gazéification est un processus thermochimique qui convertit les matériaux contenant du carbone 

en gaz de synthèse. La mise à l'échelle est difficile dans ce cas car elle implique une chimie complexe 

combinée aux phénomènes de transfert de chaleur et de masse dans un environnement fluide 

multiphasique. La modélisation CFD  représente un outil potentiel pour prédire l'impact de la 

configuration du réacteur et des conditions de fonctionnement sur le rendement, la composition et les 

contaminants potentiels du gaz. 

La validation des simulations CFD pour de tels systèmes a été jusqu'à présent possible grâce à 

l’utilisation de différents outils expérimentaux sophistiqués, permettant de lier le modèle aux données 

expérimentales. Toutefois, un tel équipement de pointe n’est pas toujours disponible, en particulier à 

l'échelle industrielle. 

Par conséquent, ce travail se concentre sur l'étude de la précision et de la sensibilité numérique de 

deux modèles CFD différents, utilisés dans la caractérisation des flux de particules solides denses 

dans les lits fluidisés bouillonnants. Le paramètre clé adopté pour décrire et quantifier le 

comportement dynamique de ce système multiphase est la distribution de la densité spectrale de 

puissance (DSP) des fluctuations de pression. La fonction DSP a été utilisée pour évaluer la précision 

des modèles CFD en utilisant un ensemble de conditions de fonctionnement. Le même type d'analyse, 

étendu à une plus large gamme de conditions de fonctionnement, peut conduire à une validation 

robuste des modèles numériques présentés dans ce travail. En dépit de sa simplicité de mesure, les 

données de chute de pression présentent une importante corrélation avec les lits fluidisés, de plus, 

leur interprétation pourrait aider à améliorer ces technologies très rapidement, poussant les modèles 

CFD plus près des applications. 

Mots clés : lit fluidisé bouillonnant, fluctuations de pression, modèles CFD–TFM/DPM, densité 

spectrale de puissance (PSD), la théorie cinétique du flux granulaire (KTGF) 
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1. INTRODUCTION 

The increasing interest in renewable energies and related technologies is due to the 

increasing demand for energy as well as concern for global warming effects caused by the 

massive exploitation of fossil fuels resources. While depleting, fossil fuels represent a non-

renewable source of energy whose uneven distribution around the globe entails economic 

and geo-political tensions for many countries [1].  

Biomass guarantees a renewable source of energy because of its carbon neutral life cycle 

and rapid growing rate. Solar energy absorption and carbon dioxide are fixed (in form of 

chemical energy) by plants into biomass via photosynthesis for a total amount of 4000 

EJ/year [2]. On the other hand the total global energy demand is estimated in about 470 

EJ/year [1]. When thermo-chemically decomposed, biomass releases this quantity of carbon 

dioxide closing a carbon-neutral cycle. Comprehensively speaking, biomass includes 

agricultural and forestry residues, wood, by-products from processing of biological 

materials, and organic parts of municipal and sludge wastes [1]. However, in literature, there 

is a not clear convergence on the bio-energetic potential because of the different types of 

biomass considered and methods of estimation. So for example, Fischer and Schrattenholzer 

[3] evaluated the global biomass potential to be 91 to 675 EJ/year for the years 1990 to 2060. 

In their study they considered the biomass deriving from crop and forestry residues, energy 

crops, and animal and municipal wastes. Hoogwijk et al. [4] estimated this potential to be in 

between 33 to 1135 EJ/year by including energy crops on marginal and degraded lands, 

agricultural and forestry residues, animal manure and organic wastes. According to Kumar 

et al. [1] only about 40% of potential biomass energy is exploited worldwide with the only 

exception of Asia where the biomass usage slightly exceed the sustainable biomass potential. 

Considering one of the biggest worldwide energy consumer such as United States, it was 

estimated [5]  that, without many changes in land use and without interfering with the 

production of food grains, 1.3 billion tons of biomass can be harvested every year on a 

sustainable basis for biofuel production. The total energy content of this amount of biomass 

would cover more than 50 % of the USA total oil consumption [6]. Despite these numbers, 

there are other aspects such as harvesting, collecting and storage of biomass which limit the 

profitability of using lignocellulosic biomass for production of fuels, chemicals and bio-

power [7]. Moreover this type of biomass presents a significant bulkiness which, combined 
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to a low energy density represents an important barrier to a quick transition from fossil fuels 

to biomass fuels [8]. Alternatively dedicated crops can be used to enhance the production of 

(conventional) bio-fuels, which however can result in a serious competition in the use of 

lands for food production as well as contributing to deforestation. In order to cope with these 

limitations, there is a growing interest in the exploitation of other types of carbon based 

materials which may help to develop a more sustainable supply of energy (advanced bio-

fuels). 

There are two principle and conceptually very different strategies which can be used in the 

energy conversion of biomass (Figure 1.1).  

 

Figure 1.1- Main pathways for the conversion of biomass into heat, 

power, fuels and/or chemicals 

 

The first one is the biochemical platform which in turn can be divided in fermentation and 

anaerobic digestion producing ethanol and methane (not reported in Figure 1.1) respectively. 

Since it is not an objective of this work, this first pathway will not be further discussed here. 

A second pathway is the thermochemical biomass conversion that embraces a series of 

different transformations (not reported in Figure 1.1), ultimately leading either to the 

production of electricity or other forms of fuels (solid, liquid, gas). Among these possible 

thermochemical energy conversions combustions, pyrolysis and gasification are quite 

extensively considered or used in industrial application.  

Combustion, one of the most common thermochemical processes, is carried out though high-

temperature exothermic oxidation in an oxygen-rich environment. Pyrolysis can be either 
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fast or slow. The former involves rapid heating in the total absence of oxygen, aiming to 

maximize the conversion of biomass toward liquid fuels while slow pyrolysis (torrefaction) 

can be used alternatively to optimize the chars fraction. Differently from combustion, 

gasification usually operates at lower temperature under sub stoichiometric oxygen 

condition with the final aim of producing a mixture of gas compounds (mainly CO and H2) 

known as synthetic gas.  

Among the various types of biomass, the biogenic carbon feedstock, such as refuse derived 

fuels (RDF) generated from municipal solid waste (MSW), has a great potential for 

contributing to biofuels production as well as green chemicals for industrial applications [8].  

The increasing world population, combined with the massive economic growth in 

developing countries such as India, China and Brazil, is making of municipal solid wastes 

an increasing concern at a planetary level. In this context, the management of the MSW life 

cycle will require significant efforts to be tackled whilst also an utmost opportunity to 

valorize. The lack of suitable space for landfills combined to the hardly biodegradable nature 

of some of the materials found in MSW calls for supported measures in the upcoming years 

[9].  

According to a 2012 World Bank report [10], production of MSW is estimated to be 

approximately 1.3 billion tonnes yearly and is supposed to increase to 2.2 billion tonnes 

yearly by 2025. Most of it is landfilled or ultimately incinerated. The former solution 

presents several economically and environmentally drawbacks such as: 

- The considerable production of CH4, CO, CO2 (high GHG impact). 

- Potential contamination of groundwater by leachate 

- Unpleasant odors  

- The massive use of land that could be used for other purposes  

- The intrinsic negative cost deriving by a proper management of wastes and respect 

of safety regulations. 

Alternatively to landfilling, MSW can be burnt directly to generate heat and electricity. This 

technique has been used extensively in many developed countries mainly because of its high 

potential for energy recovery. Over the last decades incineration has been proposed as the 

most convenient technology to reduce MSW volume since it is a relatively simple 

technology, well known and mastered, that can reduce the initial volume of waste by as much 

as 85% whilst offering solutions for problems such as waste odor and leachate. However, in 
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the last decades, the incineration primary objective of reducing the generated volume of 

urban waste was edged by new environmental requirements.  In fact, new and more 

restricting policies (Kyoto Protocol, the deliberations at Copenhagen in 2009 and the 

Landfill Directive of the European Union) were approved, aiming to minimize the 

environmental impact of atmospheric emissions, risks for human health and to accomplish 

national/international mandates for energy process recovery. Despite the consistent 

development of Municipal Solid Waste Incineration (MSWI) technologies as well as Air 

Pollution Control (APC), some drawbacks and negative impacts still remain, as shown by 

several recent studies and scientific reports [11]. MSWI exhaust gas produces a multitude of 

pollutants which are difficult and very costly to keep under control due to the large variability 

of chemical compounds originally present inside urban feedstock. Moreover, production of 

MSW is highly subjected to the specific demography of each country which, in addition to 

other factors, can further impact on its final composition. A concern shared by most of 

MSWI technologies is that very harmful compounds can be trapped inside micro flying 

ashes. This can have possible environmental and health consequences on the surrounding 

area. Besides, other technical issues such as corrosion of the incineration systems have led 

to a relatively low economic and energy efficiency. 

In this context, gasification represents a very promising technology which, so far, has been 

widely applied to coal but more rarely to biomass and even less to MSW [12]. Lately, the 

application of this technology to MSW attracted a strong interest as a consequence of recent 

policies to tackle climate change and natural resources conservation [13]. As a “novel” 

waste-to-energy technology, gasification has several potential benefits over traditional 

incineration, mainly related to lower emissions and more flexible and efficient utilization of 

MSW chemical energy. The first and probably greatest strength of gasification is its 

environmental performance, since emission tests indicate that gasification meets the existing 

pollutants limits while having an important role in the reduction of landfill disposal [8]. The 

second and huge strength of this thermochemical pathway relies in the numerous 

downstream possible technologies converting syngas and allowing a broad diversity of end 

products (Figure 1.2).  



Introduction: Definition of the project’s research 

19 

 

  

Besides the aforementioned advantages, gasification also presents other key aspects over 

combustion technologies. In fact, gasification can use low-value feedstocks and convert 

them not only into electricity, but also into liquid and gaseous fuels that can be easily handled 

and transported, with low operational costs [1]. The syngas generated from gasification can 

also be used in advanced technologies such as gas turbines and fuel cells, with high energy 

efficiency [14]. When used in combined cycles for heat and power generation, the use of 

syngas allows for a more efficient removal of species such as sulfur and nitrogen which 

ultimately results in much lower emissions [15]. 

Nevertheless, economics must be considered as a fundamental aspect affecting the 

profitability at commercial scale and ultimately the possibility for a concrete market 

penetration. This validity has to be proven for MSW gasification [16]. The main economical 

drawbacks are linked to the operational and capital costs estimated to about 10% higher than 

those of conventional combustion-based plants [13]. This is mostly due to the ash melting 

system and the overall higher complexity of the technology.  

The gasification process takes place in the gasifier unit where the thermochemical 

decomposition stages of carbon-based feedstock occurs. Gasifiers are classified mainly on 

the basis of their gas-solid contacting mode and gasifying medium, ultimately resulting in 

different architectural and functioning concepts (Figure 1.3). More details about these type 

of concepts are reported in the next chapter of this work. 

Figure 1.2 - Downstream gasification products and opportunities [102] 
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Figure 1.3 – Various concepts of gasifier units based on different gas-solid contact modes [17] 

 

In this work, we focused on fluidized beds, being the one operated by the industrial partner 

(Enerkem)* for biofuels production. More specifically, among various types of fluidization 

regimes (Figure 1.3), Enerkem adopts the bubbling fluidized bed technology. Based on this 

hydrodynamic regime, the gasifier unit presents two contiguous regions which can be 

distinguished based upon different multiphase properties and reactions involved. More 

specifically: 

 The “bubbling bed”, located at the bottom part of the gasifier involves a multiphase 

environment with reactions between the carbon based feedstock, the inert bed 

material (heat carrier) and the gasifying agent (steam, and/or air, and/or oxygen); 

 The “free-board”, located up above the bubbling bed, where the primary syngas 

(permanent gas plus tars) are present along with a low concentration of fine particles 

(char, flying ashes). Part of present tars undergo a process of thermal reforming 

inside this vessel, ultimately leading to more permanent gas. 

The gasifier unit is part of a broader technology (Figure 1.4) and it is used to produce a 

syngas that is downstream converted to biofuels and green chemicals. 

* “ Enerkem’s disruptive technology converts non-recyclable municipal solid waste (i.e. garbage) into 

cellulosic ethanol, methanol and other renewable chemicals, with better economics and greater sustainability 

than other technologies relying on fossil sources. Enerkem operates a full-scale commercial facility in 

Edmonton, Canada as well as both a demonstration plant and a pilot facility in Quebec. The company is 

developing several cellulosic ethanol and methanol production facilities in North America and globally, 

based on its modular manufacturing approach.” [18] 
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Figure 1.4 From MSW to Biofuels - Enerkem overall technology scheme [18]. In the spotlight the first 

technology stage called fluidized bubbling bed gasifier 

 

The optimization of this type of process at industrial scale is fairly challenging since it 

involves a complex chemistry as well as mass and energy transfer phenomena in a multi-

phase fluid-dynamic environment [19]. In order to limit expensive iterative hands-on 

experimental work, Computational Fluid Dynamic (CFD) modeling represents a very 

valuable tool to predict the evolution of fluid-dynamics and thermochemical variables 

resulting from various design configurations and variations [20]. The possibility of relying 

on numerical predictions can be very important in a context of technological optimization.  

Gasification is a well-known process in literature since it has a long tradition of applications 

in various fields [21]. However, reliable and comprehensive CFD characterization of this 

process is very challenging and still to be reached. The lack of numerical modeling of 

gasification is due to the difficulty of accounting for the several thermochemical and fluid 

dynamic aspects involved in the process combined with the limited computational power 

which is still representing a major constraint. Despite these limitations, CFD can potentially 

provide essential information about syngas composition and sensitivity with regard to 

operating conditions and feedstock properties. The contribution that could be given by 

simulation analysis may help designing new efficient generation units with significant save 

of time and money (Figure 1.5).  

Gas IN 

Feedstock  IN 

Gas OUT 

Gas-solid Bubbling bed 
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Figure 1.5 - CFD simulations to investigate bubbling fluidized bed and support technology 

advancement of industrial units 

 

It has been proven that fluid dynamics impacts significantly on the overall efficiency of 

gasification [20]. This consideration highlights the importance of understanding gasification 

fluid-dynamics over a continuous space-time thus motivating the objective of this work.  

In light of this last considerations a “cold” laboratory scale bench reactor was used to 

reproduce and investigate the fluid dynamics of a gas-solid fluidized bubbling bed. Based 

upon this lab-scale setup, different CFD models were then implemented and studied. The 

final target is to apply these CFD models to production scale using them as supporting tools 

for the designing process and optimization to ultimately improve the overall gasification 

efficiency. Such improvement may derive from CFD simulations of different design 

configurations for the gasifier and its operating conditions.  

The research was carried out aiming to achieve a reliable numerical description of fluidized 

bubbling bed technology while finding the advantages and disadvantages specific to each 

type of numerical model in the perspective of their possible application to industrial scale. 

Is there a model that could be more efficient to simulate a full industrial scale gasifier and 

eventually at which cost?
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2. STATE OF THE ART 

2.1 GASIFICATION TECHNOLOGY OVERVIEW 

Gasification systems present the coexistence of different biomass thermochemical 

conversion stages such as combustion, pyrolysis and gasification (Figure 2.1). Among 

various factors, the oxygen availability within the bed is of a primary importance in 

determining which and where each of these stages takes place.  These stages, accordingly to 

the specific type of technology, may occur separately in the different zones of gasifiers or 

more spatially homogenized throughout the whole bed.   

Figure 2.1 - Gasification of biomass: principal steps and products involved in the thermo-chemical 

decomposition of biogenic carbon from MSW [22] 

 

Based upon the type of contact between solid material (either biomass, char or inert material) 

and gas phases (gasification agents and gas released from thermochemical decomposition of 
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feedstock) different reactor concepts have been developed and applied to gasification of 

carbon based feedstock [8]. Among several different possibilities in terms of reactor 

architectures and functioning a significant distinction can be found in moving bed on one 

side and fluidized bed technology on the other.  

In the moving (packed) bed, the feedstock occupies between 30% and 80% of the reactor 

volume and is supported on a grate. The biomass is fed from the top and it decomposes while 

it slowly moving downwards the reactor. The ash extraction is made at the base of the bed. 

Biomass residence times are quite long, usually 2-10 hours. Fairly distinct zones are 

established in the bed corresponding to the different stages of the gasification process, each 

at different temperatures. While biomass moves downward, the gasifying agent can flow 

through the bed concurrently, counter-currently, or cross-wise, which ultimately defines 

three corresponding types of moving bed concepts namely downdraft, updraft and cross draft 

beds (Figure 2.2). More details about constructions technology, operating conditions and 

features of these various fixed beds configurations can be found in [8]. 

   Figure 2.2 – Packed bed gasifiers: a) updraft, b) downdraft, c) cross-draft [8] 

 

In the second type of concept (fluidized systems) the solid particles are kept in a semi-

suspended condition (fluidized state) by the flow of the gasifying medium through them at 

the appropriate velocities [8], which is obviously considerably higher than in packed beds. 

Biomass is fed usually from the side and near the base of the reactor while the gasifying 

agent (air, oxygen, steam or CO2) flows upwards (Figure 2.3). The biomass residence times 

are short, usually seconds or minutes with an extremely efficient mixing due to the high 

turbulence, so that distinct zones are not established in the bed. All gasification stages occur 
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simultaneously throughout the bed. Temperatures are highly uniform, typically at 800-

1000°C. 

 

Figure 2.3 - Schematic of a fluidized bed gasifier [23] 

 

2.2 FLUIDIZED BUBBLING BED DYNAMICS 

There are actually many possible fluid dynamics regimes that could take place inside a 

fluidized bed gasifier reactor (Figure 2.4). These regimes mainly depend upon the superficial 

velocity at which the gasifying agent is operated. The actual Enerkem technology is based 

on an intermediate regime, which is bubbling fluidization (marked in red in Figure 2.4). In 

this regime, the multiphase system includes regions with very low solids density (called 

bubble phase), and other regions with a higher solid concentration (called emulsion phase). 

Bubbles tend to rise through the bed increasing turbulence and increasing the mixing inside 

the reactor. This ultimately helps to enhance the overall efficiency. For this reason, it is 

essential to understand bubble fluid dynamics in order to optimize the whole process. 
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Figure 2.4 - Different fluid-dynamic regime taking place inside a gasifier as function of increasing 

superficial velocity [24] 

 

Fluidized bed reactors are extensively used both in combustion and gasification systems to 

thermo chemically convert the solid fuel (and the intermediate pyrolysis products, char and 

tars) using oxidizing agents and inert bed material. The experience built over decades in this 

field has shown that bubbling fluidization regime is one of the best ones to guarantee optimal 

mixing between various phases, ultimately allowing efficient heat and mass transfer [20], 

[25].  

The hydrodynamic behavior of a bubbling fluidized bed results from the balance of forces 

established between the fluidization agent and the solid particles as well as the mutual 

repulsive forces arising from particle collisions. In the fixed regime, the equilibrium between 

the drag force (exerted by the fluidization medium), the constraint reaction offered by the 

particles (which are packed) and the gravity (acting on the mass of solid particles) ensures a 

static condition for the bed. In this circumstance, any increase of air velocity results in a 

linear increase of gas pressure drop until this latter equal the bed weight. A further increase 

in air velocity leads to a visible bed expansion and to macroscopic instabilities. The transition 

between the static and dynamic bed regime is marked by the minimum fluidization velocity 

(Umf). Once this value is exceed, bubbles start forming in the proximity of the injection zone 

and then move upwards, contributing to phase mixing and turbulence.    

In general, fluidization is significantly impacted by the properties of solid particles, which 

have been classified according to Geldart [26]. This classification, widely accepted in 
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fluidized bed modeling, divides particles in four groups according to their physical properties 

and behavior in fluidization system (Figure 2.5).  

 

Figure 2.5 – Graphical representation of Geldart classification, showing the particles behaviors in 

fluidized systems according to their physical properties [27] 

 

As far as this study is concerned, particles belonging to Group B (namely having a medium 

diameter in the 40-500 μm range, and density between 1400 and 4000 kg/m3) will be the 

center of experimental interest. The use of these particles allows reaching good fluidization 

when operating at high flow rates, while also ensuring bubbles generation on fluidization 

onset and coalescing during the motion. 

All transfer phenomena involved in bubbling fluidized beds, especially in their application 

to thermochemical processes (such as gasification), are conditioned by the particular type of 

contact between the various phases [28]. In order to maximize the contact between phases 

and consequently their mass and heat transfer, a vigorous and turbulent mixing is highly 

desirable. This mixing is mainly promoted by bubbles motion which, moving inside an 

emulsion of solid and gas phase [29], enhances their contact and ultimately the transfer 

phenomena efficiency. Consequently, over the last few decades, significant efforts were 

invested to cope with a lack of understanding that led to difficulties in design and scale-up 

of gas-fluidized bed systems [28]. 
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2.3 NUMERICAL MODELING AND MULTI-LEVEL SCALES IN 

GAS-SOLID FLOWS 

Along with the increasing computational power of the new computers generation, numerical 

simulations became a very useful tool to investigate fluidized beds. As explained by Van der 

Hoef et al [28], simulations can be used in two different manners. First they can contribute 

to bring an insight into the fundamentals of the complex dynamics of particles-gas systems, 

unveiling the effect of physical principles such as drag, friction, dissipation etc. In addition, 

they can be used as a predictive tool for supporting the scale-up design of bubbling fluidized 

beds. As reported by the authors, it is not possible to achieve all of this with one single 

simulation method but rather with a family of approaches, working on different scales and 

time lengths, which will be presented in the following of this chapter. 

Nowadays Computational Fluid Dynamics (CFD) is the most widespread numerical analysis 

for such applications and current limitations to their validity are related to theoretical issues 

as well as CPU performances. In this sense, major constraints are shown very clearly when 

attempting to simulate real systems, involving complex geometries and physical phenomena, 

at full industrial scale [20]. Moreover, the time required for CFD simulations increases 

exponentially with the complexity of the real system under investigation, which represents 

an additional limitation. In spite of these intrinsic barriers, reliable CFD models are essential 

for the optimization of fluidized beds. Several information can be derived from post-

processing of CFD results, such as the local inert material concentration in bed, fuel mixing 

efficiency, temperature profiles of solids and gas phases present in the bed, heat flux etc. It 

would be otherwise impossible to gain a full detailed map (in time and space) of all these 

variables from the experiments. 

Modern CFD is a combination of fluid dynamics models, solved with numerical methods 

and algorithms applied to fluid flows [20] (or multiphase flows like in the current case of 

study). The framework within which CFD modeling attempts to describe thermochemical 

processes, such as gasification, comprises a wide range of physical and chemical 

interconnections as shown in Figure 2.6. 
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Figure 2.6 - Modeling of physical and chemical processes interaction in thermochemical conversion of 

fuels [19]  

 

This complexity derives from the contingent need to account for several aspects involved in 

multiphase systems and related thermochemical processes, resulting in a fully coupled 

system of equations. Equations coupling derives, for instance, from several “source terms” 

which account for the connections between various phases both in terms of exchange of 

momentum, mass and energy. Another example of equations coupling comes from the phase 

densities, used in the continuity and momentum equations, in general linked to the system 

temperature which is retrieved from the energy balance equations. 

The theoretical knowledge of the specific type of applications/problems is absolutely 

fundamental to choose the most appropriate modeling strategy in order to possibly simplify 

this great complexity. This is also the reason why CFD literature [20] of fluidized bed 

applications is divided in three main branches based upon the specific part of the reactor 

under investigation (where the concentration of secondary phase is significantly different) 

which are principally: 

 The bubbling  bed 

 The splash zone 

 The free board/riser 



State of art: numerical modeling applied to multiphase granular systems 

 

30 

 

As far as the actual work is concerned, the focus will be on the first part of the gasifier (the 

bubbling fluidized bed), whose modeling approaches and inherent literature review will be 

presented in the rest of this chapter. 

The term “bubbling” refers to the specific type of fluid dynamics taking place inside the 

reactor (Figure 2.4). The choice of this particular system, as mentioned previously, is related 

to turbulent mixing and high efficiency in term of heat and mass transfer, which justifies its 

extensive use in the industry. Moreover, when compared to more vigorous regimes (Figure 

2.4), the risk of an excessive entrainment of solid particles in the free board and ultimately 

out of the reactor itself is significantly reduced.   

In the industrial bubbling gasifiers, there is always a coexistence of several phases involving 

both gases (gasification medium combined with the one produced from the thermochemical 

decomposition of feedstock) and solid particles. A vast majority of these particles are 

forming the so called “inert bed material” that served the purpose of transferring heat to the 

fuel particles (in mass less than 10 % of the bed) acting as a thermal buffer. 

In cold bubbling applications (usually not employed for industrial purposes) this distinction 

remains, even though the multiphase system is quite simplified since only two phases can be 

theoretically involved. Here, ambient air or nitrogen are usually chosen to fluidize the bed, 

and are considered as primary phase, while the secondary phase involves the solid inert 

particles. The concentration of the two phases cannot be predicted a priori, being the result 

of a random event brought by the turbulent mixing caused by bubbles. Solid phase 

concentration can reach high values in the lower and lateral (close to the wall) areas of the 

bed, depending on the particle distribution and shape, and low values in the presence of 

bubbles or close to the bed surface (where bubble explosions occur). 

The gas phase is usually modeled according to micro- to macro-scales where a scale length 

is characterized by the local Knudsen (Kn) number. This number defines the ratio between 

the mean free path of molecules and a characteristic length scale of the flow. Depending on 

this number, three regimes and corresponding transitions may be possible. The lowest 

Knudsen numbers (smaller than 0.01) are representative of incompressible flows that can 

dynamically be described by the Navier Stokes equations. At the opposite, a Kn higher than 

10 would be representative of a free path system where molecules would move freely and 

colliding only with the system boundaries. These two extreme situations for the gas phase 
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find a modeling correspondence in the continuum and molecular models. While this latter 

can apply only to micro-scale (despite being theoretically applicable to any length scale, its 

use is limited by computing capacity) the former is used to wider scale systems (in the order 

of meters) investigation. The gap between the two models is filled by the kinetic theory based 

on the Boltzman equation [28].  

As for the solids there is a possibility to define various types of models accordingly to the 

scale of simulations and particles density magnitude. Some of the methods used to describe 

granular systems are taken from the molecular gas theory and extended for analogy to fit the 

need to describe particles properties that are obviously quite different. Solid particles and 

gas molecules do not share the same mechanical properties. Specifically, it happens that 

while molecules can be assumed to collide elastically (with no loss of kinetic energy during 

the collision), real particles collisions involve a surface friction and elastic-plastic 

deformations, which generate a loss in the kinetic energy of solid system. These two last 

aspects can distance the granular flow behaviour from ideal gas one quite significantly 

making the description of the solid particles system not straight forward. From this point of 

view, the granular flows description and modeling is quite complex but at the same time 

presents also a significant margin of improvement towards reliable hydro-dynamic models 

development [28]. When choosing the proper model for a multiphase system, a very 

important aspect to consider is the degree of particle packing inside the bed. Depending on 

this value, various interphase coupling possibilities are available, as reported by Elgobashi 

[30] and shown in Figure 2.7. 

Figure 2.7 – Interphase fluid-particles coupling (based on [30]) 
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Given the high density of solids involved, the four-way coupling (Figure 2.7) was considered 

for current thesis work. In fact, in bubbling fluidized beds, the solid fraction ranges from 0 

(in presence of pure gas bubbles) to a maximum packing limit that in case of irregular shape 

particles is a phase fraction ranging between 0.5-0.6. In such circumstances, the solid 

concentration can drastically affect the gas pattern and structure while particles are 

interacting with each other (and with the boundaries of the physical domain) exchanging 

momentum throughout collisions and surface friction.  

In bubbling fluidized beds with no chemical reactions, the two main protagonists driving the 

fluid dynamic of the overall system are the fluid-particles drag forces and the particle-

particle interactions.  

In the last decades, despite the technological advancement in computing science, the 

construction of reliable models for large-scale systems has been seriously hindered by the 

lack of understanding of the fundamentals of dense gas-particle flows [31]. As remarked by 

Van der Hoef et al. [28], one very big challenge, studying multiphase systems, is represented 

by the definition of spatial scales involved. In general the accepted concept is that larger 

flow structures (in the order of meters) might be affected by smaller scales where particle-

particles interactions take place. This considerations can explain why many efforts have been 

put forward over the years to search for proper micro to meso-scale modeling equations of 

gas-particle and particle-particle interactions. These interactions at small scale are of utmost 

importance since they allow developing proper closure laws which, once applied at 

macroscopic scale, provides better modeling of macroscopic flow structures, which are 

usually of major industrial interest. Open literature [20] reports that there are currently three 

main techniques to investigate the multiphase fluidized systems whose multi-level scheme 

and inter-connections are depicted in Figure 2.8. 
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Figure 2.8 - Multi-level modeling scheme [28] 

 

From the smaller to the larger scale we can find: 

1. Lattice Boltzman Model (LBM) or alternatively the Discrete Numerical Simulations 

(DNS) (which represent a broad family of methods despite being not reported in Figure 

2.8).  

2. Eulerian-Lagrangian Discrete Particle Model (DPM). Belonging to this family are the 

Kinetic Theory of Granular Flow (KTGF) model (used in this work), the hard/soft sphere 

models and the MPIC approach. 

3. Eulerian-Eulerian Two Fluid Model (TFM). 

 

2.3.1 Principle features of different numerical approach to solid-gas flows 

At the smallest applicability scale (Figure 2.8) is the Lattice Boltzman Model (LBM) which 

in the last two decades, has emerged as a promising tool for modelling the Navier-Stokes 

equations and simulating complex fluid flows [32]. The fundamental idea is that gases/fluids 

can be imagined as consisting of a large number of small particles moving with random 

motions. The exchange of momentum and energy is achieved through particle streaming and 

billiard-like particle collisions. More details about the mathematical derivation and 

formulation of this method can be found in works of Bao and Meskas [32] as well as in Van 

der Hoef et al [28]. Alternatively to LBM there is another class of methods called Direct 

Numerical Simulation (DNS). This family of methods are the most detailed approach, fully 

resolving the flow around each single particle (Figure 2.9) by solving the Navier Stokes 
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(N.S) equations without turbulence models. The solid-fluid interaction is based on a “stick” 

boundary conditions at the particle surface site enabling to describe a fully resolved 

momentum exchange between phases. In such type of simulations, turbulence swirls and 

their effects are accounted in the whole range of time and space scale length making this 

approach highly computationally demanding. In turbulent flows, the total energy is 

consumed according to a macro to micro scale of vortex (also known as Kolmogorov scale) 

induced by turbulence and their correct numerical resolution would require to account and 

solve for the whole scale of these vortex. Specifically, it can be proved that the ratio between 

the Kolmogorov micro-viscosity scale (for which N.S equations have to be solved) and the 

macro scale (comparable to the length of the flow field) is scaling up with 1/Re, ultimately 

resulting in extremely fine numerical mesh required to study flow field at high Reynold 

numbers. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9 – Example of a Direct Numerical Simulation (DNS) where the gas flow is numerically 

resolved around each single particle in a system [33], [34], [35] 

 

As an example, a simulation of a flow with a Re∼106 in a field of ∼1 m would require to 

work on a numerical grid in the order of 10-5 m. For this reason DNS has been used to 

describe only very small scale systems (around 1 cm max) comprising few thousand particles 

[28]. Even with the most powerful new generation computers, this method is not reported in 

literature among those potential techniques used to study multiphase applications at pilot or 
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industrial scale [20]. The goal of these simulations is rather to develop and tune drag laws 

that might possibly be employed in larger scale applicability models (DPM , TFM etc..). 

In their recent work Tang et al. [36] used a DNS approach to study the fluidization of 5000 

particles in a pseudo-2D gas-fluidized of 3.75·10-4 m3. Using Particle Image Velocimetry 

(PIV) they were able to obtain detailed information on the gas flow and motion of individual 

particles, with specific focus on comparing the empirical and numerical particle granular 

temperature (as key characteristics of particle velocity fluctuations).  

The empirical system investigated in the present thesis work, comprises a total volume of 

approximately 1.85·10-2 m3 with around 680 million particles. It is here clearly evident how 

a DNS approach would not be possible to characterize such a dense particle system. 

The other two modeling approaches, namely the TFM and DPM (DDPM)-KTGF, were used 

in this work to investigate bubbling bed fluidization. The decision of investigating these two 

models was motivated by their conceptual difference in the numerical treatment of the solid 

phase. From here, the motivation in exploring the main features of these two CFD models to 

ultimately determine and compare the advantages and drawbacks of each of them in the 

perspective of their potential application to industrial scale. The most significant features of 

these two methods and related applications to multiphase systems (as reported in open 

literature) are presented in the rest of this chapter while their proper equations will be shown 

in Chapter 3.  

The DPM (DDPM)-KTGF represents only one of the possible options in the Eulerian-

Lagrangian description of gas-solid systems (where the hard or soft sphere approaches may 

also be used). The reasons behind the choice of this particular Lagrangian approach will be 

discussed at the end of section 3.3.  

The two selected modeling approaches share a very important aspect, which is the Kinetic 

Theory of Granular Flow (KTGF) [37], [38] used to define the granular properties of the 

solid phase. According to this theory, the particles behavior is approached in a similar 

manner to the one of a molecular gas. The use of this theory allows to bring important closure 

relations ultimately bridging the micro-scale description of granular flows (DNS) to a macro 

scale approach. According to the KTGF theory, two granular flow variables such as the solid 

pressure and the solid shear stress tensor (both including kinetic, frictional and collisional 

components) are introduced to account for repulsive forces between colliding particles. 
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These two variables are in turn computed as a function of the local granular temperature (for 

which an extra conservation equation is solved) which is defined from the fluctuations in the 

velocity of the solid particles. More explanation of each of these term can be found in the 

next chapter (section 3.3). 

The Euler-Lagrangian Discrete Particle Model (DPM) represents a class of methods 

occupying an intermediate place in the applicability scale shown in Figure 2.8. In DPM 

methods, the primary phase (gas/fluid phase) is described as a continuum (fluid) by solving 

the Navier Stokes equations, while to the secondary (solid) phase is modeled a system of 

spheres according to a discrete approach. Differently from the DNS approach, the cell size 

over which the gas field is resolved contains many particles and the flow properties are 

averaged within each cell resulting in the impossibility to detail the gas flow around each 

particle. However the advantage of this method is the possibility to provide a detailed 

description of the overall solid phase distribution inside the domain (thanks to the 

Lagrangian particles tracking) without confining the study to only few particles (as for the 

DNS approach). In this context the trajectory of each sphere results from a double integration 

of the Newton’s second law which expresses a force balance applied to each of them within 

the Lagrangian framework. Consequently this class of methods allows detailing the motion 

and evolution of feed stock solid particles in the bed (for hot model applications) as well as 

simply investigating cold segregation phenomena (shown as an example in Figure 2.10) 

when particles of different size are used. 
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Figure 2.10 -Snapshots of size segregation in fluidized bed: (a) simulated and (b) experimental binary 

mixture mixing [39] 

 

In order to avoid any possible confusion about the nomenclature (acronym) of the 

Lagrangian model used in this work (where DDPM-KTGF will be used in place of DPM-

KTGF), it is important to highlight some aspects which strictly relate to the definition of this 

type of model within the software used here (Fluent). According to the present software, the 

DPM approach will only be valid when the solid fraction of the dispersed phase (solid 

particles) is below 10-12% of the fluid (gas) domain [40]. In such a circumstance the volume 

fraction of the discrete phase is sufficiently low and it is not taken into account when 

assembling the continuous phase equations. Moreover the low volume fraction of particles 

allows neglecting the particle-particle interactions (collisions), which represent a significant 

simplification. However the respect of this solid load threshold limits the exploitation of the 

DPM approach (so conceived) to bubbling fluidized bed application. In such a type of 

system, particles can accumulate very easily (in some part of the bed even exceeding the 50 
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% of the total volume) requiring to both account for the volume exclusion effect in the 

primary phase (considering a gas fraction coefficient in both the continuity and momentum 

equations) and particle-particle collisions. For these reasons a Dense Discrete Phase Model 

(DDPM) was used in this work and coupled with the Kinetic Theory of Granular Flow 

(KTGF) to account for particle-particle interaction forces. While the DPM represents a class 

of Lagrangian approaches to multiphase flows (well known in open literature and 

independent from any software nomenclature), this DDPM approach comes as an extension 

of the DPM to high density granular systems according to the definitions specific of the 

present software. Therefore in the rest of this work, the acronym DDPM will be used instead 

of DPM, which will also allow to be consistent with other works found in open literature 

where authors used the same software and referred to the DDPM approach.  

In the DDPM-KTGF model, particles contact forces (collisions) are estimated by solving the 

gradients of granular flow variables (solid pressure term and shear stress tensor), which are 

derived from an averaging process involving the position and velocities of particle over the 

Eulerian grid (where the primary phase is solved). Conversely, in fully resolved collisional 

methods (such as the Eulerian-Lagrangian soft sphere model briefly introduced at the end of 

section 3.3) collisions are independent of Eulerian variables but are rather computed as a 

function of particles mechanical properties (elasticity coefficient, particle stiffness, damping 

coefficient etc..). This motivates the reference to this DDPM-KTGF as an Euler-Lagrangian 

hybrid approach to multiphase system [41].  

At a larger applicability scale (see Figure 2.8) there is the Eulerian-Eulerian Two Fluid 

model (TFM) which considers a simplified description of both gas and solid phases. These 

are both described as inter-penetrating fluids, thus introducing phasic volume fraction as 

continuous function of space and time. The summation of all phasic volume fraction is 

obviously equal to one. The application of this method to multiphase granular systems allows 

observing the concentration of different phases within the domain thus without recognizing 

the single particles distribution (Figure 2.11). Despite the apparent simplicity in the 

representation of various phases, this one of the most complex approach to multiphase 

granular systems since it requires the definition of several constitutive relations (derived 

from the application of the KTGF theory) to close the set of governing equations. These 

latter are represented by the mass and momentum conservation equations, which are solved 
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per each phase. The resolution of these equations allows to recover the motion field (velocity 

and pressure) for both phases together with the distribution of phasic fractions.  

This method proved to be computationally cost-effective when the volume fractions of gas 

and solid phases are comparable and the interaction between these phases is significantly 

impacting on the overall fluid dynamic behavior such as in bubbling fluidized beds [20]  

 

 

 

As a sum up of these three different class of methods, namely the DNS simulations, the DPM 

approach and the TFM, Figure 2.12 schematically reports the main differences and scales of 

applicability. Here is provided an example of multi-level modeling application to the study 

of a life-scale fluidized bed (left). The arrows represent a change of model. In first place the 

TFM (see enlargement) can be used to simulate large sections of the unit providing overall 

information about phase concentrations (see the shade of gray cell by cell). On the right, a 

part of the same section is modeled using discrete particles (DPM). The gas-phase is solved 

on the same grid as in the two-fluid model which is containing a certain number of particles 

whose shape or size is not relevant in capturing the gas flow patterns and features. The 

bottom graph shows the most detailed level, where the gas-phase is solved on a grid much 

smaller than the size of the particles (DNS) which allows to account for the specific particles 

properties (size, shape etc..) and their effect on the gas flow. 

 

Figure 2.11 - Injection of a single bubble into the center of a mono-disperse fluidized bed consisting of 

spherical glass beads of 2.5mm diameter at incipient fluidization conditions. Comparison of 

experimental data (left) with TFM (right) [103] 
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Figure 2.12 - Graphic representation of the multi-level modeling scheme [28].  

 

2.3.2 CFD models: TFM and DDPM-KTGF applications in open literature 

TFM 

Different versions of the TFM approach have been proposed over the years, mainly differing 

for the type of closure used for approximating the solid shear stress tensor and more 

specifically the solid viscosity being an important part of it. Here, in the early stage of this 

hydrodynamic model development, authors such as Anderson and Jackson [42], Sundaresan 

et al. [43], Kuipers et al. [44] and Tsuo et al. [45] proposed the use of an empirical constant 

viscosity along with an empirical correlation, linking the solid pressure term with solid 

fraction volume. However, these simplifications presented as major limitations the absence 

of a fundamental link between the solid viscosity and pressure with the particles phase 

rheology. Another class of TFM was developed for dilute systems, relying on the extension 

of turbulent viscosity approach for the gas to solid phase. Nevertheless, these models, 
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developed initially by Elgobashi et al. [46] and Chen et al. [47], and later extended by Zhou 

and Huang [48], did not include the effect of particle-particle collisions on the solid 

viscosity. Consequently these models were not suitable to investigate dense multiphase 

system (such the one object of this work) even though useful for studying dilute granular 

flows. 

In this work the closure for the shear stress tensor derives from the application of the kinetic 

theory of granular flows (KTGF) to the continuum description of the solid phase. Major 

contributions to this modeling approach is owed to the works of Gidaspow et al. [49], [50]. 

Following Gidaspow et al. findings, Sinclair and Jackson [51] used the TFM-KTGF model 

to predict the core-annular regime for steady developed flow in a riser. Samuelsberg and 

Hjertager [52] performed transient simulation of gas-particle flow in a riser comparing it to 

empirical data while Nieuwland et al. [53] applied this model to investigate a circulating 

fluidized bed. Detamore et al. [54] exploited the model to perform a scale-up analysis of a 

similar fluidized system. In more recent works, Peirano et al. [55] conducted a CFD study 

of a bubbling fluidized bed (BFB) using an Eulerian TFM approach both in 2D and 3D to 

assess its numerical accuracy and suitability to catch the dynamic behavior of bubbles. 

Syamlal and O’Brien [56] used a TFM-KTGF model to investigate the contacting behavior 

of catalytic reactors by catalytic decomposition of ozone (O3). After having obtained a 

verified model, they also found a good quantitative agreement with experimental data. 

McKeen and Pugsley [57]  showed that a freely bubbling bed of fluid catalytic cracking 

(FCC) catalyst can be simulated for superficial gas velocities in the range of 0.05 to 0.2 m/s 

with reasonable accuracy, using the two-fluid CFD code. In this work, they compared 

numerical and empirical data based on the bed expansion, and bubble diameters and rise 

velocities. Zimmerman and Taghipour [58] exploited a TFM-KTGF model to simulate  the 

hydrodynamics and reaction kinetics of gas-solid fluidized beds containing catalytic 

cracking (FCC) particles (Geldart group A). Specifically in their study the authors focused 

on the the effect of different drag formulations on the overall bed expansion, solid-gas 

momentum exchange and conversion of ozone. The authors proved that the effect of the drag 

model was significantly impacting the result predicted by the TFM and specifically that the 

Gidaspow [59] and the Syamlal-O’Brien [60] drag were not applicable in their original forms 

for simulating their empirical test case. These two models were found over predicting the 

bed expansion and the momentum exchange between the gas and the solid phase. However 
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the modification of the Syamlal-O’Brien drag law based on the minimum fluidization 

conditions, as a generalized method to decrease the drag, was found to provide modeling 

predictions in reasonable agreement with the experimental data. Vega et al. [61] used a full 

3D TFM-KTGF approach to investigate a cylindrical bed filled with Geldart-B particles and 

fluidized with air in the bubbling regime comparing numerical results with experimental data 

obtained from pressure and optical probe measurements in the real bed. The TFM description 

of bubbles motion (within the solid bed) was found accurate enough to provide a link 

between the local effect (monitored between two very close points in the bed) of these 

bubbles and the local pressure drop fluctuations (Figure 2.13). Thus the TFM was considered 

satisfactory to prove the connection between the spectrum of the local pressure drop 

fluctuations and the one the solid phase fluctuations. 

 

Esmaili  and Mahinpey [62] compared the results of their 3D-TFM to empirical data (testing 

them over a wide range of superficial velocities), using time-averaged pressure drop at 

different locations as well as bed expansion ratio. In particular, they highlighted the 

importance of drag formulations (Figure 2.14) on the correct numerical prediction of these 

two indicators.  

Figure 2.13 Experimental vs 3D-TFM applied to bubbling fluidized bed to investigate the effect of 

local pressure drop fluctuations induced by local variation of solid load [61] 
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Figure 2.14 –Effect of drag law formulation on bubbling fluidized bed dynamics; from the left to the 

right the experimental fluidized bed (a)  and the CFD simulations obtained using the following drag 

law formulations : (b) Syamlal–O’Brien adjusted; (c) Syamlal–O’Brien; (d) Arastoopour; (e) Gibilaro; 

(f) Hill Koch Ladd; (g) Zhang–Reese; (h) Richardson–Zaki; (i) RUC; (j) Di Felice adjusted; (k) Di 

Felice; (l) Wen–Yu and (m) Gidaspow [62] 

 

Also in this case, the TFM showed a significant sensitivity to the particular choice of drag 

law and only two formulations were found to provide a good match with the empirical time-

averaged pressure drop and bed expansion (pictures b and j in Figure 2.14). Min et al. [63] 

validated their 2D and 3D TFM-KTGF throughout gas hold-up measurements (using X-ray 

imaging system) as well as by the time-averaged pressure drop data. They also focused on 

the effect brought by different formulations of the drag law prediction on the gas holdup 

variation through the bed height. Jang and Arastoopour [64] used a 3-D TFM-KTGF model 

to simulate the gas-solid flow patterns both in a small and a large-scale bubbling fluidized 

beds. The TFM was found to provide very good match with some of the empirical gas-solid 

hydrodynamics indicators such as mixing, pressure drop, solid void fraction distribution 

inside the bed, and bed height expansion. The authors concluded that TFM approach could 

ultimately be considered as a promising tool in the design and scale-up of bubbling fluidized 

bed systems. Tagliaferri et al. [65] simulated the dynamics of a fluidized bed of a binary 

solid mixture using TFM-KTGF model, focusing on the role of both the restitution 

coefficient and the accuracy of different time and spatial discretization methods (used to 

discretize the governing equations) on the bed dynamics. In their work, the authors found as 

main result that the TFM approach is greatly impacted by the numerical diffusion induced 

by the first order spatial discretization schemes, which is ultimately limiting its ability to 

correctly predict the bubble fraction in the bed and in turn the solid mixing rates. 
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DDPM-KTGF 

When compared to other numerical models (TFM or DPM-DEM), the literature available on 

the DDPM-KTGF model appears quite limited. Only a few authors have tried to investigate 

this approach while benchmarking his performance and accuracy against the two 

aforementioned methods.  

Chen and Wang [66] used all three possible approaches to model an impinging gas-solid 

flows phenomena. In order to test the accuracy and limit of applicability of these models, 

Chen varied the solid load of jets as well as their velocity and observed the predicted 

numerical behavior in the impinging zone. In this work, the use of a DDPM-KTGF model 

allowed correctly predicting the dynamics of solid jets in most of the operating conditions 

in agreement with the more sophisticated DPM-DEM method. However it failed in 

predicting the dynamics of two colliding jets, whose solid fraction load of 0.1 was expected 

to result in a merging phenomenon. In such a circumstance, both the TFM and DEM model 

correctly predicted the merging of these two jets, while the DDPM-KTGF predicted these 

two jets crossing each other most likely (as explained by the authors) because of the 

simplified particle-particle interactions treatments leading to an unreliable overlapping of 

solid particles. The over-simplified treatment of particles collision and resulting unreliable 

overlapping were found to be the main drawbacks of this numerical approach. 

Major contributions on the exploitation of the DDPM-KTGF approach came from Cloete at 

al. [67]–[70] who employed this model at different scales and for different applications 

(always for gas-solid systems). In a first study [70], they compared the TFM and DDPM-

KTGF to dilute granular systems to investigate the capability of the 2 models in predicting 

the evolution of granular temperature, momentum coupling between the two phases and 

standard deviation of volume fraction field. They found a pretty good agreement between 

the two models even if the DDPM approach was able to resolve very fine structures and 

clusters, which were not caught by the TFM (where only wider clusters where predicted). 

One possible reason, claimed by the authors, was due to the absent numerical diffusion in 

the DDPM approach. Oppositely, the TFM approach (despite a very fine grid employed) still 

showed some numerical diffusion causing the time-averaged flow variable to keep changing 

with any further mesh refinement. In addition, using a dedicated experiment, the authors 

where able to explain the higher clustering effect predicted by the TFM. The DDPM model 

was found able to correctly predict the interaction of impinging solid jets while the TFM 
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always resulted in delta shock (merging effect) each time some solids jets would cross each 

other’s trajectories, resulting in the formation of higher solid density regions (clusters). 

Cloete et al. [69] showed the superior capability of DDPM-KTGF model in an industrial-

scale fluidized bed application on coarse meshes. This model was able to provide the same 

structures resolution on a four time coarser mesh size (as compared to the TFM) while 

allowing 4 times greater time step. This combined effect contributed to a massive 

simulations speed-up.  

Quite similar results were obtained and shown later by the same authors [68], who applied 

this model to a pseudo-2D fluidized bed. Here the DDPM-KTGF model was found able to 

reach the same level of structures resolution as the TFM on 8x fewer grid cells (Figure 2.15). 

Figure 2.15 - Snapshots of the experiments (left) and volume fraction distribution as predicted by the 

TFM (centre) and DDPM (right) for 150 µm (first group on the left) and 350 µm particle size (second 

group on the right) [68]. 

 

With this work, Cloete et al. concluded that the DDPM accurately predicts the flow dynamics 

in bubbling fluidized beds, pointing out how this method can achieve a superior grid 

independence behavior, ultimately holding great promises for large-scale 3D simulations of 

bubbling fluidized systems. 

Adamczyk et al. [41] also used the DDPM-KTGF approach to model a dense gas-solid flow 

that was combined with a combustion process in a large-scale industrial CFB boiler whilst 

comparing its results to TFM predictions (Figure 2.16). Using these two models, the authors 
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found a similar time-averaged map of solid distribution, which compared fairly well in both 

cases with empirical data. However the use of DDPM approach was found significantly 

advantageous to include the particle size distribution (PSD) in their system, which 

conversely strongly limited the performance of the TFM approach. 

Figure 2.16 – Distribution of solid fraction on external boiler walls using the DDPM and TFM methods 

for two different mesh size [41] 

 

As it emerges from the literature examples reported in this section, the validation of a CFD 

model can be very complex since there are several features that can be compared between 

the real and virtual systems. In many cases, authors focused on the observation of the volume 

fraction distribution inside the bed, the gas displacement, bubbles shape (etc…). The latter 

can be achieved using various type of tomography analysis such as virtual imaging 

reconstruction throughout penetrating x-ray waves. However, such high tech equipment may 

not always be available, especially at industrial scale. In this work a simpler strategy was 

employed to validate CFD models (such as pressure drop data) allowing to significantly 

reduce the costs of the experimental apparatus while using a method which could be easily 

extended to investigate industrial units.



Methodology  

 

47 

 

3. METHODOLOGY 

3.1  MODELING APPROACH 

In the present work, a methodological procedure was put in place and followed in order to 

implement numerical tools which could provide an accurate representation of a real bubbling 

fluidized bed. When modeling a real problem, there are three main steps to follow: 

 The choice of the conceptual model (following the observation of the experimental 

problem) 

 The model verification (convergence of numerical solutions) 

 The model validation 

 

This approach, explicitly drawn in Figure.3.1, has to be accomplished in all of its steps and 

in the same order to ensure the robustness of the CFD results. This will affect the CFD ability 

to reproduce empirical data but also, and most importantly, its reliable predictions of the 

effect of the change of operating conditions and geometry on the system behaviour.  

Figure 3.1 - Numerical modeling methodology [71] 

The conceptual model is the starting point and represents the translation of the mechanisms 

(physics) specific of the real problem into mathematical formulation. 
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Obviously this first step of the modeling framework, requires the prior definition of the 

empirical problem to investigate and the characterization of its physics. The choice of the 

conceptual model is a crucial step since a mistake here would lead to a wrong simulated 

model of the real problem, even in case of a perfect execution of the further stages. Such a 

situation may occur due to an erroneous definition of the equations used to describe the 

physical problem. However this contingency is quite rare when using commercial CFD 

software where all the equations have already been properly selected for the specific type of 

problem. More likely, some terms might be neglected in the equations or, if not, their 

formulation may not be accurate to capture the nature of the real phenomena inside the 

system. Thus, beside the main equations defining the conceptual model, there are also 

specific terms and functions to be modeled in order to properly catch the physical 

phenomena involved. Consequently, at this stage, it is important to have a solid 

understanding of the physical phenomena in order to properly select and solve its governing 

equations together with all significant terms. As a rule of thumb, discarding terms 

(representative, inside the equations, of physical mechanisms) whose importance is known 

to be negligible can reduce the computational demand of the CFD models. However, the 

correct and accurate modeling of certain mechanisms (drag, friction, collisions etc…) is vital 

to correctly predict the behaviour of the physical system. 

The definition and the importance of the second and third steps of this modeling path 

(verification and validation) was very effectively described by Grace and Taghipour in their 

work [71]. After the proper choice and description of the mathematical model (throughout 

its equations and related terms), the numerical verification stage takes place. This part of 

modeling is not related to the physics of the real problem under investigation, but rather 

relates to the study of convergence of numerical solutions as derived from the resolution of 

governing equations. CFD analysis involves in fact the discretization of these equations over 

a space-time grid to ultimately obtain a set of non-linear algebraic equations in which the 

unknown variables can be solved according to a certain space-time accuracy determined by 

the specific numerical method used. This investigation is aimed to: a) correctly assess the 

importance of the numerical setup, mostly mesh grid and numerical schemes (temporal and 

spatial discretization of variables), on the numerical solutions convergence and b) finding a 

numerical setup such as to ensure this convergence, namely the numerical solution 

independency from any further accuracy refinement. Consequently, the most significant 

challenge is to find the coarsest possible mesh size and least accurate discretization scheme 
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ensuring the convergence of numerical solutions. Finding this limit can significantly benefit 

the simulation performances once the model is properly set.  

The (numerical) solution found at this stage may still be distant from the empirical data 

measurements. This is easily comprehensible since, at this stage, the choice of physical 

parameters and/or their proper modeling inside the equations may still not be accurate 

enough to give the best match with the empirical data.  

Moreover, to ensure the reliability of the numerical solution convergence, the most accurate 

set of discretization schemes should be chosen. This is highly desirable to limit numerical 

diffusion and thus the change of numerical solution with grid refinement. Even though 

performing simulation with higher order schemes is translating in longer simulations, this 

choice can prevent further loss of time which may result from a lower order scheme. In fact 

switching from first order to second order scheme might change the numerical solution again 

putting the user in a situation where it is necessary to rethink about the grid refinement 

process a second time.   

As a general approach, in order to speed up this stage, a “base case” set of simulations can 

be chosen. Practically the values/formulations of all the solid/gas parameters (and operating 

conditions) are identical while the mesh is refined in order to assess the variation into 

numerical solution behavior. Figure 3.2 reports an example of grid refinement whose effect 

reflects a more detailed distribution of solids and bubbles inside the bubbling bed. 

 

 

 

 

 

 

 

Figure 3.2 - Example of mesh refinement approach: very fine mesh the model allows catching micro 

structures not visible at coarser level but at very high computational costs 
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Thus, ideally, one should first decide a “reasonable” set of values (for constant parameters 

such as restitution coefficient etc.) and proper functions (describing the intrinsic physical 

properties and behavior of solid phases) and afterwards move forward refining the grid until 

a convergence trend is achieved. The concept of “reasonable set” is essential at this stage, 

since numerical instabilities could result from the wrong choice of some of them, causing 

the entire simulation to crash. This occurrence is quite common in the early stage of model 

development.  

The last stage in numerical modeling procedure is the so called model validation. Among 

the possible definition of validation one widely accepted [72] defines it as “the process of 

determining the degree to which a model is an accurate representation of the real world from 

the perspective of the intended uses of the model”. According to this definition, validation 

involves not a single test but rather a process to be carried out. It also requires an accuracy 

assessment on both the experimental and modeling sides to define the uncertainties and 

ultimately the level of confidence in corresponding results. Another implication is that the 

context in which the model is to be applied has its own relevance and different applications 

may lead to different requirements to be met in order to claim the model validated. In any 

case, the validation represents the sum of all prior steps of simulations work and is aimed at 

showing the intrinsic robustness of the overall model. At this stage the user “challenges” the 

CFD model, testing its own ability to reproduce experimental data obtained under different 

operating conditions (such as air velocity, type of inert, bed height for the present study). As 

remarked by Grace and Taghipour [71] both model predictions and experimental data are 

needed, preferably covering a broad range of conditions while also using multiple 

independent and dependent variables for the model validation assessment. 

Practically, during model validation, all sensitive parameters undergo a tuning or fitting 

process in order to minimize the error between the models and empirical data. Whereas the 

verification can be achieved without physical evidence, validation requires the model 

predictions to meet the experimental data. 
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3.2  EXPERIMENTAL: METHODOLOGY APPROACH AND SETUP 

DESCRIPTION 

The experimental observation and measurements represent an essential part in the definition 

of the first and third steps of the modeling approach previously presented. In fact the 

conceptual model (first step) is built upon the knowledge of the experimental system and its 

physics whereas the model validation (third step) arises from comparison between the 

empirical measurements made on this system and the model predictions.  

In order to accurately simulate the real bubbling fluidized system (Figure 3.3, left), that 

embeds and couples the multiphase fluid dynamics with a set of complex chemical reactions, 

various simplifications and assumptions were made. The need to simplify both the 

geometrical and physical aspects was justified both by the computational power 

requirements and the intrinsic complexity involved. Moreover it can be a good practise to 

separate the reactive part of the problem from its fluid dynamics side in order to lower down 

the complexity of parameters fitting. For instance if kinetic parameters are specific of certain 

type of reactions, their fitting could take place in a different and more simple reactor, rather 

than fluidized beds, and applied to it in a second moment. After all kinetic and transport 

phenomena may interfere with each other which would result in a highly complex system to 

be numerically characterized.  Besides,  very little literature is available about the application 

of CFD modeling to full industrial scale hot-model [20]. For these reasons, the very first step 

was to assemble a down-scale bench reactor of a bubbling bed, which could still be 

representative of the fluid dynamic behavior of real units. This down-scale bench reactor 

was assembled to experimentally observe the hydrodynamics of cold bubbling bed, its 

characterization throughout proper measurements and ultimately for CFD modeling 

validation. It was decided to discard the reactive part of the model in order to focus only on 

the cold fluid-dynamic behavior of the bed. The second step was to rely on a simplified air 

injection system in order to ease the numerical modeling of the gas distributor. This allowed 

for the implementation and use of a planar-2D model of the bed which conversely would 

have not been possible using a more complicated feeding geometry (Figure 3.3, left), such 

as the one used at industrial scale [73]. In this last case, only a 3D model would have been 

able to correctly represent the injector system architecture and the dynamic of the gas flow 

at the reactor inlet, resulting in costly simulations in the very early stage of model 

development. Moreover the idea of simplifying the air distributor in order to study a 2D 
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problem was justified by the primary need of catching the overall behaviour of the bed, with 

no need, at first, to have a precise prediction of the fluid dynamics in the proximity of the air 

injection zone. 

 

Figure 3.3 - From a “hot” industrial unit [74] to a cold laboratory scale bench 

 

Further considerations related to the link between the industrial and laboratory scale system 

In order to support the first type of simplification (namely studying a cold model as 

representative of a hot one) and such as to guarantee the validity of future model extension 

to industrial application, an additional in-depth explanation is required. In fact one while the 

cold model experiment are carried out at ambient temperature, in real systems, such as 

industrial gasifiers, temperature can reach values in the order of 600 °. The effect of high 

temperature on the gas properties can be significant, leading to an increase of viscosity and 

a decrease of density. Among these two effects, the increase of gas viscosity shows to be the 
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predominant effect leading to a lower value of the experimental minimum fluidization 

velocity (Umf). Such a discrepancy would lead to an unacceptable divergence between the 

cold and the hot model predictions for the system fluid dynamic in a given set of equal 

operating conditions and material properties. Despite that, one strength of this work lies in 

the choice of a particular drag law which, as explained in the section 3.3.4, computes a drag 

coefficient based upon the experimental value of the minimum fluidization velocity. 

Consequently, despite the important difference between a hot and a cold system linked to 

temperature, the CFD models here implemented are flexible enough to take into account this 

change. Another potential difference between the industrial and the laboratory system 

concerns the choice of inert particles diameter forming the bubbling bed. In this case such a 

variation would result in a different value of Umf. For the aforementioned reasons (and also 

in this case) the CFD models implemented here would easily take into account this aspect 

adapting the drag coefficient based upon a different value of Umf. 

 

Experimental setup description 

The experimental setup used in this work (Figure 3.3 on the right) was chosen following the 

assembling method discussed by Conshohocken [75]. A scheme of this setup and its 

principle components can be observed in Figure 3.4. The setup comprises of a lab-scale 

fluidized bed and specific instrumentation measuring and monitoring both the gas flow 

discharge and the pressure drop along the bed. The reactor body is made of clear PVC, which 

allows a dynamic visual analysis of the process. The body of this system is a 6” i.d. over a 

40” height cylinder. The bottom flange allows stabilization of the base of the PVC cylinder 

wall while embedding the porous gas distributor plate. This latter is stainless 316L-made 

and presents a micro-porosity of 1.3 µm such as to ensure an optimal homogenization of the 

gas prior to the reactor inlet. The choice of such a distributor typology is dual, first 

contributing to generate small bubbles all over the cross section while ultimately helping 

avoiding some experimental drawbacks like dead spaces and the back-sitting of solids. 

Secondly, as previously explained, it allows for an easier numerical schematization of the 

inlet boundary condition that can be accounted easily into a 2D geometry. Moreover the very 

fine porosity is such to guarantee a local pressure drop (induced by its own intrinsic porosity) 

comparable to the one along the bed in the fluidization regime. Despite being highly 

conservative, this precaution is always considered when designing a proper gas distributor 
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in order to avoid a potential and persistent gas channeling inside the bed induced by a too 

low pressure drop. A filter is placed on top of the upper flange to prevent solid particles from 

being entrained out of the bed during fluidization regime and, right next to it, a relief valve 

allowing to avoid any dangerous overpressures. For the tests, the reactor was operated under 

ambient conditions. The key device, for validation purposes, was a differential pressure 

gauge (Kistler 4264A), capable of recording up to 1000 pressure-drop data per second. These 

were then transferred to a Labview acquisition system for data saving and real time pressure 

drop monitoring. The pressure drop was measured between two points at the extremities of 

the cylinder’s body. The bottom probe was positioned at 2.5 inches over the porous plate 

and the upper one was at the proximity of the top flange. Two small meshed screens were 

put inside the two pipes of the differential pressure gauge to avoid particles entrainment and 

therefore potential damages to the instrument. Two flow meters were included in the setup, 

one manual (rotameter) potentially available to measure high air flows, and the other was an 

electronic unit operating in the range 0-300 SLPM. Experiments were performed at 22 °C 

(room temperature) and 1 atm, conditions that remained constant during the tests. Finally a 

small light bulb was located in the upper interior section of the reactor flange, lighting up 

the bed surface hence allowing to take better quality pictures and videos.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4 - Schematic drawing of the experimental setup used in this work [75] 
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The bed material used for this study is an alumina powder (190 µm Sauter diameter) 

belonging to the Geldart Group B (Figure 2.5). Alumina was selected since it is a material 

often used in industrial-scale gasifiers (where this inert represents by far the major part of 

the total solid bed mass). The particular size allowed covering a good range of hydrodynamic 

conditions (from fixed bed to vigorous bubbling condition) since the minimum fluidization 

velocity is strongly linked to the diameter of solid particle. By doing so, the system could be 

operated without the need for a manual flow-meter, whose reading accuracy, could be 

considerably lower than the electronic unit. 

 

 

 

The bench reactor was filled with alumina up to a bed height of approximately 260 mm, 

corresponding to a total mass of approximately 9.5 kg. Figure 3.5 shows the experimental 

fluidization curve where the time-averaged values of pressure drop is plotted with regards to 

the superficial gas velocity. These values were calculated as a ratio between the flow 

discharge (measured by the electronic flow meter) and the cross sectional area of the 

cylinder. All the velocity values below the minimum fluidization one were exploited for the 

CFD validation (of TFM) in the fixed regime, whereas only the one circled in red 

(corresponding to 240 SLPM and 3.5 times the minimum fluidization velocity) was used for 

validating the CFD models in the “bubbling” regime. This value was selected in order to 

guarantee a vigorous fluidization regime while respecting a margin of accuracy for the 

electronic air flow reading.  

Figure 3.5 Experimental fluidization curve (Uo=0.2 m/s) where the red circle shows 

the value of superficial velocity (equal to 0.2 m/s namely around 3.5 times the minim 

fluidization velocity) used for the bubbling regime study 
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3.3  CFD MODELS 

In Chapter 2, an overall description of numerical CFD models and their application to similar 

studies (as found in open literature) is provided. Their main features, relative advantages and 

limitations as well as some glimpses on their progressive development are also discussed. 

Here both the upstream numerical setup and the model equations are presented, highlighting 

the importance of various terms involved and their possible formulations.  

3.3.1 Domain design, mesh generation and numerical setup 

The very first step in the implementation of a CFD model is the design of the numerical 

geometry representing the physical domain under investigation. In this study the model 

design is not a complex task because of the intrinsic geometrical simplicity of the 

experimental bench reactor to model. Consequently, using the design modeller of Fluent, a 

rectangular (for 2D planar simulations) or cylindrical (for 3D simulations) geometry was 

created based upon the dimensions of the real system. The only difference in this sense came  

the domain together with the definition of the boundary condition (B.C) types. To this regard, 

a velocity inlet of 0.2 m/s was set on the bottom of the domain (namely equal to 3.5 times 

the Umf of the system), a pressure outlet was selected as B.C on the top of the system (ambient 

pressure) and walls (including a no slip conditions for both phases) completed the boundaries 

of the numerical domain (Figure 3.6).  
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Once that model geometry and mesh have been created the next step requires the definition 

of the type of multiphase approach to use. For the reasons explained in the previous chapter, 

here both the Eulerian-Eulerian (TFM) and Eulerian-Lagrangian (DPM-KTGF) models were 

considered. More details about the equations used for these two different type of multiphase 

approaches can be found in the following sections. The choice of a specific type of model 

comes along with the definition of a proper set of parameters, which identifies major 

functions used in the description of granular flows. The choice of these functions and 

parameters has been summed up in specific tables included in the two models-dedicated 

papers. To be consistent a set of operating conditions is to be set accordingly to the 

experimental ones (setup description in Chapter 3.2). The initialization of simulations 

required the definition of initial conditions (I.C) for both phases, together with the patch of 

the solid phase or the particles injection accordingly to the type of model used and in any 

case consistently with the empirical height and porosity of the bed at rest. Finally the 

numerical settings was defined, which requires the definition of solution methods and 

Figure 3.6 – Example of the numerical setup in the TFM approach showing the boundary 

conditions, the initial condition (solid patch in red) and the mesh size discretization, coarse 

(a) and fine (b) 
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controls to discretize and solve the governing system equations. The solution method was 

defined using a Phase Coupled SIMPLE scheme along with second order accurate schemes 

for both spatial and time discretization to enforce and ensure the validity of the model 

verification (as explained previously). The solution controls involved the definition of the 

so called “relaxation factors” which affect the stability and convergence speed of numerical 

solutions. In this work, default values were used for these factors. 

 

3.3.2 Eulerian-Eulerian Two Fluid Model (TFM) 

The model considers both the gas and the solid phase as two inter-penetrating fluids for 

which conservation equations are derived. However these equations require a proper closure, 

which can be provided by the constitutive/rheological laws. The latter are obtained from the 

application of the kinetic theory of granular flows (KTGF). 

 The general form of the TFM equations are the following:  

Conservation of mass 
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The first term (in both the equations 3.1 and 3.2) represents the mass time derivative while 

the second term is the mass convection term. αs and αg represent the solid and gas volume 

fraction, respectively, and ρs and ρg their densities while 𝑢⃗ s and 𝑢⃗ g their cell-averaged 

velocities. 

Conservation of Momentum 
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The first two terms (in both 3.3 and 3.4) of the left hand side (LHS) are the momentum time 

derivative and convection term respectively. The first term of the right hand side (RHS) is 

the pressure gradient (the equation 3.4 includes also the solid pressure gradient as specific 

term of solid phase). The second term on the RHS is the gradient of the stress tensor, the 

third term (on the RHS) accounts for the gravity effect while the last term is related to the 

momentum exchange due to the fluid-solid drag effects. 

The formulation for the phase stress-strain tensors are: 
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Where λs and λg are respectively the solid and gas bulk viscosities.                      

The stress tensor formulation for the solid phase is formally identical to the one used for the 

gas due the conceptual mathematical treatment of various phases in the TFM approach. 

However, an important difference comes from the viscosity coefficient, which for the solid 

phase is not constant but embeds the combination of three variable components according to 

the use of the KTGF [38], [40] to granular phase modeling: 

 
frictskinscolstots ,,,,                                                                            (3.7)         

The latter are described below and are correspondingly the collisional [59], kinetic [76]  and 

frictional [77] components of the total sheer stress. The relating importance of each of these 

viscosity components is directly linked to the specific dynamics of the bed in the different 

regions of the domain (Figure 3.7). 
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Figure 3.7- Different regime which may occur during in a multiphase granular system during bubbling 

fluidization [78] 

Where collisions are more likely to occur, such as in the surface proximity where bubbles 

explode, the collisional term is more significant whereas in the denser regions (for example 

along the walls) where the frictional term tends to be predominant. In this last situation, for 

example, the solid phase approaches its own packing limit and the generation of stress is 

mainly due to the friction between particles while collisional stress tends to zero. In any case 

the relative importance of these shear stress components is linked to the aforementioned 

granular flow parameters, which vary inside the bed according to the particular local solid 

distribution. 

22/1

,, ))(1(
5

4
s

s
ssssosscols egd 





                                                           (3.8) 

2

,

,

, )1(
5

4
1

)1(96

10














 ssssso

ssoss

sss

kins eg
ge

d



                                               (3.9)  

D

frict

fricts
I

P

2

,
2

sin
                                          (3.10) 

Where Pfrict is the frictional component of the solid pressure [79],  Өs ( 𝑚2𝑠−2) represents 

the granular temperature of the solid system, go,ss the radial distribution function [80], ds(m) 

the mean solid particle diameter, and ess the restitution coefficient expressing the ratio 

between the particle speed after and before collisions.  
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The mathematical description of these granular flow variables, is given by the following 

expressions:  
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Where Ps is the granular pressure derived from the kinetic theory of granular flow [81], λs is 

the solid bulk viscosity [81] accounting for the resistance of the granular flow to compression 

and expansion. Equation 3.15 (similarly to equation 3.7) also accounts for three different 

components related to the kinetic, collision and friction effects of the solid phase 

respectively. This parameter is specific of the momentum conservation equation for the solid 

phase and its gradient (equation 3.4) works as a closure in the definition of the solid 

interaction forces. Equation 3.12 modifies the probability of collisions between grains when 

the solid granular phase becomes dense. Equation 3.11 defines the theoretical concept of 

granular temperature, in analogy to molecular gas system, as a quantity which varies 

proportionally to the fluctuations of solid particle velocity. This variable is in general found 

as a solution of the following (simplified) conservation equation:    
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The equation here presented was obtained by neglecting both the convection and diffusion 

terms. This assumption is fair considering that in dense bubbling bed, the local generation 

and dissipation are predominant as compared to convection and diffusion and granular 

temperature is varying mainly as a result of friction and inelastic collisions [68]. The first 

term on RHS represents the energy generation due to the solid shear stress, the second term 
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on the RHS is the collisional dissipation of energy while the last term on the RHS represents 

the transfer of kinetic energy between the particles and the fluid phase. More details about 

mathematical formulation of each of these terms can be found in [40]. 

 

3.3.3 DDPM-KTGF 

The mass and momentum conservation equations for the gas phase are identical to the one 

previously described in the TFM approach (equation 3.1 and 3.3). Also, all the granular 

parameters and their formulations (equations 3.8 - 3.16) are identical in the DDPM-KTGF 

method. The main difference in this second approach (but the same consideration stays for 

any other DPM models) is the description of the solid particles, no longer described as a 

fluid but rather tracked as spheres (see Fig. 3.8) within the fluid domain. The description of 

particles trajectories is possible by solving a force balance equation (Newton’s equation) 

which accounts for fluid-solid drag, gravity force and particle-particle collisional forces.  

 

 

 

 

 

Since the time to perform simulations is linked to the size of the numerical problem to solve, 

and this latter is made up of the total number of equations to solve, a numerical artifice was 

used in order to reduce the size of this problem. In fact, despite the lab-scale size of the 

empirical system, the total number of particles constituting the bed was estimated in the 

region of 600 million. Since in the Lagrangian DPM each particle motion is associated with 

an equation to solve, the size of the numerical problem would be prohibitive to be dealt with.  

At this purpose the “parcels” concept was used allowing regrouping many single particles in 

one sphere (see Figure 3.9), which is tracked inside the system as if it was a point with a 

mass equal to the total mass of all the particles contained inside.  

 

Figure 3.8 - Single particle 

surrounded by a fluid [104] 
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This simplification was used inside the CFD model to reduce the size of the numerical 

system to be solved. In order to introduce this simplification a proper Matlab code was 

implemented to generate an injection of a certain amount of parcels in the interior of the 

numerical domain. Thanks to this code, the number of parcels targeted was controlled by 

changing their size and consequently, the number of particles per parcel as explained in the 

following.  

Particles (parcels) motion and collisional model 

The DDPM-KTGF approach allows describing the single particle motion by solving the 

following Newton’s equation: 
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Where s  is the volume fraction of the solid phase calculated from the particles 

concentration volume within each cell and 
pu


(m/s) is the particle velocity.  

In the CFD model here implemented, because of the aforementioned reasons, the equation 

3.17 is not used to track a single particle but rather applied to the parcel level (see Figure 

3.9) throughout a scaling factor. This latter accounts for the number of particles per parcel 

as shown below: 
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The number resulting from this ratio (equation 3.18) ensures the respect of two important 

aspects. Firstly it prevents the risk of having any empty spaces inside parcels (whose space 

is totally occupied by particles) which otherwise would lead to an overestimation of the 

simulated bed height at rest. Secondly, this coefficient allows for a perfect scale up of the 

Parcel Particles 

Figure 3.9 - From single particles to "parcels" system [78] 
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gas-solid drag force (from the particle scale to the parcel scale) and consequently a reliable 

dynamic behaviour of the parcels system, which in spite of their mass are fluidized equally 

to single particles. 

According to the KTGF approach the parcel repulsive forces (due to collisions) are modeled 

throughout the last two terms of eq. (3.17). These two terms represent the solid shear stress 

tensor and the solid pressure (respectively) whose mathematical formulation can be found 

in equations 3.6 and 3.15. So collisions are not accurately solved, based upon the mechanical 

properties of particles (as accounted by other Lagrangian methods such as the DEM 

approach), but are rather borrowed from terms computed onto Eulerian frame. This 

procedure makes of the DDPM-KTGF a hybrid approach to solid particles modeling.  

 

3.3.4 Drag law formulations 

The last term on the RHS of both the equations 3.3 and 3.4 and the first on the RHS of the 

equation 3.17, represent the drag force causing the interphase momentum exchange between 

the gas and solid phases. This term is one of the predominant ones (especially in cold 

systems) because it represents the only fluid mechanic link between phases (considering the  

absence of any thermochemical reactions) and consequently, its formulation can 

significantly affect the CFD outputs [62] .  

In general, the interphase momentum coefficient Kgs, can be derived from two different types 

of empirical data. For high values of the solid fraction, this coefficient can be estimated from 

the Ergun drag model for pressure drop in packed beds [82]. However, this type of 

correlation necessitate to be extended using other drag formulations, such as the Gidaspow 

drag law [47,79], to account for low values of solid fraction, which may occur inside the 

bubbling fluidized bed. Alternatively, the terminal velocity of particles in fluidized or 

settling beds can be estimated and used to derive a formulation for the drag coefficient 

depending on the void fraction and Reynolds number. An example of this last category is 

the Richardons and Zaki model [84]. 

Among the possible choices suitable for dense particle systems, the Gidaspow and the 

parametric Syamlal O’Brien drag laws have been investigated as representative of these two 

different classes of empirical data used for drag law derivation. While only the latter was 
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used in the TFM study, both of them have been employed and compared in the DDPM-

KTGF model. 

The Gidaspow model [59] is a combination of the Ergun equation [82] and the Wen and Yu 

model  [85] accounting for different solid concentrations. Specifically: 

When αg > 0.8, the fluid-solid exchange coefficient Kgs is derived from the Wen and Yu 

model expressed as follows: 
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When αg ≤ 0.8 the fluid-solid exchange coefficient Kgs is derived from the Ergun equation 

taking the following form: 
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The drag force depends in general on the local relative velocity between phases and the void 

fraction but also on some other factors such as the particle size, particle shape, etc. The 

particle void fraction is however very difficult to determine other than in a packed bed or 

infinite dilution (single particle). Other factors such as particle shape, clustering and particle 

size distribution can also affect the local drag force but they have never been considered in 

deriving drag correlations [86]. Syamlal and O’Brien [60] derived a formula for the fluid-

solids drag coefficient for multiparticle system using a Richardson-Zaki type velocity-

voidage correlation [84]. Based on the terminal velocity of particles in fluidized or settling 

beds, the authors proposed the following drag correlation: 
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2 gC   if αg  < 0.85              (3.27) 

 C1 = 2.65 and C2 = 0.8 

 

However, the Syamlal O’Brien drag model presented above (with constant coefficients C1 

and C2) can result in the under/over prediction of the minimum fluidization velocity and 

consequently in a too high/low bed expansion [40]. In order to cope with this drawback, a 

parametric version of the Syamlal O’Brien drag model was used. This parametric drag model 

exploits the minimum fluidization velocity and void fraction (on the fluidization onset) as a 

calibration point to adjust the drag force. In order to compute an accurate estimation of the 

inter-phase momentum exchange coefficient, these two parameters should be experimentally 

measured and provided to the drag model inner algorithm, which performs an iteration 

process to minimize the following objective function:  
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Where Ret represents the Reynolds number of a multi-particle system at the fluidization 

onset (minimum fluidization velocity or settling condition), Rets is the corresponding number 

for one single particle, Ar the Archimedes number, CD(Re,αg) an analytical expression for 

the multi-particle drag coefficient and vr is the terminal velocity for the solid phase as derived 

by the velocity-void correlation proposed by Garside and Al-Dibouni [87]. 

According to an algorithm, the parameter C2 (and consequently d1) is changed until the 

objective function (objective function 3.28) is minimized. Hence a new set of two parameters 

is obtained, which gives a more accurate estimation of the drag coefficient for any dynamic 

condition inside the bed (Re and αg) as by the equation 3.35. 
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Further considerations related to the choice of the DDPM-KTGF model   

Besides the application of the KTGF theory to account for particle collisions, another class 

of Eulerian-Lagrangian methods exists and classified based upon the mechanism of particle-

particle interactions. According to the specific mechanism of particle-particle interaction, a 

granular system can be simulated either as “hard-spheres” or “soft-spheres”. The latter, 

originally developed by Cundall and Strack [88], represented the first granular simulation 

technique published in open literature [28] and encountered a growing interest as far as the 

development of models to study gas-solid systems is concerned. This method allows 

computing the contact forces between colliding particles as a function of their local 

mechanical deformability and according to specific types of contact force scheme. However 

this detailed description of particle interactions comes with at least two major drawbacks: a) 

the DEM model requires the definition and tuning of several parameters involved in the 

definition of the contact force scheme (which are mostly unknown and hardly assessable a 

priori); b) the DEM approach is well-known to be very computationally expensive since the 

particles tracking time needs to be considerably lower than the particle collisional time. So 

for instance, the higher is the particle stiffness (whose values can be very high especially 

when the solid phase is represented by alumina powders like in this study), the smaller the 

particle collisional time must be, which is ultimately constraining the particle tracking time 

within the solver. Time requirement, for simulations to perform, is a very important aspect 

to consider when selecting a model to be implemented and tuned. Often, the high number of 

model parameters to investigate results in a corresponding high number of simulations to 

perform ultimately leading to massive time requirement for the model development.  

For the aforementioned reasons it was decided to first explore the Lagrangian DDPM-KTGF 

model to assess its accuracy, sensitivity and performance and to compare them to results 

obtained with the TFM. Nevertheless the possibility of using a “soft-sphere” model was not 

discarded and some numerical work, based on this type of approach, has been already carried 

out although they will not be presented in this work. However much more work is required 

to calibrate and validate the DEM model so that its use to investigate the bubbling bed and 

its granular properties will most likely come as a future extension of this project.   
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3.4  DATA PROCESSING FOR MODEL VALIDATION 

A proper procedure was developed in order to process both the empirical and numerical data 

(Figure 3.10), aiming to achieve a convenient mathematical representation of the bubbling 

dynamic behaviour.  

 

 

 

 

 

 

 

 

Figure 3.10 - Overall view on the experimental-CFD modeling process: on the left the empirical setup 

comprising of the cold bench, electronic differential pressure gauge and camera for video recording; on 

the right the comparison of pressure drop data coming from the empirical bench and the CFD modeling 

of it. 

In order to understand the choice regarding the type of data and the corresponding analysis 

used this work, the following aspects were considered. Both the time-averaged pressure drop 

and the (continuous) time-pressure drop signal cannot fully and univocally characterize the 

dynamic behaviours of a bubbling multiphase system. Particularly important is this last 

aspect, which results in the impossibility to reproduce an identical time-pressure drop output 

under the same input conditions. From the empirical stand point this would strongly limit 

the chance to univocally characterize the fluid-dynamic behavior of the bed to ultimately 

obtain a representative set of empirical data for model validation. 
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Hence, the use of time-average pressure drop value and the continuous time-pressure drop 

signal can still be useful to verify the physical consistency of the CFD model predictions 

with real physics (i.e checking that the time averaged pressure drop matches the mass bed 

weight, see the blue line in Figure 3.11) and to have a qualitative assessment about the model 

prediction of time-pressure drop amplitude (green line in Figure 3.11). However, the 

observation and identification of pressure drop frequencies, associated to specific 

amplitudes, results almost impossible when time-pressure drop signal is used. 

However, neither of these two types of data analysis can univocally characterize and quantify 

the dynamic behavior of the bubbling bed.  

To overcome the aforementioned limitations, the Power Spectrum Density (PSD) analysis 

was used, attempting to quantify the observed fluctuations of the solid bed mass inside the 

system as well as linking it to the pressure drop signal. Spectral analysis is commonly used 

to reveal the periodic signal in a time-series. The PSD represents the frequency domain 

characteristic of a time series and is appropriate for the detection of frequency composition 

in a stochastic process [89]. 

Figure 3.11 - Extract of a CFD simulation showing the time-pressure drop signal and his principle 

indicators in the time domain: frequency (pink), amplitude (in green), time-averaged pressure value 

(in blue) 

 

CFD model 
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In general the Power Spectral Density (PSD) is a measure of a signal's power intensity in the 

frequency domain. In practice, the PSD is computed from the Fast Fourier Transform (FFT) 

spectrum of a signal (in the time domain), resulting in a useful way to characterize its 

amplitude versus frequency contents. The FFT is based upon the idea of decomposing a 

random signal (in the time domain) into summation of an infinite sinusoidal functions of 

different frequencies as follows: 

𝑓(𝑡) = 𝑎0 + ∑ 𝑎𝑘cos⁡(2

∞

𝑘=1

𝜋𝑘𝑣1𝑡) + 𝑏𝑘 sin(2𝜋𝑘𝑣1𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.36)⁡⁡ 

Where v1 is the fundamental frequency which defines the fundamental period T = 1/v1. The 

coefficient of the the series are determined by the following equations: 
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The Fourier Transform is defined as the integral function: 

𝐹(𝜔) = ∫ 𝑓(𝑡)e−jωt
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−∞
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And it represents a transformation from the time function f(t) in the frequency function 𝐹(𝜔) 

which is defined as its own image in the frequency domain. Practically the Fourier transform 

is obtained as the integral between t=0 and T, namely: 

𝐹(𝜔) = ∫ 𝑓(𝑡)e−jωt
+∞

−∞
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In practice a continuous function f(t) is usually  described by a discrete function of time 

(analog signal)  since the there is only a limited number of time steps along which the 

function can be sampled. Consequently the Fourier Transform of a discrete function 

becomes: 

𝐹(𝑢) =
1

𝑁
∑ 𝑓(𝑖)exp⁡(−jω𝑢t𝑖)

𝑁−1

𝑖=0

=
1

𝑁
∑ 𝑓(𝑖)exp (

−j2πui

𝑁
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.41)

𝑁−1

𝑖=0

 



Methodology  

 

72 

 

Where N is the number of data sampled in the period T. By definition ω𝑢t𝑖 = ⁡2𝜋𝑣𝑢𝑡𝑖 =

2πu

𝑇
i∆t =

2πui∆t

𝑁∆𝑡
=

2πui

𝑁
, ∆t the sampling interval (sec), j = √−1 and u = 0, 1, 2, …𝑁 − 1.  

The exponential term can be represented as: 

exp (
−j2πui

𝑁
) = cos (

2πui

𝑁
) − 𝑗𝑠𝑖𝑛 (

2πui

𝑁
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.42) 

Where v1 is still the fundamental frequency defined as the inverse of the fundamental period 

v1 = 1/T= 1/(NΔt) while all the other frequency are called harmonics which are generally 

defined as vu=u/(NΔt). The DFT contains information for all the frequencies until u=N/2 

namely FN/2 = N/(2NΔt) = 1/(2Δt). The Fast Fourier Transform (FFT) used in this work is a 

faster version of the DFT which can reduce the number of operations from N*N (required 

by the DFT) down to N * log2(N) operations. In general, the FFT is a complex quantity units 

(according to the equations 3.40 and 3.41) having real and imaginary values for every 

frequency point. For the the present purpose, only the amplitude of the spectrum (PSD) is 

required [89]. To obtain the PSD each FFT is multiplied by its complex conjugate with the 

result being a real number with a squared unit of measure of the original signal (in this case 

𝑃𝑎2 being the pressure drop the original signal). The PSD so obtained captures both the 

power (or intensity) of the input signal and its frequency content distribution. 

Mathematically, the area under a PSD-versus-frequency curve is equal to the variance 

(square of the standard deviation) of the input signal. 

Kage et al. [90], [91] revealed the presence of three different peaks (Figure 3.12) in the 

spectrum of pressure oscillation and above all he was able to experimentally link them to the 

bubble generation, eruption and natural oscillation of the fluidizing bed (as a whole).  
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Figure 3.12 - Empirical power spectrum density (PSD) function obtained in fluidized beds formed by 

Group B particles in the Geldart classification [91]  

 

The location of these three main peaks (as well as the minor ones) together with their 

intensity, are contributing to the shape the growth of the integral PSD function. The PSD 

(both in its frequency distribution and integral form) summarize the whole history of the 

pressure fluctuations inside the bed. Moreover, given a certain set of operating conditions, it 

is also representative of the specific bubbling bed dynamics, resulting in a key point to 

compare the empirical and numerical outputs.  

Consequently both the model sensitivity analysis and validation were based on the spectrum 

analysis of pressure drop fluctuations which, for a sufficient time scale (sub-section 4.5.1), 

provides a scientific characterization of the bed dynamics.  

Once the CFD and the empirical time-pressure drop signals were obtained (Figure 3.13 -a), 

the power spectral density (PSD) of the signal was calculated to show the frequency 

distributions of these oscillations (Figure 3.13-b).  
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To this purpose the Fast Fourier Transform (FFT) was applied to the original signal cutting 

the first two seconds of each simulation in order to exclude the transitory behaviour of the 

system. This data processing allows transporting the pressure fluctuation from the time 

domain to the frequency domain. This operation was carried out exploiting the FFT 

algorithm as already implemented in the software Fluent.  

After this first step, an integral calculation of the PSD distributions was computed, showing 

the cumulative frequency growth. This step was carried out in Matlab, to increase the 

readability and the PSDs which indeed are clearer (Figure 3.13-c). Moreover, according to 

the physical meaning of this integral (asymptotic value reached by the integral curves), it 

was also possible to obtain a complementary information about the total “energy” specific 

of the original signal (in time). This value represents a useful indicator of the bubbling vigor 

since it relates to the peaks in the frequency spectrum, which in their turn are affected by the 

fluctuations amplitudes in the time domain. Figure 3.13 depicts the main chronological steps 

of data processing as discussed above. 
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Figure 3.13 - Processing data procedure: the "raw" time-pressure drop signal (a), the PSD 

frequency distribution (b) obtained from the application of the FFT to the signal in time, and 

lastly the PSD integral curve (c) that allows (this latter) to better quantify the dynamic behavior 

of the system  

(a) 

(b) 

(c) 
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3.4.1 Supporting model validation: video analysis 

The distribution of the phase volume fractions inside the bed is crucial and is also often used 

as a key validation point [62],[65]. However, the visual observation of the stochastic 

evolution of flow patterns (bubble, cluster, channeling phenomenon etc...) inside the 

experimental bench is rather challenging. This is also limited to wall proximity without any 

chance to evaluate what occurs deeper inside the system body. Moreover, under fluidization 

regime, the bubbles move really fast and their presence close to the wall is unpredictable. 

The presence of a thin layer of dust between bubbles approaching the reactor wall and the 

PVC wall itself further complicates the visual analysis. Despite these limitations, the use of 

a commercial video camera revealed to be helpful for a basic and overall assessment of the 

real system hydrodynamics to be compared to CFD outputs. In order to perform such 

comparison, 100 frames (pictures) per second were saved during simulations and afterwards 

put together to form a video whose speed was tuned to match the real flow time. 

Despite being a pure qualitative assessment, the video comparison between CFD and 

experiments revealed some interesting points showing similar hydrodynamic behavior of 

bubbles eruptions and mass oscillations (Figure 3.14).  

Figure 3.14- Dynamic visual analysis of the bubbling regime: an example showing the comparison 

between the experimental bench reactor (left), the 2D cross section of the 3D-DDPM-KTGF model 

(solid fraction map, middle) and the 3D parcels distribution (right).  
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This video analysis was often used as a support to assess the accuracy of the CFD models 

in predicting the dynamic behavior as observed in the experiments. 

 

3.5  FURTHER CONSIDERATIONS AND INTRODUCTION TO 

PAPER WORKS 

Despite the simplicity of the physics involved at this stage of models development (cold 

models), both the TFM and DDPM models were found computational demanding mainly as 

a result of the very fine mesh required for the model verification. Aiming to limit the long 

simulation time (flow time) some empirical tests were carried out to find the minimum time 

scale such to ensure the convergence of empirical data (processed data such as PSD 

distributions) namely to be fully representative of the dynamic behavior of the bubbling bed. 

In order to do that, the empirical PSD (corresponding to the different time duration of these 

tests) were compared to pinpoint the optimum time scale. This latter was later used as flow 

time for numerical simulations (real time that simulations will perform) to make sure to have 

also on the numerical side a representative amount of data to characterize the bubbling bed 

process. In spite of this strategy both these models required several days in order to perform. 

Almost all simulations, whose results are presented in the following of this work, were run 

on high performance computing (HPC) machines at the University of Sherbrooke (Mammoth 

Parallel 2) which is deemed to be among the fastest computer all over the world. However 

an important aspect relates to the total number of cores which could reasonably used for 

simulations in consideration of a maximum number of 88 units available for the whole group 

of research. The contingent need of sharing these cores (among the three members of the 

group) resulted in the possibility of using not more than 32 units per time. For the 2D model 

simulations (which represented the vast majority in this PhD) 16 cores were found as the 

best compromise between performances and cores usage. Consequently for the 2D model 

the limited number of cores only translated in a limited number of simulations which may 

possibly be performed in parallel. Conversely, when running the 3D model, the high number 

of cells (equations to solve) requires a superior number of cores which could not always be 

available. The increasing performance with an increasing number of cores is linked to the 

actual size of numerical problem to be solved. So while a high number of cores (for example 
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more than 16) would not benefit 2D simulations, this would instead be highly beneficial for 

3D model performances. 

The numerical verification of the models (mesh study) and numerical sensitivity analysis (to 

various granular flow parameters) both combined with testing different numerical concepts 

to solid phase descriptions (Eulerian and Lagrangian models) resulted in a massive number 

of simulations. For this reason it was preferred to limit the experimental work to only one 

set of operating condition and used the relating empirical data as a reference to judge the 

numerical accuracy.   

The next two chapters are dedicated to show the results obtained by the application of TFM 

and DDPM-KTGF approaches to the cold bubbling bed, which have been gathered and 

summarized separately in two dedicated papers. The two different models have been applied 

to study the experimental cold bench reactor operated using the same solid particles type, 

bed height and superficial velocity. The focus (in both papers) was on showing the 

comparison between the experiments and CFD model outputs to investigate and assess the 

ability of these models in matching the overall PSD of empirical data. In both these two 

works, major efforts were invested on the numerical sensitivity analysis with regard to 

several parameters to understand where and how it was eventually possible to improve the 

accuracy of model predictions as well as assessing the possibility of their scale up to 

industrial application. 
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Résumé 

D’après la théorie du modèle bi-fluide (TFM), un modèle CFD a été mis en place pour 

l’étude d’un lit fluidisé d’échelle laboratoire et non réactif opérant en régime bullant. La 

variable clé utilisée pour caractériser la dynamique des fluides du système expérimental et 

pour la comparer aux prédictions du modèle, était la chute de pression en temps induite par 

le mouvement des bulles à travers le lit. Ce signal temporel a ensuite été traité pour obtenir 

la répartition de la densité spectrale de puissance (PSD) des fluctuations de pression. Un 

aspect important de ce travail a été l’étude de l'effet de l’échelle du temps d'échantillonnage 

sur la densité spectrale de puissance empirique (PSD). Une échelle de temps de 40 secondes 

a été considérée comme un bon compromis, assurant à la fois la performance des simulations 

et la cohérence de la validation numérique. Le modèle CFD a d'abord été vérifié 

numériquement par un processus de raffinage du maillage, après quoi, il a servi à l’étude de 

la sensibilité en ce qui concerne la vitesse de fluidisation minimale (comme point 

d'étalonnage pour la loi de traînée), le coefficient de restitution et le terme de pression solide, 

tout en évaluant la précision de sa concordance avec la PSD empirique. Le modèle 2D a 

fourni une correspondance semblable avec la chute de pression empirique moyenne en 

temps, l’amplitude des fluctuations liées et l'énergie du signal calculée en tant que l’intégrale 

de la PSD. Une version 3-D du TFM a également été utilisée et a amélioré la correspondance 

avec la PSD empirique dans la première partie du spectre de fréquence. 
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Sensitivity analysis and accuracy of a CFD-TFM 
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Abstract 

Based upon the Two Fluid Model (TFM) theory a CFD model was implemented to 

investigate a cold multiphase fluidized bubbling bed reactor. The key variable used to 

characterize the fluid dynamic of the experimental system, and compare it to model 

predictions, was the time-pressure drop induced by the bubble motion across the bed. This 

time signal was then processed to obtain the power spectral density (PSD) distribution of 

pressure fluctuations. As an important aspect of this work, the effect of the sampling time 

scale on the empirical power-spectral density (PSD) was investigated. A time scale of 40 

seconds was found to be a good compromise ensuring both simulations performance and 

numerical validation consistency. The CFD model was first numerically verified by mesh 

refinement process, after what it was used to investigate the sensitivity with regards to 

minimum fluidization velocity (as a calibration point for drag law), restitution coefficient 

and solid pressure term while assessing his accuracy in matching the empirical PSD. The 2D 

model provided a fair match with the empirical time-averaged pressure, the relating 

fluctuations amplitude and the signal’s energy computed as integral of the PSD. A 3-D 

version of the TFM was also used and it improved the match with the empirical PSD in the 

very first part of the frequency spectrum.    

.  
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4.1.  INTRODUCTION 

Fluidized bubbling reactors are extensively employed in the industry, both for chemical and 

biochemical processes as well as for power generation, and one of the main reasons is due 

to their optimal level of heat and mass transfer induced by the bubbling turbulence [20]. 

Under this regime, bubbles are responsible for the overall mixing among phases and it is 

hence essential to understand their fluid dynamics in order to optimize the whole process. 

Improving reactors efficiency while at the same time reducing their CAPEX and OPEX is 

still a source of numerous investigation in literature [20]. Today, small to medium-scale 

fluidized bed and their applications are studied using CFD models throughout different 

numerical approaches offering different types of accuracy (as well as different computational 

costs). These latter represent a very important barrier when modeling complex systems such 

as bubbling fluidized beds and research is actively focusing on reducing the computational 

requirement of numerical models whilst improving their accuracy. In multiphase 

applications, where the solid phase involves a very high number of particles, the Eulerian-

Eulerian Two Fluid Model (TFM) has been proven to be the most convenient investigation 

approach [20]. In addition to this method, two possible alternatives for describing the fluid 

dynamic of a multiphase granular system are the Eulerian-Lagrangian Discrete Particle 

Model (DPM) and the Direct Numerical Simulation (DNS). These two methods, and 

especially the latter, are well known for their accuracy in estimating the particles trajectories 

while providing a full detailed map of the fluid patterns inside the system. However, their 

application to dense particle systems is not an easy task since they require massive 

computational cost especially when describing a large amount of particles (in addition to 

their countless interactions). The TFM represents a convenient mathematical way to model 
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dense particles system because of its intrinsic quicker performance (when compared with 

the aforementioned approaches) in capturing and providing information about bubble 

shapes, motions as well as on the bed expansion. 

Among the different experimental strategies that could be used to study and monitor the 

bubbling process, pressure fluctuation is one of the most convenient ones since it is easy to 

measure and can be directly linked to the bubbles dynamics. Numerous studies have 

investigated the coupling between bubbles dynamics and pressure fluctuations as a 

convenient way to characterize the transient behavior of a bubbling multiphase system, from 

the early works published by Davidson and Harrison  [29] up to more recent studies [55], 

[61], [92]. 

Despite these advantages, the interpretation of pressure fluctuations is both complicated and 

challenging since there are various sources involved in generating this signal [93]. 

Qingcheng et al. [94] observed the physical phenomenon of a bubble formation and motion 

rising up through the solid particles bed and found in this process the main source of 

perturbation of the gas-solid system. While linking the local pressure fluctuations to the 

bubbles presence and movement, they also assessed the influence of the operating gas 

velocity on the overall amplitude of pressure drop as well as on their major frequency.  

Peirano et al. [55] conducted a CFD study of a bubbling fluidized bed (BFB) using an 

Eulerian TFM approach. In their study, they highlighted the importance of pressure drop low 

frequencies because of their direct connection with the bubbling motion. Nevertheless a clear 

interpretation about the origin of the higher frequencies was not provided. Furthermore they 

assessed the suitability of a 2D model as far as the sensitivity analysis is regarded while 

recommending a full 3D modeling when attempting to catch the dynamic of the real system. 

A similar conclusion was also found by Vega et al. [61] who performed differential pressure 

spectrum analysis along with particle fraction spectrum. While showing the close relation of 

these two spectrums and consequently the local character of the information provided by 

differential pressure probes, they also advised the use of a full 3D simulation to catch the 

bubble coalescence and interaction with the surface of the bed.   

The primary importance of the fluid-particle drag, as the main driving force in cold fluid 

dynamic systems, is often noticed in open literature and represents one of the key points to 

achieve a good prediction of bubbling bed hydrodynamic. In general, the drag law depends 

on a drag coefficient (Cd), which in its turn depends on the local relative velocity between 

phases and the void fraction. This coefficient depends as well on other factors such as particle 
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size distribution, particle shape, etc. However, it is difficult to characterize the void fraction 

dependency for any conditions other than for a packed bed or for infinite dilution (single 

particle model [86]. In order to bypass this lack of crucial data, some authors attempted to 

exploit the experimental minimum fluidization velocity of their own system as a calibration 

point. For example, Syamlal and O’Brien (1987) introduced a method to adjust the drag law 

using the Umf value of their system [95]. This approach allows calibrating (before starting 

the simulations) a special correlation between a single and a multiple-particle systems under 

settling condition. Esmaili and Mahinpey [62] compared the results of their 3D-TFM to 

empirical data using time-averaged pressure drop at different locations as well as bed 

expansion ratio. They specifically focused on the effect brought by different drag 

formulations, finding the parametric Syamlal-O’Brien drag law [60] as one of the best  for 

providing a correct prediction of these two indicators over the wide range of superficial 

velocities investigated. Min et al. [63] validated their 2D and 3D TFM throughout gas hold-

up measurements (using X-ray imaging system) as well as by the time-averaged pressure 

drop data. They also focused on the effect brought by different formulations of the drag law. 

Both their 2D and 3D model correctly predicted the experimental time-averaged pressure 

drop and also, in this case, the Syamlal-O’Brien drag formulation showed a better prediction 

of the gas holdup variation through the bed height.  

This drag law was used in this work because of its intrinsic superior capability to provide 

the best prediction for solid bed expansions, bubbling displacement and foremost, by 

matching the experimental pressure drop. 

While it is clear that model validation cannot be achieved by means of mere time-averaged 

pressure drop (since no information related to the bed dynamic can be recovered out of it) 

the stochastic behavior of bubbles do not allow having an univocal time-signal that could be 

used as a validation point. However these limitations can be rounded up by performing 

spectrum analysis to obtain a frequency distribution, which is univocal of any specific 

operating condition set up (bed height, air velocity, particle size etc). Even though a few 

studies went through the analysis of pressure fluctuations (by performing spectrum analysis), 

information about the (sampling) time scale required to fully catch the “finger-prints” of 

pressure drop fluctuations through the bed has not being investigated in depth. 

One major target of this work is to test the effect of sampling time on the empirical pressure 

drop oscillations spectra (PSD) in order to limit the duration of CFD simulations while 

ensuring the validation of CFD model with empirical data. This work will investigate the 
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numerical sensitivity of a TFM model applied to a bubbling fluidized bed reactor, in order 

to better understand the impact of certain parameters on the accuracy that such model can 

provide once compared to the empirical data. To this purpose the model was tested on a 2D 

geometry employing the parametric Syamlal-O’Brien drag law. For each parameter a 

specific set of simulations have been performed by varying its value or the related 

mathematical formulation. The results have been compared in terms of time-averaged 

pressure drop, variance and signal energy. Numerical verification was also carried out, prior 

to the model sensitivity analysis, identifying the maximum mesh size and therefore 

guaranteeing the convergence of the numerical solution. A full 3D model was also 

implemented and used to improve the numerical accuracy, ultimately resulting in a better fit 

with the first part of the empirical PSD. 

 

4.2. EXPERIMENTAL SETUP 

The experimental setup used in this work (shown in Figure 4.1) has been chosen following 

the assembling method discussed in [75]. The latter comprises of a lab-scale fluidized bed 

and specific instrumentation measuring and monitoring both the gas flow discharge and the 

pressure drop along the bed. In the actual work the reactor body is made of clear PVC, which 

has been selected to allow a dynamic visual analysis of the process. The body of this system 

is a 15 cm i.d. over a 1 m height cylinder. The bottom flange allows stabilisation of the base 

of the PVC cylinder wall while embedding the porous gas distributor plate. This latter is 

stainless 316L-made and presents a micro-porosity of 1.3 µm such as to ensure an optimal 

homogenization of the gas prior to the reactor inlet. The choice of such a distributor typology 

is dual, first contributing to generate small bubbles all over the cross section while ultimately 

helping avoiding some experimental drawbacks like dead spaces and the back-sitting of 

solids. Secondly it allows an easier numerical schematization of the inlet boundary condition 

that can be accounted easily into a 2D geometry, differently from what it would be required 

by other types of air injectors (such as nozzles) where the 3D model would be the only 

possible choice. This last aspect is crucial to perform CFD simulations with significant time 

economy in the early stages of model implementation and verification. Moreover the very 

fine porosity is such to guarantee a local pressure drop (induced by its own intrinsic porosity) 

comparable to the one along the bed in the fluidization regime. Despite being highly 

conservative, this precaution is always considered when designing a proper gas distributor 
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in order to avoid a potential and persistent gas channeling inside the bed induced by a too 

low pressure drop. However, at industrial scale, porous plates are not often employed hence 

avoiding the risks of clogging which could be induced by inert material (that does not 

fluidize) as well as other compounds that might melt on the distributor surface. 

A filter is placed on top of the upper flange to prevent solid particles from being entrained 

out of the bed during fluidization regime and, right next to it, a relief valve allowing to avoid 

any dangerous overpressures. For the tests, the reactor was operated under ambient 

conditions. The key device, for validation purposes, was a differential pressure gauge 

(Kistler 4264A), capable of recording up to 1000 pressure-drop data per second. These latter 

were then transferred to a Labview acquisition system for data saving and real time pressure 

drop monitoring. The pressure drop was measured between two points at the extremities of 

the cylinder’s body. The bottom probe was positioned at 2.5 inches over the porous plate 

and the upper one was at the proximity of the top flange. Two small meshed screens were 

put inside the two pipes of the differential pressure gauge to avoid particles entrainment and 

therefore potential damages to the instrument. Two flow meters were included in the setup, 

one manual (rotameter) potentially available to measure high air flows, and the other was an 

electronic unit operating in the range 0-300 SLPM. Experiments were performed at 22 °C 

(room temperature) and 1 atm, conditions that remained constant during the tests. Finally a 

small light bulb was located in the upper interior section of the reactor flange, lighting up 

the bed surface hence allowing to take better quality pictures and videos. 

 

 

 

 

 

 

 

 

Figure 4.1 - Schematic of test apparatus and real laboratory scale bench (right) used in this work 
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 The bed material used is alumina powder (190 µm Sauter diameter) belonging to the Geldart 

Group B. Alumina was selected since it is often used in industrial-scale gasifiers (where this 

inert represents by far the major part of the total solid bed mass). The particular size allowed 

covering a good range of hydrodynamic conditions (from fixed bed to vigorous bubbling 

condition) since the minimum fluidization velocity is strongly linked to the diameter of solid 

particle. By doing so, the system could be operated without the need for a manual flow-

meter, whose reading accuracy, could be considerably lower than the electronic unit. Gas 

and solid properties used for both experiments and corresponding CFD simulations are listed 

in Table 4.1. 

 

 

 

 

 

 

 

 

Table 4-1 -. Materials physical properties for the experimental gas-solid system   

 

The bench reactor was filled with alumina up to a bed height of 263 mm, corresponding to 

a total mass of approximately 9.5 kg. Different superficial velocity values below the 

minimum fluidization one were exploited for the CFD validation in the fixed regime, 

whereas only one value corresponding to 3.5 times the minimum fluidization velocity was 

used for validating the CFD model in the “bubbling” regime. This value was selected in 

order to guarantee a vigorous fluidization regime while respecting a margin of accuracy for 

the electronic air flow reading.  

 

4.3. HYDRODYNAMIC AND NUMERICAL MODEL 

This cold system includes gas and solid particles mixed together in an enclosed cylindrical 

vessel where the bubbles are generated at the very bottom of the reactor when the superficial 

velocity of the gasifying agents exceeds the minimum fluidization value. In this work, CFD 

Material  Properties Units Value 

Allumina 

 

 

 

 

 

 

 

 

 

Air 

Particle Diameter 

Particle density 

Particle sphericity 

Coefficient of restitution 

Static bed height 

Packing limit 

Friction packing limit 

Initial solid volume fraction 

Angle of internal friction 

 

Density 

Viscosity 

µm 

kg/𝒎𝟑 

- 

- 

mm 

- 

- 

- 

- 

 

kg/𝒎𝟑  

N s/𝒎𝟐 

190 

3883 

0.6 

0.85 

263 

0.54 

0.48 

0.52 

60° 

 

2.417 

1.8 X 𝟏𝟎−𝟓 
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analysis is meant to predict the effect of bubble formation as well as their motion towards 

the bed surface. It should also allow predicting the pressure drop oscillations induced by 

bubble patterns and chaotic particles displacement. The model considers both the gas 

(generally air in cold fluid dynamic applications) and the solid phase as two inter-penetrating 

fluids for which conservation equations (mass and momentum) are derived. However these 

equations require a proper closure, which can be provided by the constitutive/rheological 

laws. The latter are obtained from empirical correlations and by application of the kinetic 

theory of granular flows (KTGF). The general form of the TFM equations are the following:  

Continuity equation (valid for both gas and solid phase) 







 n

p

pqqqqqq mu
t 1




                                               (4.1) 

Where q is the volume fraction of phase q (here representing either the gas or the solid 

phase), q its density and qu


the corresponding velocity vector. The term pqm  represents the 

mass transfer between phases (kg 𝑚−3𝑠−1). By definition, the sum of the phase fractions αq 

is equal to one.  

Gas phase momentum equation  

)()( gsgsgggggggggggg uuKgPuuu
t







     (4.2)      

P  represents the operating pressure inside the system, g the gravity and gsK  the drag factor 

of phase s in phase g (kg 𝑚−3𝑠−1).  

The gas stress tensor is given by: 

Iuuu ggg

T

gggg 


)
3

2
())((                                       (4.3)                                                                             

Solid phase momentum equation   

)()( sggssssssssssssss uuKgPPuuu
t







   (4.4)                 
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Where s is the volume fraction of the solid phase s, su


(m/s) is the corresponding velocity 

vector. All the other terms are explained in the following.      

As for the gas also for the solid phase the total viscous stress tensor is expressed by the 

following expression: 

Iuuu sss

T

sstotss 


)
3

2
())((,              (4.5) 

Where the viscosity coefficients include the combination of different terms:  

 
frictskinscolstots ,,,,                                                                             (4.6)           

tots,   is the total solid shear viscosity resulting from the summation of three different 

components, which are described below and are correspondingly the collisional [59], kinetic 

[76] and frictional [77] components of the total sheer stress . 
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Where
s represents the solid volume fraction, s ( 𝑚2𝑠−2)  the granular temperature,

ssog ,
 

the radial distribution [80], sd (m) the solid particle diameter (Sauter), sP  the total solid 

pressure (below the expression from Lun et al [81]). frictP is a frictional component [79],  

s is the solid bulk viscosity [81] accounting for the resistance of the granular flow to 

compression and expansion and sse the restitution coefficient expressing the ratio between 

the particle speed after and before collisions. Mathematical description of these variables is 

given by the following: 
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Drag law formulation 

The last term on the RHS both for the equations 4.2 and 4.4 represents the drag force causing 

the interphase momentum exchange between the gas and solid phases. This term is by far 

the predominant one in cold systems and its formulation can significantly affect the CFD 

outputs [62].  

The drag force depends in general of the local relative velocity between phases and the void 

fraction but also on some other factors such as the particle size distribution, particle shape 

etc. The particle void fraction is however very difficult to be determined other than in a 

packed bed or infinite dilution (single particle). Other factors such as particle shape, 

clustering and particle size distribution can also affect the local drag force but they have 

never been considered in deriving drag correlations [86]. Syamlal and O’Brien [60] derived 

a formula for the fluid-solids drag coefficient for multi-particle system using the Richardson-

Zaki type velocity-voidage correlation [84]. Based on the terminal velocity of particles in 

fluidized or settling beds, the authors proposed the following drag correlation: 
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          1C

g  if αg  ≥ 0.85 

B=     
28.1

2 gC   if αg  < 0.85             (4.22) 

 C1 = 2.65 and C2 = 0.8 

 

However, the Syamlal O’Brien drag model presented above (with constant coefficients C1 

and C2) can result in the under/over prediction of the minimum fluidization velocity and 

consequently in a too high/low bed expansion [40]. In order to cope with this drawback, a 

parametric version of the Syamlal O’Brien drag model was used in this work. This 

parametric drag model exploits the minimum fluidization velocity and void fraction (on the 

fluidization onset) as a calibration point to adjust the drag force. Both these two parameters 

have to be experimentally measured and provided to the (drag model) inner algorithm which 

performs an iteration process to minimize the following objective function:  
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Where Ret represents the Reynold number of a multi-particle system at the fluidization onset 

(minimum fluidization velocity or settling condition), Rets corresponding number for one 

single particle, Ar the Archimede number, CD(Re,αg) an analytical expression for the multi-

particle drag coefficient and vr is the terminal velocity for the solid phase as derived by the 

velocity-voidage correlation proposed by Garside and Al-Dibouni [87]. According to an 

algorithm, the parameter C2 (and consequently d1) is changed until the objective function 

(relation 4.23) is minimized. Hence a new set of 2 parameters is obtained, giving a more 

accurate estimation of the drag coefficient for any dynamic condition inside the bed (Re and 
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αg) as shown by the equation 4.30. The main critical point of this parametric drag law is 

given by the necessity to provide a very precise values both for the minimum fluidization 

velocity and the air (void) volume fraction (since the CFD model is really sensitive to both). 

Thus these couple of values are to be provided to the CFD model according to the estimated 

experimental values on the onset of fluidization. However, especially regarding the 

determination of the Umf, there is always a margin of uncertainty since from experiments, 

there is a not a clear limit of gas velocity marking the transition from fix regime to bubbling. 

In order to cope with this uncertainty, a series of simulations (as reported in section 4.5.2 

and 4.5.3) were performed using different minimum fluidization velocities. The second 

parameter (bed void fraction) was determined univocally and according to the bed’s weight 

and corresponding volume occupied inside the bed at the fluidization onset. 

As shown above (equations 4.14 - 4.15 - 4.16), in this work three different formulation for 

the solid pressure term (Ps) have been considered to test the model sensitivity analysis with 

regards to this parameter as discussed in section 4.5.3. Based upon the kinetic theory of 

granular flow (KTGF), an algebraic formulation (obtained neglecting the convection and 

diffusion term) of the conservation of energy for the solid particles was used to work as a 

closure for the solid stress tensor (equation 4.5).  

 

4.4. NUMERICAL SIMULATION 

Numerical simulations were performed using Ansys-Fluent 16.2 and ran on high 

performance computers (HPC) at the University the Sherbrooke (Mammoth Parallel 2). The 

software adopted proper numerical methods for discretizing and solving the set of equations 

shown in section 3. The Eulerian-Eulerian TFM approach accounts for a set of conservation 

equations for each phase.  

Based upon The Finite Volume approach, as the general framework for discretizing and 

integrating main equations, a Phase-Coupled Semi Implicit Method for Pressure Linked 

Equations (PC-SIMPLE) was used, thus extending the SIMPLE approach to multiphase 

cases. According to this method, the pressure values are computed for each time step in the 

cell centers while the velocities components are calculated at each cell interface. In this 

staggered scheme, velocities and pressure are first calculated and secondly corrected 

according to an iterative process in order to respect the continuity constraint. Because of the 
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transient formulation of the problem, an implicit second order scheme has been adopted for 

temporal discretization of time-derivate variables. A fixed time step of 10−4 s was chosen 

for all the simulations in order to ensure their stable convergence. The convergence criteria 

is based on the residual values of the solution (for each of the unknown variables) solved 

inside the numerical domain. The tolerances on residuals were set to 10−3 for continuity and 

10−4 for the velocity components. For spatial discretization, the MUSCL method has been 

chosen in order to minimize numerical diffusion. In fact , as shown by Tagliaferri et al. [65], 

in the full fluidization regime, the First Order Upwind (FUS) scheme (provided inside the 

software as default option for spatial discretization) introduces a high numerical diffusion 

leading to the potential risk of smoothing out the solid volume fraction gradients at bubbles 

boundaries and ultimately failing to predict the correct bubble size and distribution.  

 

4.4.1. Mesh grid sensitivity analysis (2D model) 

Based upon the numerical set-up described in the previous section, a mesh grid sensitivity 

analysis was carried out to evaluate the convergence of numerical solutions. The 

performance of the CFD models (time required by the simulations to perform) are heavily 

affected by the choice of the mesh size. To this purpose, four simulations were carried out 

based on identical operating conditions (Ugas = 0.2 m/s) and material properties setup (Table 

4.1) using four different square mesh sizes. The choice of the exact mesh size was made in 

order to obtain a precise discretization of the geometry thus avoiding any cut cells within the 

grid. For the 3D model only one mesh was investigated corresponding to 20 times the 

particles diameter. Related results and simulation performances are reported in terms of 

mathematical indicators in Table 4.2 and Table 4.3 respectively. The solid fraction 

distributions in Figure 4.2 shows the different accuracy of CFD models in displaying the 

bubbles shape and distribution. According to Vejahati et al. [86], the convergence of the 

numerical solution could be evaluated based upon macroscopic key indicators of the 

bubbling bed behaviour such as the time-averaged pressure drop (measured across the bed 

between two fixed points) and void fraction (computed as a surface time-averaged integral 

for a certain bed height, i.e 8 cm in this study). Finally, the variance of the pressure drop 

signal was compared and results were time-averaged in the 2-40 s. range thus excluding the 

initial unsteady state behaviour of the system (see Table 4.2). The observation of the pressure 
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drop and void fraction values (both time-averaged) along with the contours of solid fraction 

led to choose grid c (1.905 mm) as the one ensuring the convergence of the overall 

hydrodynamic behaviour. This result supports what was previously reported by van der Hoef 

[28],  Syamlal and O’Brien [56] and Zimmermann and Taghipour [58], confirming the 

necessity to employ a mesh size less than or equal to 10 times the Sauter diameter of particles 

(0.19 mm) for solution grid-independency. 

 

 

 

 

 

 

 

 

 

Figure 4.2 - Solid volume fraction contours at time 20 s. for U=0.2 m/s. From left to right 4 decreasing 

mesh size 7.62 (a), 3.81 (b), 1.905 (c), 0.635 (d) mm  

 

 

 

Table 4-2 - Mesh sensitivity outputs used to assess the convergence of numerical solution 

 

 

 

 

Mesh spacing (mm) ΔP(KPa) Time averaged void fraction 

Δ= 7.62    (a) 4.144 0.64 

Δ= 3.81    (b) 4.119 0.59 

Δ= 1.905  (c) 4.026 0.61 

Δ= 0.635  (d) 4.045 0.62 

Δtime  2-40 s HPC Number of Cells Total simulation time (h) 

2D – 7.62 mm 16 1333 46 

2D – 3.81 mm 16 5333 63 

2D – 1.905 mm 16 21333 96 

2D – 0.635 mm 32 19200 264 

3D – 3.81 mm 48 285000 336 

Table 4-3 - Simulations performances: effect of mesh refinement on the total CFD simulation time for 

the 2D and 3D model. Simulations run on HPC machines (Mammoth Parallel II) at the University of 

Sherbrooke 
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Based on these results square meshes of 1.905 mm side, corresponding approximately to 10 

times the particles Sauter diameter, were chosen to investigate the 2D model sensitivity. 

 

4.5. RESULTS & DISCUSSION 

CFD simulation results were analyzed to test the TFM model sensitivity as well as its 

accuracy in matching empirical data. The key parameter used to assess the CFD models 

accuracy was the experimental pressure drop across the bed. Specifically the Power 

Spectrum Density (PSD) analysis was used, attempting to quantify the effect of bubbles 

motions and bed mass oscillation on the pressure drop signal. Once the time-dependent 

pressure drop signal was obtained, two other main mathematical steps were followed to 

investigate the pressure fluctuation distribution. First, a power spectral density (PSD) of the 

signal was calculated, showing the frequency distributions of these oscillations. To this 

purpose a Fast Fourier Transform was applied to the original signal, cutting the first 2 

seconds of each simulation in order to exclude the transitory behaviour of the system. Then 

an integral calculation of this PSD distribution was computed in order to show the cumulate 

frequency growth. This last step has been put forward just to ease the reading and the 

interpretation of the PSD distribution itself. Moreover it can be noticed that the final value 

of the PSD integral also represents the total “energy” reached by the original signal in time. 

Besides being an useful indicator of the bubbling vigor, this value was also used in certain 

case to normalize the PSD curves (dividing their cumulative distribution by this value)  and 

make these independent from the time scale of the pressure drop signal (see section 5.1). 

Accordingly only the shape of the PSD growth could be observed and analyzed. To carry 

out the model validation, a proper campaign of measurement was carried out covering both 

the “fixed” and the “bubbling” bed regimes. A dedicated experimental test allowed 

identifying a minimum time threshold to ensure a representative PSD of the model, which 

will be explained in the following section. 
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4.5.1. Experimental tests to evaluate the dependency of PSD distribution on 

time. 

The time-pressure drop signal shows random pressure fluctuations because of the intrinsic 

stochastic behavior of bubbles. Therefore, the results are always different for a given set of 

geometries and operating conditions. Because of this variability, an alternative strategy 

would logically be required to univocally trace the “fingerprint” of bubble formation and 

motion inside the reactor. To this purpose the signal was processed using Fast Fourier 

Transform (FFT) algorithm to obtain a frequency spectrum distribution and its 

corresponding integral (over the frequency domain) which, at this point, were no longer 

specific of the singular experiment. However, in order to gain a good PSD resolution, the 

time horizon of these experiments had to be considerably wider as compared to the one 

required by the single bed oscillation. Such an issue could be comparable to the choice of a 

representative sample size in statistics and therefore three experiments involving different 

duration (40 s., 5 min., 1 h.) were carried out. The three corresponding normalized 

cumulative PSD’s are plotted in Figure 4.3. The integral of PSD function was preferred to 

have a better definition of the curves.  Normalization is required here to overcome the 

intrinsic effect of different time duration on the total energy of the original signal (which is 

intrinsically linked to it by definition).  

 

 

 

 

 

 

 

 

Figure 4.3 - Normalized PSD integral for 3 different empirical tests performed in the bubbling regime 

(according to operating conditions reported in section 2) : 40 s (red), 5 min (green), 1 h (blue) 
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All 3 tests show a very similar trend where the curves corresponding to tests 2 and 3 are 

almost overlapping while test 1 (40 s. test) present minor differences due to some missing 

peaks in the spectrum, which ultimately results in a less regular growth of the cumulative 

distribution. Nevertheless, according to these results, it has been concluded that 40 seconds 

can reasonably be accepted as an end-time reference for CFD simulations. The post-

processing data of shorter tests (not reported in this work) revealed a very poor PSD 

distribution because of a significant lack of frequencies ultimately suggesting not to reduce 

any further the flow time for CFD simulations. Under the chosen numerical setup, high 

performance computers (HPC) can solve 40 s of real time in approximately 5 days (for the 

2D model) using a 0.075 inches mesh grid. The 0-25Hz range in the frequency spectrum 

covers almost the entire distribution of pressure fluctuations showing that the specific 

fingerprints of bubbles is confined in this limited range with a major concentration of peaks 

in the 3-5 Hz range. The lack of a single, dominant frequency (“natural” frequency of bed 

mass oscillation) is not surprising and can be explained by the existence of different modes 

of bed oscillations which alter the natural frequency of gas-solid interactions in the fluidized 

bed  [96]. Bi [93] reported that these different modes are to be taken into account in such a 

system because of their direct impact on the pressure drop spectrum of the signal. Moreover 

the major concentration of peaks in the lower part of the frequency spectrum is deemed to 

be strongly linked to bubbles formation and eruption as also found by Peirano and co-

workers [55]. 

 

4.5.2 TFM vs Experiments: Model validation methodology 

 

Fixed regime 

Despite the main purpose of this work being the investigation of the bubbling regime, it 

could be as well useful to validate the CFD model in the fixed regime. Details of the 

mechanical properties of the solid phase and their mathematical formulations, as 

implemented inside the CFD model, can be found in Table 4.4. The latter is valid for 

simulations both in the bubbling and fixed regime (with only a different definition of the 

frictional pressure term for fixed condition). This type of analysis was principally aimed to 

assess whether or not the value of minimum fluidization velocity (Umf) used inside the CFD 

(as one of two calibration points for our customized drag law) can also be properly predicted 
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by the CFD model. To this purpose, six superficial velocity values were used for empirical 

tests and corresponding CFD simulations. As mentioned, the transition from the fixed to the 

bubbling regime is not abrupt, and consequently it is difficult to identify a precise and 

representative value of Umf. As explained in the last part of section 3 the Umf represents, in 

the CFD model, an important calibration point impacting on the ultimate value of the drag 

coefficient. Consequently three values of Umf (in the range identified for the experiments) 

were tested by providing them as an input to the CFD model (used within the drag calibration 

algorithm). Three corresponding sets of simulations were performed based upon these values 

and the six superficial velocity used for the fixed regime as shown in Figure 4.4. Simulation 

results showed good agreement with the experimental curve where the average relative error 

varies around 10% for all three cases. A bigger gap was observed for lower superficial 

velocities and a smaller error when the bed approaches the transition to a fluidized regime. 

The end flow-time of these simulations was set to 10 seconds since in the fixed regime, the 

steady state is reached quickly. The best match with the experiments was found using a value 

of Umf=0.06 m/s (as drag law calibration point) when the superficial velocity was such as to 

approach the bubbling condition. Thus using the highest value of superficial velocity tested, 

Uo=0.0548 m/s, we obtained a relative error between experiments and CFD around 1%. 

Results also showed that numerical results are closer to empirical values at lower superficial 

velocity when the smallest Umf (0.055 m/s) is used into the CFD drag law. For intermediate 

superficial velocities, the simulation performed using Umf=0.058 m/s provided better results. 

Consequently there is not an unique trend on the best value of Umf to be employed into the 

CFD drag law and the impact of this parameter on CFD outputs was also tested for the 

bubbling regime. 
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Figure 4.4 - Experimental and CFDs time-averaged pressure drops for different superficial velocity 

tested in the fixed regime. CFD simulations were performed based on a different Umf (used within the 

drag calibration algorithm). The graphic also depicts the experimental uncertainty produced by the 

differential pressure gauge precision 

 

Bubbling regime 

Once the air velocity exceeds a critical value (Umf), bubbles are generated above the air 

distributor and moves upwards tending to grow and coalesce. The pressure fluctuations 

across the bed are greatly influenced by the gas velocity because of the drag effect brought 

on the particles that ultimately reflects on the bubbles formation and motion [94].To this 

purpose a value of Uo = 0.2 m/s (approximately 3.5 times the Umf ) was used as boundary 

condition for the CFD simulations of the bubbling regime. In addition a no slip condition 

was set both for the primary and the secondary phase at the wall. Given the primary 

importance of the drag effect in cold fluid dynamic applications and according to preliminary 

CFD tests and literature review [62],  the adjusted Syamlal-O’Brien model has been chosen 

and used for all CFD simulation in this work. More details about the solid phase properties 

and mathematical formulation that was set in the CFD model (for the bubbling regime) can 

be found in Table 4.4. 
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Table 4-4 - Mechanical properties of solid phase their mathematical formulation used in the CFD 

model (Ansys/Fluent) to simulate the gas-solid system. 

 

Example of graphical outputs are shown in Figure 4.5 (comparison between experimental 

values and CFD simulations). Although there are similarities between the two set of data 

(Figure 4.5, above), the qualitative comparison of the pressure oscillation in time is not 

sufficient to assess the accuracy of CFD model in reproducing the experimental data. Figure 

4.5 (below) shows a divergence between the PSD of the experimental and simulation signals 

(especially in the first part of the spectrum 0-2 Hz), which is mainly due to the intrinsic 

inability for the 2D model to capture and predict the exact “fingerprint” of bubbles. That 

might be due to the natural three dimensionality of the flow, supporting what found in 

previous works [55], [61]. 

Phase-Material  Properties Units Model 

Allumina  

(granular) 

 

 

Granular temperature model 

Particle Diameter 

Granular viscosity 

Granular bulk viscosity 

Frictional viscosity 

Frictional pressure 

Frictional modulus 

Granular temperature 

Solid pressure 

Radial distribution 

Elasticity modulus  

- 

µm 

kg/m-s 

kg/m-s 

kg/m-s 

Pascal 

Pascal 

m2/s2 

Pascal 

- 

Pascal 

 

 Phase property    

190 

Gidaspow 

Lun-et-al 

Shaeffer 

Based KTGF* 

Derived 

Algebraic 

Lun-et-al 

Lun-et-al 

Derived 

*Johnson-et-al(for Fixed-

regime) 
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Figure 4.5 - Experimental vs 2D TFM of a bubbling bed using alumina as fluidizing medium: 

Comparison between the pressure drop signal in time (above) and its corresponding representation in 

the frequency spectrum (below) 

 

In addition to the pressure drop signal, the distribution of the phase-volume fractions inside 

the bed is crucial and often used as a key validation point. However, the visual empirical 

observation of the stochastic evolution of flow patterns (bubble, cluster, channeling 

phenomenon etc...) is rather challenging. Under the fluidization regime, bubbles move really 

fast and their presence close to the reactor wall is unpredictable. Their presence can be only 

observed in the wall proximity (in certain moments) and without any chance to evaluate what 

occurs deeper inside the system body. In addition the presence of a thin layer of dust between 

bubbles approaching the reactor wall and the PVC wall itself further complicates the visual 

analysis. 
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4.5.3 Model sensitivity 

The outputs of the 2D model sensitivity analysis are reported in the following along with the 

empirical data in order to also assess the accuracy of the numerical results. Together with 

the principle indicators of time-pressure drop, all the results were compared in terms of PSD 

cumulative (integral function) that summarizes at best the dynamic behavior of the bubbling 

system. 

Restitution coefficient  

As mentioned in section 4.3, this parameter quantifies the loss of energy due to the particles 

collisions, which impacts the momentum equation for the solid phase in equations 

(4.7),(4.8),(4.12),(4.14). In this work simulations were repeated using five different values 

of the restitution coefficient, in the 0.5-1 range and results are compared in Table 4.5 and 

Figure 4.6. 

Table 4-5 - Comparison of main statistical indicators (of time-pressure drop) for the Experiment and 

CFD simulations (varying the restitution coefficient-ess)  

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 
Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D – 𝒆𝒔𝒔=0.5 4049 2395 6669 178208 1.765 

2D – 𝒆𝒔𝒔=0.7 4052 2738 6163 167538 1.679 

2D – 𝒆𝒔𝒔=0.9 4051 2310 7625 175998 1.762 

2D – 𝒆𝒔𝒔=0.98 4082 2694 5934 176553 1.764 

2D – 𝒆𝒔𝒔=1 4102 2922 6434 150331 1.490 

EXP. 3965 1916 6322 204544 2.051 
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Figure 4.6 - Above: Solid volume distribution (red corresponding to αs=0.54) for ess values of 1(a), 

0.98(b), 0.9(c), 0.7(d), 0.5(e). Below: corresponding PSD integral distribution 

 

Results showed that the restitution coefficient does not have a significant impact on the CFD 

simulations outputs except when ideal collisions are assumed (ess = 1). This is in agreement 

with the work of Tagliaferri et al.[65] as well as with what was previously reported in open 

literature [57], [58].  
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Esmaili and Mahinpey [62] found comparable results concluding that when collisions 

becomes less ideal, particles become closely packed in the densest region of the bed resulting 

in sharper porosity contours and larger bubble. The simulation with ess=0.7 presented the 

best match with empirical data in terms of cumulated PSD, showing the lowest concentration 

of peaks in the first part of the spectrum as compared to the other simulations. In simulation 

where ess=1, the absence of sharp and big bubbles leads to a smaller variance of pressure 

drop and ultimately to a lower final signal energy (see Table 4.5 and Figure 4.6). 

 

Solid Pressure 

This parameter plays an important role in the momentum equation (4.2) for the granular 

phase and, along with shear stress tensor, contains all the parameters describing the intrinsic 

nature of granular flows. 

Open literature shows no clear convergence on the best expression to be used for bubbling 

fluidized beds [62], [86] and, also for this reason, various formulations of the solid pressure 

term were investigated. Mathematical expressions for this term can be found in section 3 

according to Lun et al.[38], O’Brien [97] and Ma-Ahmadi [98] respectively. This latter, 

differently from the first two, also embeds the frictional viscosity effects as shown in the 

equation (4.16). 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 
Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D - Ps=lun.et al 4051 2310 7625 175988 1.762 

2D - Ps=Syamlal O’Brien 4064 2470 6652 205555 1.991 

2D - Ps=Ma-Ahmadi 4077 2729 6935 189681 1.899 

EXP. 3965 1916 6322 204544 2.051 

Table 4-6 -  Comparison of main statistical indicators (of time-pressure drop) for the Experiment and 

CFD simulations (varying the formulations for the solid pressure term - Ps) 
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Figure 4.7 - PSD cumulative trend for the experiment (red) and three CFD simulations based upon 

three different formulations of the solid pressure term 

 

Similarity between the Ma-Ahmadi and Syamlal-O’Brien model are depicted by the overlap 

within the 0-20 Hz range (Figure 4.7). The Syamlal-O’Brien model provides the best 

estimation in terms of the final total power achieved (with respect to the empirical data of 

our experimental bench, see Table 4-6). This model produced a slightly superior signal 

energy when compared to the Ma-Ahmadi expression. However this little gap is due to the 

presence of peaks at frequencies higher than 20 Hz, which cannot be observed on the 

experimental PSD. This result may seem surprising since major contribution to particles 

momentum exchange arises from collisions in the dilute part of the bed and above all from 

particles friction, in the denser zones, which is accounted in the Ma-Ahmadi formulation 

through the frictional viscosity. However, in the TFM approach, the frictional viscosity is 

derived from the frictional pressure, which is only based on the solid fraction distribution 

inside the bed, and not on the real properties of solid particles such as their static, dynamic 

and rotational frictional components (that can be instead defined when using a Discrete 

Element Method (DEM) for particle-particle interactions). The importance of including a 

proper closure for particles friction, including also the rotational dynamic and effects (not 

accounted in this TFM study), has been very thoroughly explained and justified by Yang et 

al. [99] in their recent TFM work.  
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Minimum fluidization velocity (drag law) 

In this study, focusing on a cold multiphase system, the drag force is the dominant term 

coupling the two phases. The adjusted Syamlal O’Brien drag law was chosen because of his 

superior accuracy, also in agreement to what was previously found in literature [62], [63], 

[86]. As explained in section 4.3, this drag law is particularly sensitive to the empirical value 

of the void fraction and the minimum fluidization velocity. While the former can be quite 

univocally computed (knowing the bed weight and the bed volume occupied by the solid 

phase when the fluidization onset occurs) the latter is often more complex to estimate (as we 

experienced in this case of study where the progressive transition between the fixed and the 

bubbling regime can be noticed). Three simulations corresponding to three different values 

of Umf were carried out without modifying anything else in the operating condition setup or 

numerical settings. 

Table 4-7 - Comparison of main statistical indicators (of time-pressure drop) for the Experiment and 

CFD simulations (changing the Umf  to be used within the drag calibration algorithm)  

Figure 4.8 - PSD cumulative trend for the experiment (red) and three CFD simulations based upon 

three different value of minimum fluidization velocity (Umf) 

 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal Energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D - Umf=0.06 4051 2393 7637 184297 1.853 

2D - Umf=0.058 4053 2762 6774 177677 1.773 

2D - Umf=0.055 4082 2557 7146 207083 2.021 

EXP. 3965 1916 6322 204544 2.051 
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Results shown in Table 4.7 and Figure 4.8 depicts the sensitivity of the model to a Umf 

variation. The CFD simulation with Umf=0.055 m/s shows the best match with the empirical 

data in terms of pressure drop variance and final energy despite an over-prediction of 500 

Pa both for the maximum and minimum oscillation peaks found in the pressure drop signal. 

However, as already observed for the solid pressure analysis, the energy gap between the 

CFD simulation and empirical data has been reduced because of the frequency peaks over 

the 20 Hz which are absent in the experiments. A better trend was found for the simulation 

with Umf=0.06 m/s with a minor growth of its PSD integral in the 20-60 Hz range (Figure 

4.8). In this case (as also found for the other parameters investigated in this study), all the 

2D model simulations showed some deficiency in reproducing the experimental PSD 

distribution with an unrealistic presence of peaks in the low frequencies zone. The model 

also depicted a weaker distribution of peaks in the 2-10 Hz range where the experimental 

PSD already reaches 90 % of its total energy.  Nevertheless, the mean pressure drop is 

correctly predicted in all of three cases, with a relative error found to be between 2% and 3% 

of the experimental one.  

 

2D vs 3D models - effects induced by numerical geometry  

This section focuses on the comparison of CFD results achieved by using 2D models (with 

two different mesh sizes corresponding to 10 and 20 times the particles diameter) and a 3D 

set with a relatively coarse grid  (hexahedron of 3.81 mm side namely about 20 times the 

particles diameter) to restrain its computational costs. This particular comparison aimed at 

showing the potential improvements of 3D simulation while warranting its limitation in 

matching the total signal energy of the experiment as a result of coarse meshing.  All the 

other numerical settings were the same for these simulations in order to have a fair 

comparison of the results. 

Table 4-8 - Comparison of main statistical indicators (of time-pressure drop) for the Experiment and 

CFD simulations (based upon two mesh grid size in 2D and using a full 3D geometry) 

 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal Energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D-Δ=0.15in (3.81mm) 4119 2441 7687 182169 1.771 

2D-Δ=0.075in (1.91mm) 4051 2393 7637 184297 1.853 

3D-Δ =0.15in (3.81mm) 3960 2557 6526 193892 1.9465 

EXP. 3965 1916 6322 204544 2.051 
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Figure 4.9 (c-d) show how the choice of a coarser mesh (3.81 mm in green vs 1.91 mm in 

orange) leads to an underestimation of the PSD distribution all over the frequency domain, 

which is particularly clear after the first 2 Hz. As for the grid sensitivity analysis (see section 

4.1), the CFD model ability to capture the real distribution of bubbles as well as their sharp 

contours gradients is strongly linked to the mesh resolution (thanks to the reduce numerical 

diffusion). Consequently a finer grid allows for a better accuracy in the prediction of the 

pressure drop signal and its PSD distribution. Despite the overall general validity of this 

consideration, it is worth reminding that given the 3D nature of bubbles, the PSD should be 

used only as a qualitative tool in analyzing results coming from the 2D models. According 

to the present results for the 2D model (see Table 4.8), a coarser grid leads to an over 

prediction of the time-averaged pressure drop with a relative error of ∼4%, which is almost 

twice the error of the simulation with the finer grid. The PSD analysis of the 3D simulation 

(marked in blue in Figure 4.9) shows that the full geometry model does improve the match 

with the empirical data. This improvement emerges clearly from the observation of the first 

part of the PSD peaks distribution (0-2 Hz). Here the 3D model and the experiment (marked 

in red) are in a very good agreement. This relevant improvement is also evident from the 

analysis of the PSD integral evolution in the 0-4 Hz range (see Figure 4.9-d), where the 

divergence between 2D (green line) and 3D (blue line) simulations which were run with the 

same mesh grid, emerges clearly. However, slightly before 2 Hz, the 3D curve starts growing 

with a weaker intensity (as compared to the experiment) and this is most likely due to the 

coarse mesh used for this case, which was chosen to limit the duration of the 3D simulation. 

Further investigation will clarify and quantify the impact of the grid choice on the 3D model 

as it was done for the 2D case. Besides, the high frequency peaks (> 15 Hz) are still present 

in the 3D simulation, which means that this error is independent of the 2D/3D approach and 

it might be an intrinsic limitation of the TFM approach. The presence of low frequency peaks 

was found to be a limitation of the 2D model, which could not be prevented by any 

parameters variation in the model sensitivity (performed in this work) and the extension to 
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a full 3D model brought important improvement confirming what found and recommended 

by Peirano et al. (2001) and Vega et al. (2011) in their works. 

Figure 4.9 - Comparison between the experiment and CFD of fluidized bed reactor: a time-window of 

the pressure drop signals (a), the corresponding PSD distributions (b), the PSD integral curves in the 

range 0-50 Hz (c) and its zoom in the range 0-4 Hz 

 

4.5.4 Physical correlation between pressure drop and void fraction (bubbles) 

distribution. 

The physical correlation between pressure drop and void fraction (bubbles) distribution it is 

quite complex due to the dampened effect of pressure waves propagating through the solid 

media. Specifically when a bubble reaches the surface the change in the voids distribution 

over the entire domain comes along with the generation of new pressure waves. However 

there is always a certain delay in their propagation which result in a time lag of pressure 

variation. Because of this delay, along with the simultaneous bubbles eruptions and 

consequent changing of the voids distribution, it is difficult to correlate the pressure 

oscillations in time and the bubbles displacement. However, as shown by Vega and co-

workers [61], it is possible to simplify this analysis by considering the pressure difference 

between two points in the bed that very close to each other (see Figure 4.10-left hand side). 

This strategy allows correlating the local pressure drop with a single local bubble, rather than 

accounting for the global voids distribution in the whole bed. It is possible to locally apply 
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the Ergun Equation, where the pressure drop is strictly linked to the void fraction and the 

gas velocity. Figure 4.10 shows two extreme cases, first (case-1), a single bubble embeds 

both check points. In such case the solid fraction drops to a value close to zero because of 

the dearth of solid obstacles between point A and B. The lack of particles between the 2 

points leads to an insignificant pressure drop. Case 2 shows the opposite situation, when 

both the check points are embedded in the emulsion phase (at high concentration of solid 

phase), which makes the fluid motion energetically expensive. In both cases the strong link 

between solid fraction and pressure drop is well depicted in the upper part of Figure 4.10. A 

third case is also possible, when the solid fraction is close to the maximum packing limit 

(like in case-2), but a lower value of pressure drop is predicted by the model. Such an 

occurrence is not surprising, since the gas velocity also plays a role in the gas pressure drop 

(as shown in the Ergun equation). According to the simulation, the gas velocity at the points 

A and B is 0.85 m/s for case-2 and 0.6 m/s for case-3, which explains the different simulated 

pressure drop. 

Figure 4.10 - . Correlation between bubbles distribution and pressure drop in bubbling bed reactor:  a 

view of the whole bubble distribution as predicted by CFD-TFM along with the 2 points where 

pressure is monitored (on the left), the pressure drop trend vs solid fraction for a little time window 

(top), bubbles distribution in the area of the 2 points for different time (case-1 &case-2, bottom 

pictures) 
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4.6 CONCLUSIONS  

The results presented in this paper concern the application of a CFD Two Fluid Model (TFM) 

to a gas-solid fluidized bubbling bed reactor. The power spectral density (PSD) analysis (of 

pressure drop fluctuations) was used to compare the empirical data with the numerical 

predictions. The need of containing the computational costs was one of the priority and 

resulted in finding a flow time threshold for model simulations. Testing the effect of the 

sampling time on the empirical power spectral density (PSD) of pressure drop fluctuations 

it was was found that 40 seconds could represent a good compromise to limit the duration 

of CFD simulations while ensuring the consistency of model validation with empirical data. 

The mesh size analysis carried out in this study showed that an interval spacing of 10 times 

the mean particle diameter was able to give acceptable results supporting what found in 

previous studies. Because of the unclear transition between fixed and bubbling regime, in 

the present experimental setup, the effect of Umf (used as a parameter in the parametric drag 

law) on CFD simulations was investigated. The model outputs showed a better agreement 

with empirical data when the highest Umf value (in the transition zone of the fluidization 

curve) was used. Beside in the ideal collision case (ess=1) the effect of the restitution 

coefficient appeared to be negligible on model predictions as well as the solid pressure term 

which was tested throughout two different formulations. In general, the 2D model revealed 

to correctly predict the time-averaged pressure drop and its fluctuations amplitude. Moreover 

the post processing analysis of 2D simulations revealed a straightforward correlation 

between the pressure drop and void fraction distribution, confirming the presence of bubbles 

as the main source of local variation of pressure. A 3D version of the model was also 

implemented and compared with the 2D model. Despite being based on a “medium” size 

mesh, the 3D model drastically improved the results over the first part of the spectrum (0-2 

Hz), namely where all the previous 2D model simulations failed. The effect of a coarser grid 

on the numerical PSD was prior assessed allowing to believe how 3D model results may 

have been closer to the empirical ones also in the remaining part of the spectrum if a finer 

mesh was exploited. However according to the simulation performances, reported in this 

work, this would result prohibitive from a computational standpoint especially in the 

perspective of a model scale up to industrial application. This barrier may possibly be 

overtaken if: a) coarser particles can be used (which would result in a coarser mesh required 

to numerical verification); b) a different type of variable analysis is needed possibly 
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requiring a lower flow time as compared to the one used in this work; c) the study involves 

macroscopic variables or type of analysis which do not require very fine mesh to be 

investigated. 
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Notation 

sd  diameter of particles in the solid phase, m 

sse  restitution coefficient between colliding particles of solid phase 

g


   vector representation of acceleration due to gravity, 9.81 m/s2 

ssog ,   radial distribution function between particles of solid phase 

gsK  momentum exchange coefficient between gas and solid phase, kg m−3s−1 

pqm   mass flow rate from the generic phase p to the generic phase q, kg m−3s−1 

P   pressure, Pa 

sP  solid pressure, Pa 

frictP  frictional component of solid pressure, Pa 

  t  time, s 

qu


 velocity vector of the generic (gas and solid) phase q, m/s 

gu


 velocity vector of gas phase, m/s 

su


 velocity vector of solid phase, m/s 

'

su


 velocity fluctuation vector of particles, m/s 

q   volume fraction of the generic (gas and solid) phase q 

g   volume fraction of the gas phase 

s   volume fraction of the solid phase 

max,s maximum packing limit (volume fraction) of the solid phase 

s  granular temperature,⁡m2/s2 

s  granular bulk viscosity, Pa*s 
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g  viscosity of gas phase, Pa*s 

tots,  total granular viscosity of solid phase, Pa*s 

cols, collisional component of total granular viscosity, Pa*s 

kins, kinetic component of total granular viscosity, Pa*s 

fricts, frictional component of total granular viscosity, Pa*s 

q  density of the generic (gas and solid) phase q, kg m−3 

g  density of the gas phase, kg m−3 

s  density of the solid phase, kg m−3 

g  stress-strain tensor for the gas phase, Pa 

s  stress-strain tensor for the solid phase, Pa 
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Résumé 

On a utilisé un modèle hybride de particules denses discrètes d'Euleran-Lagrangian (DDPM) 

pour simuler numériquement le comportement de bullage d'un réacteur à lit fluidisé. Le 

modèle exploite le concept des parcelles afin de réduire le nombre de particules qui doivent 

être simulées, tout en exploitant la théorie cinétique du flux granulaire (KTGF) pour tenir 

compte de leurs interactions répulsives. Le DDPM-KTGF a été exploré au cours d'une 

analyse de sensibilité de modèle pour identifier les paramètres les plus influents qui 

impactent sur la précision et la performance numérique pour évaluer son utilisation 

potentielle à des fins industrielles. En raison de la simplicité de mesure, ainsi que de sa forte 

connexion avec la dynamique des fluides du lit, les données de chute de pression ont été 

utilisées et traitées par l’analyse de distribution de puissance (PSD) pour caractériser 

empiriquement et numériquement le comportement de ce système sous un régime fluidisé 

bullant.   

Le modèle DDPM-KTGF a été jugé très sensible à la taille du maillage, aux coefficients de 

restitution et surtout à la loi de traînée. D’un autre côté, une faible sensibilité à la viscosité 

cinétique, à la pression solide, la répartition radiale ainsi qu'au nombre de colis a été révélée. 

En plus d’avoir influencé les résultats physiques, le raffinement du maillage était également 

nécessaire pour numériquement vérifier le modèle et a eu un impact significatif sur la 

performance de ses simulations. En outre, un obstacle majeur a été trouvé dans l'utilisation 

de ce modèle pour simuler le régime de lits fixes, montrant la limitation de l'approche KTGF 

aux régions à forte densité de particules, en raison d'une mauvaise estimation des interactions 

de force de particules. 

 

 

 

 

 

 



Article 2: Numerical investigation of a cold bubbling bed throughout a dense discrete phase 

model with KTGF collisional closure 

117 

 

Numerical investigation of a cold bubbling bed 

throughout a dense discrete phase model with KTGF 

collisional closure 

Leonardo Tricomia, Tommaso Melchioria, David Chiaramontib, Micael Bouletc, Jean 

Michel Lavoiea 

a Department a of chemical engineering and biotechnology, University of Sherbrooke, Sherbrooke (Québec) CANADA 

J1K 2R1   

b RE-CORD/Dept.of Industrial Engineering, Viale Morgagni 40, I-50134, University of Florence, Florence, Italy 

c Enerkem Inc., 3375 King West St., Sherbrooke, QC J1L 1P8 

 

Abstract 

A hybrid Euleran-Lagrangian Dense Discrete Particle Model (DDPM) was used to 

numerically simulate the bubbling behavior of a fluidized bed reactor. The model exploits 

the parcels concept in order to reduce the number of particles to simulate while exploiting 

the Kinetic Theory of Granular Flow (KTGF) to account for their repulsive interactions. The 

DDPM-KTGF was explored throughout a model sensitivity analysis to identify the most 

influent parameters impacting on the numerical accuracy and performances to ultimately 

assess its potential use for industrial purposes. Because of the measurement simplicity as 

well as its strong connection with the bed fluid-dynamic, pressure-drop data were used and 

processed by power spectrum distribution (PSD) analysis to empirically and numerically 

characterize the behavior of this system under a bubbling fluidization regime.  

The DDPM-KTGF model was found to be sensitive to mesh size, restitution coefficients and 

mostly to the drag law. In opposition poor sensitivity to the kinetic viscosity, solid pressure, 

radial distribution function as well as to the number of parcels was revealed. Besides having 

an effect on the physical outputs, the mesh refinement was also required to numerically 

verify the model and significantly impacted on its simulations time-performance. Moreover, 

a major barrier was found in using this model to simulate the fixed bed regime, showing the 
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limitation of the KTGF approach to high particle density regions as a result of a poor 

estimation of particles force interactions.  

HIGHLIGHTS 

 Experimental analysis of pressure drop fluctuations in a cylindrical bench. 

 Implementation, verification and validation of a CFD model of the bench in 2D and 3D geometry. 

 CFD sensitivity analysis:  
o Mesh size and parcels number. 
o Kinetic viscosity, Solid pressure, Radial Distribution, Restitution Coefficient, Drag models. 

Keywords 

Eulerian-Lagrangian Discrete Phase Model (DDPM), KTGF collisional model, Fluidized bed, Pressure drop 
oscillations, Power Spectral Density 

 
 

5.1 INTRODUCTION 

Fluidized bed reactors are widely employed in the industry, both for chemical and 

biochemical processes. Among various types of fluidizing systems, bubbling beds offers an 

optimal heat and mass transfer, promoted by the turbulent bubble motion [20]. Under this 

regime, bubbles are responsible for the overall mixing among the gas and the solid phases 

and it is essential to understand their fluid dynamics in order to optimize the whole process. 

During the last three decades many efforts have been dedicated to characterize the 

hydrodynamic of gas-fluidized systems throughout numerical simulations in order to 

efficiently speed up the optimization of their design and ultimately reducing their costs. 

Currently there are two main (although conceptually different) classes of models that can be 

employed for the numerical investigation of fluidized beds, namely the Eulerian-Eulerian 

two fluid model (TFM) and the Eulerian-Lagrangian model with (for this latter) further sub-

branches classes based upon the different particles interactions treatment. While in the 

former both the gas and solid are described as interpenetrating continua, the second one 

tracks the solid particles in a Lagrangian framework. The DPM approach offers at least two 

main advantages over his competitor (TFM). First it is more grid-independent because of a 

limited numerical diffusion and secondly it allows for a more efficient treatment of the 

particle size distribution, which can bring the description of the solid system closer to reality. 

However, the pure DPM model does not account for particle-particle interaction and 

consequently, it is not suitable for dense granular systems where a significant part of the 

kinetic energy of the system is consumed by collisions and frictional effects. The DDPM 
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that was used in this work is an extension of the DPM allowing to extend its applicability to 

dense particle systems. Specifically the DDPM exploits the Kinetic Theory of Granular Flow 

(KTGF) to describe the evolution of the uncorrelated particles motion and to account for 

their repulsive collisional forces. These forces are estimated by solving gradients of 

continuous functions (i.e shear stress tensor and solid pressure term prior calculated on the 

Eulerian grid) making of the DDPM-KTGF model an hybrid approach to multiphase system. 

The first version of the KTGF approach has been developed under the hypothesis of 

frictionless, nearly elastic and non-rotational particles (Gidaspow [49], Jenkins and Savage 

[37], Lun et al. [81]) and nowadays a few authors are actively working to overtake these 

unrealistic limitation and include the effect of aforementioned properties [99]. In the present 

work,  simulations were performed using Fluent 16.2, which allowed including both the 

effect of particle friction in addition to their inelastic nature (by means of restitution 

coefficients) but without accounting for rotational effect. Cloete et al. [69] made a 

comparison of TFM and DDPM (both embedding the KTGF approach) to industrial scale 

application. They proved that DDPM had a better grid independence, ultimately being 20 

times faster than its TFM rival model. Furthermore in spite of a small divergence in the axial 

pressure drop profile between 2D and 3D model (when using the DDPM-KTGF approach) 

as well as the prediction of bigger bubbles for the 2D model, they did not register any other 

major divergence in terms of pressure drop nor bed height. In a recent study,  Cloete and 

Amini [68] compared the TFM and the DDPM models under many different operating 

conditions showing how the DDPM model can achieve the same level of structure resolution 

than the rival TFM approach using a twofold bigger mesh size with consequent performance 

speed up. They also highlighted how the DDPM approach gives a more discrete 

representation of the volume fraction field relative to the smooth bubbles shown by the TFM. 

The former was also found efficient to capture the channeling behaviour caused by the large 

stressed induced by particle-particle and particle-wall collision and friction. Finally they 

highlighted the promising applicability of DDPM for large scale 3D simulations of bubbling 

fluidized bed reactor. 

Given the importance of these findings, in addition to the small literature inherent to the 

application of this model to bubbling bed (as compared to TFM or DEM approaches), this 

work was aimed at bringing an insight into the numerical sensitivity of this DDPM-KTGF 

model as well as to test the performance both of its 2D and 3D versions, in view of a potential 
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scale-up. Results have been compared in terms of time averaged pressure drop, variance, 

solid fraction maps (in certain cases) and, above all, by using power frequency spectrum that 

relates more closely to the bed dynamic. In all cases, the experimental PSD was used as 

reference to assess the overall accuracy of the model. Simulations performances were also 

considered to estimate the range of applicability of this model at industrial scale.  

 

5.2 EXPERIMENTAL SET UP 

The experimental setup used in this work (shown in Figure 5.1) has been chosen following 

the assembling method discussed by Conshohocken [75]. The latter comprises of a lab-scale 

fluidized bed and specific instrumentation measuring and monitoring both the gas flow 

discharge and the pressure drop along the bed. In the actual work, the reactor body was made 

of clear PVC, which has been selected to allow a dynamic visual analysis of the process. The 

body of this system involved a 6” i.d. and 40” height cylinder. The bottom flange allowed 

stabilisation of the base of the PVC cylinder wall while embedding the porous gas distributor 

plate. The latter is stainless 316L-made and presents a micro-porosity of 1.3 µm, ensuring 

an optimal homogenization of the gas prior to the reactor inlet. The choice of such a 

distributor typology is dual, first contributing to generate small bubbles all over the cross 

section while ultimately helping avoiding some experimental drawbacks like dead spaces 

and the back-sitting of solids. Secondly it allows an easier numerical schematization of the 

inlet boundary condition that can be accounted easily by a 2D geometry, differently from 

what  would be required by other types of air injectors (such as nozzles) where the 3D model 

would be the only possible choice. This last aspect is crucial to perform CFD simulations 

with significant time economy in the early stages of model implementation and verification. 

Moreover the very fine porosity is such to guarantee a local pressure drop (induced by its 

own intrinsic porosity) comparable to the one along the bed in the fluidization regime. 

Despite being highly conservative, this precaution is always considered when designing a 

proper gas distributor in order to avoid potential and possibly persistent gas channeling 

inside the bed induced by insufficient pressure drop. However, at industrial scale, porous 

plates are not often employed hence avoiding the risks of clogging, which could be induced 
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by inert material (that does not fluidize) as well as other compounds that might melt on the 

distributor surface. 

A filter is placed on top of the upper flange to prevent solid particles from being entrained 

out of the bed during the fluidization regime and, right next to it, a relief valve allowing to 

avoid any dangerous overpressures. For the tests, the system was operated under ambient 

conditions and, for validation purposes, the key device was a differential pressure gauge 

(Kistler 4264A), capable of recording up to 1000 pressure-drop data per second. These latter 

were then transferred to a Labview acquisition system both to backup data as well as for real 

time pressure drop monitoring. The pressure drop was measured between two points at the 

extremities of the cylinder’s body. The bottom probe was positioned at 2.5 inches over the 

porous plate and the upper one was at the proximity of the top flange. Two small meshed 

screens were put inside the two pipes of the differential pressure gauge to avoid particles 

entrainment and therefore potential damages to the instrument. An electronic flow meter 

operating in the range 0-300 SLPM was used to measure the air flow at the inlet. Experiments 

were performed at 22 °C (room temperature) and 1 atm, conditions that remained constant 

during the tests. Finally a small light bulb was located in the upper interior section of the 

reactor flange, lighting up the bed surface hence allowing to take better quality pictures and 

videos. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - Schematic of test apparatus (left, [75]) and real lab. scale bench                                                       

(right) used for  this work 
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The bed material used for this study is an alumina powder (190 µm Sauter diameter) 

belonging to the Geldart Group B. Alumina was selected since it is a material often used in 

industrial-scale gasifiers, where this inert represents by far the major part of the total solid 

bed mass. Gas and solid properties used both for experiments and corresponding CFD 

simulations are listed in Table 5.1. 

 

 

 

 

 

 

 

 

The bench was filled with alumina up to a bed height of 263 mm, corresponding to a total 

mass of approximately 9.5 kg. From the fluidization curve of our experiments (not reported 

here) a minimum fluidization velocity (Umf) of 0.055 m/s was found. Only one value of 

superficial velocity corresponding to 3.5 times the Umf was used to simulate the bubbling 

regime. This value, calculated as a ratio between the flow discharge (measured by the 

electronic flow meter) and the cross sectional area of the cylinder, was selected in order to 

ensure a vigorous fluidization regime while avoiding being too close to the upper limit of 

the electronic unit reading (to avoid potential inaccuracies).  

 

5.3 PHYSICAL MODEL, PARCELS SYSTEM GENERATION AND 

PRINCIPLE EQUATIONS 

Our real system includes gas and solid particles mixed together in an enclosed cylindrical 

vessel (Figure 5.1). With the air velocity exceeding a critical value (Umf) bubbles generate 

Material  Properties Units Value 

    

Allumina 

 

 

 

 

 

 

 

 

 

Air 

Particle Diameter 

Particle density 

Particle sphericity 

Coefficient of restitution 

Static bed height 

Packing limit 

Friction packing limit 

Initial solid volume fraction 

Angle of internal friction 

 

Density 

Viscosity 

µm 

kg/𝒎𝟑 

- 

mm 

mm 

- 

- 

- 

 

 

kg/𝒎𝟑  

N s/𝒎𝟐 

    190 

    3883 

     0.6 

   Varied 

     263 

0.54 

0.48 

0.52 

      60° 

 

2.417 

1.8 X 𝟏𝟎−𝟓 

Table 5-1 - Materials physical properties for the experimental gas-solid system 
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at the very bottom and moving upwards tend to grow and coalesce. In this work the CFD 

model aimed at reproducing the PSD distribution of pressure oscillations induced by bubbles 

motion inside the bed. The computational costs of describing the singular particle motion (in 

such a multi-million particle system) would be prohibitive and in order to cope with this 

technical limitation, some simplification were adopted. Specifically, in order to reduce the 

total number of equations to be solved inside the numerical system, the “parcels” concept 

was exploited. A parcel is an artifice allowing regrouping many single particles in one 

sphere, which is tracked inside the system as if it was a point with a mass equal to the total 

mass of all the particles contained inside. By doing so the total number of equations to be 

solved is drastically reduced with great benefit for simulation performances. The number of 

parcels targeted was controlled by changing their size and consequently, the number of 

particles per parcel. The ratio between the parcel over the particle diameter is computed and 

used to ensure the respect of two important aspects. First, it avoids the presence of empty 

spaces between particles (inside each parcel) which allows to achieve a good match between 

the simulated and experimental bed height at rest (a certain gap will always be present due 

to the fact that parcels are considered as perfect spheres while real particles present irregular 

shapes). Secondly, this coefficient allows a perfect scale up of drag forces and consequently 

a reliable dynamic behaviour of the parcels system, which in spite of their mass are fluidized 

as much as single particles. The CFD model used in this work, similarly to TFM approach, 

also requires extra equations to work as a closure, which can be provided by the 

constitutive/rheological laws for granular flow. The latter are obtained by applying the 

kinetic theory of granular flows (KTGF) to account for the particle-particle collision forces. 

The general form of the equations employed in this DDPM-KTGF model are the following:  

 

Gas phase continuity equation  

0



ggggg u

t


                                                                                (5.1) 

Where g is the volume fraction of phase g (here gas), 
g its density and gu


the 

corresponding velocity vector.  
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Gas phase momentum equation  

)()( sggsgggggggggggg uuKgPuuu
t







     (5.2)        

With P  representing the gas-solid shared pressure inside the system, g the gravity and gsK  

the solid-gas drag factor (Kg 𝑚−3𝑠−1). The gas shear stress tensor is given by: 

Iuuu ggg

T

gggg 


)
3

2
())((                                                                                     (5.3) 

Particles motion and collisional model 

As mentioned previously, particles are embedded inside parcels and these latter are tracked 

within the Eulerian frame according to a Lagrangian description of their motion. The driving 

equation is the second Newton`s law:   

ps

s

ps

s

p

gp

pggpp

Pg
uuKu

dt

d







 








)(
)(


                                                           (5.4)   

Where s  is the volume fraction of the solid phase as resulting by an averaging process of 

the discrete parcels volume within each cell and 
su


(m/s) is the corresponding average 

velocity (Figure 5.2).  

 

 

 

 

 

                              

 

Figure 5.2 – Solid velocity magnitude (a), solid fraction map (b) and parcels tracking map (c) colored 

by velocity magnitude, where the first two maps (a,b) are obtained as averaging process of parcels 

volume and their velocity 

(a) (b) (c) 
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According to the KTGF approach the particle force interaction is modeled throughout the 

last two terms of eq. (5.4). These terms are yet accounted for this Lagrangian equation 

despite having been prior computed in the Eulerian frame (namely cell by cell in the mesh 

grid chosen to discretize the physical domain). This procedure makes of the DDPM-KTGF 

a hybrid approach to solid particles modeling. The use of the KTGF theory requires defining 

a series of properties and closures to characterize the granular flows and ultimately the 

interaction forces established among particles. 

The solid shear stress tensor is defined as: 

Iuuu sss

T

sstotss 


)
3

2
())((,                                                          (5.5) 

Where the viscosity coefficients include the combination of different terms:                     
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µs,tot is the total solid shear viscosity resulting from the summation of three different 

components, which are described below and are correspondingly the collisional [59], kinetic 

[76] and frictional [77] components of the total sheer stress as derived from the KTGF 

theory. 
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Where
s represents the solid-averaged (from parcels position) volume fraction, s              

(𝑚2𝑠−2)  the granular temperature,
ssog ,

the radial distribution [80], sd (m) the solid 

particle diameter (Sauter), sP  the total solid pressure (below the expression from Lun et al 

[81]), frictP its  frictional component [79],  s the solid bulk viscosity [81] accounting for 
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the resistance of the granular flow to compression and expansion and lastly sse  the restitution 

coefficient that expresses the ratio between the particle speed after and before collisions. The 

mathematical description of these variables is given in the following: 
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The Kinetic Theory of Granular Flow [59],[76],[81] links the total kinetic energy of a group 

of particles randomly moving inside a system to their fluctuating velocity throughout the 

granular temperature. This variable, representing an unknown of this system, requires an 

extra conservation equation to be solved. This transport equation derived from kinetic theory 

takes the form  
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More details for each term’s formulation can be found in [100]. In order to speed up 

simulations, this last equation was solved in its algebraic form where the contributions of 

convection and diffusion are neglected. In fact, as also remarked by Cloete and Amini in 

their work [68], in dense bubbling bed the local generation and dissipation are predominant 

as compared to convection and diffusion and granular temperature is varying mainly as a 

result of friction and inelastic collisions. Along with granular temperature, the radial 

distribution function (eq. 5.11) works as a correction factor to account for the collisional 

probability between grains when the solid phase becomes dense. There is a significant 
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difference between the two drag coefficients defined in equations (5.2) and (5.4) 

(respectively gsK and gpK ). While 
gpK is computed for each parcel and used in their 

Lagrangian motion equation as part of a forces balance, the former is evaluated in the 

Eulerian frame, namely per each cell, by summing over the drag forces of each single parcel 

accounted in each cell. 
gpK can be described by different mathematical formulations and in 

this work, a proper user defined function (UDF) was implemented to apply the parametric 

Syamlal-O’Brien drag law [60] to the DDPM scheme since Fluent 16.2 does not provide this 

drag law among the default inbuilt formulations when the DDPM scheme is selected. There 

are several types of drag laws already implemented within the software’s environment and 

some of them are more suited to describe particular systems and conditions (ranging from 

more diluted to dense beds). In general, the drag law depends on a drag coefficient (Cd), 

which in its turn depends on the local relative velocity between phases and the void fraction. 

This coefficient depends as well on other factors such as particle size distribution, particle 

shape, etc. However, it is difficult to characterize the void fraction dependency for any 

conditions other than for a packed bed or for infinite dilution (single particle model) [86]. In 

order to bypass this lack of crucial data, some authors attempted to exploit the experimental 

minimum fluidization velocity of their own system as a calibration point. As an example, 

Syamlal and O’Brien (1987) introduced a method to adjust drag law using the Umf of their 

system [60]. This approach is based on a special correlation between a single and a multiple-

particle systems under settling condition which leads to an accurate estimation of drag 

coefficient for any volume fraction condition inside the bed. This calibration requires the 

empirical knowledge of the Umf together the bed`s void fraction at the onset of the 

fluidization regime. For completeness, our model sensitivity analysis also comprises a drag 

law comparison, to test the full 3D model accuracy, using the software-inbuilt Gidaspow 

drag formulation. Besides this numerical test all other simulations have been performed 

using the UDF customized drag (parametric Syamlal O’Brien), which proved a superior 

predictability of the bed PSD. 
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5.4 NUMERICAL SIMULATIONS AND SET UP 

The system simulated in this work is a virtual but consistent (in size and boundary 

conditions) representation of the lab-scale bench shown in Figure 5.1. Most of the 

simulations were run in a 2D planar geometry which was used to schematize the domain of 

the real system. However the DDPM-KTGF model allows for fast simulations (as compared 

to the TFM) under certain limitations, such as low number of parcels and relatively coarse 

mesh refinement, which translates in the possibility of using also the full 3D geometry. The 

3D model was used to analyze mesh sensitivity, number of parcels and drag formulation 

effects. All the numerical simulations were performed using Ansys-Fluent 16.2 and were run 

on high performance computing (HPC) machines at the University of Sherbrooke (Mammoth 

Parallel 2).  

A phase-coupled Semi Implicit Method for pressure linked equations (PC-SIMPLE) was 

used, which allowed extending the SIMPLE approach to multiphase cases. According to this 

method, the pressure values were computed for each time step in the cell centers while the 

velocities components were calculated at each cell interface. In this staggered scheme, 

velocities and pressure (for the primary phase) were first calculated, then corrected according 

to an iterative process in order to respect the continuity constraint. Because of the transient 

formulation of the problem, a bounded implicit second order scheme was adopted for 

temporal discretization of time derivate variables. A fixed time step of 10−4 sec. was chosen 

for all the simulations, ensuring a stable convergence. The convergence criteria is based on 

the residual values of the numerical solutions (for each of the unknown variables) solved 

inside the Eulerian domain. The tolerances on these residuals were set to the default values 

of 10−3 both for the continuity and velocity components. For spatial discretization, a second 

order upwind method was chosen in order to minimize the numerical diffusion. With regards 

to the Lagrangian treatment of particles, a 5-th order Runge and Kutta scheme was chosen 

to integrate Newton’s equations ultimately providing the parcel positions and velocities 

inside the Eulerian grid. Moreover a smoothing procedure was applied to the current set up 

in order to avoid the discontinuities given by the discrete nature of DDPM model. Gradients 

of solid fraction, granular temperature and the velocity itself are used by the KTGF to 

compute the interactions forces (last two terms of eq. 5.4), which might be significantly 
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affected by these discontinuities. In order to avoid this circumstance a node-based averaging 

procedure was exploited as part of the numeric setup offered by the software. 

 

5.5 RESULTS & DISCUSSION 

The time-averaged pressure drop as well as the continuous time-pressure signals, cannot 

fully and univocally characterize the dynamic behaviours of a bubbling multiphase system, 

since the former is only a physical quantity representative of the bed mass and while the 

latter an expression of a stochastic event. Kage et al. [90],[91] revealed the presence of three 

different peaks in the spectrum of pressure oscillation and, above all, he was able to 

experimentally link them to the bubble generation, eruption and natural oscillation of the 

fluidizing bed (as a whole). The location of these three principle phenomenon and related 

peaks (in the frequency domain), along with their intensity, are contributing to the specific 

growth of the integral PSD function. Given a certain set of operating conditions, the PSD 

function contains the whole history of pressure fluctuations inside the bed, and consequently 

represents a key measurement and reference to assess the accuracy of the CFD model and 

his numerical sensitivity. Consequently, our model sensitivity analysis and validation was 

based on the spectrum analysis of pressure drop fluctuations which, for a sufficient time 

scale (as explained in section 5.5.1), provided a scientific characterization of the bed’s 

dynamic. Once the CFD and experimental pressure drop signals were obtained, the power 

spectral density (PSD) of these signals were calculated to show the frequency distributions 

of time-pressure drop fluctuations. To this purpose a Fast Fourier Transform (FFT) was 

applied to the original signal, cutting the first 2 seconds of each simulation in order to 

exclude the initial transitory behaviour. After this first step, an integral calculation of the 

PSD distribution was computed, aiming at showing the cumulate frequency growth which 

was carried out to ease the reading and interpretation of the PSD distribution itself. 

Moreover, according to the physical meaning of this integral, it was also possible to obtain 

complementary information about the total “energy” reached by the original signal (in time), 

which is strictly related to its variance. This value represents an useful indicator of the 

bubbling vigor since it relates to the peaks in the frequency spectrum which in their turn are 

affected by the fluctuations amplitude. 
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Despite the experimental bench having a total height of 40 '' (see Figure 5.1) only 20 '' were 

simulated in the CFD model (see Figure 5.4) in order to reduce computational time. This 

geometrical simplification was adopted in light of some preliminary CFD tests, showing that 

solid particles (even in presence of major bubbles) were not dragged further than this level.    

 

5.5.1 Experimental tests to evaluate the dependency of PSD distribution on 

time. 

The time-pressure drop signal showed random pressure fluctuations because of the intrinsic 

stochastic behavior of bubbles. Therefore the results of different tests, repeated under the 

same operating conditions, were most likely to be different each time. Because of this 

variability, an alternative strategy is logically to be searched in order to univocally trace the 

“fingerprint” of bubble formation and motion. To this purpose, the signal was processed 

using Fast Fourier Transform (FFT) algorithm to obtain a frequency spectrum distribution 

and its corresponding integral (over the frequency domain), which are no longer specific to 

the singular experiment. However, in order to gain a good PSD resolution, the time scale of 

these experiments had to be wider as compared to the one required by the single bed 

oscillation, which is comparable to the choice of a representative sample size in statistics. In 

this work, experiments with different duration were carried out and results were plotted 

altogether in order to assess the importance of time scale on the pressure drop statistics and 

PSD growth. A good agreement was found between a 40 sec. and 5 min. experimental tests 

(with comparable PSD integral curves, not reported here) suggesting this time scale to be 

used also as CFD flow time. This way it was possible to ensure an optimal compromise 

between outputs data reliability (representativeness of bubbling fluctuations) and simulation 

performances. 

 

5.5.2 Fixed regime 

In order to tests the accuracy of this numerical model, over a different range of superficial 

velocity, the CFD model was run in the fixed regime to assess its numerical ability to 

reproduce the linear part of the fluidization curve and compared the predicted Umf with 

empirical one. In fact this type of analysis was principally aimed to assess whether or not 
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the empirical value of Umf used in the CFD simulations (as one of two calibration points for 

our customized drag law) could also have been properly predicted by the model. 

Nevertheless it was found that the model is unable to evaluate any reasonable value of 

pressure drop in this regime. Specifically and as shown in Figure 5.3, the DDPM-KTGF 

model predicts a distribution of total pressure (for the primary phase) comparable to the 

hydrostatic pressure that would be generated under the assumption of the solid phase being 

a liquid. Moreover it was found that the model is totally insensitive to the air superficial 

velocity in the 0 to Umf (whose value of 0.055 m/s was recovered from the empirical 

fluidization curve) range. In addition, an unphysical behavior of the overall system of parcels 

was also observed. While moving downward to the very bottom of the bench they also 

overlap to an unreliable extent. Such observation inspired caution in using this model to 

simulate packed bed, since it may not be suitable to predict the right particle force 

interactions. Specifically in dense regime, when the bed is well settled, the repulsive contact 

forces between solid particles depend only on the gradient of solid granular pressure (see eq. 

5.4 and 5.13) where the only non-zero term is the frictional component of the solid pressure) 

being the shear stress tensor gradient equal to zero (because solid velocities are nearly null). 

In such case the model fails to predict the repulsive forces, whose magnitude should balance 

gravity, causing the parcels unphysical overlapping. This model limitation was found to be 

in agreement with Chen and Wang [66] findings, who highlighted how the DDPM-KTGF 

failed in accounting for the volume exclusion effect, which also resulted in the unphysical 

parcels overlapping in the dense region of the domain, as a result of an over-simplified 

treatment of particle-particle interactions. More investigation is required to verify whether it 

is possible to find a different numerical set up to round this problem, thus avoiding this 

unphysical circumstance. From this understanding, the KTGF approach is not 

recommendable to study fixed regime and in general high packed beds where, instead, the 

DEM approach would be more suitable (as a Lagrangian model of dense particle system).  
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Figure 5.3 – Map distribution for the air (primary phase) total pressure obtained by setting U0=0 m/s: 

this result highlighted the impossibility of exploiting DDPM-KTGF approach (to fixed regime) as a 

result of its inaccurate particle-particle interactions evaluation in dense regimes 

  

5.5.3 Bubbling regime  

The principle target of this CFD model was to reproduce the PSD distribution of pressure 

oscillations induced by bubbles motion inside the bed. Numerous studies have investigated 

the coupling between bubbles dynamics and pressure fluctuations as a convenient way to 

characterize the transient behavior of a bubbling multiphase system, from the early works 

published by Davidson and Harrison [29] up to more recent studies [55], [61], [92]. 

Qingcheng et al. [94] explained the physical origin of pressure fluctuations throughout the 

observation of a single bubble (produced by pulsed gas method) moving upward in a gas-

solid fluidized bed. Pressure fluctuations across the bed are greatly influenced by gas 

velocity because of the drag effect on particles that ultimately reflects on the formation and 

motion of bubbles [94].   

In this work the parametric Syamlal and O’Brien law was used and this drag formulation 

was implemented via User Define Function (UDF), compiled and hooked inside the model. 



Article 2: Numerical investigation of a cold bubbling bed throughout a dense discrete phase 

model with KTGF collisional closure 

133 

 

The use of this drag law was supported by preliminary CFD tests, which later became an 

important part of the model sensitivity, revealing its superior capability, in matching the bed 

hydrodynamic behavior and pressure drop fluctuations (both recorded in the experiments), 

as compared to what was predicted by using the Gidaspow (inbuilt) formulation. Moreover 

this choice was also justified and supported by the hybrid nature of this DDPM numerical 

approach which, along with the exploitation of the KTGF theory used to account for particle 

interactions, make the whole model comparable to the TFM approach. Despite a lack of 

works based on the DDPM-KTGF model and focusing on the effect brought by different 

drag formulations, literature still presents some valuable information based upon the TFM 

approach. Different authors [62], [63], using a TFM model, found the parametric Syamlal 

O’Brien drag formulation to provide more accurate results of pressure drop and bed 

expansion. A value of Uo = 0.2 m/s, corresponding namely to 3.5 times the minimum 

fluidization velocity (Umf) was used as boundary condition for the CFD simulations of the 

bubbling regime. A no slip condition was set for the primary phase at the wall while reflect 

condition was set for particles all over the boundary (walls, inlet and outlet). 

More details about the solid phase properties and mathematical formulation as set in the CFD 

model (for the bubbling regime) can be found in Table 5.2. 

 

 

 

 

 

 

 

 

 

 

Table 5-2 - Mechanical properties of solid phase mathematical formulation used in the CFD model 

(Ansys/Fluent) to simulate the gas-solid system 

 

Besides the characterization of bubbling bed throughout the pressure drop fluctuations, the 

distribution of the phase volume fractions inside the bed is crucial and often used as a key 

Phase-Material  Properties Units Model 

Allumina  

(granular) 

Granular temperature model 
Particle Diameter 
Granular viscosity 
Granular bulk viscosity 
Frictional viscosity 
Frictional pressure 
Frictional modulus 
Granular temperature 
Solid pressure 
Radial distribution 
Elasticity modulus  

- 
µm 

kg/m-s 
kg/m-s 
kg/m-s 
Pascal 
Pascal 

m2/s2 
Pascal 

- 
Pascal 

 Phase property    
190 

Gidaspow 
Lun-et-al 
Shaeffer 
Based KTGF 
Derived 
Algebraic 
Lun-et-al 
Lun-et-al 
Derived 
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validation point [62],[65]. However visual observation of the stochastic evolution of flow 

patterns (bubble, cluster, channeling phenomenon etc...) inside the experimental bench is 

rather challenging. This is also limited to wall proximity without any chance to evaluate 

what occurs deeper inside the system body. Moreover, under fluidization regime, the bubbles 

move really fast and their presence close to the wall is unpredictable. The presence of a thin 

layer of dust between bubbles approaching the reactor wall and the PVC wall itself further 

complicates the visual analysis. Despite these limitations, the use of a commercial video 

camera revealed to be helpful for a basic and overall assessment of the real system 

hydrodynamics to be compared to CFD outputs. In order to perform such comparison, 100 

frames (pictures) per second were saved during simulations and afterwards put together to 

form a video whose speed was tuned to perfectly match the flow time simulation with the 

“real” empirical time. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - Dynamic visual analysis of the bubbling regime where (a) is the experimental bench 

reactor, (b) is the 2D cross section of the 3D-DDPM and (c) is the 3D parcels distribution (colored by 

velocity magnitude, see color-bar in Figure 5.5) 

Even though this was only a purely qualitative assessment, the video comparison between 

CFD and experiments revealed some interesting similarities in the hydrodynamic behavior 

of bubbles eruptions and mass oscillations. It was also noticed that in all simulations the 

model was generally predicting a smaller bed expansion in a sense of a lower pseudo state 
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level of fluctuations as compared to the experiments (Figure 5.4). This may be due to the 

approximate particle collision forces computed by the model that ultimately results in a too 

high level of overlapping between parcels (Figure 5.5).  

 

 

 

 

 

 

 

 

 

 

Figure 5.5 – Snap shot of parcels distribution during a simulation in the bubbling regime highlighting 

the exaggerate overlapping between parcels (colored by their velocity) which resulted in a clustering 

effect (depicted inside the red circle) 

To this regard, a more accurate validation could be obtained following the installation of a 

proper optical probe system, combined with the utilization of a high performance camera. 

The latter would allow capturing bubbles details that could be processed downstream 

throughout an image analysis algorithm to compare the empirical and simulated bed features. 

 

5.5.4 2D and 3D Model sensitivity 

Mesh size 

Results were here obtained by varying the mesh size of the model, starting from an identical 

set up based on the mechanical solid properties reported in Table 5.2 and the numeric 

schemes defined in section 5.4. The number of parcels in the CFD model was fixed to 
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109.034 units, which was generated with a parcel diameter of 3.5 mm. For the 2D model, 

the mesh sizes used were 7.62 mm. and 3.81 mm., 1.905 mm., corresponding respectively 

to 40, 20 and 10 times the particles mean diameter (190 µm) for a total of 1333, 5333 and 

21333 square cells. The choice of the exact mesh size was made in order to obtain a precise 

discretization of the geometry, thus avoiding any cut of cells within the grid while using 

multiple values of particles size (which is often used as a reference in this gas-solid 

multiphase system when assessing the mesh grid effect on numerical solutions [58], [56]). 

For the 3D model, however only two mesh size have been investigated corresponding to 

24857 (7.62 mm.) and 81600 cells (5.08 mm.). Table 5.3 and table 5.4 as well as Figure 5.6 

and Figure 5.7 show the results obtained for this study.  

Table 5-3 - Comparison between the main statistical indicators (of time-pressure drop signal) for the 

empirical data as compared to 2D/3D CFD simulations when modifying the mesh size  

 

 

 

 

 

 

 

 

 

Table 5-4 - Simulations performances: effect of mesh refinement on the total CFD simulation time  

* Simulations run on local workstation Intel® Core™ i7-3960X CPU@3.30GHz, 64 GB (RAM); all 

other simulations have been performed on HPC machines (Mammoth Paralle II) as explained in 

section 5.4  

Δtime 

2-40 sec. 

Time aver. 

αg 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D – 7.62 mm. 0.631 4049 1921 7168 220856 2.1899 

2D – 3.81 mm. 0.607 3882 1949 8401 237970 2.3862 

2D – 1.905 mm. 0.608 3905 2304 7288 232153 2.3629 

3D – 7.62 mm. 0.662 4159 3480 5120 38600 0.38738 

3D – 5.08 mm. 0.621 4084 3025 6043 111361 1.0855 

EXPERIMENTAL  3965 1916 6322 204544 2.051 

Δtime  2-40 sec. HPC Total simulation time (hours) 

2D – 7.62 mm. 3* 15 

2D – 3.81 mm. 5* 25 

2D – 1.905 mm. 16 180 

3D – 7.62 mm. 24 37 

3D – 5.08 mm. 32 122 
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Figure 5.6 – PSD integral curves for 2D and 3D DDPM simulations obtained for different mesh size: 

above the spectrum in the range 0-50 Hz, below a zoom in highlighting the closer match, in the 0-2Hz 

range, between the experiments and CFD when the 3D model with finer mesh is used.  
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Figure 5.7 – Mesh refinement effect on the predicted CFD solid map distribution of the bubbling bed: 

from the left to the right the 2D-1.905 mm. (a), 2D-3.81 mm.(b), 2D-7.62 mm.(c), 3D-7.62 mm.(d), 3D-

5.08 mm.(e) 

 

These results seem to confirm the significant sensitivity of this DDPM-KTGF model with 

regard to the mesh size. The Lagrangian approach to particles tracking should not be affected 

by numerical diffusion errors induced by the Eulerian mesh size since the particles positions 

are tracked in the Lagrangian frame. However there are still two main reasons why this grid 

independency is not reached by the DDPM-KTGF model when the mesh size varies. First, 

since the model is hybrid, the primary phase is still solved over the Eulerian grid. Secondly 

the KTGF approach used to model the particle particle interactions required an averaging 

process to transport some of parcels properties to the Eulerian frame and this caused a 

numerical error linked to the cell size where the parcels are placed. For this reason, given a 

certain distribution of parcels inside the numerical domain, refining the mesh should help 

increasing the level of accuracy in estimating the solid phase fraction map within the 

Eulerian grid. Given a certain mesh size, the solid fraction distribution is computed starting 

with the volume occupied by all parcels, cell by cell. This value is mapped at the center of 

the cell then used to compute the gradients required for example inside the shear stress 

tensor. This process can cause very sharp gradients, which can lead to numerical instabilities. 

Refining the mesh, as said, may help to round up this problem at costs of significantly longer 
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simulations. In order to avoid such circumstances a node based averaging process has been 

used in order to ease the convergence of numerical solution. This numerical strategy allowed 

smoothing out sharp gradients of solid fractions (as well as other parcels properties such as 

velocities) by distributing the parcels volume over the neighboring nodes according to their 

position inside various cells since some of them might be placed inside two or three different 

cells at the same moment. Even though this numerical “trick” is deemed to help reducing the 

grid dependency of DDPM simulation, the presented results are still showing a significant 

mesh impact on the numerical solution. The comparison between the 2D and 3D model for 

the same coarsest mesh size tested in this study (7.62 mm.) could provides a noteworthy 

information. In this case, the 3D model proved to be more negatively impacted by numerical 

diffusion as confirmed both by the weaker PSD growth (Figure 5.6) and the solid map 

distribution (Figure 5.7) with the contours of bubbles (blue zones) hardly captured. One 

possible explanation is the different number of parcels per cell unit used in the two different 

cases. At this regard, to rule out any possible impact of number of parcels per number of 

cells in 2D and 3D cases, a 3D simulation with 3.500.000 parcels was run in order to 

conserve the parcels/cell ratio but as reported in the following paragraph (parcels number) 

no specific improvement was noticed. 

By comparing the results shown above and taking into account previous findings reported in 

literature [28], [56], [58] the 1.905 mm. squared mesh (corresponding approximately to 10 

times the Sauter diameter of particles) was selected as the value for ensuring the numerical 

solution convergence and hence suitable for the model sensitivity analysis. This meshing led 

to an averaged solid fraction convergence (computed as a surface time-averaged integral for 

a certain bed height, i.e 8 cm. in this study) as well as to the convergence of the averaged 

pressure drop.  

Further consideration seems to be appropriate when it comes to choose a proper mesh size 

depending on the type of application and numerical outputs used for validation. Some 

authors [41] had to select a coarse mesh (in the magnitude of 1000 times their mean particle 

diameter) in order to exploit the DDPM-KTGF model for industrial boiler application. 

Cloethe et al. [69] carried out 2D simulation on grids spanning from 4 cm to 16 cm and 

concluded that their model based on the coarser mesh (corresponding to more than 100 times 

their particle diameter) could be exploited at industrial scale, providing reliable results when 
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compared to experimental data and also a convergence into CFD outputs as found when 

using finer meshes. In their study however the authors used only extrapolated data of 

averaged pressure drop and did not perform any spectrum analysis of bubbles fluctuations 

(which are more likely representative of the bed dynamic behavior). By comparing the 

current DDPM results in terms of bubbles shape resolution (see first two pics of Figure 5.7) 

and averaged pressure drop data (Table 5.3) it was observed that results achieved on the 

coarser grid (3.81 mm.) were quite comparable to the ones obtained for the finer one (1.905 

mm.). However, the comparison of the related PSD pressure drop fluctuations exhibited 

some divergences. Table 5.4 shows the increasing computational costs of mesh refinement 

with important differences between a 3.81 mm. and 1.905 mm. (using 2D model). A similar 

circumstance was found for the 3D model where, despite an increase of HPC exploited, the 

simulations run on a 5.08 mm. performed four times slower than ones run on a 7.62 mm. 

mesh. It is therefore evident that the correct assessment of the mesh size is critical in order 

to achieve accuracy, while limiting the duration of simulations but remains strictly subjected 

to the specific type of variable outputs than authors intend to study. 

 

Parcels number 

As for the mesh study, both the 2D and 3D geometry were exploited to investigate the impact 

of parcel numbers on the related PSD distribution, hoping to achieve a better model accuracy 

as it was increased.  The variation of bubble contours and displacement inside the bed were 

also compared (not reported here since no significant variation was found). For the 2D 

model, based on a 1.905 mm. square mesh, the parcels injection was generated from inside 

the software by setting the number of particles per parcels to be used. For the 3D model 

instead the parcel injection was created based upon the choice of their diameter. In this case 

the 3D study was performed on the coarser mesh (0.3 in) given the exponential increase of 

CPU demand with mesh size refinement (see table 5.4). In both cases a vital precaution is to 

generate parcels whose volume is always smaller than any cells inside the Eulerian mesh to 

avoid numerical instabilities. Results are reported in Table 5.5. 
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Table 5-5 - Comparison between the main statistical indicators (of time-pressure drop) for the 

experiment and 2D/3D CFD simulations (varying the number of parcels) 

 

 

 

 

 

Table 5-6 - Effect of parcels number on the total CFD time performance including both 2D and 3D 

simulations 

 

 

 

 

 

 

 

 

 

 

 

 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D – 53.000 Parcels 3901 2183 6460 231000 2.2868 

2D – 109.034 Parcels 3905 2304 7288 232153 2.3629 

2D – 530.260 Parcels 3885 2082 8049 218888 2.2398 

2D –1.060.520 Parcels 3895 1615 8424 245514 2.4550 

3D – 109.034 Parcels 4159 3480 5120 38600 0.28869 

3D – 530.260 Parcels 4202 3482 5018 30716 0.38738 

3D – 3.520.895 Parcels 4202 3260 4907 32678 0.24550 

EXPERIMENTAL 3965 1916 6322 204544 2.051 

Δtime 2-40 sec. cores Total simulation time (hours) 

2D – 53.000 Parcels 32 133 

2D – 109.034 Parcels 32 146 

2D – 530.260 Parcels 32 158 

2D –1.060.520 Parcels 32 350 

3D – 109.034 Parcels 24 35 

3D – 530.260 Parcels 24 41 

3D – 3.520.895 Parcels 32 88 
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Figure 5.8 – PSD integral curves for 2D and 3D DDPM simulations obtained varying the number of 

parcels to describe the particles system: above the spectrum the range 0-50 Hz and below a zoom in 0-8 

Hz range, where the poor sensitivity of the model to this parameter is observed, in both his 2D and 3D 

version 

Differently from the initial expectations, neither the 2D nor the 3D model (see Figure 5.8), 

a significant effect of this parameters on the model accuracy was noticed, at least in the range 

of parcels number here explored. Both classes of simulations (2D and 3D observed 

separately) presented in fact similar curves all over the spectrum of frequency. So, according 

to the results presented in this work, this represent a significant finding since it could allow 

reducing the simulations costs (Table 5.6) while preserving the model results. However, 

given the importance of mesh refinement on the model accuracy (see previous section), it 

will be interesting to assess its related impact on model sensitivity as far as the number of 

parcels is regarded. For this reason the number of parcel effect will be investigated using 3D 

simulations, on a finer mesh, as part of a future work. 

 

Restitution coefficient 

This parameter quantifies the loss of energy due to the particles collisions, which impacts 

the momentum equation for the solid phase in equations (5.7),(5.8),(5.12),(5.13). In this 

work, 2D simulations were repeated using five different values of this parameter, in the range 

0.5-1. The results are compared in table 5.7 and figure 5.9. 
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Table 5-7. Comparison of the main statistical indicators (of time-pressure drop) for the Experiment   

and CFD 2D-simulations (changing the restitution coefficient - ess values) 

 

Figure 5.9 – Effect of restitution coefficient on the predicted hydrodynamic: above, solid volume 

distribution (take at 5 sec. flow time) for different ess values 0.5(a), 0.75(b), 0.9(c), 0.98(d), 1(e); below 

the PSD integral of CFD simulations and the experiment (continuous red line) 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

2D – 𝒆𝒔𝒔=0.5 2637 554 6404 752577 6.268 

2D – 𝒆𝒔𝒔=0.75 3878 2276 7781 248703 2.473 

2D – 𝒆𝒔𝒔=0.9 3901 2183 6460 231000 2.286 

2D – 𝒆𝒔𝒔=0.98 3885 2210 6384 230767 2.314 

2D – 𝒆𝒔𝒔=1 3850 1595 7533 373078 3.551 

EXPERIMENTAL 3965 1916 6322 204544 2.051 
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The outputs corresponding to ess = 0.75, 0.9, 0.98 showed a comparable PSD final energy 

value. However, when set with a value of 0.98, the model gives an important overestimation 

of the curve growth in the first part of the spectrum (see Figure 5.9). The simulation 

performed with ess=0.5 showed numerical convergence issues after 10 sec and an unreliable 

behavior of bubbles who appeared highly fragmented without showing any coalescing 

behavior (Figure 5.9-a). On the opposite, the simulation performed under the hypothesis of 

ideal collision (ess=1, Figure 5.9-e) greatly overestimated the experimental PSD curve all 

over its frequency spectrum.  This last simulation also showed the highest variability in term 

of signal variance and distance between the minimum and maximum values registered (see 

Table 5.7). Channeling effect (see Figure 5.9-e) and wider bubbles (not displayed in this 

snap-shot but whose size was very close to reactor diameter which we did not observe in the 

video of the experiments) were also predicted in this case. From these results was concluded 

that a representative value of restitution coefficient should be set in the range 0.75-0.9 for 

this specific type of particles. 

 

Kinetic contribution to total viscosity  

The effect of the kinetic contribution to the total viscosity (on the model results) was also 

investigated using 2D model, varying its related formulation from Gidaspow (default) to 

Syamlal O’Brien [76] which were both provided as options within the software. This 

parameter (equation 5.8) influences the total granular viscosity (equation 5.6) and ultimately 

affects the shear stress tensor magnitude (equation 5.5). The two formulations converge in 

the high density regime, while showing significant divergences in the dilute one [78]. Given 

the stochasticity of the bubble behavior it is impossible to pre-emptively assess the evolution 

of the granular regime inside the bed, and for this reasons both formulations were tested. 

Principle statistical indicators are reported in Table 5.8. 

 

 

 

 

Table 5-8 - Comparison of the main statistical indicators (of time-pressure drop) both for the empirical 

and CFD 2D-simulations  (changing the formulations for kinetic viscosity - µs,kin) 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

Gidaspow 3901 2183 6460 231000 2.362 

Syamlal O’Brien 3883 2418 6734 244453 2.443 

EXPERIMENTAL 3965 1916 6322 204544 2.051 
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Figure 5.10 - PSD cumulative trend both for the experiment and CFD 2D-simulations results based 

upon a different kinetic viscosity formulation 

 

The results seem to highlight a small sensitivity of the DDPM model with regards to the 

kinetic viscosity parameter. From the observation of Figure 5.10 it seems that the only 

difference is a slight increase (all over the spectrum and more marked after 7.5 Hz) of the 

signal energy when using the Syamlal kinetic viscosity, which makes the PSD integral of 

this simulation closer to the experimental one. The validity of these results remained 

anchored to the use of 2D planar geometry. Future extension of this model may include a 

similar test, although extended to a full 3D geometry from which a different conclusion 

might arise. 

 

Radial distribution 

The radial distribution function is a parameter used to modify the probability of particle 

collision depending on their density inside the bed (eq 5.11). This function can vary 

substantially with the solid fraction [78] impacting on other terms such as solid pressure (eq. 

5.13), solid bulk viscosity (eq. 5.12) and kinetic/collisional component of total viscosity (eq. 

5.7 and 5.8).   There is not an unique formulation for this function in literature and among 

the various options, the Syamlal O’Brien model [76] was tested which, for high solid 
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concentration, differs more significantly from the the Lun. et al. expression (provided by 

default within the software). 

 

Figure 5.11 – Solid fraction distribution taken during the 2D-simulation performed with Syamlal 

O`Brien radial distribution at 2 sec. (a), 6 sec. (b), 9 sec. (c), 12 sec. (d), 18 sec. (e) 

 

The Syamlal formulation did not permit achieving a reliable prediction of bubbles 

distribution (as shown in Figure 5.11). Starting with a pre-existent data file (whose solid map 

distribution is depicted in Figure 5.11-a) related to a simulation based upon Lun.et al (default 

option inside the software) radial distribution, the formulation  was switched to Syamlal and 

the simulation continued converging for around 10 seconds (Figure 5.11-(b)-(c)-(d)). After 

12 sec the convergence criteria were not met any longer and the whole results went wrong 

as shown by the unrealistic solid fraction map (Figure 5.11(e)). In the converging period, 

bubble displacement appeared highly fragmented. Video animation also confirmed the 

absence of coalescing/breaking process of bubbles, which instead behaved as singular 

entities hence contradicting the well-acknowledge natural behavior of bubbles inside 

fluidized beds [28], [55], [56]. 
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Solid Pressure 

Various formulations of the solid pressure were also tested using 2D model. The gradient of 

the solid pressure, along with the shear stress tensor gradient, was ultimately used by the 

model to compute the particle repulsive forces (eq. 5.4). This variable is a measure of the 

pressure exerted on the containing wall due to the presence of particles and, along with the 

shear stress tensor, contains all the parameters describing the intrinsic nature of granular 

flows. In literature, there is not a clear convergence on the best expression to be used for 

bubbling fluidized beds [62], [86]. Consequently, the model sensitivity to this granular 

property was tested using the default Lun. et al. expression [81] that incorporates the kinetic 

and collisional effect,  and Ma-Amhadi expression [98] that also embeds the frictional 

viscosity effect. 

 

 

 

 

 

Table 5-9 - Comparison of the main statistical indicators (of time-pressure drop) both for the 

experiment and CFD 2D- simulations (changing the formulations for the solid pressure term – Ps) 

 

 

 

 

 

 

 

 

 

Figure 5.12- PSD cumulative trend both for the experiment and CFD simulations results based upon 

two different solid pressure expressions 

Δtime 

2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

Lun. et al. (default) 3901 2183 6460 231000 2.362 

Ma-Amhadi 3907 2275 7142 232116 2.323 

EXPERIMENTAL 3965 1916 6322 204544 2.051 
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As shown in Figure 5.12, comparable results were obtained for the two CFD simulations 

with an almost perfect overlapping of the two curves all over the spectrum. Only in a small 

window between 5 and 10 Hz could some small differences be noticed. This result may seem 

surprising since major contribution to particles momentum exchange arises from collisions 

(in the dilute part of the bed) and above all from particles friction in the denser zones 

(accounted by Ma-Amhadi formulation throughout the frictional viscosity). However in the 

KTGF model (the same as in the TFM approach) the frictional viscosity is derived from the 

frictional pressure, which in its turn is only based upon the solid fraction distribution inside 

the bed, and not on the real properties of solid particles (their static, dynamic and rotational 

frictional components that can be defined when using a DEM approach). The importance of 

including a proper closure for particles friction, including also the rotational effects, has been 

very thoroughly explained and justified by Jang et al. in their recent TFM work [99].  

 

Drag Law 

An important results was obtained when using two different formulations to account for the 

gas drag effect on the particles system. The link between the gas and particles assumes a 

prime role for the cold bubbling system up to the point of strongly impacting the bed 

expansion as well as his dynamic behavior (see Esmaili and Mahinpey work [62]). At this 

purpose we compared the Gidaspow [59] and the parametric Syamlal-O’Brien formulation 

[60] for which a proper UDF had to be coded and hooked inside the CFD model.  In section 

5.3 the main features of this parametric drag formulation were discussed and with its superior 

capability to predict the bed expansion and pressure drop fluctuations can also be found in 

open literature [62], [63], [86]. 

Simulations have been performed in a full 3D geometry on a 5.08 mm. hexahedra mesh. 

Since a weak sensitivity with regards to parcels numbers was found (previously discussed) 

it was decided to limit this drag test to the minimum number of parcels (relatively speaking 

to this study, i.e 109.000 units) in order to speed up our simulations. Table 5.10 shows the 

pressure drop principle indicators obtained with different drag laws while Figure 5.13 and 

Figure 5.14 depicts the post processing comparison of solid fraction maps (parcels tracking), 

and the PSD integrals respectively.  
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Table 5-10 - Comparison of main statistical indicators (of time-pressure drop) for the experiment and 

CFD simulations (changing the formulations for the drag-law) 

 

Figure 5.13 – Comparison between the parametric Syamlal O’Brien (UDF) and inbuilt Gidaspow drag 

laws at 40 sec:  From the left to the right, side by side, the solid fraction map in full 3D geometry (a-b), 

solids fraction map middle cross plane (c-d) and related parcels distribution colored by velocity 

magnitude (e-f) 

Δtime  

 2-40 sec. 

Time aver. 

ΔP(Pa) 

Min. 

(Pa) 

Max. 

(Pa) 

Variance 

⁡(𝑷𝒂𝟐) 

Signal energy 

(𝑷𝒂𝟐)*⁡𝟏𝟎𝟓 

Syamlal (UDF) 4084 3025 6043 111361 1.085 

Gidaspow (Inbuilt) 3946 2712 5402 69434 0.680 

EXPERIMENTAL 3965 1916 6322 204544 2.051 

(a) (f) (e) (d) (c) (b) 
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Figure 5.14 - PSD cumulative trend for the experiment and three CFD simulations based upon two 

different drag-law formulation: Above spectrum in the 0-50Hz, below a zoom in the first part, showing 

the better accuracy of parametric Syamlal drag. 

 

The analysis of these results  supported what previously found by Esmaili and Mahinpey 

[62] and Vejahati et al. [86] in their TFM works, namely a superior capability of the 

parametric Syamlal O’Brien drag law in predicting the bed expansion and the PSD integral 

as result of a more vigorous regime of bubbles inside the bed.  This results is significant but 

not particularly surprising considering that the TFM and the KTGF version of DDPM are 

very similar in the granular flow property description as well as in the way the repulsive 

forces (of solid particles) are computed. In both models, there is an identical set of properties 

and mathematical formulations to be set (within the software) which can be appreciated in 

Table 5.2. Also the drag formulation is quite identical and the difference between the two 

model lies in the averaging process for the DDPM scheme. For each time step (during the 

simulation) the drag force exerted by the fluid on each parcel affects the parcel trajectory 

and velocity (eq. 5.4). In the following time step, starting with the singular velocity of each 

parcel, the solver is estimating, cell by cell, an average value as representative of the solid 

phase velocity (seen as a continuum inside the cell) to be used for the drag term inside the 

momentum conservation equation for the primary phase (eq. 5.2). The significance of this 
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result derives instead from another the following considerations: bubbles shape and motion 

are the macroscopic results of pressure and velocity field of the gas (primary phase) found 

as a solution of his governing equation. The momentum conservation for the gas is strongly 

affected by the drag term and so the solution of the equation itself where this term is present 

(eq. 5.2). Pressure drop fluctuations are directly linked to bubbles displacement as Vega et 

al. highlighted in  their work [61] and thus the PSD analysis of these fluctuation becomes 

implicitly a way to estimate the accuracy of the solution for the gas phase. The closer match 

to experimental PSD (Figure 5.14)  reached by the Syamlal- UDF drag simulation  is evident 

all over the frequency spectrum, as well as the total signal power (Table 5.10) that was found 

to have increased as much of 35 % as compared to the simulations run with the Gidaspow 

drag law. As shown in Figure 5.13, and as could be observed on related video animations 

(here not shown), when the Gidaspow drag is used, bubbles present a slower and less clear-

cut formation,  as compared to the other case run with the parametric Syamlal drag. Blue 

zones corresponding to 100% air fraction are formed at higher level and do not have the time 

to grow and coalescence, ultimately resulting in a weaker overall fluidization behavior and 

bed expansion. 

 

5.6 CONCLUSIONS  

In the present study, the cold fluid-dynamic of a multiphase bubbling system was 

investigated using an Eulerian-Lagrangian Dense Discrete Particle Model (DDPM) coupled 

with the Kinetic Theory of Granular Flow (KTGF). The experimental setup comprises of a 

transparent PVC cylindrical body filled with inert Geldart group B particles and 

homogeneously fluidized with a porous plate. The pressure drop fluctuation across the bed 

was very representative of its bubbling behavior and consequently the (frequency) power 

spectrum distributions (PSD) analysis was used both to test the CFD model sensitivity as 

well as to assess his accuracy with regards to the empirical data. The model was found to be 

mesh dependent because of his hybrid conception and the effect of mesh size was analysed. 

The DDPM-KTGF model was not found suitable to describe the fixed regime, where the 

high density of solid phase proved the KTGF theory to be far away from his field of 

application. In this circumstance the model strongly underestimate the particle repulsive 

contact forces leading to an unreliable overlapping extent. The number of parcels, in the 
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range tested in this study, did not affect significantly neither the shape nor the final signal 

power of PSD curves whilst impacting on the simulation performances. Both the effect of 

the solid pressure term and kinetic viscosity seemed to be quite irrelevant in 2D simulations. 

More insight into their effective contribution, along with the number of parcels, is expected 

by using 3D simulation on a finer mesh. Two different formulations for the radial distribution 

functions were tested whose results showed the poor suitability of Syamlal O’Brien model 

in predicting a plausible bubbles behavior. The model showed a quite important sensitivity 

to the restitution coefficient with bubbling behavior becoming more vigorous with higher 

values of this parameter. From the observation of present results this parameter should be 

set in the range 0.75-0.9 for alumina powder. Finally the drag law impact on the model 

accuracy was investigated comparing two different formulations. The parametric Syamlal 

O’Brien drag law provided a superior accuracy while the use of the Gidaspow formulation 

resulted in an underestimation of bubbling vigour as also confirmed by related PSD integral 

curve. Confirming what found by Peirano et al. in their work [55], the 2D model could be 

considered as a fair representation of the bed behaviour in terms of expansions, bubble shape 

and size as well as in predicting the averaged pressure drop across the bed. Divergence with 

the experiment arose mainly in the first part of the spectrum (in the range 0-3 Hz, 

independently from the specific formulation used for various parameters) most likely 

because of the three dimensionality of bubbles. A great improvement was achieved by using 

a 3D full geometry approach, whose PSD matched very closely the empirical one in the first 

2.5 Hz, namely where the 2D model showed major limitations. The DDPM-KTGF CPU-

performance was observed to be strongly affected by the chosen mesh size. This aspect 

seems to limit the possibility to employ this model to industrial scale, at least for this type 

of analysis (PSD), even though the choice of the mesh size remain anchored to the specific 

variable analysis or data to be predicted.   
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Notation 

sd  diameter of particles in the solid phase, m 

sse  restitution coefficient between colliding particles of solid phase 

g


   vector representation of acceleration due to gravity, 9.81 m/s2 

ssog ,   radial distribution function between particles of solid phase 

gsK  momentum exchange coef. between gas and continuum solid phase, kg m−3s−1 

gpK  momentum exchange coefficient between gas and single parcel, kg m−3s−1 

pqm   mass flow rate from the generic phase p to the generic phase q, kg m−3s−1 

sP  solid pressure, Pa 

frictP  frictional component of solid pressure, Pa 

qu


 velocity vector of the generic (gas and solid) phase q, m/s 

gu


 velocity vector of gas phase, m/s 

su


 velocity vector of solid phase, m/s 

'

su


 velocity fluctuation vector of particles, m/s 

 Greek letters 

q   volume fraction of the generic (gas and solid) phase q 

g   volume fraction of the gas phase 

s   volume fraction of the solid phase 

max,s  maximum packing limit (volume fraction) of the solid phase 

s  granular temperature,⁡m2/s2 

s  granular bulk viscosity, Pa*s 

g  viscosity of gas phase, Pa*s 

tots, total granular viscosity of solid phase, Pa*s 

cols, collisional component of total granular viscosity, Pa*s 

kins, kinetic component of total granular viscosity, Pa*s 

fricts, frictional component of total granular viscosity, Pa*s 

q  density of the generic (gas and solid) phase q, kg m−3 
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g  density of the gas phase, kg m−3 

s  density of the solid phase, kg m−3 

g  stress-strain tensor for the gas phase, Pa 

s  stress-strain tensor for the solid phase, Pa 
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6 GENERAL CONCLUSIONS 

Gasification of biogenic carbon contained in the Refused Derived Fuels (RDF) from Municipal Solid 

Waste (MWS) is considered as a very promising alternative to incineration and landfilling [9].  

Important efforts have been devoted to prove the profitability of MSW gasification on industrial scale, 

primarily optimizing the fluidized bed configurations [13]. The ability to investigate this complex 

technology throughout proper numerical platforms can bring a decisive breakthrough in developing 

a valuable and efficient scaling up to RDF applications [101].  

The present study was motivated by the need of investigating the accuracy, sensitivity and 

performance of different CFD models to investigate a cold lab-scale bubbling fluidized system 

representative of the real gasifiers unit. 

In order to characterize the dynamic behavior of this system, pressure drop data across the bed were 

first measured and then processed to obtain the corresponding Power Spectral Density (PSD) analysis. 

The latter was ultimately used to compare the experiments with CFD model predictions. 

The first model tested in this work was the TFM because of a broader literature associated to its 

application to fluidized beds, in addition to its being deemed computationally lighter. The model 

verification revealed that a fine mesh is required to reach convergence of numerical solutions which 

ultimately reflected long 2D simulations (in the order of one week) and an even longer time for the 

full 3D model (approximately two weeks using a super computer). The numerical convergence was 

found for a mesh size equal to ten times the mean diameter of solid particles, supporting what was 

already reported in literature [28], [58], [65]. The TFM 2D model achieved a very good agreement 

with the empirical fluidization curve in the fixed regime while it also matched fairly well the empirical 

PSD growth and its final integral (indicator of the time-pressure drop fluctuations magnitude and 

variance). Overall the 2D model was shown to correctly predict the time-averaged pressure drop and 

its fluctuations amplitude as it emerged from the observation of the statistical indicators. Moreover 

the post-processing analysis of the 2D simulations revealed a straightforward correlation between the 

pressure drop and void fraction distribution, confirming the presence of bubbles as the main source 

of local variation of pressure. A 3D version of the model was also implemented and compared with 

the 2D model. Despite being based on a “medium” size mesh, the 3D model drastically improved the 

results over the first part of the spectrum (0-2 Hz), namely where all the previous 2D model 

simulations failed. The effect of a coarser grid on the numerical PSD was prior assessed allowing to 
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believe how 3D model results may have been closer to the empirical ones also in the remaining part 

of the spectrum if a finer mesh was exploited. 

Beside the well-developed TFM, a more innovative hence less well-established model approach was 

used as well in this work. A hybrid Euleran-Lagrangian Dense Discrete Particle Model (DDPM) was 

implemented to characterize the fluid dynamics of the bubbling bed following the same type of data 

processing as in the TFM study. When compared to it, the DDPM approach presented important 

advantages such as the discrete characterization of the solid particle system and also a lower 

computational requirement. This last aspect is due to the exploitation of parcel concept, which reduces 

the total number of solid particles to track speeding up the computation of their position and velocities 

in the Lagrangian frameworks as compared to the analogous computation in the TFM approach. This 

advantage resulted in the possibility of performing a higher number of 3D simulations to explore 

more extensively the DDPM-KTGF accuracy and numerical sensitivity. However, similarly to the 

TFM scheme, this numerical approach was also found to be mesh-dependent and consequently its 

performance was greatly limited by the respect of a maximum mesh size threshold.  This drawback 

is probably due to the particle collisions which are estimated starting from terms computed on the 

Eulerian mesh in a similar manner to what accounted by the TFM approach. One major limit was 

found in applying this model to the study of the fixed regime, where the KTGF theory failed in 

predicting particle contact forces (and ultimately the volume exclusion effects) which led to an 

unreliable behavior of the system. A great improvement was achieved using a 3D full geometry 

approach, whose PSD matched very closely the empirical one in the first 2.5 Hz, namely where the 

2D model showed major limitations. 

Both models were tested in a similar manner, namely investigating the effect of various 

parameters/functions formulations (specific of granular flows) as well as inter-phases drag forces on 

their accuracy, while assessing their performances in view of a potential scale-up. As far as the first 

class of parameters is regarded, both model showed major sensitivity to a variation of the restitution 

coefficients even if with some differences. Conversely, while some parameter formulations showed 

an unsuitable applicability to the model (like for the radial distribution functions investigated with 

the DDPM-KTGF model), other parameters variation (such as the solid pressure term investigated in 

both models) did not affect the numerical results significantly, reflecting a relative poor model 

sensitivity. As a common point, both models were found pretty sensitive to the drag formulation 

confirming the primary importance of the inter-phase drag momentum exchange in cold gas-solid 

bubbling systems. Moreover, both the TFM and DDPM-KTGF approach showed that a significant 
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improvement, in matching the low frequencies part of the experimental PSD (namely in the part of 

the spectrum that majorly relates to bubbles formation) was possible when a 3D model was used. 

However in order to run the 3D model, a quite coarse mesh had to be used, which limited the ability 

for the model to catch up with the empirical PSD growth and its final integral.  

Lastly a third numerical model which can more accurately describe the particle collisions (Discrete 

Element Method, DEM) was implemented and partially investigated at the very end of this PhD work. 

While some results have been already collected, some other will be needed in order to accurately 

investigate this Lagrangian model. However the results collected so far seem very promising in the 

perspective of a potential applicability of this model to industrial applications. 

Overall, results obtained from this whole study allowed identifying the predominant barrier in the 

fine mesh (required for numerical verification and to capture the bubbles contours) which limited the 

performance of both these two models and ultimately their applicability to industrial scale. For a 

certain mesh size, a different accuracy between 2D and 3D models was observed when comparing 

the experiments with simulations based upon the PSD analysis. While from a performance standpoint, 

only 2D simulations seemed to show the potential applicability to industrial scale, with the possibility 

of predicting fairly well some important features (the pseudo steady state level of bed fluctuations, 

bubbles explosion, solid movement), the extent of the related PSD accuracy is questionable. 

Conversely, 3D models can potentially catch both the tri-dimensional nature of bubbles and their 

sharp contours (if a fine mesh is used), which is reflected in the closer match between empirical and 

numerical PSD (clearly evident in the first part of the spectrum), but the expected simulation time for 

industrial application appears prohibitive. That is why none of these models can provide a 

straightforward answer to the research question formulated at the end of the introduction especially 

if the validation analysis relies on PSD analysis. However, these models may still meet the industrial 

scopes if: a) coarser particles can be used reflecting the possibility to employ a coarser mesh for 

numerical verification purposes; b) a different type of variable analysis is needed possibly requiring 

a lower flow time as compared to the one used in this work; c) the study involves macroscopic 

variables or types of analysis, which do not require very fine mesh to be investigated and correctly 

predicted.  

The focus of this work was put on the investigation of the model accuracy and numerical sensitivity 

for which only one set of empirical data (corresponding to one set of operating condition) was used 

as experimental reference. However, a broader spectrum of operating conditions will be necessary in 
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in order to enforce the validation stage and consequently the robustness of CFD models, which will 

probably be part of a future investigation. 
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CONCLUSION 

La gazéification des combustibles dérivés refusés (RDF) à partir de déchets solides municipaux 

(MWS) est considérée comme une alternative très prometteuse à l'incinération et à la mise en 

décharge [9]. 

Des efforts importants ont été faits pour prouver la rentabilité de la gazéification MSW à l'échelle 

industrielle, surtout en optimisant les configurations de lit fluidisé [13]. La capacité d'étudier cette 

technologie complexe avec des plateformes numériques appropriées pourrait permettre une percée 

importante dans le développement industriel de la technique pour l’utilisation du RDF [101]. 

La présente étude a été motivée par la nécessité d'étudier la précision, la sensibilité et la performance 

de différents modèles CFD pour l’étude d’un lit fluidisé d’échelle laboratoire et non réactif opérant 

en régime bullant, semblablement aux unités industrielles. 

Afin de caractériser le comportement dynamique de ce système, les données de perte de charge sur 

le lit ont d'abord été mesurées et ensuite traitées pour obtenir l'analyse de densité spectrale de 

puissance (PSD) correspondante. Ce dernier était finalement utilisé pour comparer les expériences 

avec les prédictions du modèle CFD.  

Le premier modèle testé dans ce travail était le TFM en raison d'une littérature plus importante 

associée à son application sur des lits fluidisés, en plus d'être considérée comme plus légère. La 

vérification du modèle a révélé qu'un maillage fin est nécessaire pour atteindre la convergence des 

solutions numériques qui reflète finalement de longues simulations 2D (dans l'ordre d'une semaine) 

et un temps encore plus long pour le modèle 3D complet (environ deux semaines à l'aide d'un 

superordinateur). La convergence numérique a été trouvée pour un maillage égal à dix fois le diamètre 

moyen des particules solides, en soutenant ce qui a déjà été rapporté dans la littérature [28], [58], 

[65]. Le modèle TFM 2D a obtenu un très bon accord avec la courbe de fluidisation empirique dans 

le régime fixe alors qu'il correspondait aussi bien à la croissance empirique du PSD et à son intégrale 

finale (indicateur de la variation de la variation de la pression du temps et de la variance).  

Dans l'ensemble, le modèle 2D a correctement pu prédire la chute de pression calculée dans le temps 

et son amplitude de fluctuations, à partir de l'observation des indicateurs statistiques. De plus, 

l'analyse post-traitement des simulations 2D a révélé une corrélation directe entre la baisse de pression 

et la distribution de la fraction de vide, ce qui confirme la présence de bulles comme principale source 

de variation de pression locale. Une version 3D du modèle a également été implémentée et comparée 
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au modèle 2D. En dépit d'être basé sur un maillage de taille "moyenne", le modèle 3D a 

considérablement amélioré les résultats sur la première partie du spectre (0-2 Hz), à savoir où toutes 

les précédentes simulations du modèle 2D ont échoué. L'effet d'une grille plus gros sur le PSD 

numérique a été préalablement évalué, ce qui permet de comprendre comment les résultats du modèle 

3D ont pu être plus proches des résultats empiriques, même dans la partie restante du spectre si un 

maillage plus fin était exploité. 

Cette barrière peut être dépassée si: a) des particules plus grosses peuvent être utilisées (ce qui 

entraînerait un maillage plus grossier requis pour la vérification numérique); b) un type différent 

d'analyse variable est nécessaire nécessitant éventuellement un temps d'écoulement inférieur par 

rapport à celui utilisé dans ce travail; c) l'étude implique une variable macroscopique ou un type 

d'analyse qui ne requiert pas de maillage très fin à étudier.  

Outre le TFM bien développé, une approche modèle plus innovante et moins bien établie a également 

été utilisée dans ce travail. Un modèle hybride Euler-Lagrangian Dense Discrete Particle Model 

(DDPM) a été implémenté pour caractériser la dynamique des fluides du lit bouillonnant suivant le 

même type de traitement des données que dans l'étude TFM. Par rapport à cela, l'approche DDPM 

présentait des avantages importants tels que la caractérisation discrète du système de particules 

solides et une exigence de calcul plus faible. Ce dernier aspect est dû à l'exploitation du concept de 

parcelle, qui réduit le nombre total de particules solides pour suivre l'accélération du calcul de leur 

position et de leurs vitesses dans les cadres lagrangiens, par rapport au calcul analogue de l'approche 

TFM 

Cet avantage a entraîné la possibilité d'effectuer un plus grand nombre de simulations 3D pour 

explorer plus largement la précision DDPM-KTGF et la sensibilité numérique. Cependant, de 

manière similaire au système TFM, cette approche numérique a également été jugée dépendante du 

maillage et, par conséquent, sa performance a été fortement limitée par le respect d'un seuil de taille 

de maillage maximal. Cet inconvénient est probablement dû aux collisions de particules qui sont 

estimées à partir de termes calculés sur le maillage eulérien d'une manière similaire à celle prise en 

compte par l'approche TFM. Une limite majeure a été trouvée dans l'application de ce modèle à l'étude 

du régime fixe, où la théorie du KTGF a échoué dans la prévision des forces de contact des particules 

(et finalement des effets d'exclusion de volume) qui ont conduit à un comportement peu fiable du 

système. Une très bonne amélioration a été obtenue en utilisant une approche 3D géométriquement 

complète, dont le PSD correspondait très étroitement à l'empirique dans le premier 2,5 Hz, à savoir 

où le modèle 2D présentait des limitations majeures. 
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Les deux modèles ont été testés d'une manière similaire, à savoir étudier l'effet de diverses 

formulations de paramètres / fonctions (spécifiques des flux granulaires) ainsi que des forces de 

traction inter-phases sur leur précision tout en évaluant leurs performances en fonction d'une 

augmentation potentielle. En ce qui concerne la première classe de paramètres, les deux modèles ont 

montré une sensibilité majeure à une variation des coefficients de restitution, même si avec certaines 

différences. À l'inverse, bien que certaines formulations de paramètres aient montré une applicabilité 

160 inadaptée au modèle (comme pour les fonctions de distribution radiale étudiées avec le modèle 

DDPM-KTGF), d'autres paramètres de variation (comme le terme de pression solide étudié dans les 

deux modèles) n'ont pas affecté les résultats numériques de manière significative, reflétant une 

sensibilité relativement faible au modèle. En tant que point commun, les deux modèles ont été jugés 

très sensibles à la formulation de force d traînée confirmant l'importance primordiale de l'échange de 

moment de glissement inter-phase dans les systèmes de bouillonnement gaz-solide à froid. En outre, 

l'approche TFM et DDPM-KTGF a montré qu'une amélioration significative, dans l'adaptation de la 

partie des fréquences basses du PSD expérimental (notamment dans la partie du spectre qui concerne 

principalement la formation de bulles) était possible lorsqu'un modèle 3D était utilisé. Cependant, 

pour exécuter le modèle 3D, il fallait utiliser un maillage assez grossier, ce qui a limité la capacité du 

modèle à rattraper la croissance empirique du PSD et son intégrale finale.  

Enfin, un troisième modèle numérique qui décrit plus précisément les collisions de particules 

(Méthode d'élément discrète, DEM) a été mis en œuvre et a été partiellement étudié à la fin de ce 

travail de doctorat. Bien que certains résultats aient déjà été recueillis, d'autres seront nécessaires afin 

d'enquêter avec précision sur ce modèle de Lagrange et d'évaluer la possibilité de l'utiliser pour des 

applications industrielles.  

Dans l'ensemble, les résultats obtenus à partir de toute cette étude ont permis d'identifier la barrière 

prédominante dans le maillage fin (nécessaire pour la vérification numérique et la capture des 

contours des bulles) qui a limité les performances de ces deux modèles et, finalement, leur 

applicabilité à l'échelle industrielle. Pour une certaine grandeur de maillage, une précision différente 

entre les modèles 2D et 3D a été observée lors de la comparaison des expériences avec des simulations 

basées sur l'analyse PSD. Bien que du point de vue de la performance, seules les simulations 2D 

semblent montrer l'applicabilité potentielle à l'échelle industrielle, avec la possibilité de prédire assez 

bien certaines caractéristiques importantes (le niveau pseudo-étatique des fluctuations du lit, 

l'explosion des bulles, le mouvement solide), l'étendue de la précision du PSD connexe est discutable. 

À l'inverse, les modèles 3D peuvent potentiellement prédire à la fois la nature tridimensionnelle des 



 

162 

 

bulles et leurs contours profonds (si un maillage fin est utilisé), ce qui se traduit par une 

correspondance plus étroite entre PSD empirique et numérique (clairement évident dans la première 

partie du spectre), mais le temps de simulation prévu pour une application industrielle semble 

prohibitif. C'est pourquoi aucun de ces modèles ne peut fournir une réponse directe à la question de 

recherche formulée à la fin de l'introduction, surtout si l'analyse de validation repose sur l'analyse 

PSD. Toutefois, ces modèles peuvent encore atteindre les étendues industrielles si: a) des particules 

plus grosses peuvent être utilisées, ce qui reflète la possibilité d'utiliser un maillage plus gros à des 

fins de vérification numérique; b) un type d'analyse variable différent est nécessaire, pouvant requérir 

un temps d'écoulement inférieur par rapport à celui utilisé dans ce travail; c) l'étude implique des 

variables macroscopiques ou des types d’analyse, qui ne requièrent pas de maillage très fin pour être 

étudié et correctement prédit. 

L'accent de ce travail a été mis sur l'étude de la précision du modèle et de la sensibilité numérique 

pour laquelle un seul ensemble de données empiriques (correspondant à un ensemble de conditions 

de fonctionnement) a été utilisé comme référence expérimentale. Cependant, un plus large éventail 

de conditions de fonctionnement sera nécessaire pour faire respecter la phase de validation et, par 

conséquent, la robustesse des modèles CFD, qui feront probablement partie d'une enquête future. 

 

 

 

 

 

 

 

 

 



 

163 

 

REFERENCES  

[1] A. Kumar, D. D. Jones, and M. A. Hanna, “Thermochemical biomass gasification: A review 

of the current status of the technology,” Energies, vol. 2, no. 3, pp. 556–581, 2009. 

[2] D. O. Hall, F. Rosillo-Calle, J. Woods, and R. H. Williams, Biomass for energy: Supply 

prospects. Renewables for fuels and Electricity. Washington, DC, 1993. 

[3] G. Fischer and L. Schrattenholzer, “Global bioenergy potentials through 2050,” Biomass and 

Bioenergy, vol. 20, no. 3, pp. 151–159, 2001. 

[4] M. Hoogwijk, A. Faaij, R. van den Broek, G. Berndes, D. Gielen, and W. Turkenburg, 

“Exploration of the ranges of the global potential of biomass for energy,” Biomass and 

Bioenergy, vol. 25, no. 2, pp. 119–133, 2003. 

[5] R. D. Perlack, L. L. Wright, A. F. Turhollow, and R. L. Graham, “Biomass as feedstock for a 

bioenergy and bio-products industry: The technical feasibility of billion-ton annual supply,” 

2005. 

[6] B. C. Gates, G. W. Huber, C. L. Marshall, P. N. Ross, J. Siirola, and Y. Wang, “Catalysts for 

Emerging Energy Applications,” MRS Bulletin, vol. 33, no. 4, pp. 429–435, 2008. 

[7] S. Thorsell, F. M. Epplin, R. L. Huhnke, and C. M. Taliaferro, “Economics of a coordinated 

biorefinery feedstock harvest system: Lignocellulosic biomass harvest cost,” Biomass and 

Bioenergy, vol. 27, no. 4, pp. 327–337, 2004. 

[8] P. Basu, “Biomass Gasification, Pyrolysis, and Torrefaction,” Second Edi., Elsevier, Ed. 32 

Jamestown Road, London NW1 7BY, UK 525, 2013, pp. 253-255–258. 

[9] “GSTC (2017).‘Waste to Energy Gasification’. Available on :http://www.gasification-

syngas.org/applications/waste-to-energy-gasification/ (accessed/cited in May 2017).” . 

[10] “Jim Yong Kim, (2012). What a Waste: A Global Review of Solid Waste Management. 

Available from: https://www.worldbank.org/en/about (accessed/cited in May 2017).” . 

[11] “Alex Ramon., (2006). Negative impacts of incineration-based waste-to-energy technology 

Available from: http://www.alternative-energy-news.info/negative-impacts-waste-to-energy/ 

(accessed/cited in May 2017).” . 



 

164 

 

[12] “climatetechwiki (2012).‘Gasification of Municipal Solid Waste for Large-Scale 

Electricity/Heat’. Available on :http://www.climatetechwiki.org/technology/msw 

(accessed/cited in May 2017).” 

[13] U. Arena, “Process and technological aspects of municipal solid waste gasification. A review,” 

Waste Management, vol. 32, no. 4, pp. 625–639, 2012. 

[14] K. Sipilä, “New power production technologies: various options for biomass and 

cogeneration.,” Bioresour. Technol., vol. 46, pp. 5–12, 1993. 

[15] K. J. Whitty, H. R. Zhang, and E. G. Eddings, “Emissions from Syngas Combustion,” 

Combustion Science and Technology, vol. 180, no. 6, pp. 1117–1136, 2008. 

[16] M. L. Boroson, J. B. Howard, J. P. Longwell, and W. a. Peters, “Product yields and kinetics 

from the vapor phase cracking of wood pyrolysis tars,” AIChE Journal, vol. 35, no. 1, pp. 120–

128, 1989. 

[17] R. Rauch, J. Hrbek, and H. Hofbauer, “Biomass gasification for synthesis gas production and 

applications of the syngas,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 3, 

no. 4, pp. 343–362, 2014. 

[18] “Enerkem., (2017). ‘Multifeedstock / multiproduct’ is what differentiates Enerkem’s 

technology platform: http://enerkem.com/about-us/technology/ (accessed/cited in May 

2017).” . 

[19] P. Pepiot, C. Dibble, and T. Foust, Computational fluid dynamics modeling of biomass 

gasification and pyrolysis. Computational modeling in lignocellulosic biofuel production, vol. 

1052, no. ACS Symposium Series. 2010. 

[20] R. I. Singh, A. Brink, and M. Hupa, “CFD modeling to study fluidized bed combustion and 

gasification,” Applied Thermal Engineering, vol. 52, no. 2, pp. 585–614, 2013. 

[21] R. W. Breault, “Gasification processes old and new: A basic review of the major technologies,” 

Energies, vol. 3, no. 2, pp. 216–240, 2010. 

[22] A. Molino, S. Chianese, and D. Musmarra, “Biomass gasification technology: The state of the 

art overview,” Journal of Energy Chemistry, vol. 25, no. 1, pp. 10–25, 2016. 

[23] S. T. Mac an Bhaird, P. Hemmingway, E. Walsh, A. L. Maglinao, S. C. Capareda, and K. P. 



 

165 

 

McDonnell, “Bubbling fluidised bed gasification of wheat straw-gasifier performance using 

mullite as bed material,” Chemical Engineering Research and Design, vol. 97, pp. 36–44, 

2015. 

[24] D. Kunii and O. Levenspiel, Fluidization Engineering. 2013. 

[25] C. G. Philippsen, A. C. F. Vilela, and L. D. Zen, “Fluidized bed modeling applied to the 

analysis of processes: Review and state of the art,” Journal of Materials Research and 

Technology, vol. 4, no. 2, pp. 208–216, 2015. 

[26] D. Geldart, “Types of Gas Fluidization,” Powder Technology, vol. v 7, n 5, p. p 285-92, 1973. 

[27] “G.Rovero(2012).Optimization of Spouted Bed Scale-Up by Square-Based Multiple Unit 

Design. http://www.intechopen.com/books/advances-in-chemicalengineering/optimization-

of-spouted-bed-scale-up-by-square-based-multiple-unit-design (cited on May 2017).” . 

[28] M. A. van der Hoef, M. Ye, M. van Sint Annaland, A. T. Andrews, S. Sundaresan, and J. A. 

M. Kuipers, “Multiscale Modeling of Gas-Fluidized Beds,” Advances in Chemical 

Engineering, vol. 31, pp. 65–149, 2006. 

[29] J. F. Davidson and D. Harrison, Fluidised particles. New York: Cambridge University Press, 

1963. 

[30] S. Elgobashi, “Particle-laden turbulent flows: Direct simulation and closure models,” 

Appl.Sci.Res, vol. 48, pp. 301–304, 1991. 

[31] J. A. M. Kuipers and W. P. M. van Swaaij, “Computational Fluid Dynamics Applied To 

Chemical Reaction Engineering,” Advances in Chemical Engineering, vol. 24, pp. 227–328, 

1998. 

[32] Y. Bao and J. Meskas, “Lattice Boltzmann Method for Fluid Simulations - Report-2011-pp.1-

16.” 

[33] “Heat and Mass Transfer Technological Center (CTTC)-Universitat Politècnica de Catalunya 

BARCELONA TECH (UPC), (2017). Multi-phase modelling. Available from: 

http://www.cttc.upc.edu (accessed/cited in May 2017).” . 

[34] A. Balcázar, N., Castro, J., Rigola, J., Oliva, “DNS of the wall effect on the motion of bubble 

swarms DNS of the wall effect on the motion of bubble swarms DNS of the wall effect on the 



 

166 

 

motion of bubble swarms,” Procedia Computer Science, vol. 108, pp. 2008–2017, 2017. 

[35] N. Balcázar, O. Lehmkuhl, J. Rigola, and A. Oliva, “A multiple marker level-set method for 

simulation of deformable fluid particles,” International Journal of Multiphase Flow, vol. 74, 

pp. 125–142, 2015. 

[36] Y. Tang, Y. M. Lau, N. G. Deen, E. A. J. F. Peters, and J. A. M. Kuipers, “Direct numerical 

simulations and experiments of a pseudo-2D gas-fluidized bed,” Chemical Engineering 

Science, vol. 143, pp. 166–180, 2016. 

[37] J. T. Jenkins and S. B. Savage, “A theory for the rapid flow of identical , smooth , nearly 

elastic, spherical particles,” J. Fluid Mech., vol. 30, no. 1983, pp. 187–202, 1983. 

[38] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic theories for granular 

flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield,” 

Journal of Fluid Mechanics, vol. 140, no. 1, p. 223, 1984. 

[39] H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, “Discrete particle simulation of particulate 

systems: A review of major applications and findings,” Chemical Engineering Science, vol. 

63, no. 23, pp. 5728–5770, 2008. 

[40] Ansys, “ANSYS FLUENT Theory Guide,” vol. 15317, no. October, Canonsburg, PA: 

Ansys,Inc, 2012, pp. 511–545. 

[41] W. P. Adamczyk, W. Gabriel, M. Klajny, P. Kozołub, A. Klimanek, and R. A. Białecki, 

“Modeling of particle transport and combustion phenomena in a large-scale circulating 

fluidized bed boiler using a hybrid Euler – Lagrange approach,” Particuology, vol. 16, pp. 29–

40, 2014. 

[42] T. B. Anderson and R. Jackson, “Fluid mechanical description of fluidized beds: Equations of 

motion,” Ind. Eng. Chem. Fund., vol. 8, p. 137, 1969. 

[43] S. Sundaresan, K. Anderson, and R. Jackson, “Instabilities and the formation of bubbles in 

fluidized beds,” J. Fluid Mech.1, vol. 303, p. 327, 1995. 

[44] J. A. M. Kuipers, K. J. van Duin, F. H. P. van Beckum, and W. P. M. van Swaaij, “A numerical 

model of gas-fluidized beds,” Chemical Engineering Science, vol. 47, 1992. 

[45] Y. P. Tsuo and D. Gidaspow, “Computations of flow patterns in circulating fluidized beds,” 



 

167 

 

AIChE Journal, vol. 36, p. 885, 1990. 

[46] S. Elgobashi and T. W. Abou-Arab, “A two-equation turbulence model for two-phase flows,” 

phys. Fluids, vol. 26, p. 931, 1983. 

[47] C. P. Chen, “Studies in two-phase turbulence closure modeling,” Thesis/Dissertation, 1985. 

[48] L. X. Zhou and X. Q. Huang, “Prediction of confined turbulent gas-particle jet by an energy 

equation model of particle turbulence,” Science in China, vol. 33, p. 428, 1990. 

[49] D. Gidaspow, “Multiphase flow and fluidization: Continuum and kinetic theory descriptions,” 

New York: Academic press, 1994, p. 467. 

[50] Ding J. and D. Gidaspow, “A bubbling fluidization model using kinetic theory of granular 

flow,” AIChE Journal, vol. 36, p. 523, 1990. 

[51] J. L. Sinclair and R. Jackson, “Gas-particle flow in a vertical pipe with particle-particle 

interactions,” AIChE Journal, vol. 35, no. 1473, 1989. 

[52] A. Samuelsberg and B. H. Hjertager, “Computational modeling of gas/particle flow in a riser,” 

AIChE Journal, vol. 42, p. 1536, 1996. 

[53] J. J. Nieuwland, M. van Sint Annaland, J. A. M. Kuipers, and W. P. M. van Swaaij, 

“Hydrodynamic modeling of gas/particle flows in riser reactors,” AIChE Journal, vol. 42, p. 

1569, 1996. 

[54] M. S. Detamore, M. A. Swanson, K. R. Frender, and C. M. Hrenya, “A kinetic-theory analysis 

of the scale-up of circulating fluidized beds,” Powder Technology, vol. 116, p. 190, 2001. 

[55] E. Peirano, V. Delloume, and B. Leckner, “Two- or three-dimensional simulations of turbulent 

gas-solid flows applied to fluidization,” Chemical Engineering Science, vol. 56, no. 16, pp. 

4787–4799, 2001. 

[56] M. Syamlal and T. J. O’Brien, “Fluid dynamic simulation of O-3 decomposition in a bubbling 

fluidized bed,” Aiche Journal, vol. 49, no. 11, pp. 2793–2801, 2003. 

[57] T. McKeen and T. Pugsley, “Simulation and experimental validation of a freely bubbling bed 

of FCC catalyst,” Powder Technology, vol. 129, no. 1–3, pp. 139–152, 2003. 

[58] S. Zimmermann and F. Taghipour, “CFD modeling of the hydrodynamics and reaction kinetics 



 

168 

 

of FCC fluidized-bed reactors,” Industrial and Engineering Chemistry Research, vol. 44, no. 

26, pp. 9818–9827, 2005. 

[59] D. Gidaspow, R. Bezburuah, and J. Ding, “Hydrodynamics of Circulating Fluidized Beds, 

Kinetic Theory Approach. In: Potter, O.E. and Nicklin, D.J., Eds., Fluidization VII, 

Proceedings of the 7th Engineering Foundation Conference on Fluidization, Engineering 

Foundation, New York, 75-82.,” 1992. 

[60] M. Syamlal and T. J. O’Brien, “The Derivation of a Drag Coefficient Formula from Velocity-

Voidage Correlations.,” Unpublished, no. JANUARY 1994, pp. 1–20, 1987. 

[61] M. De Vega, A. Acosta-iborra, C. Sobrino, and F. Herna, “Experimental and computational 

study on the bubble behavior in a 3-D fluidized bed,” Chemical Engineering Science, vol. 66, 

pp. 3499–3512, 2011. 

[62] E. Esmaili and N. Mahinpey, “Advances in Engineering Software Adjustment of drag 

coefficient correlations in three dimensional CFD simulation of gas – solid bubbling fluidized 

bed,” Advances in Engineering Software, vol. 42, no. 6, pp. 375–386, 2011. 

[63] J. Min, J. B.Drake, T. J.Heindel, and R. O.Fox, “Experimental Validation of CFD Simulations 

of a Lab-Scale FLuidized-Bed reactor with and without side-gas injection,” AIChE Journal, 

vol. 56, pp. 1434–1446, 2010. 

[64] J. Jang and H. Arastoopour, “CFD Simulation of Different-Scaled Bubbling Fluidized Beds. 

Engineering Conferences International-The 14th International Conference on Fluidization –

From Fundamentals to Products,” 2013. 

[65] C. Tagliaferri, L. Mazzei, P. Lettieri, A. Marzocchella, G. Olivieri, and P. Salatino, “CFD 

simulation of bubbling fluidized bidisperse mixtures: Effect of integration methods and 

restitution coefficient,” Chemical Engineering Science, vol. 102, pp. 324–334, 2013. 

[66] X. Chen and J. Wang, “A comparison of two-fluid model, dense discrete particle model and 

CFD-DEM method for modeling impinging gas-solid flows,” Powder Technology, vol. 254, 

pp. 94–102, 2014. 

[67] S. Cloete, “Evaluation of a Lagrangian Discrete Phase Modeling Approach for Resolving 

Cluster Formatin in CFB Risers,” in International Conference on Mutliphase Flow, 2010. 

[68] S. Cloete and S. Amini, “The dense discrete phase model for simulation of bubbling fluidized 



 

169 

 

beds: Validation and verification. ICMF-2016 – 9th International Conference on Multiphase 

Flow,” 2016. 

[69] S. Cloete, S. T. Johansen, M. Braun, B. Popoff, and S. Amini, “Evaluation of a Lagrangian 

Discrete Phase Modeling Approach for Application To Industrial Scale Bubbling Fluidized 

Beds,” Proceedings of the 10th International Conference on Circulating Fluidized Beds and 

Fluidization Technology - CFB-10, vol. 7, no. 2013, pp. 1–8, 2011. 

[70] S. Cloete, S. T. Johansen, and S. Amini, “Performance evaluation of a complete Lagrangian 

KTGF approach for dilute granular flow modelling,” Powder Technology, vol. 226, pp. 43–

52, 2012. 

[71] J. R. Grace and F. Taghipour, “Verification and validation of CFD models and dynamic 

similarity for fluidized beds,” Powder Technology, vol. 139, no. 2, pp. 99–110, 2004. 

[72] AIAA, “Guide for the Verification and Validation of Computational Fluid Dynamics 

Simulations.” AIAA-G-077-1998, Am.Inst.Aeronaut.Astronaut., 1998. 

[73] VGB technical commitee, “Gas Distributor Plates in Fluidized Bed Systems.” VGB 

TECHNISCHE VEREINIGUNG DER GROSSKRAFTWRKSBETREIBER E.V, 1994. 

[74] “Steven Hugill (4th September 2013).‘Where there’s muck there’s gas . . .’, available on: 

http://www.thenorthernecho.co.uk/business/spotlighton/10653594.Where there is muck there 

is gas/ (accessed/cited in May 2017).” 

[75] “ASTM D7743­12 Standard Test Method for Measuring the Minimum Fluidization Velocities 

of Free Flowing Powders, ASTM International, West Conshohocken, PA, 2012, 

https://doi.org/10.1520/D7743­12.” Conshohocken, West, pp. 1–8, 2013. 

[76] M. Syamlal, W. Rogers, and O’Brien T.J., “MFIX Documentation: Volume 1 Theory Guide, 

National Technical Information Service, Springfield, VA, 1993 (DOE/METC 9411004, 

NTIS/DE9400087).” . 

[77] D. G. Schaeffer, “Instability in the evolution equations describing incompressible granular 

flow,” Journal of Differential Equations, vol. 66, no. 1, pp. 19–50, 1987. 

[78] Ansys, “Lecture 5: Particulate Flows. Advanced Multiphase Course,” Canonsburg, PA: 

Ansys,Inc, 2014. 



 

170 

 

[79] P. C. Johnson and R. Jackson, “Frictional–collisional constitutive relations for granular 

materials, with application to plane shearing,” Journal of Fluid Mechanics, vol. 176, no. 1, p. 

67, Mar. 1987. 

[80] S. Ogawa, A. Umemura, and N. Oshima, “On the equations of fully fluidized granular 

materials,” Appl. Math, vol. Phys.. 31, p. 483, 1980. 

[81] C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic theories for granular 

flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield,” 

Journal of Fluid Mechanics, vol. 140, no. 1, p. 223, 1984. 

[82] S. Ergun, “Fluid Flow Through Packed Columns,” Chem. Eng. Prog., vol. 48, pp. 89–94, 1952. 

[83] D. Gidaspow, “Hydrodynamics of Fluidization and Heat Transfer: Supercomputer Modeling,” 

Appl.Mech.Rev., vol. 39, pp. 1–23, 1986. 

[84] J. F. Richardson and W. N. Zaki, “Sedimentation and Fluidization: Part I,” 

Trans.Inst.Chem.Eng, vol. 32, pp. 35–53, 1954. 

[85] C. . Wen and Y. H. Yu, “Mechanics of Fluidization,” Chem. Eng. Prog. Symp. Series, vol. 62, 

pp. 100–111, 1966. 

[86] F. Vejahati, N. Mahinpey, N. Ellis, and M. B. Nikoo, “CFD simulation of gas-solid bubbling 

fluidized bed: A new method for adjusting drag law,” Canadian Journal of Chemical 

Engineering, vol. 87, no. 1, pp. 19–30, 2009. 

[87] J. Garside and M. R. Al-Dibouni, “Velocity-Voidage Relationships for Fluidization and 

Sedimentation in Solid-Liquid Systems,” Industrial & Engineering Chemistry Process Design 

and Development, vol. 16, no. 2, pp. 206–214, 1977. 

[88] P. A. Cundall and O. D. L. Strack, “A discrete numerical model for granular assemblies,” 

Géotechnique, vol. 29, no. 1. pp. 47–65, 1979. 

[89] S. Matsumoto and M. Suzuki, “Statistical analysis of fluctuations of froth pressure on 

perforated plates without downcomers,” International Journal of Multiphase Flow, vol. 10, 

pp. 217–228, 1984. 

[90] H. Kage, N. Iwasaki, Y. Matsuno, and Y. Matsuno, “Frequency analysis of pressure fluctuation 

in fluidized bed plenum,” Journal of Chemical Engineering of Japan, vol. 24, no. 1, pp. 76–



 

171 

 

81, 1991. 

[91] H. Kage, M. Agari, H. Ogura, and Y. Matsuno, “Frequency analysis of pressure fluctuation in 

fluidized bed plenum and its confidence limit for detection of various modes of fluidization,” 

Advanced Powder Technology, vol. 11, no. 4, pp. 459–475, 2000. 

[92] H. Johnsson and F. Johnsson, “Measurements of local solids volume-fraction in fluidized bed 

boilers,” Powder Technology, vol. 115, no. 1, pp. 13–26, 2001. 

[93] H. T. Bi, “A critical review of the complex pressure fluctuation phenomenon in gas-solids 

fluidized beds,” Chemical Engineering Science, vol. 62, no. 13, pp. 3473–3493, 2007. 

[94] W. Qingcheng, Z. Kai, and G. Hongyan, “CFD simulation of pressure fluctuation 

characteristics in the gas-solid fluidized bed: Comparisons with experiments,” pp. 211–218, 

2011. 

[95] M. Syamlal and T. J. O’Brien, “Simulation of granular layer inversion in liquid fluidized beds,” 

International Journal of Multiphase Flow, vol. 14, no. 4, pp. 473–481, 1988. 

[96] J. R. Van Ommen, S. Sasic, J. Van Der Schaaf, S. Gheorghiu, F. Johnsson, and M. Coppens, 

“Time-series analysis of pressure fluctuations in gas – solid fluidized beds – A review,” 

International Journal of Multiphase Flow, vol. 37, no. 5, pp. 403–428, 2011. 

[97] M. Syamlal and T. J. O’Brien, “Computer Simulation of Bubbles in a Fluidized Bed,” AIChE 

Symp. Series 85, pp. 22–31, 1989. 

[98] G. Ahmadi and D. Ma, “A Thermodynamical Formulation for Dispersed Multiphase Turbulent 

Flows,” Int.J.Multiphase Flow. 16, pp. 323–351, 1990. 

[99] L. L. Yang, J. T. J. Padding, and J. A. M. H. Kuipers, “Modification of kinetic theory of 

granular flow for frictional spheres, Part I: Two-fluid model derivation and numerical 

implementation,” Chemical Engineering Science, vol. 152, pp. 767–782, 2016. 

[100] Ding Jianmin and D. Gidaspow, “A Bubbling Fluidization Model Using Kinetic Theory of 

Granular Flow,” AIChE Journal, vol. 36, no. 4, pp. 523–538, 1990. 

[101] N. Couto, V. Silva, E. Monteiro, S. Teixeira, P. S. D. Brito, and A. Rouboa, “Numerical and 

experimental analysis of municipal solid wastes gasification process,” Applied Thermal 

Engineering, vol. 78, pp. 185–195, 2015. 



 

172 

 

[102] “Gu Dazhao, Katie Warrick., (2015). Today’s Gasification Market Available from: 

http://cornerstonemag.net/tag/reducing-emissions-in-china/ (accessed/cited in May 2017).” . 

[103] G. A. Bokkers, “Multi-level modelling of the hydrodynamics in gas phase polymerisation 

reactors,” Thesis/Dissertation, 2005. 

[104] B. Practice, M. Lambert, M. Braun, D. Dimitrova, J. Schuetze, and D. Stenger, “CFD-DEM, 

Theory, Numerics, Best Practice,” pp. 1–64, 2017. 

 

 


