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High-order harmonic generation in the presence of a resonance
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We investigate high-order harmonic generation from laser-irradiated systems that support a shape resonance.
From the numerical solution of the time-dependent Schrödinger equation, we calculate the harmonic spectra and
the time-frequency analysis of the harmonic intensity and phase. The analysis reveals the separate contributions
of the short and long trajectories as well as the resonance. A range of harmonics is strongly enhanced by the
presence of the resonance irrespective of the pulse length. The signature of the resonance remains significant after
coherent summation over intensities as a simple method to simulate macroscopic effects. The time-frequency
analysis supports the recently proposed four-step mechanism of the enhanced harmonic generation process.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a nonlinear
process occuring in intense laser fields acting on various types
of targets [1–4]. It causes the emission of extreme ultraviolet
(XUV) coherent radiation. In these experiments, the typical
order of the laser intensity is 1014 W/cm2. HHG can be
understood in a simple three-step model [5]. The first step is
ionization of the target by the laser field. Second, the electron is
driven by the oscillating laser field and returns to the core. The
last step is radiative recombination resulting in the emission of
a high-harmonic photon. The emitted HHG spectrum exhibits
a plateau with a cutoff at the energy 3.17Up + Ip [5], where
Up is the ponderomotive potential and Ip is the ionization
potential of the target. For harmonic frequencies below the
cutoff, there exist short and long trajectories [6], i.e. there are
two different durations of electron trajectories contributing to
the same harmonic frequency with return times in the same
half cycle. These trajectories can be approximately obtained
from the classical equation of motion for the second step of
the three-step model. The presence of the nearly classical
trajectories has been confirmed by the measurement of the
attosecond chirp [7]. The three-step sequence is repeated in
every half cycle of the laser field. This periodicity leads to
the formation of odd-order harmonic radiation unless the laser
pulse is extremely short.

The recombination step in HHG is the inverse process of
one-photon photoionization. The dependence of the recombi-
nation probability on the electron return energy and on the
structure of the target is reflected in the HHG spectrum and
has been the subject of intensive research in the past years. For
example, the orientation dependence of HHG from aligned
molecules [8–11] has led to imaging of molecular orbitals
[12,13]. In molecules, significant contributions to the HHG
signal may arise not only from the outermost bound electron
orbital but also from lower-lying orbitals [14–16]. However,
the experimental findings were successfully reproduced also
by the quantitative rescattering theory [17,18], which does
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not resort to lower-lying orbitals but treats the recombination
step very accurately by using the exact recombination cross
sections. For atoms, the accepted view is that only the out-
ermost orbital is relevant for HHG and therefore a direct link
between HHG and valence-shell photoionization can be made.
For example, the Cooper minimum in the photoionization
cross section of argon atoms [19] is found also in HHG
spectra from argon [20]. Hence, to enhance the notoriously
low efficiency of the HHG process, it appears promising to
exploit the effect of resonances, which are known to be of great
importance in photoionization. The investigation of resonant
peaks in the photoionization cross section has a long history,
including studies of autoionization resonances [21,22], shape
resonances [23], and giant resonances [24], but there have
been only a few studies on the role of resonances in HHG.
Note that the previous discussions of multiphoton resonances
in HHG [25–27] refer to a different physical situation, namely,
the resonant excitation of bound states, which has been made
responsible also for the strong enhancement of groups of peaks
in above-threshold ionization spectra [28]. In contrast, here
we discuss resonances in the meaning of metastable states
embedded in the electronic continuum of the target system.

Experimentally, resonant enhancement of single harmonics
has been observed using many-cycle laser pulses interacting
with plasma plumes, see the review [4] and references
therein. It has been argued that these findings are due to
the population of metastable states via a resonant excitation
mechanism [29–31]. The phase-matching aspects of this
emission mechanism were discussed in [31,32]. Recently, a
four-step model was suggested by Strelkov [33] to explain the
resonant HHG. According to the model, the last step of the
usual HHG process (radiative transition to the ground state)
is split into two steps: the returning electron is trapped by the
target into the resonance and then it relaxes to the ground state
emitting the XUV photon. Although the results of Strelkov’s
theoretical analysis show agreement with the experiment, it
remains to be clarified whether the four-step process really
occurs in the time evolution obtained from the time-dependent
Schrödinger equation (TDSE).

In the present article we analyze the effect of a shape
resonance on HHG. A shape resonance is a one-electron
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phenomenon occurring when the potential exhibits a barrier
supporting a metastable state. In fact, a potential with a shape
resonance was used in [33] to mimic the autoionizing states
of the ions relevant for the experimentally observed HHG
in plasmas [4]. Shape resonances may also be important for
understanding molecular HHG spectra, e.g., from N2 [17]. We
investigate both the single-atom response and phase-matching
aspects [34]. The four-step mechanism is revealed by the
time-frequency analysis of the harmonic radiation. Insight is
gained also by applying the time-frequency analysis to the
harmonic phase.

II. METHOD

Atomic units are used throughout the paper. We numerically
solve the one-dimensional (1D) time-dependent Schrödinger
equation in the presence of a laser field

i
∂�(x,t)

∂t
= −1

2

∂2�(x,t)

∂x2
+ [V0(x) + E(t)x]�(x,t), (1)

where V0(x) is the potential of the unperturbed system and
E(t) is the laser field. We use a model potential V0(x) with a
barrier
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Figure 1(a) shows the two potential shapes that we use through-
out this article, denoted in the following as potential 1 and
potential 2. The parameters are α1 = 1.32, β1 = 1.27, γ1 =
0.23, δ1 = 9.5, ε1 = 1.4 for potential 1 and α2 = 1.5, β2 =
1.27, γ2 = 0.23, δ2 = 14, ε2 = 1.4 for potential 2. The TDSE
is solved by means of the split-operator technique [35,36]
and the ground-state wave function �0(x) is obtained by
imaginary-time propagation [37].

The potential barrier leads to the existence of a shape
resonance, i.e., a metastable state corresponding to an electron
trapped in the interior region with a finite lifetime. The

-10 -5 0 5 10
x (a.u.)

-2

-1

0

1

2

3

E
ne

rg
y 

(a
.u

.)

Potential 1
Potential 2

(a)

0 1 2
Energy (a.u.)

10
-2

10
0

10
2

|c
(ω

)|2  (
ar

b.
 u

ni
ts

)

Potential 1
Potential 2

(b)

FIG. 1. (Color online) (a) The two potentials used in this work.
The ground-state energies of potentials 1 and 2 are at −0.54 and
−0.58 a.u., as indicated (solid horizontal lines). Shape resonances
are found to be at 0.95 and 1.20 a.u., respectively (dot-dashed
horizontal lines). (b) Modulus squared of the Fourier-transformed
autocorrelation functions showing the resonances of potentials
1 and 2.

0 100 200 300

Time (a.u.)

-0.05

0

0.05

E
0 (

a.
u.

)

(a)

0 200 400 600 800

Time (a.u.)

(b)

FIG. 2. (a) Short pulse with a (1-1-1) envelope. (b) Long pulse
with a (3.5-2-3.5) envelope.

resonance energy can be obtained by inspection of the modulus
squared of the Fourier-transformed autocorrelation function
c(t) = 〈	0|	(t)〉, where 	(x,t) is the result of propagation
of an arbitrary function 	0(x) that has overlap with the
resonant state. We choose 	0(x) = 	G(x) − 〈�0|	G〉�0(x)
with a Gaussian wave packet 	G(x) = exp[−(x−0.9)2], so
that the ground state does not disturb the resulting picture.
The result clearly shows the positions of the resonance for the
two potentials, see Fig. 1(b). The lifetimes are obtained from
the widths of the resonance peaks. By fitting the peaks to the
Breit-Wigner formula [38], we obtain the values 
1 = 0.030
and 
2 = 0.0071 a.u. This means that the decay time of the
resonance in potential 1 is shorter than the optical cycle of
an 800-nm laser field, while for potential 2 the resonance is
longer lived than the optical cycle.

A laser field of the form E(t) = E0 sin(ωLt)f (t) is used,
where E0 and ωL are the field amplitude and frequency and
f (t) is a trapezoidal envelope. We employ a “short” and
a “long” laser pulse as shown in Fig. 2. The short pulse
has a (1-1-1) shape, i.e., one optical cycle switch-on and
switch-off times and a one-cycle plateau. The long pulse has
a (3.5-2-3.5) shape. All calculations are done for an 800-nm
wavelength.

The dipole acceleration is calculated according to

a(t) = 〈�(t)|dV0(x)

dx
+ E(t)|�(t)〉, (3)

and the HHG spectrum is proportional to

S(ω) =
∣∣∣∣
∫

dt a(t)eiωt

∣∣∣∣
2

. (4)

We investigate the time-frequency distribution of the harmon-
ics using the Gabor transform [39,40]

G(ω,t) =
∫

dτ a(τ )eiωτ e−(t−τ )2/2σ 2
. (5)

We use the parameter σ = 1/(3ωL). The modulus squared
of G(ω,t) is the time-frequency distribution of the harmonic
intensity. We analyze also the phase of G(ω,t), which gives
insight into the time-frequency aspects of phase matching.

In a real HHG experiment, the macroscopic propagation
of harmonics emitted by different atoms of a medium plays
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FIG. 3. (Color online) HHG spectra for (a) potential 1 and (b)
potential 2, calculated with different pulse lengths for the potentials
shown in Fig. 1(a). n is the number of optical cycles in a pulse with
intensity I = 4 × 1014 W/cm2.

an important role [34]. Being distributed in space, different
atoms are exposed to different intensities of the laser field.
We simulate the phase matching by coherent summation over
intensities in an appropriate range �I [41,42] in order to
study the effect on the HHG spectrum and time-frequency
distribution. We calculate the total effective dipole acceleration
generated by N uniformly distributed intensities in the range
�I according to

aeff(t) =
N∑

i=1

aIi
/N. (6)

The results from the intensity-averaging procedure agree
with the results from the more complicated macroscopic
propagation for the frequently used experimental configuration
with the gas jet after the focus [42]. This configuration favors
the selection of the short trajectories [43].

III. SINGLE-ATOM RESPONSE

In this section, we address the question of whether the
HHG spectrum calculated from the TDSE for a single atom
shows the signature of the shape resonances. The mechanism

of resonant HHG is investigated by inspection of the time-
frequency analysis.

A. HHG spectra

We show in Fig. 3(a) the HHG spectra calculated for
different pulse lengths and for the two different potentials.
The cutoffs are in agreement with the classical formula
and, as expected, the harmonic peaks become sharper with
increasing pulse length. In all cases, the spectrum exhibits
a strong peak at the harmonic frequency that corresponds
to the difference between the resonance energy and the
ground-state energy. At harmonic orders below the resonance
peak, harmonic emission appears to be strongly suppressed.
This is an immediate consequence of the potential barrier
making it almost impossible for slow electrons to return to
the bound-state region. The enhancement due to the resonance
is two to three orders of magnitude. Moreover, the calculation
shows that the resonance is observed irrespective of the
pulse length. This indicates that the population of the res-
onance builds up very quickly regardless of the lifetime or
pulse duration. This supports the interpretation in terms of the
four-step model rather than a resonant excitation mechanism.
In all the following calculations, we employ the long pulse
shown in Fig. 2(b).

B. Time-frequency analysis

The time-frequency distribution is calculated from the
Gabor transform, Eq. (5). The full picture shows a periodic
repetition of arches comprising the long and short trajectories,
due to the periodic character of the laser field. We plot sections
containing about three half cycles in Figs. 4(a) and 4(b). One
can clearly see that the main contribution to the high-frequency
part of the spectra is due to the long trajectories. This is a known
effect in 1D TDSE calculations; in 3D TDSE calculations,
the radiation is dominated by the short trajectories [40]. The
figures show that the resonance causes a strong signal around
a fixed frequency. This type of emission dominates the spectra
at harmonic frequencies below 2 a.u. It is striking that the
emission at the resonance increases whenever a long-trajectory
branch crosses the resonance emission frequency. It means that
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FIG. 4. (Color online) Time-frequency distribution of the harmonic radiation for (a) potential 1 and (b) potential 2. The laser intensity is
4 × 1014 W/cm2. The thick dashed purple curves show classical trajectories for a monochromatic field at I = 4 × 1014 W/cm2. The black
dashed lines show the positions of the resonances.
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FIG. 5. (Color online) HHG spectra for a single atom (dashed
curve) and after coherent summation over intensities (solid curve).
(a) Potential 1. (b) Potential 2.

the resonance radiates more intensely after the electron returns
to the core. We conclude that the returning electron is captured
to the resonance state in agreement with Strelkov’s four-step
model [33]. The comparison between different half cycles
shows that potential 1 behaves differently from potential 2. We
suggest the following explanation. The lifetime of potential 1
is 1/
1 = 34 a.u., so that the resonance has decayed by the
time of the next electron return. In potential 2 the resonance
survives for a longer time since 1/
2 = 141 a.u. It does not
decay during a half cycle of the laser pulse, so the population
of the resonance can potentially be increased every half cycle.

An increase of the resonance population is not clearly
seen when the short-trajectory branch crosses the resonance
emission frequency. We believe that this contribution exists,
but it is simply hidden under the strong resonance signal from
the long trajectory.

IV. PHASE MATCHING

A. Intensity-averaged HHG spectra

The macroscopic effects on the HHG spectra are simulated
by coherent summation over an intensity interval. We use 31 in-
tensities in the range from 3.85 × 1014 to 4.15 × 1014 W/cm2.
Figure 5 shows the comparison of the single-atom response

spectra for the laser intensity 4 × 1014 W/cm2 and the
intensity-averaged HHG spectra. The intensity averaging
leads to a substantial suppression of the spectrum in the
plateau region due to the phase mismatch between different
intensities. Obviously, the resonance remains significant for
both considered potentials.

B. Intensity averaging and time-frequency analysis

In order to explain the intensity-averaged HHG spectra,
we investigate the harmonic phases in detail. At fixed laser
intensity we calculate the phase of the Gabor transform G(ω,t)
from Eq. (5). We then calculate the phase difference δφ of the
same harmonic generated by two different laser pulses with
slightly different intensities I1 and I2. Small δφ implies good
phase matching while large δφ leads to phase mismatch.

The result for I1 = 4.14 × 1014 and I2 = 4.15 ×
1014 W/cm2 is shown in Fig. 6. The shown time interval
covers about one half cycle of the laser field. One can see that
the phase matching for the short trajectory (roughly the left
half of the diagrams) in the plateau is better than the phase
matching for the long trajectory (right half of the diagrams).
We have confirmed that this holds also for other intensities in
the range used for the intensity averaging. We thus expect that
intensity averaging favors the short trajectories and suppresses
the long trajectories. In the region of the resonance, we find a
large phase difference comparable to the long-trajectory phase
difference. However, it is likely that a contribution from the
resonance with better phase matching is not visible in these
plots. This is because the calculated emission is dominated
by the population of the resonance due to the long-trajectory
returns, see the time-frequency analysis in Sec. III B. If the
resonance is populated by trapping a returning electron, we
expect that the phase of the emission is locked to the phase of
the returning electron. In fact, we clearly see in Fig. 6 that the
phase difference varies smoothly as the long-trajectory branch
merges into the resonance around the time 510 a.u. Thus, if an
electron returns on the short trajectory and gets trapped in the
resonance, the emission should be well phase matched, as is
the case for the normal short-trajectory radiation.
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FIG. 6. (Color online) Time-frequency analysis of the harmonic phase difference between the intensities I1 = 4.14 × 1014 and I2 =
4.15 × 1014 W/cm2. (a) Potential 1. (b) Potential 2. The thick dashed purple curves show classical trajectories at I = 4.15 × 1014 W/cm2. The
black dashed lines show the positions of the resonances.
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FIG. 7. (Color online) Time-frequency distribution of the harmonic radiation after intensity averaging. (a) Potential 1. (b) Potential 2. The
thick dashed purple curves show classical trajectories for a monochromatic field at I = 4 × 1014 W/cm2. The black dashed lines show the
positions of the resonances.

Figure 7 shows the Gabor analysis for the harmonic
intensity after summation over intensities. As expected, the
intensity averaging effectively selects the contributions with
good phase matching: the emission from the short-trajectory
branches is much more intense than from the long-trajectory
branches. The signature of the resonance remains significant
for both potentials. The detailed behavior depends on the
lifetime. For a long-lived resonance (potential 2), the addition
of the newly trapped population to the already existing
population can be constructive or destructive depending on
the relative phase. Figure 7(b) shows an example where the
electron return leads to a population reduction, see the decrease
of harmonic emission at the time 510 a.u. Apparently, XUV
radiation with very interesting steplike temporal profiles can be
generated in this way. The short-lived resonance (potential 1)
decays substantially before the next return of an electron, and
therefore Fig. 7(a) does not show such a cancellation effect.

V. CONCLUSION

We have analyzed HHG in the presence of a shape reso-
nance. To understand the HHG mechanism, we investigated
the time-frequency analysis of the intensity and phase. We
have found that the resonance gives rise to a clear signature

in the HHG spectrum irrespective of the pulse length. The
time-frequency analysis supports Strelkov’s four-step model,
according to which the recombination process consists of two
steps: capture of the returning electron into the resonance
and subsequent radiative transition to the ground state. While
the present 1D calculation favors capture from the long
trajectory, we expect that a full 3D calculation will show
a similar mechanism, but with higher weight given to the
short trajectory. By the nature of this process, the emitted
harmonic radiation is phase-locked with the usual harmonic
emission from the short and long trajectories. For long-
lived resonances, interference occurs between the populations
caused by recollisions in different half cycles. This leads to new
possibilities for XUV pulse shaping on the subfemtosecond
time scale.
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[31] D. B. Milošević, Phys. Rev. A 81, 023802 (2010).
[32] I. A. Kulagin and T. Usmanov, Opt. Lett. 34, 2616 (2009).
[33] V. Strelkov, Phys. Rev. Lett. 104, 123901 (2010).
[34] M. B. Gaarde, P. Antoine, A. L’Huillier, K. J. Schafer, and

K. C. Kulander, Phys. Rev. A 57, 4553 (1998).
[35] M. D. Feit, J. A. Fleck Jr., and A. Steiger, J. Comput. Phys. 47,

412 (1982).
[36] J. A. Fleck Jr., J. R. Morris, and M. D. Feit, Appl. Phys. 10, 129

(1976).
[37] R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127, 223

(1986).
[38] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-

Relativistic Theory, 2nd ed. (Pergamon, Oxford, 1965).
[39] D. Gabor, J. Inst. Electr. Eng. 93, 429 (1946).
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