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Abstract 

The health capital model of Grossman (1972) is extended to account for uncertainty in the rate at 

which a stock of health depreciates.  Two versions of the model are contemplated, one with a ful-

ly functioning financial market and the other in its absence.  The comparative dynamics of the 

consumption and health-investment demand functions are studied in both models in a general 

setting, where it is shown that the key to deriving refutable results is to determine how a parame-

ter or state variable affects the lifetime marginal utilities of health and wealth.  To add further 

bite to the results, a stochastic control problem is solved for its feedback consumption and 

health-investment demand functions, thereby yielding estimable structural demand functions. 
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1.  Introduction 

The demand-for-health model developed by Grossman (1972a), by necessity relied on a number 

of simplifying assumptions, “ … all of which should be relaxed in future work” (p. 247).  In par-

ticular, Grossman (1972, pp. 247–248) argued that a more general model, most importantly, 

 … would modify the assumption that consumers fully anticipate intertemporal variations in de-

preciation rates and, therefore, know their age of death with certainty.  Since in the real world 

length of life is surely not known with perfect foresight, it might be postulated that a given con-

sumer faces a probability distribution of depreciation rates in each period.  This uncertainty would 

give persons an incentive to protect themselves against the “losses” associated with higher than 

average depreciation rates by purchasing various types of insurance and perhaps by holding an 

“excess” stock of health.  But whatever modifications are made, it would be a mistake to neglect 

the essential features of the model I have presented in this paper. 

The above admonishments of Grossman (1972) are taken seriously in what follows.  In particu-

lar, the assumption of a known, constant rate of depreciation of health is dropped in favor of a 

time-varying stochastic rate of depreciation.  At the same time, however, all the remaining essen-

tial features of Grossman’s (1972) canonical model are retained.  That way, the new properties 

that arise in the extended model can be fully attributed to the one change made, to wit, the intro-

duction of a stochastic rate of health depreciation. 

 Most previous theoretical treatments of the demand-for-health model have examined 

open-loop solutions for the control variables in a deterministic setting, as in, e.g., Muurinen 

(1982), Ehrlich and Chuma (1990), Reid (1998), Eisenring (1999), Laporte and Ferguson (2007), 

Galama (2015), Laporte (2015), Strulik (2015), Bolin and Lindgren (2016), and Fu et al. (2016).  

In an open-loop solution the optimal values of the control variable are decided at the outset, i.e., 

at the initial date of the planning horizon, and found by solving the Pontryagin necessary condi-

tions.  They are functions of the initial and terminal values of time and the state variables, as well 

as the parameters of the control problem.  In principle, this approach can also be used when un-

certainty is present.  If, however, the value of a state variable at some time during the planning 
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horizon deviates from the value expected and planned for at the outset, then the optimal control 

determined at the initial date of the planning horizon will no longer be optimal.  Thus, at that 

point in time, an individual must resolve the control problem over the remainder of the planning 

horizon, given the new unanticipated value of the state variable.  Clearly, the extension of the 

demand-for-health model that includes stochastic elements comes with considerable complica-

tions using the open-loop solution.  These difficulties can be avoided, however, by solving for a 

feedback optimal control, found using the Hamilton-Jacobi-Bellman (H-J-B) equation associated 

with the underlying stochastic optimal control problem. 

 A feedback optimal control depends on the current value of the state variables—the 

stocks of health, wealth, and depreciation—the parameters, and, in general, the current and ter-

minal values of time.  Thus, a feedback optimal control for health investments will by construc-

tion provide the optimal decision for the rate of investment in health for whatever value the cur-

rent health stock may take.  This is the route followed herein in order to study the demand-for-

health model when the rate at which the health stock depreciates is stochastic. 

 In light of the above, the main objectives of the paper are to (i) develop two versions of 

the demand-for-health model that incorporate uncertainty along the aforesaid lines, (ii) derive the 

comparative dynamics of the feedback solution of each model, (iii) derive an explicit solution for 

the feedback consumption and health-investment demand functions under a set of parametric as-

sumptions for instantaneous preferences, the health production function, and the stochastic pro-

cess governing the evolution of the depreciation rate of health, and (iv) demonstrate the useful-

ness of the latter for deriving empirically estimable structural demand functions for consumption 

and health investment and their comparative dynamics. 

2.  A Stochastic Health Capital Model with Financial Markets 

The purpose of this section is to (i) present a stochastic, continuous-time versions of Grossman’s 

(1972) health capital model, (ii) lay out and discuss the basic assumptions of the theory, and (iii) 

derive some elementary results of the model that prove useful in later sections.  It is assumed that 
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the reader is already familiar with Grossman’s (1972) model, thereby permitting a crisp devel-

opment of the ensuing stochastic optimal control formulation of it. 

 To begin, let  denote the consumption rate of a nondurable good that does not 

affect an agent’s stock of health, let  be the stock of health capital at time , and let 

 be the rate of investment in health capital at time .  The instantaneous preferences of 

an agent are represented by a felicity function , assumed to depend on an agent’s consump-

tion rate and health capital.  As a result, the value of  at time  is .  It is as-

sumed that   is twice continuously differentiable, i.e., , and that 

 and , i.e., instantaneous preferences are strictly mono-

tonic. 

 The state equation for the stock of health is a simple variant of the archetypical capital 

accumulation equation, and takes the form , where  is the time-

varying stochastic rate of depreciation of the health stock and  is a health production func-

tion, mapping health investment to the gross rate of change of the health stock.  It is assumed that 

 and  , that is, the marginal product of health investment is positive. 

 In what follows, it is assumed that the evolution of the depreciation rate is governed by a 

Wiener process, also known as Brownian motion or a white noise process.1  In particular, a novel 

feature of the model is that the depreciation rate , satisfies the stochastic differential equa-

tion , where  is a Wiener process.  This specifi-

cation means that  varies over time according to a known deterministic part , 

, and a stochastic part , , where , and   

and  are parameters introduced for the purpose of comparative dynamics. 

 The assumption  implies that the rate of depreciation increases over time 

and is dependent on an agent’s health.  Moreover, an agent knows that the deterministic portion 

is indirectly under their control, seeing as an agent’s choice of investment affects the rate at 

                                                 
1 The properties of such stochastic processes are well-known; see, e.g., the excellent introductory treatments given in 
Dixit and Pindyck (1982) and Dockner et al. (2000). 
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which health changes over time, and thus the stock of health, which in turn affects how the de-

preciation rate changes over time.  What is more, it is assumed that  and 

.  The former implies that an increase in an agent’s health reduces the rate at 

which health depreciates over time, i.e., the health capital of healthier agents depreciates more 

slowly over time than does that of unhealthy agents.  The latter means that the higher is , the 

slower health depreciates as health improves.  One can of course make alternative assumptions, 

but those given are plausible. 

 The stochastic differential equation for health also implies that the instantaneous variance 

of the depreciation rate is .  Furthermore, it is assumed that  and 

.  The former means that healthier agents have a larger instantaneous variance 

of depreciation than do less healthy agents.  The latter implies that the larger is , the larger is 

the effect of health on the instantaneous variance of depreciation. 

 Let  be an arbitrary but fixed base time of an optimal control problem, that is, time 

 is the initial date of the planning horizon and hence the date at which the optimization de-

cision is made.  Given this convention, the lifetime budget constraint of an agent from the per-

spective of base time  may be written as 

 , 

where  is the price of the nondurable consumption good,  is the price of health in-

vestment,  is an interest rate,  is a given value of wealth at time ,  is 

the stock-of-health-dependent income flow, and  is an exogenous flow of income.  It is as-

sumed that  and , the latter implying that income flow is a strictly in-

creasing function of health. 

 It is asserted that an agent behaves as if solving the stochastic optimal control problem 
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 s.t.  , (1) 

 , , 

 , , 

where ,  is a rate of time preference,  is a given value of 

health at the base time,  is a given value of the depreciation rate at the base time, and  

is the (current-value) lifetime indirect utility function, assumed to be locally .  Although the 

planning horizon has been assumed infinite, it has been shown by Caputo (2017) that the as-

sumption has no essential bearing on the comparative dynamics results that follow. 

 The next task is to rewrite problem (1) in standard form.  To this end, define  by 

 . 

Using Leibniz’s Rule and the lifetime budget constraint, the preceding definition gives 

 , ( ) tA t A= . (2) 

Upon replacing the lifetime budget constraint with Eq. (2), the standard form of stochastic opti-

mal control problem (1) is given by 

  

 s.t.  , , (3) 

 , , 

 , , 

Problem (3) is one of the stochastic versions of the health capital model of interest in what fol-

lows, to wit, the version with a fully functioning financial market.  Note that because problem (3) 

has an infinite planning horizon and  enters explicitly only through the exponential discount 

factor,  is independent of the base time. 

 By Theorem 8.4 of Dockner et al. (2005), the H-J-B equation corresponding to the sto-

chastic optimal control problem (3) is given by 
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 , (4) 

where the triplet  is an arbitrary value of the state vector at any base time and 

.  Because of the lack of assumptions required to invoke a sufficiency theorem, it 

is assumed that there exists an interior, finite, optimal feedback solution to the H-J-B maximiza-

tion problem (4) for all values of  in an open set, denoted by .  Finally, note that 

a feedback solution  is not a function of the base time, for reasons given earlier. 

 The section is brought to a close by presenting a few features of the feedback solution 

 that may be gleaned from an examination of the first- and second-order necessary 

conditions associated with the H-J-B problem (4), and which prove useful in §3.  Henceforth, 

 will be referred to as the consumption and health investment demand functions, 

with  denoting their values. 

 The first-order necessary conditions obeyed by  are 
 , (5) 

 , (6) 

while the second-order necessary condition requires that the Hessian matrix 

  (7) 

is negative semidefinite at , or equivalently, that its diagonal elements are less than 

or equal to zero and its determinant is greater than or equal to zero at . 

 As  from Eq. (5) and strict monotonicity, it follows that 

, seeing as .  Hence the lifetime marginal utility of wealth is positive.  What is 

more,  from Eq. (6), the strict inequality following from  and 

the preceding deduction.  Given that , it follows that the lifetime marginal utility of 

health is positive too, i.e., .  In sum, even under the mild stipulations in place, wealth 

and health are both goods in the sense that their lifetime marginal utilities are positive.  Because 
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the lifetime marginal utility of depreciation does not appear in Eqs. (5) or (6), no such deduction 

about it is possible. 

 Inspection of Eq. (7) and use of the second-order necessary condition implies that  is 

locally concave in consumption and hence displays nonincreasing marginal utility of consump-

tion locally.  Accordingly, local concavity of  in consumption is intrinsic to the model.  

Moreover, as shown in the preceding paragraph, , thus the second-order necessary 

condition implies that the health production function is locally concave too, i.e.,  local-

ly.  Therefore, for comparative dynamics purposes, a priori concavity assumptions such as 

 and  are not generally required, as they are implied locally by the op-

timization assertion. 

3.  Feedback Comparative Dynamics I 

The present section derives the comparative dynamics of .  Observe that under the 

stipulation that  at , it follows from the implicit function theorem and afore-

said differentiability assumptions that the consumption and health-investment demand functions 

 are locally .  Moreover, the second-order sufficient condition of the H-J-B op-

timization problem (4) holds, which is equivalent to  and , in as 

much as , facts useful in establishing Proposition 1.  Its proof follows from differenti-

ating the identity form of Eqs. (5) and (6) with respect to the components of , a process carried 

out below. 

 

Proposition 1.  Under the stated assumptions and  at , the partial deriva-

tives of  are given by 

 , , (8) 

 , (9) 
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 , (10) 

 , , (11) 

 . (12) 

 

 In order to verify two of the expressions in Proposition 1, substitute  in 

Eqs. (5) and (6), and then differentiate the resulting identities with respect to, say , to get 

 , 

which yields Eqs. (8) and (11) for .  Although the denominators are negative by the sec-

ond-order sufficient condition, neither expression can be signed because the signs of the cross-

partial derivatives of  appearing in it are not known.  The veracity of the remaining parts of 

Proposition 1 is established in an identical manner. 

 Three key observations are now made about Proposition 1.  First, note that without 

knowledge of the signs and magnitudes of the cross-partial derivatives of , the signs of the 

feedback comparative dynamics cannot be determined.  This follows from the fact that at least 

one of the aforesaid cross-partial derivatives of the lifetime indirect utility function  appear 

in every expression in Proposition 1.  In particular, and as mentioned earlier, the key to deriving 

refutable results for the consumption and investment demand functions is to determine how a 

state variable or parameter affects the lifetime marginal utilities of health and wealth.  Because 

none of the expressions in Proposition 1 can be signed under the present stipulations, this means 

that problem (3) is consistent with all observed changes in consumption and health investment 

that arise from changes in the prices, as well as the stocks of health, wealth, and depreciation. 

 Second, inspection of Proposition 1 of Caputo (2017) shows that, quite remarkably, the 

comparative dynamics of the consumption and investment demand functions are identical in 
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form for the parameters and state variables common to the deterministic Grossman (1972) model 

examined by Caputo (2017) and the stochastic version defined here in Eq. (3).  Accordingly, the 

determination of the signs of the comparative dynamics in either model comes down to the same 

thing, to wit, ascertaining how a parameter or state variable affects the lifetime marginal utilities 

of health and wealth. 

 The preceding result occurs because the first- and second-order necessary conditions de-

fining the consumption and health investment demand functions are identical in form for the 

aforesaid deterministic and stochastic control problems.  But this only begs the question: “Why 

are the first- and second-order necessary conditions identical in form?”  Both control problems 

have the same objective functional and state equations for health and wealth, but they differ in 

that the stochastic control problem has, in addition, a stochastic state equation for the deprecia-

tion rate.  Even so, because the stochastic state equation for the depreciation rate is not an explic-

it function of either control variable, the form of the first- and second-order necessary conditions 

in the stochastic control problem is identical to that in its deterministic counterpart.  Consequent-

ly, this implies that the only way for the forms of the comparative dynamics expressions to differ 

between the stochastic and deterministic models is for either the consumption or investment rate 

to be an argument of the functions  or . 

 Because of the foregoing conclusion, it follows that all of the observations made by Ca-

puto (2017) about the comparative dynamics of the consumption and heath-investment demand 

functions apply here too.  For example, his observation that the law of demand is not intrinsic to 

the deterministic model for either consumption or investment applies equally here too.  And the 

sufficient, and necessary and sufficient, conditions for the law of demand to hold are the same as 

well.  Therefore, the differences in the deterministic model contemplated by Caputo (2017) and 

the stochastic version studied here are more nuanced than it might appear from simply examining 

the differences in the structure of the two control problems.  These more subtle differences are 

addressed in §6, where an explicit solution of a sufficiently structured stochastic optimal control 

problem is derived. 
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4.  A Stochastic Health Capital Model without Financial Markets 

In this section a version of the stochastic control problem defined in Eq. (3) is developed in 

which financial markets are absent.  This form of the Grossman (1972) model is popular because 

it has the (important) effect of reducing the dimension of the state space by one. 

 The absence of financial markets means that borrowing and lending are not feasible al-

ternatives for the allocation of market earnings and therefore that (i) the state equation for wealth 

no longer applies, and (ii) market earnings necessarily equal the sum of expenses on consump-

tion and health investment.  Consequently, the budget constraint holds at each point in time in 

the planning horizon and is given by .  The other change is that 

, a standard assumption when financial markets are absent and one that makes no 

difference in the qualitative results to follow.  All other features of problem (3) remain intact.  

Hence, it is asserted that an agent behaves as if solving the stochastic optimal control problem 

  

 s.t.  , , (13) 

 , , 

 , 

where  is the current-value, lifetime, indirect utility function in the present case and 

. 

 By Theorem 8.4 of Dockner et al. (2005), the H-J-B equation corresponding to the sto-

chastic optimal control problem (13) is given by 

  (14) 

 s.t.  , 

where  and  is an arbitrary value of the state vector at any base time.  As be-

fore, because of the lack of assumptions required to invoke a sufficiency theorem, it is assumed 

that there exists an interior, finite, optimal feedback solution to the H-J-B maximization problem 

(14), say , for all values of  in an open set.  The corresponding value of the La-
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grange multiplier is denoted by .  Note too that  and  are not func-

tions of the base time, for reasons given earlier. 

 Define the value of the Lagrangian function  for the problem (14) by  

  (15) 

in which case the first-order necessary conditions obeyed by  are 
 , (16) 

 , (17) 
 ,  (18) 

while the second-order necessary condition is 

 . (19) 

Given the monotonicity of instantaneous preferences and positive prices, it follows from Eq. (16) 

that , and therefore from Eq. (17) that the lifetime marginal utility of health is positive 

too, i.e., .  Moreover, it follows from positive prices and Eq. (19) that instantaneous 

preferences are locally concave in consumption, that is, .  Furthermore, under 

the additional stipulation that , the usual second-order sufficient condition holds at 

, in which case  and  are locally once continuously 

differentiable functions by the implicit function theorem. 

5.  Feedback Comparative Dynamics II 

The central result of this section is contained in the following proposition, the proof of which fol-

lows from differentiating the identity form of Eqs. (16)–(18) with respect to the components of 

, a process carried out below. 

 

Proposition 2.  Under the stated assumptions and , the partial derivatives of 

 are given by 
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 , (20) 

 , (21) 

 , , (22) 

 , , (23) 

 , (24) 

 , (25) 

 , (26) 

 . (27) 

 

 In order to derive the expressions in, for example, Eqs. (20) and (21), first substitute 

 in the first-order necessary conditions given by Eqs. (16)–(18), and then dif-

ferentiate the resulting identities with respect to  to arrive at 

 , 

from which Eqs. (20) and (21) follow.  All of the other expressions in Proposition 2 can be estab-

lished in the same manner. 

 There are several important remarks that should be made about Proposition 2 before con-

cluding the present section.  First, in contrast to Proposition 1, there are indeed refutable results 



The Demand for Health Investment when Health Evolves Stochastically 

 14 

in Proposition 2, but none of them are of the usual variety.  For example, it follows from Eqs. 

(22) and (23) that 

 , . (28) 

Equation (28) asserts that the effect of, say, an increase in the instantaneous variance of the sto-

chastic process governing the depreciation rate health on consumption is the opposite of its effect 

on investment.  Moreover, Eq. (28) provides an exact quantitative relationship between the two 

comparative dynamics effects.  Clearly, the same claims can be made with regard to the other 

three parameters in Eq. (28). 

 Another such refutable result, derivable from Eqs. (20) and (21), is that 

 . (29) 

Equation (29) asserts healthier agent’s either eat more, invest more in their health, or do more of 

both.  Similarly, it follows from Eqs. (24)–(27) that 

 , (30) 

 , (31) 

both of which can readily be transformed in to an elasticity relationship akin to that in the proto-

type utility maximization model.  Equations (30) and (31) assert that when a price increases, the 

rate of consumption, or the rate of investment, or both, must decrease.  In passing, note that Eqs. 

(28)–(31) also follow from the budget constraint. 

 Second, there are two features of Propositions 1 and 2 that are similar.  One is that in or-

der to sign any of the expressions, one must determine how a change in the state variables or pa-

rameters affect the lifetime marginal utility of health.  As a result, the presence or absence of a 

financial market has no bearing on this feature of the model.  The other similarity is that the form 

of the comparative dynamics expressions is identical whether or not the depreciation rate is sto-



The Demand for Health Investment when Health Evolves Stochastically 

 15 

chastic.  What is more, this deduction occurs for the same fundamental reason given earlier in a 

remark following Proposition 1. 

 Third, as an inspection of Eqs. (24) and (27) confirms, the law of demand is not intrinsic 

to the model, despite the simplified form of the budget constraint.  Take the case of consumption 

demand first.  As prices are positive, , and , Eq. (24) shows that there is a 

tendency for the law of demand for consumption to hold.  But seeing as  in general, it 

is not intrinsic to the model.  A simple sufficient condition for the law of demand is , 

i.e., the lifetime marginal utility of health does not decrease when the price of consumption in-

creases.  Similarly, because prices are positive, , , and , there is a 

tendency for investment to obey the law of demand too, as two of the three terms in the numera-

tor of Eq. (27) are negative.  Even so, the law of demand does not in general hold for investment 

demand either, as .  Intuitively, an increase in the price of health investment might 

make an additional unit of health capital more valuable, thereby implying that .  But 

such intuition only serves to work against the law of demand, since the third term in the numera-

tor of Eq. (27) is positive.  Indeed, a simple sufficient condition for the law of demand is that the 

lifetime marginal utility of health is a nonincreasing function of the price of investment, i.e., 

, opposite of the above intuition. 

 As illustrated by Propositions 1 and 2, deriving refutable results for the partial derivatives 

of the consumption and investment demand functions is impossible without further knowledge of 

certain properties of the lifetime indirect utility function, in particular, how the lifetime marginal 

utilities of health and wealth vary with the state variables and parameters.  In order to do so, in-

formation contained in the H-J-B equation itself must be extracted.  To this end, note that in the 

stochastic control problems given in Eqs. (3) and (13), the stochastic process governing the de-

preciation rate is not influenced by either control variable—the rates of consumption and invest-

ment—and, hence, the partial derivatives of the lifetime indirect utility function with respect to 

the depreciation rate do not appear in the first-order necessary conditions.  Therefore, the H-J-B 

equation must be solved for the lifetime indirect utility function.  In principle, this is accom-
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plished by solving the partial differential equation defining the lifetime indirect utility function 

that results from substituting the solution to the first-order necessary conditions for consumption 

and investment back in to the H-J-B equation.  In most cases, however, solving the resulting par-

tial differential equation for an analytical solution is not possible. 

 In the next section, focus is therefore on the specification of the primitive functions of the 

stochastic control problem that yield an analytical solution of the H-J-B equation.  In doing so, it 

is thereby demonstrated that the said approach produces optimal decision rules for consumption 

and investment, plus an explicit lifetime indirect utility function, all of which are useful for com-

parative dynamics analysis and structural econometric work. 

6.  Explicit Solution of the H-J-B Equation 

Recall that the (optimal) decision rules, or equivalently, the feedback demand functions, for con-

sumption and investment are implicitly given by Eqs. (5) and (6), or by Eqs. (16)–(18), depend-

ing on whether financial markets are present or absent, respectively.  Also recall that by Proposi-

tions 1 and 2, in order to establish the sign of any comparative dynamics expression, certain 

properties of the lifetime indirect utility function must be known, or the decision rules them-

selves must be known.  Consequently, the purpose of this section is to derive explicit solutions 

for the feedback demand and lifetime indirect utility functions in an attempt to proved some add-

ed structure to the stochastic control problems that might yield refutable comparative dynamics.  

In passing, note that the method of undetermined coefficients is used in what follows. 

 The first matter to be addressed is which model should be solved, that with, or without, 

financial markets.  In the former case, the stochastic control problem of interest is defined by Eq. 

(3).  Observe that it consists of two control variables and three state variables.  The value func-

tion that satisfies the HJB-equation therefore must, in general, contain the same three state varia-

bles.  Moreover, the functional form of the HJB-equation suggests that such a quadratic function 

of the three state variables is a reasonable conjecture for the value function.  Consequently, 10 

coefficients would have to be determined in order to solve for the value function explicitly.  This 

amounts to solving a system of 10 nonlinear algebraic equations analytically, which is not feasi-
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ble, in general.  Consequently, the stochastic control problem without financial markets, defined 

by Eq. (13), is the focus of what follows. 

 Even in the case of problem (13), there is considerable difficulty in deriving an explicit 

solution for the demand and lifetime indirect utility functions, as it contains two control varia-

bles, two state variables, and a binding constraint.  Therefore, instead of analyzing problem (13), 

a special case of it will be.  Two simplifying assumptions are made, viz., (i) the depreciation rate 

is a known constant , and (ii) the stock of health is a continuous random variable whose 

evolution is governed by a Wiener process.  By adopting these assumptions and using the budget 

constraint to eliminate the consumption rate as a control variable, the resulting stochastic control 

problem has one control variable and one state variable, and is given by 

  

 s.t.  , , (32) 

where  and it is worth noting the slight abuse of notation.  The H-J-B equa-

tion corresponding to Eq. (32) is 

 , (33) 

where  and all other terms are as defined earlier. 

 In order to derive an explicit solution for the consumption and investment demands, ex-

plicit functions must be specified for the instantaneous utility, earnings, and instantaneous stand-

ard deviation functions, say, 

 , 3( , , )C CC Hα α α ++∈� , (34) 

 , Yα ++∈� , (35) 

 , ς ++∈� , (36) 

where the Greek letters are parameters and the instantaneous variance of the health stock is 

, which is an increasing function of the health stock and the parameter .  Given Eqs. (34)

–(36), the H-J-B equation in Eq. (33) takes the form 
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 , (37) 

and yields the first-order necessary condition .  As 

the maximand of Eq. (37) is strictly concave in investment, a solution of the first-order necessary 

condition yields the unique global maximizing value of the health investment rate, to wit, 

 . (38) 

The next step in the method of undetermined coefficients is to conjecture a functional form for 

the lifetime indirect utility function . 

 Given the linear and quadratic functional forms in Eqs. (34)–(36), it is natural to conjec-

ture that the functional form of the lifetime indirect utility function is quadratic in the health 

stock too, i.e., 

 , (39) 

where , , and  are the unknown coefficients to be determined.  Using the con-

jecture in Eq. (39), Eq. (38) can be rewritten as  

 . (40) 

Using Eqs. (39) and (40), the H-J-B equation in Eq. (37) can be written as 

  . (41) 

By Theorem 8.4 of Dockner et al. (2000), in order for the conjectured  in Eq. (39) to be a 

value function for the stochastic control problem defined by Eq. (32), it must satisfy Eq. (41) for 

all values of .  This requires that the constant term and the coefficients on  be identi-

cal on the left-hand and right-hand sides of Eq. (41).  The resulting nonlinear three-equation sys-

tem of algebraic equations is recursive and can be solved explicitly, as summarized by the fol-

lowing proposition. 

 

Proposition 3:  Given the assumed functional forms in Eqs. (34)–(36), the conjectured form for 

 in Eq. (39) is a value function for the stochastic control problem in Eq. (32) if 
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 , (42) 

 , (43) 

 . (44) 

 

 Note that another solution for  exists, namely, that which corresponds to the 

solution .  One problem with this solution is that it violates the stipulation that , 

in which case the lifetime indirect utility function is liner in health.  Another is that it implies that 

the resulting consumption and health-investment demand functions, as well as the lifetime indi-

rect utility function, do not depend on .  This is rather peculiar, seeing as in this case the solu-

tion of the stochastic control problem does not depend on the instantaneous variance of health.  

On the other hand, the solution given in Proposition 3 has the virtue that  implies that 

, in which case both stipulations are met. 

 Substituting the results of Proposition 3 in Eq. (40) yields the value of the feedback 

health-investment demand function, that is, 

 . (45) 

And then substituting Eq. (45) in the budget constraint gives the value of the feedback consump-

tion demand function, i.e., 

 . (46) 

It is readily verified that .  With the foregoing decision rules in hand, 

the remainder of the section focuses on them. 

 Equations (45) and (46) are the structural forms of the feedback demand functions, as 

they are derived from the stochastic health capital model defined by Eq. (32) under the functional 

form assumptions in Eqs. (34)–(36) and (39).  Importantly, they are suitable for econometric 

purposes.  To see this, note that a nonlinear procedure is required for the estimation of the pa-
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rameters , while the data required for said estimation consists of the var-

iables .  The demand functions are unlike any that have been estimated in the lit-

erature extant.  But this is not surprising seeing as Eqs. (45) and (46) are the first instance of an 

explicit feedback solution of a stochastic version of the health capital model. 

 The comparative dynamics of the above demand functions are straightforward to calcu-

late.  For example, the impact of a change in the health stock is readily found by differentiating 

Eqs. (45) and (46) with respect to , yielding 

 , (47) 

 . (48) 

Given that 4( , , , )H C CC Yα α α α ++∈�  and , it follows that 

 , (49) 

from which the inequality in Eq. (48) follows.  Equation (47) shows that even with the present 

functional form stipulations in place, it is still the case that investment in health may increase or 

decrease as the stock of health increases.  The tendency, however, is for the investment to de-

crease due to the similarity of Eq. (47) to Eq. (48).  On the other hand, Eq. (48) shows that con-

sumption unambiguously increases with health, i.e., healthier individuals consume more.  As 

, and alternative interpretation of Eq. (48) is that strong concavity of the life-

time indirect utility function in health is equivalent to consumption being a strictly increasing 

function of health under the present stipulations. 

 Now consider the effect of an increase in the instantaneous variance of the health stock.  

Differentiating Eqs. (45) and (46) with respect to  yields 

 , (50) 

 . (51) 
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Although neither expression can be signed even with the additional assumptions in place, it is 

clear that they are opposite in sign, as .  Thus an increase in the 

instantaneous variance of health necessarily leads to an increase in consumption or investment, 

and a decrease in the other.  Said differently, increasing uncertainty about one’s health leads 

them to either eat more or invest more in health, with the other decision moving in the opposite 

direction. 

  

7.  Summary and Conclusion 

In this paper, we have developed a stochastic version of the human-capital model of health in-

vestments. We derived feedback solutions pertaining to three versions of the model. In versions 

one and two we derived solutions in the case of access to perfect financial markets and no finan-

cial markets, respectively. In the third version of the model we derived closed form solutions for 

consumption and health investments.    
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