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APPLICATION D’ALGORITHMES METAHEURISTIQUES ET DETERMINISTES
POUR L’OPTIMISATION DE TRAJECTOIRE DE REFERENCE D’AERONEFS

Alejandro MURRIETA MENDOZA

RESUME

L'optimisation de la trajectoire de référence des aéronefs est une méthode alternative pour
réduire la consommation de carburant, ainsi que pour réduire la pollution rejetée dans
I'atmospheére. La réduction de la consommation de carburant revét une importance
particuliére pour deux raisons: premic¢rement, l'industrie aéronautique est responsable de 2 %
du COz rejeté dans I'atmosphére et deuxieémement, la réduction du cofit du vol est important.

Le modéle de carburant de I'avion a été obtenu a partir d'un modéle de performance
numérique qui a été créé et validé par notre partenaire industriel a partir des données
expérimentales de vol. Une nouvelle méthodologie utilisant ce modéle a été proposée dans
cette thése pour calculer la consommation du combustible pour une trajectoire donnée.

Des parametres météorologiques tels que le vent et la température ont été pris en compte car
ils ont un effet important dans la combustion du carburant. Nous avons choisi comme les
prévisions météorologiques fournies par Météo Canada comme modele de 1’atmosphére. Une
combinaison des interpolations linéaires et bilinéaires dans la base des données fournies par
Meétéo Canada a permis de trouver les données météorologiques requises.

L'espace de recherche a été modélisé en utilisant des graphiques différents : un mappage des
différentes phases de vol et un mappage de 1'espace physique ou 1’avion effectuait son vol.

La trajectoire a été optimisée dans le plan de référence verticale a l'aide d’une combinaison
de l'algorithme de recherche en faisceau avec une technique de réduction de l'espace de
recherche.

La trajectoire a également été optimisée simultanément dans le plan vertical et latéral de
référence tout en respectant une contrainte requise d'arrivée en utilisant trois algorithmes
métaheuristiques différents: la colonie d'abeilles artificielles, et 1'optimisation des colonies de
fourmis.

Les résultats ont été validés en utilisant le logiciel FlightSIM ®, un systéme de gestion de vol
commercial, un algorithme de recherche exhaustif et des vols effectués a partir de

flightaware®. L’utilisation de tous les algorithmes a conduit a la réduction des cofts de vol.

Mots-Clés : Trajectoire, Optimisation, Metaheuristic, Algorithmes, Flight, Avionique






APPLICATION OF METAHEURISTIC AND DETERMINISTIC ALGORITHMS
FOR AICRAFT REFERENCE TRAJECTORY OPTIMIZATION

Alejandro MURRIETA MENDOZA

ABSTRACT

Aircraft reference trajectory is an alternative method to reduce fuel consumption, thus the
pollution released to the atmosphere. Fuel consumption reduction is of special importance for
two reasons: first, because the aeronautical industry is responsible of 2% of the CO2 released
to the atmosphere, and second, because it will reduce the flight cost.

The aircraft fuel model was obtained from a numerical performance database which was
created and validated by our industrial partner from flight experimental test data. A new
methodology using the numerical database was proposed in this thesis to compute the fuel
burn for a given trajectory.

Weather parameters such as wind and temperature were taken into account as they have an
important effect in fuel burn. The open source model used to obtain the weather forecast was
provided by Weather Canada. A combination of linear and bi-linear interpolations allowed
finding the required weather data.

The search space was modelled using different graphs: one graph was used for mapping the
different flight phases such as climb, cruise and descent, and another graph was used for
mapping the physical space in which the aircraft would perform its flight.

The trajectory was optimized in its vertical reference trajectory using the Beam Search
algorithm, and a combination of the Beam Search algorithm with a search space reduction
technique.

The trajectory was optimized simultaneously for the vertical and lateral reference navigation
plans while fulfilling a Required Time of Arrival constraint using three different
metaheuristic algorithms: the artificial bee’s colony, and the ant colony optimization.

Results were validated using the software FlightSIM®, a commercial Flight Management

System, an exhaustive search algorithm, and as flown flights obtained from flightaware®.
All algorithms were able to reduce the fuel burn, and the flight costs.

Keywords: Trajectory, Optimization, Metaheuristic, Algorithms, Flight, Avionics.






TABLE OF CONTENTS

Page

INTRODUCTION ..ottt ettt sttt ettt sttt ste st e sseessessaesseensesssenseensesssenseensenssenses 1

0.1 Fuel Burn Reduction Efforts Before Airborne...........cocoveevieeienieieniinieieeienceeeee 1

0.2 Satement of the Problem ..........ccccoiiiiiiiiiiii e 2

0.3 RESCATCH ODJELIVES. ...ceviiiiiiiiiecieeieeeie ettt ettt et ebeessbeenbeesaneenseensnas 5

0.4 MethOdOLOZY ....cooiiiiiieiie ettt ettt ettt et e st eb e eaee e 6

0.4.1 Aircraft Numerical Performance Model .........c..ccoceviiviiiiniiniiniieeee 6

0.4.2 Weather Forecast Model ..........cooovviiiiiiiiiiiecceceeeeee e 7

0.4.3 Beam Search .......co.oooiiiiiiii e 8

0.4.4 Search Space Reduction..........ccc.eeeereriiiniiniiiiinieneececeetee e 8

0.4.5 Artificial Bee'S COlONY........cccuieiiiriieiieeiieeeeie et 9

0.4.6 Golden Section Search...........cccveiiiiiiiniiiiieee e 10

0.4.7 Ant Colony Optimization Algorithm..........c.cccceevviieriiiiciiiniieieeieeieee 10

0.5 Literature CONtIIDULION .......eovieriiiiiieriieeiieeite ettt ettt et e e ebeesaeeene s 11

CHAPTER 1 LITERATURE REVIEW ....oiiiiiiiiiiieeee ettt 11

1.1 Fuel Burn Reduction Efforts Before Airborne..........ccccveeeevieeiiiiiieiiiiiciie e 11

1.2 Fuel Burn Reduction Efforts During Airborme...........ccccveeevievieeciieniiecieeieeieeeie e 12

CHAPTER 2 RESEARCH APPROACH AND THESIS ORGANIZATION................. 19

2.1 ThesiS OTZANIZAtION ......ccecviieiiieeiiieeiiie et e steeeteeeteeesteeesaeeesbeeessseeensseessseeensneennns 20

2.1.1 First Journal Paper ........ccccooviiiiiiiiiiniiiccceeeeee e 21

2.1.2 Second Journal Paper...........cceecviiiieiiieniiecieeeeeee e 21

2.13 Third Journal Paper.........ccccoiiiiiiiiiiiiiiicececceceee e 22

2.1.4 Fourth Journal Paper..........cccoecviiiiiiiienieeieeieeeeee e 23

2.1.5 Fifth Journal Paper.........cccoceeviiiiniiiiiiiiceeeceee e 23
CHAPTER 3 NEW METHODOLOGY FOR NAV FLIGHT TRAJECTORY COST

CALCULATION USING A FMS PERFROMANCE DATABASE ........ 25

3.1 INEPOAUCTION ...ttt et 26

3.2 MeEthOOLOZY ....ooiuiiiiiieieee et ettt ettt ettt e s eeeen 33

3.2.1 The Conventional Flight............cccoooiiiiiiiiiniice e 33

322 The Performance Database (PDB).........ccccoeeiiiiiiiiieiiiiceceee e 33

3.2.3 FIGIE COSE vttt ettt et eseesaae e e e nnnas 35

324 Trajectory Calculation Method..........cc.cooeiiiniininiiiiiniceececee 37

33 RESUILS ..ottt ettt ettt b et b et et sae e 50

3.3.1 Flight CompPariSOn .........c.coieririinienieiierteeeeeee et 50

332 Cost Index EffeCt .....ccueeiiiiiiieiieeeeee e 56

3.33 Computation Time For Different Trajectories.........ccoceverveireenerveneenncnnn 57



XII

Page
334 Cruise Aircraft Distance Between Weight Update Points.............cccc...... 58
3.4 CONCIUSION ..ttt ettt st et saeeas 59

CHAPTER 4 NEW REFERNCE TRAJECTORY OPTIMIZATION ALGORITHM
FOR A FLIGHT MANAGEMENT SYSTEM INSIPIRED IN BEAM

SEARCH........ootieeeeeee ettt ettt e s e 61

4.1 INEPOAUCTION ...ttt 62

4.2 MethOdOIOZY ....eeeeeieiiiee ettt et et 68

4.2.1 Numerical Performance Model............cccoooeriiiiiiinieniiiiceceeseeeee 68

422 Flight Cost COMPULATION. .....ccueriiriiiirieniieieeieee et 70

4.3 The Optimization AlIZOTItRIM...........coviiiiiiiiieie e e 72

43.1 The Search Space: A Decision Graph ..........ccccecevvivieviniineenenieneeen 72

432 Problem Definition .........cooeevierierieiienieeeeeeeeee e e 74

433 The Beam Search AlgOrithm .........cccooioiiiiiniininicecece 77

4.4  Exhaustive Search AIOrithim .........c.cooviiiiiiiiiiiiiiiiecccce e 87

4.5 RESULILS ...ttt ettt ettt e et e st eebeesaeeene 87

4.5.1 The Optimism Coefficient Effect ..........cccovviieeiiieiiiieeeeee e 88

452 The Beam Search Algorithm and the Exhaustive Search..........c.....c....... 92

453 The Beam Search Algorithm and Results Obtained from the FMS/PTT ..95

4.5.4 The Beam Search Algorithm Considering Wind Influence....................... 96

4.6 CONCIUSION ..ttt e et e e et e e e et e e e e e e aaeeeeesaasaeeeeasaeeeeearaeaaans 98
CHAPTER 5 AIRCRAFT VERTICAL ROUTE OPTIMIZATION BY BEAM

SEARCH AND INITIAL SEARCH SPACE REDUCTION................... 101

5.1 INEOAUCTION ...ttt ettt e 102

5.2 MethOOIOZY ....cooiieiiieiieieeeee ettt ettt e st e et enneas 109

5.2.1 The Studied FIGht .......ccooiiiiiieeeee e 109

522 The Numerical Performance Model ............coceeviniiniiiininiiiiiieeee, 109

523 Flight Cost: Fuel burn and Flight Time Computations Using

the Numerical Performance Model...........c.cccoeeveniininnininiiicnieneee. 111

524 Interpolations: Computing the Required Value from

the Numerical Performance Model...........c.cccooeeviniiniininicniiicniencee. 112

5.2.5 The Flight Cost Computation: Fuel Burn and Considerations ................ 114

5.2.6 Problem Definition: The Vertical Reference Trajectory Optimization...116

53 The Optimization AlIZOTItRIM...........coooiiiiiiieeieeee e 118

5.3.1 Algorithm’s INPUL ....couiiiiiiiece e 119

5.3.2 Search Space Reduction Module (SSRM)......ccoveviiiiviiieiiieeiieeee e 120

533 The Vertical Reference Trajectory Search Space:

the Graph ConstruCtION........ccveeeiiiieeciieeeiieeeie ettt e 122

534 The Vertical Reference Trajectory Search Space:
the Graph ConstruCtION........ccveeeiiiieeciieeeiieeeie ettt e 123



XIII

Page

5.3.5 The Bounding Function: HEUTIStICS .......cccveeriieiiieiiieiiecieeieee e 124

5.3.6 Weather presence in the bounding function ...........c.coeceeeeieriieieenieennens 126

54 RESUIS .ottt et ettt ettt e beeeneas 127

54.1 Standalone Algorithms Results Comparison............cccecveeveenieenveenneennne. 127

542 The reference trajectory flight cost between the trajectory

provided by a FMS and the trajectory of the developed algorithm......... 131

543 The reference trajectory flight of the developed algorithm

compared to a real lateral trajectory. ........ccoevveeiieriieeiiieieeie e 132

5.5 CONCIUSION ..eeiitiieiiieeite et ee ettt e et e e et e et e e et e e e taeesataeesssaeesssaeesssaeessaeesseesssseessseeas 134
CHAPTER 6 4D AIRCRAFT EN-ROUTE OPTIMIZATION ALGORITHM USING

THE ARTIFICIAL BEE COLONY ....ccoiiieiieieiieeeieeee e 137

6.1 INErOAUCTION ...ttt e 138

6.2 MeEthOdOLOZY ....ooouiieiiieiee ettt et sttt e 144

6.2.1 FIIGIE COSE ..vviiiiieiieeieeiee ettt ettt et siae e e snseennaens 144

6.2.2 The Studied Flight: The Search Space.........c.cccoceevieviiniiiiniiniiinicne, 148

6.2.3 The Optimization AIZOTithm ..........ccoooieiiiieiiiiiieieee e 156

6.2.4 Algorithm SUMMATY ....c..cooviiiiiiiiiiie e 173

0.3 RESUIES ittt sttt h ettt nne 176

6.3.1 Number of Iterations’ Influence on the Resulting Trajectory ................. 176

6.3.2 The ABC’s RODUSENESS....c..eoiiiiiiiiiiiiciicieeeeeeee 182

6.3.3 Real Flights Study.....cccooiriiiiiiiiiiiccceceeeeeeeee 184

6.3.4 Multiple Flights Fuel Reduction............ccccvevieiiieniieniieieciecceeieeies 188

6.4 CONCIUSION ... e e e e e ettt e e e et e e e e eataeeeeeaseeeeenaeaeaeens 190

CHAPTER 7 3D AND 4D AIRCRAFT REFERENCE TRAJECTORY

OPTIMIZATION USING THE ANT COLONY OPTIMIZATION ......193

7.1 INEEOAUCTION ...ttt st et 194

7.2 Numerical Models and the Search Space..........cccoeeeiiieiiiieiie e, 200

7.2.1 Fuel Consumption: The Numerical Performance Model......................... 200

7.2.2 Fuel Burn Computation ............cccveeeiieeriiieeiiee e e eeeee e 203

7.2.3 FIGIE COSE ..ttt ettt et et 205

7.2.4 Weather Information............oouiiiiiiiiiiii e 205

7.2.5 The Search SPace........cooiiiiiiiiieie e 208

7.3 Introduction to the Ant Colony Optimization Algorithm ............cccoevevveiiiiienieeennn.. 212

7.3.1 Bio Mimicry and Metaheuristic algorithms............cccoocveviiiiniieiiienieenen. 212

7.3.2 The Ant Colony In Nature .........cccoeeciieiiiieeiieeeieeee e 212

7.3.3 The ACO algorithm implementation for trajectory optimization............ 214

7.4 3D Reference Trajectory OptimiZation..........cceeeecveeeriuieeriueeesieeenieeeneeeesveessveessneens 215

7.4.1 ACO First Stage: 3D — Module 1 (M) ....cccoeviiiiiiiiiiieiieeieeee e 215

7.4.2 ACO First Stage: 3D — Module 2 (M2) .....cooouvieiciiiiiieeciieecee e 217



X1V

Page

7.4.3 ACO First Stage: 3D —Module 3 (M3) ...ccveiiiieiiieiiecieeieeeee e 219

7.4.4 FUNCHONING ... 220

7.5 4D Reference Trajectory Optimization: RTA Fulfillment............ccccoevviviiieniranennne. 221
7.5.1 RTA (4D) First Module — M1 ......ooooiiiiiieeieeeeeeee e 223

7.5.2 RTA Second Module — M2: .......cooiiiiiiiieiiiieieeeeeee e 224

7.5.3 RTA Third Module — P3:. ..o 225

7.5.4 RTA FUNCHONING ...eeeniiieiiiieeiieeeiieeeie ettt sree e e eivee e 226

Ti6  RESUIES .. ettt ettt ettt e beeeneas 227
7.6.1 The ACO algorithm trajectory comparison with the geodesic trajectory227

7.6.2 The ACO algorithm versus a real as flown flight plan results................. 233

7.6.3 The ACO algorithm versus different as flown flights ................ccocue..... 235

7.6.4 The Required Time of Arrival ........ccoooiiiiiiiiiiiee e 238

7.7 CONCIUSION ..ottt ettt ettt e b e st e e e s 243
CHAPTER 8 DISCUSSION OF RESULTS. ...ttt 245
CONCLUSION AND RECOMMENDATIONS .....ootiieieieieeierie et 247

BIBLIOGRAPHY ..ottt s 250



LIST OF TABLES

Page
Table 3.1 PDB DESCIIPHION ...cc.viiiiieiiieiieeiieette et esite e e stteeteeseeeebeesteeesseessaessseesseessseesseesnsaens 34
Table 3.2 TAS/Mach Crossover Altitude ApproXimation ...........ccccceeevverieneenieneeneenenseeneens 43
Table 3.3 Aircraft CharacteriStiCS ......eeuerueeruirieriierteeiesttet ettt ettt et sbe et s 51
Table 3.4 Platforms Comparisons for Validation ............coceeeeriirieninicnieninnieneeneeieeienens 51
Table 3.5 Algorithm eXeCUtiON tIME ........cceeriiiriieeiieiie et eriie ettt ettt et e eve e esreensneennees 57
Table 4.1 Numerical Performance Model Sub-Databases...........cccceeueevieniiiiinniienienieeiens 69
Table 4.2 Aircraft General CharaCteriStiCs ..........eeuerierierieriieriieie ettt 87
Table 4.3 Flight Distances for Different Trajectories........ccooeevieiiienieniiieiieeieeieeeeee e 88
Table 4.4 Optimism Coefficient Results of @ Winnipeg to..........ccceevvveeviienieniienieeieeeeeeen, 89
Table 4.5 Optimism Coefficient Results of @ Winnipeg to.........coceevvervierieniineniieneenenienens 91
Table 4.6 Algorithm Performance for Aircraft A ..........cooveeviiiiiiiiieieeeeeeee e 93
Table 4.7 Algorithm Performance for Aircraft B ..........ccccooiiiiiiiiiiieee, 94
Table 4.8 Algorithm Performance for Aircraft C ...........cceeviiiiiiiiiiiiieieecceeeeee e 95
Table 4.9 Optimal Flight Provided by the Exhaustive Search Algorithm...........cccccocceeenene. 98
Table 4.10 Results Provided by the “Beam Search”............ccccocvevviieniieiieiiiiieieeeesie e, 98
Table 5.1 Polluting emissions generated by fuel burn and their effects...........cccceeeeenee. 103
Table 5.2 Numerical Performance Model Sub-databases............cccocevieniniinienciienieeen, 110
Table 6.1 Solution Evolution when Varying the Number of Iterations...........cccccoceevereennee. 177
Table 6.2 Fuel consumption for different optimized flights............ccccooviiniiiiniiiiieiene, 189
Table 7.1 Average fuel burn and flight cost optimization for three.............ccccceereieniennennee. 232
Table 7.2 Average savings percentages of fuel burn and flight.............ccooeeviiiiiinnnnnnn. 237

Table 7.3 Absolute flight time differences from the RTA for the optimized trajectories in 3D239



XVI



LIST OF FIGURES

Page
Figure 0.1 Comparison between the vertical and the lateral reference trajectories ................. 4
Figure 0.2 Weather Canada forecast @rid .........ccccevvviiiiiiiiiiieeeeee e 6
Figure 1.1 CDA versus conventional descent trajectories ..........ceveruereerierieneerienienieerienens 12
Figure 3.1 Conventional FIIght..........ccoioiiiiiiiiie e 33
Figure 3.2 Typical Interpolations flOwWChart ..........c.ccooeviiiiiiiiiiiiieceee 38
Figure 3.3 Acceleration Calculations Flowchart ............cccooviiiiiiiiiiiiieie e 40
Figure 3.4 Acceleration EXample .........ccooeiiiiiiiiiiiiniieeeeestee et 41
Figure 3.5 Climb Calculations Procedure............cceeviiiiieiiiiieiiieciieeeee e e 45
Figure 3.6 Cruise Calculations Procedure ...........ccocoevuiriiiiiiiinioniiineeeceeceeee e 47
Figure 3.7 Descent Calculation Procedure...........c.ccoocuiieeiiiiiiiieiiieceeeeieecee e 49
Figure 3.8 Aircraft A Calculated Fuel Burned............cccooeviiiiiiiiniininiiciecieeeeeee 52
Figure 3.9 Aircraft A Calculated Flight TIme .........ccccoveviiiiiiiiiiiieeeeeeeee e 52
Figure 3.10 Aircraft B Calculated Fuel Burned............cccoooieviiiininiiniiiiicicccceees 54
Figure 3.11 Aircraft B Calculated Flight Time..........cccccocuvieiiiiiiiiieiieeeeceeeeee e 54
Figure 3.12 Aircraft C Calculated Fuel Burned............ccccooieveiiiniininiiiiiciicccc e 55
Figure 3.13 Aircraft C Calculated Flight Time..........cccccociieiiiiiiiiieiieeeeeee e 56
Figure 3.14 Cost Variation by Cost INAeX .........coceeviiriiriiiiiiiiiiiiecieeeceeseeeee e 57
Figure 3.15 Cruise Segment Size INfIUENCE...........covviiiiiiiiiiiieceeceee e 58
Figure 4.1 Typical reference vertical flight profile...........cccooiiiiniiiiiniiniiees 72
Figure 4.2 Vertical reference trajectory optimization graph-tree ...........cccceevvveeecvieencieeenneenns 74
Figure 4.3 Decision tree example for given SOIUtioN...........cccveevierieiiiienieeiieie e 76

Figure 4.4 Beam search for reference trajectory optimization algorithm’s flowchart............ 85



XVIII

Figure 4.5 FMS/PTT and algorithm COSt COMPATISON ........ecoviierieriieriieniieeieeriie e 96
Figure 4.6 Flight Cost Solution Difference between the Exhaustive.........c..ccccoecveniininncnen. 97
Figure 5.1 General Interpolation Graphic Representation...........ccccceeeeeviieriieeieenieenieenneenns 112
Figure 5.2 Tree-Graph for the available combinations............cccceceviiriiiiniiiniienencnecee 117
Figure 5.3 The SSRM and the BSOAM effects reducing the combinations. ....................... 119
Figure 5.4 Algorithm Modules Execution Order..........c.ccecevieniriinienieniicninenceeceeee 119
Figure 5.5 Space Reduction Parameters Definition...........cccccueeeviieniiieniieiniieciie e 121
Figure 5.6 Algorithm Execution Time as a Function of Flight Distance.............cccceceenee.n. 128
Figure 5.7 Fuel Burn Difference Between the Optimal Trajectory .........ccceceeeveerieriveennnnns 129
Figure 5.8 Execution time ratio comparison between three different optimization ............. 130
Figure 5.9 Flight Cost Between the FMS and the Developed .........ccccoeeieviieciieniiicieene, 132
Figure 5.10 Lateral reference trajectory for a Vancouver to Cancun flight..............c...c....... 133
Figure 5.11 Optimal Vertical Reference Trajectory Provided by the Exhaustive................ 134
Figure 6.1 Weather INterpolations ..........coccevueriiiriiriiniiiiieeerteeeeeee e 148
Figure 6.2 Vertical Dimension Search SPace ..........ccccuvevviiieriiieniiieeriieciee e 149
Figure 6.3 Lateral Dimension Boundaries ............ccoceeviiiiieiiiiiieniiciceeeeeeese e 150
Figure 6.4 Five Generic Trajectories Inside the Time Boundaries and its Mach Variation.152
Figure 6.5 Function fc used in the Golden Section Search Algorithm............cccceveeiineenne. 154
Figure 6.6 Creation of the lateral trajectories with respect to the reference trajectory......... 160
Figure 6.7 Lateral trajectories representation as placed on the Earth............c.ccocoeeiiiiii. 161
Figure 6.8 Fixed grid and dynamic grid COMpariSON............cceeeveeriienieenieenieenrienreenneenneenns 162
Figure 6.9 Flight Time LImits........ccociiiiiiiiiiiiiieiieeiieee ettt 163
Figure 6.10 Left: Trajectories in the time dimension. ...........cccecueeriieiieriienieenie e 165

Figure 6.11 Trajectory Mutation on the Vertical Dimension ...........ccccoeceeviiiiiienieniieeneenns 168



Figure 6.12
Figure 6.13
Figure 6.14
Figure 6.15
Figure 6.16
Figure 6.17
Figure 6.18
Figure 6.19
Figure 6.20
Figure 6.21
Figure 6.22
Figure 6.23
Figure 6.24
Figure 6.25
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9

Figure 7.10

XIX

Last Waypoint Mach Number Selection ............ccceevuveeriienniieniieeeiie e 172
ABC Algorithm FIowchart..........cocoviiiiiniiiiiieeeece e 174
Last candidate trajectories (green), and the...........cccceveiieriieiiienieecieeieeeeeiens 178
Lateral Trajectories: Optimized trajectory (red), the geodesic trajectory (blue),178
Altitude versus DIiStance (). ....c.eccveerveeeiierieeiiienieeieeeie et e see e sve b e sneesee s 179
Lateral offset depending on the travelled ............cooceeiiiiiiiiiiniiie e 180
Optimized lateral trajectory (red) nearby the reference (blue),.........cccoveenen... 181
Optimized altitude and speed (T€d).........cccervuirieniriinieniiirieeeeeece 182
Saved amount of fuel for 800 trajectories ........cvevueeriierienieeiiecie e 183
Flight Plan From Edmonton to Punta Cafia...........cccccoceeveriiniininniinicncnicneene 184
Lateral offset of the optimized trajectory (red), around the reference .............. 185
Lateral optimized trajectory (red), around the reference...........cccceeveeriienennnn. 186
Optimized vertical trajectory (red), and ..........cccceeeeeievieniieiienieeeee e 187
Speed versus distance variation for the optimized speed (red), .......c.cceeeueennee. 188
Inputs required to obtain fuel flow during cruise from ..........cccceevveviieivennnennne. 201
Inputs required to obtain fuel burn during climb.............ccoocceiiiiiiniiie 201
Fuel burn and horizontal travelled distance..............coceeveereenenieneeneneceeeen 202
Interpolation schema for the fuel flow interpolation.............ccccceeviiiiiiniinnennnen. 204
Weather information interpolation around a plane...........c.cccceeveevieeciienieenenne. 206
Wind effect on the aircraft ground speed ..........cccooveniiiiiiiniinince, 208
3D graph for trajectory optimization, every circle is a node (or a waypoint).....209
Consecutive nodes available to create a trajectory.........cecveveereeieneenenieneenens 210
Graph of available Mach numbers in the search space ...........ccccoeeveeeienieeneenen. 211
Only the three closest Mach numbers can be selected. ...........ccceeveeieneencnnnene 211



XX

Figure 7.11

Figure 7.12

Figure 7.13
Figure 7.14
Figure 7.15
Figure 7.16
Figure 7.17
Figure 7.18
Figure 7.19
Figure 7.20
Figure 7.21
Figure 7.22
Figure 7.23
Figure 7.24
Figure 7.25
Figure 7.26
Figure 7.27
Figure 7.28
Figure 7.29
Figure 7.30

Figure 7.31

The ant colony 0rganization N NATULE ..........cceeeveerieeieenieeieereeeieesereereeneneens 214

Algorithm stages: First, the ACO is used to find the optimal 3D trajectory, then

the combination of Mach numbers that fulfill the RTA constraint.......... 215
3D random trajectory creation and its parameters per trajectory ...................... 216
Module 3 — Route building on a 3D simplified model, following .................... 220
ACO fUNCHONING ..ottt ettt sttt et nee e 221
Mach NUMDET SEIECHION. .......eeiiriieiieieiieteee e 223
Mach number selection with a random trajectory ...........cceveeereieenienieenieeneenne 224
Mach number ant SEIECTION. .........evieriirieriieieeie st 226
Fuel burn saving percentage for different flights ...........cccccooiiiiiiniiniiininens 228
Flight cost saving percentage for several flights..........c.cccceeviieiieiiiiiiiieniiieinn, 228
ACO trajectory and geodesic lateral reference trajectory. ..........coceeveevuenicnnene 230
ACO trajectory Step ClIMD........c.ccoviiiiiiiiieiiieieeee et 231
Mach nUMDbET SELECION. .....c.eieiieiiiiiiieiie et 232

Lateral reference trajectory for the ACO algorithm and for a real flight plan..233

ACO vertical trajectory step climb and the as flown vertical trajectory........... 234
Mach nuUMDbET SEIECHION. .......ouiiiiiiiririiieteecec e 235
Fuel burn savings percentages for different flights.............ccccooiiiiininiie. 236
Flight cost savings percentage for several flights............ccccoeeviivieniiiiiiencieennnn. 236
Flight time comparison between the 3D flight time.............cccocccooiiiiiiis 241
Flight time comparison between the 3D flight time..........c..ccceeevieeiieiiiennnnnnn. 242

Flight time comparison between the 3D flight time.............cccocccooiiininis 242



LIST OF ABREVIATIONS

ABC Artificial Bees Colony

ACO Ant Colony Optimization

ADS-B Automatic Dependent Surveillance + Broadcast
ASI Airspeed Indicator

ATC Air Traffic Control

ATM Air Traffic Management

BSOA Beam Search Optimization Algorithm

B&B Branch and Bound

CARATS Collaborative Actions for Renovation of Air Traffic Systems

CDA Continous Descent Approach
CDO Continous Descent Operations
CO2 Carbon Dyoxide

EOM Equations of Motion

FMS Flight Management System
GSS Golden Section Search

IAS Indicated Air Speed

ISA International Standard Atmosphere



XXII

LNAV

NextGen

NOx

PDB

PSO

PTT

RNP

RTA

SESAR

SSRM

STAR

SID

TAS

TBO

TOC

TOD

UAV

UTC

Lateral Navigation

Next Generation Air Transport System

Nitrogen Oxides

Performance Database

Particle Swarm Optimization

Part Task Trainer

Required Navigation Performance

Required Time of Arrival

Single European Sky ATM Research

Search Space Reduction Module

Standard Terminal Approach

Standard Instruments Departure

True Airspeed

Trajectory Based Operations

Top of Climb

Top of descent

Unmanned Aerial Vehicles

Universal Time Coordinate



XXII

VNAV Vertical Navigation






LIST OF SYMBOLS

a Used to give priority to a given parameter
Copt Optimism Coefficient

B Used to give priority to a given parameter
(0] Maximum Turning Angle

[0} Aircraft Heading

Y Specific heat of air






INTRODUCTION

0.1 Fuel Burn Reduction Efforts Before Airborne

In our day to day lives, there are many different things that are taken for granted. This is the
case of exotic fruits, fish, meat, exclusive drinks in the supermarket, flowers. In addition,
traveling is made fast for various purposes, such as to cross the globe in order to meet
colleagues in conferences, visit loved ones, take vacations, or knowing that an organ can help

our lives in less than a day of travel in case of an emergency.

There are goods that require extreme care in order to arrive quickly and safely to our cities.
These goods are diverse, such as specialized machinery, high sensitive microchips, chemicals
oils, among many others. These goods allow economic growth and development (ATAG,

2016) (Boeing, 2016b). All their transportation is possible due to aviation.

In the early 1900s, the traveling from Europe to America would take around 5 days.
Nowadays cruises slowed it down a little bit to allow passengers to enjoy their trip for 7 days
(New York, USA to Southampton, UK). However, for a business trip, for someone that is
time constrained, or for perishing/urgent goods, this is a long time considering that a flight
from New York to London takes roughly 7 hours. The same time consideration is true for a
continental flight within the US and Canada, driving a car from Montreal to Vancouver
would take a non-stop trip of 46 hours, while taking a flight would take around 5h30m. Even
in the presence and acceptance of strict regulations, aircraft remain the safest way of

traveling.

As aviation is the most convenient way of traveling, it has allowed connecting the world in
ways that no one in history could imagine. This way has brought as a consequence the
exchange of ideas, better understanding of other cultures, human development, commercial
exchange, and economy growth. Lives have been saved due to rescue missions, it sets the

basis of space conquest, and it is fundamental for national defense systems (ATAG, 2005).



However, as all in life, it comes with a price: huge quantities of fossil fuel are required to

power a flight, thus it pollutes.

0.2 Statement of the problem

As it will be shown in the main part of this thesis, a quantity of 30 Tons of fuel is required to
power engines of a long haul aircraft in regards to generate enough thrust to perform a flight
is within normal fuel quantities to fly a long haul flight. Evidently, burning fuel brings as a
consequence the emissions of polluting particles and gas molecules to the atmosphere. One
of these gas molecules is carbon dioxide (COz2) which is known to be one of the main drivers
of global warming. It has been reported that in 2015, around 740 million of CO2, were
released to the atmosphere by airlines (ATAG, 2016). This number corresponds to 2% of the
global CO2 emissions. The aeronautical industry has set itself the goal of reducing CO2

generation to 50% of the levels recorded in 2005 by 2050 (ATAG, 2016; ICAO, 2010).

For this reason, different products, services, and organizations have been developed or
created to address and thus, solve the pollution emissions problem. Such an organization is
the Green Aviation Research & Development Network (GARDN) in Canada. This
organization aims to encourage the development of environment friendly aircraft technology.
The research methodology and results shown in this thesis were developed under this
organisation program frame in the projects: “CMC-1 Optimized Descents and Cruise”,
“Flight Management Performance Optimization II”, and “CMC- 21 (Project Extension):
Flight Management Performance Optimization III”. This program is being developed by the
Laboratory of Applied Research in Active Controls, Avionics and Servoelasticity
(LARCASE) based at the ETS in partnership with the internationally known CMC

Electronics — Esterline, specialist in avionics systems.

Many different factors affect the aircraft trajectory efficiency. Some of the most important
ones taken into account in this thesis are the weight, altitude, weather, aircraft direction, and

speed. As a general rule, it is desirable to have a light aircraft (less weight needs to be lifted,



so less energy) flying at high altitudes (air density is lower, thus drag is lower), at low speeds
(less fuel pumped into the engines), at favourable winds (tailwind increases the ground
speed). However, aircraft are normally heavy due to passengers, cargo, fuel and the aircraft
itself. Aircraft speed is coupled with altitudes and the weight itself (heavy aircraft normally
require a faster speed). Besides, an additional important factor such as time cost is associated
to speed. As time cost items, the crew’s salary, arriving in time to passenger’s connections,
maintenance factors are included, among others. Altitude is associated with weight as heavy
aircraft cannot climb to the highest altitudes, as it is mechanically impossible. This is because
of the fact that not enough thrust can be provided to generate the required lift to climb. As
aircraft loses weight due to fuel burn, extra lift is liberated allowing the aircraft to change
altitudes to more efficient ones (Lovegren, 2011). This change of altitude during cruise is
called step climb. Finding the combination of altitudes and speeds during the flight that
reduces the fuel consumption while shortening the flight time as much as possible, is already
a difficult task, yet there is another stochastic parameter that strongly influences flights, thus

complicates this task: Weather.

Winds and temperatures influence aircraft speed, and temperature influences as well engine’s
efficiency. Headwinds slow down the aircraft’s speed relative to the ground by requiring
more thrust to keep the same ground speed (similar as when we are biking against the wind),
high temperatures increase the sound of speed (thus the speed for a given Mach number), but
these high temperatures at the same time make the engines to be less efficient. It is then
desirable to guide the aircraft to zones where weather is favourable to the flight optimization

objectives (reduce fuel burn, flight time, and flight cost).

The aircraft reference trajectory optimization problem consists in finding the combination of
speeds, altitudes, geographical zones and the right time when the aircraft’s trajectory is able
to satisfy the desired objective function; normally, a compromise between fuel burn and

flight time should be done.



Trajectories are somewhat complex. Luckily, there is an airborne device able to manage
these trajectories this: the Flight Management System (FMS). Among many different tasks,
this devices is able to manage a trajectory, and in some cases even optimize it (Collinson,
2011). However, current FMS only optimizes the vertical profile (speeds and altitudes

following a pre-defined lateral reference trajectory).

For this thesis, there are three types of reference trajectories taken into account: lateral

trajectories, vertical trajectories, 3D, and 4D.

Lateral reference trajectories consist of the combinations of waypoints followed by an
aircraft from the initial to the destination point; this is known as ground track. Vertical
references trajectories consist of the combination of altitudes and speeds followed by an
aircraft while flying over a pre-defined lateral reference trajectory. 3D reference trajectories
consist of combining the lateral and the vertical reference trajectories. Finally, 4D reference
trajectories consist of finding the optimal 3D reference trajectory and fulfilling a Required
Time of Arrival (RTA) constraint. Figure 0.1 shows the lateral and the vertical reference

trajectories for a flight from New York to San Francisco.
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Figure 0.1 Comparison between the vertical and the lateral reference trajectories

0.3 Research Objectives

The goal of this research is to implement different algorithms in order to find the
combination of altitudes, speeds, waypoints that minimizes the flight cost in a 3D and a 4D
search space. The 3D search space contains aircraft geographical position, altitudes, and
speeds. The 4D search space contains geographical positions, altitudes, speeds, and a time

constraint (RTA) as it will be explained later in details in this thesis.

To reach this ultimate goal, the main research objective can be divided in different sub-

objectives:



1) Develop and validate a methodology to compute the fuel burn using a numerical
performance model.

2) Optimize the flight reference trajectory in 3D following a pre-defined ground track and
compare the obtained results with a commercial FMS results using deterministic
algorithms.

3) Optimize the flight reference trajectory in 4D using different metaheuristic algorithms
and evaluate their capabilities of performing this optimization task.

4) Compare algorithms results against the FMS of reference results and all algorithms
results and against as flown flights to validate fuel burn reduction potential.

5) All flights should include the dynamic wind and temperature forecast.

Different databases and algorithms were implemented during this research. A list f each one
of the databases and methodology to compute the flight cost and optimize the flight trajectory
will be briefly introduced as they are explained in details in the publication during the rest of

this thesis.

0.4 Methodology

0.4.1 Aircraft Numerical Performance Model

As the main goal of this research is reducing fuel consumption in order to reduce pollution, a
numerical model able to provide the fuel burn for a given flight condition is required. This
model was obtained from experimental flight data, and it was provided by our industrial
partner. Thousands of txt lines were converted at the LARCASE to Matlab® files. As it will
be described in Chapter 3, a series of linear Lagrange interpolations will provide the required
fuel burn and the flight time at a specific position of the aircraft in flight. These values will

ultimately define the flight cost.

This model is composed from a database for various in flight phases: Climb, Acceleration,

Cruise, and Descent. Inputs change depending on the flight phase, but altitude, speed, and



weight are always the required inputs independent of the flight plan. The outputs are fuel

flow or fuel burn and travelled distance.

0.4.2 Weather Forecast Model

Weather forecast was obtained from the public data available from Weather Canada. Among
the different models developed by Weather Canada, the one called Global Deterministic
Prediction System (GDPS) was selected as it contains information for the entire world. This
information is provided in the form of a grid with a resolution of 0.6° x 0.6°, or 601 latitude x
301 longitude points —see Figure 0.2. 28 different pressure altitudes were taken into account
to cover the aircraft flying altitudes. This model is also provided in 3 hours blocks beginning
at 00h Universal Time Coordinate (UTC) to 144h. This is at 00h, 03h, 06h, 09h... and so on.
However, for this research data up to 36 hours are taken into account for overnight flights.
This is for example, flights taking off late at night in the west of the US to Europe. For this
research, it is considered that data longer than 36 hours is non-reliable, as weather can

changed at any time.

Figure 0.2 Weather Canada forecast grid
(Source: Weather Canada)

As weather data is provided in the form of a grid, the aircraft is normally located between
four different points, for two different pressure altitudes, and two different time block. For

this reason, a combination of lineal (pressure altitudes, and time), and bilinear (geographical



position between four points) interpolation is required in order to obtain the weather
information for the exact aircraft’s location in terms of altitude, time, and geographical
position. This bilinear interpolation is explained in detail in (Murrieta-Mendoza, 2013) and

(Jocelyn Gagné, 2013).

The most important information obtained from this model is temperature, wind speed, wind

direction (relative to north), and sea level pressure.

04.3 Beam Search

Beam search is a variation of the most well-known Branch and Bound algorithm. Both
algorithms explore a given graph (interconnection of nodes with different values connecting
them), and decides if it is worth it to expand a node, or if it is a better strategy to remove that
node from the graph. Removing a node and all its descendants is desired as it reduces the

number of available combinations, thus the computation time.

As discussed in more detail in Chapter 4 and Chapter 5, there are two main differences
between the beam search and the branch and bound algorithm. The first one is that the beam
search can limit the number of nodes to be evaluated per level, while Branch and Bound
might evaluate all nodes. The second main difference between both algorithms is that Branch
and Bound rejects a node only if it can be proved that the optimal solution is not under that
node. On the contrary, Beam Search is less restrictive at cutting nodes as any node can be

rejected even if it has not been proved that the optimal solution is under that node.

0.4.4 Search Space Reduction

The search space reduction algorithm was developed at the LARCASE and it has been
presented in (Murrieta-Mendoza, 2013) and (Murrieta-Mendoza & Botez, 2014b). This
algorithm aims to reduce the number of combinations of Mach numbers and altitudes a given

aircraft can select from in order to determine the most economical flight, the optimal solution



for this research purposes. As a consequence, the algorithm computation time is reduced and
the optimal solution was always found.
This algorithm was implemented before the beam search algorithm in this thesis in order to

reduce the computation time in Chapter 5

0.4.5 Artificial Bee’s Colony

The Artificial Bee’s Colony (ABC) mimics the behaviour of honeybees swarm in the search
space exploration in their search of food sources. Bees gather as much food as possible using

the minimum energy possible.

After flying a given trajectory from the hive to the food source, the employer bee modifies a
little bit their trajectory trying to improve it. This is called mutation. Once the bee is back in
the hive, it dances trying to impress the on-looker bees. If bees are impressed, they follow the
dancing bee to its trajectory. In that way, more bees can improve the trajectory, as the
number of trajectories increment. When a given trajectory does not improve anymore, scout

bees separate from the group looking for new food sources.

This methodology is presented in Chapter 6, and has the aim to implement aircraft reference

trajectory.

0.4.6 Golden Section Search

The Golden Section Search is a technique developed to find the minimum or maximum of a
unimodal function. It differs from other techniques such as the bisection method as the
number of iterations is reduced in order to find a solution. This technique was used in

Chapter 6 in order to find the Mach number candidate that fulfills an arrival time constraint.

0.4.7 Ant Colony Optimization Algorithm
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This algorithm reproduces the behaviour of ants in the exploration of space in the search for
food sources. One ant by itself is not capable of finding and transporting enough food to
nourish the hive. While exploring paths for a food source, ants release a chemical component
called pheromone. In this way, ants can find their ways back to the hive, and to the food
source. Other ants can find this pheromone trail and might follow it. It is more probable that
an ant will follow a path if this contains a high pheromone concentration. Ants following the
shortest path do a higher number of round trips, thus more pheromone is deposited in the
trail. After some time, the shortest path contains the highest amount of pheromone. Hence,

most of the ants follow this path. This algorithm was used in Chapter 7.

0.5 Literature Contribution

This research brought as a result the publication of three journal articles, and up to date, the
submission of two more journal articles (all five composing this thesis), the publication of
two additional journal papers (related, but out of the scope of this thesis), the writing and
submission of three more journal articles, a book chapter on metaheuristic algorithms for

flight optimization.

A total of 10 journal papers have been written and 26 articles were presented at international
conferences in Canada, the United States, Mexico, the Netherlands, France, and Austria. 4
posters were presented in the students aerospace forum 2012 and 2013, the American
Romanian Academy of Arts and Science, and CASI 2017, 1 was received the poster award in
Navigation Modeling in the American Romanian Academy of Arts and Science Conference.
In addition, 4 more media non- reviewed articles were published in the substance blog at the

ETS.



CHAPTER 1

LITERATURE REVIEW

The aeronautical industry is aware of the environmental consequences of flying, and it has
been committed to reduce pollution, especially COz. For this reason, after analysis, there are
three main action pillars that were proposed in order to attain the industry environmental
goals. The first pillar can be defined as known technology, operations and infrastructure
measures, the second pillar is economic measures (taxation to pollution), and the third pillar

concerns the use of biofuels, and additional new-generation technologies (ATAG, 2009).

The literature review found in this Chapter is intended to be an introduction to the aircraft
reference trajectory problem. A more extensive literature review will be presented in the
beginning of each of the subsequent chapters, as each one of them is an article by itself

containing its personalized literature review.

1.1 Fuel Burn Reduction Efforts Before Airborne

There is research focusing in the aircraft itself in order to reduce fuel burn such as reducing
the components weight, a single engine taxi, the use of electrical motors to control the
landing gear, the use of ground power unit instead of the auxiliary power unit, and washing
engines prior departure to reduce the exhaust gas temperature. All these alternatives were

discussed in (McConnachie, Wollersheim, & Hansman, 2013).

There are also studies aiming to improve the traffic flow through the taxiways. It is important
to minimize the queuing time before using the in-service runaway as it was estimated that
740 million gallons of fuel were burned due to delays and congestion in taxiways; different
ways to improve these delays were explained in (Balakrishnan, 2016). The Branch and
Bound technique was also proposed to develop a tool to optimize the aircraft routing and

optimization (P. J. Godbole, A. G. Ranade, & R. S. Pant, 2014).
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1.2 Fuel Burn Reduction Efforts During Airborne

When the aircraft takes off there is not enough optimization opportunity, as the motor setting
is already defined. Following take-off, rigid procedures also known as Standard Instruments
Departures (SID) restraining altitudes and ground track trajectories are followed. Once the

SID is executed, it is preferable to climb to the cruise altitude and free the airspace.

Descent, on the other hand, has presented important fuel burn savings. Although a restraining
procedure called Standard Terminal Arrival Route (STAR) is also followed to control the
traffic flow of arrival aircraft into airport; a technique which enables fuel burn saving was
developed and further implemented in different airports for various aircraft. This technique is
called Continuous Descent Approach (CDA) or Continuous Descent Operations (CDO).
With this technique, aircraft has to descend following a constant slope in the IDLE setting,
the lowest fuel consuming setting. This constant slope is followed until the beginning of the
STAR procedure. Conventional descent consists of a step descent. The aircraft follows a
constant cruise segment, then a descent to the next altitude. The aircraft once again follows a
constant cruise segment at the new altitude; it then descends to the next altitude, and so on
until the STAR procedure begins. Important quantities of fuel are burned while the cruise
segment is flown, especially at low altitude where engines are not as efficient. The descent

comparison of a conventional descent and the CDA/CDO can be seen in Figure 1.1.

ToD

CDA/CDO
Begin of STAR

Figure 1.1 CDA versus conventional descent trajectories
This technique has reported savings of around 40% of the typical descent (ATAG, 2010).
This procedure has been quantified at different airports such as in the SFO where up to 1860
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kg of fuel were saved for a Boeing 747-200 (Jin, Cao, & Sun, 2013). The average gallons of
fuel savings for the Atlanta airport was of 37 gallons of fuel (around 120 kg) per flight, and
49 gallons of fuel (around 136 kg) per flight in the Miami International Airport (Sprong,
Klein, Shiotsuki, Arrighi, & Liu, 2008). Another study in Los Angeles International Airport
showed an average fuel burn reduction of 64 kg per flight (Clarke et al., 2013).

Another trajectory related improvement is the Required Navigation Performance (RNP). By
using satellite technology such as GPS instead of typical Navaids, such as Instrument
Landing System (ILS) or VHF Omnidirectional Range (VOR), more accurate position
measurements are provided. For this reason, aircraft can fly in more hostile environments,
such as between two mountains, close to lower terrain, and etcetera. The aircraft is thus
allowed to perform sharper curve turns. As a consequence, the flown distance for arrival
procedures is reduced due to a 3D flight planning!. A shorter distance evidently reduces the
required fuel burn. Boeing reported fuel savings ranging from 400 Ib (182 kg) to 800 Ib (362
kg) for a 737 at Oslo Airport, 600 1b (272 kg) for the RNP procedure implemented in San
Francisco, and 200 liters per flight for the Calgary International Airport (Boeing, 2016a).
Another Boeing study reported savings up to 746 Ibs (338 kg) of fuel for the Seattle-Tacoma
International Airport for a Boeing 737-800W (Boeing, 2015). NAV Canada reported fuel
savings ranging from 265,000 to 285,000 liters of fuel annually for the Kelowna and
Abbotsford airports in Canada (Marasa, 2010). Evidently, all this fuel reduction brings as a
consequence a reduction of polluting emissions released to the atmosphere. Not only Boeing,
but also Airbus has tested this technology using the A321 in the Goteborg Landvetter Airport
in Stockholm (Airbus, 2011).

The aircraft cruise phase presents great optimization potential. Different studies have
demonstrated that aircraft do not fly at their optimal speeds and altitudes (Luke Jensen,
Hansman, Venuti, & Reynolds, 2014; Luke Jensen, Hansman, Venuti, & Reynolds, 2013;
Luke Jensen, Tran, & Hansman, 2015; Turgut et al., 2014). This inefficiency could be due to

! http://www.airbus.com/innovation/proven-concepts/in-operations/required-navigation-performance/
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airlines politics, weather constraints, traffic constraint, or even ATM inefficiency. Traffic has
been increasing in the last years, and is expected to keep growing worldwide. This increase
may further give new traffic management problems. For this reason, developed countries are
aiming to improve the airspace by adding better procedures, and new infrastructure by
funding traffic management programs. Among these programs, the two leading ones are the
Next Generation Air Transportation System? (NextGEN) in North America and the Single
European Sky ATM Research® (SESAR) in Europe. Both programs use the concept of free
flight, or Trajectory Based Operations (TBO).

Under current regulations, aircraft require Air Traffic Control Services to provide
surveillance, control, and separation (Hoekstra, 2001). For this reason, an aircraft should
submit their flight intentions (or flight plan) to Air Traffic Management (ATM) before take-
off. In this way, different air traffic control zones will manage the flight of the aircraft from
the departure gate to the arrival gate. ATM may authorize the flight plan as it is, or it might
require modifications (Field, 1985). Anyhow, this flight plan is later loaded into the Flight
Management System (FMS). This flight plan is not written in stone as it can be changed
during flight due to crew request or ATC request (Nolan, 2010). Among the reasons to
modify the original flight plan, ATC might request this change in the flight plan due to
storms, aggressive wind patterns, too much congestion in a given zone, by enabling a no fly
zone, an aircraft emergency, and etcetera. The crew itself can request a change in the flight
plan due to finding a more economical route (i.e. change of altitude or change of speed), or in
declaring an emergency. As all these changes are strictly controlled by ATC, aircraft are
obliged to follow the provided flight plan. This manual workload is difficult for ATC, and

normally, it does not allow a given aircraft to fly its optimal route.

The concept of free flight, where aircraft could fly its preferred route is an ongoing project.

Under this concept, the separation responsibility is given to the pilot. The first stage for the

2 https://www.faa.gov/nextgen/
3 http://www.sesarju.eu/
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free flight concept is requiring all aircraft to be equipped with an Automatic Dependent
Surveillance + Broadcast (ADS-B) *. This device is able to send information about the

aircraft position, altitude, speed, and direction.

If all available aircraft are able to broadcast this information, it is possible to estimate their
position and intentions. In this way, negotiation between these aircraft could begin and each
one of them might be able to fly its optimal trajectory. For this free flight concept, a
negotiation protocol and an automatically control would be required as proposed by (Gardi,
Sabatini, Ramsamy, Marino, & Kistan, 2015), while another strategy would be the
management of conflicts for different trajectories (Ruiz, Piera, Nosedal, & Ranieri, 2014).
The Particle Swarm Optimization (PSO) mixed with different optimization techniques was
implemented by (Cobano, Alejo, Heredia, & Ollero, 2013) to negotiate conflict resolution by

finding economical solutions.

However, the fully free flight concept will not see the light any time soon as avionics
systems, procedures, standards, infrastructure, among others will be developed and tested.
The closest new operations technology that is being implemented is the 4D trajectories.
Using this concept, aircraft report their current position while a Required Time of Arrival
(RTA) is required by ATC. It is the basis of future free flight as aircraft will report future
position at a precise time at a given waypoint. Aircraft will use this information to grant

themselves clearance and to guarantee their separation.

Different algorithms based on this 4D concept have been proposed. One of the first authors to
tackle this problem published interesting results and analysis was documented by
(Chakravarty, 1985) where trajectories were computed, and were further analyzed to evaluate
the delays costs from the end of cruise to a point during cruise. Later, (Sam Liden, 1992a)
studied achieving the RTA time by minimizing the flight cost and by taking into account

winds, and by removing discontinuities caused by flying at pre-defined altitudes. Many

4 http://www.navcanada.ca/en/products-and-services/pages/on-board-operational-initiatives-ads-b.aspx
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different authors have addressed this problem using the aircraft’s Equations of Motion and
other techniques. Among these techniques, a Multiphase mixed integer optimal control
algorithm was developed by (Soler-Arnedo, Hansen, & Zou, 2013) where contrail formation
zones where avoided. Contrails are vaporized water exhausted by engines which form clouds
during certain meteorological conditions. Dynamic programming with neural networks was
implemented by (Hagelauer & Mora-Camino, 1998). Dynamic programming including a new
technique which reduces the search space as the algorithm is executed was proposed by

(Miyazawa, Wickramasinghe, Harada, & Miyamoto, 2013)

3D reference trajectory optimization algorithms are also developed, and they can be
considered to be the actual algorithms. Genetic Algorithms (GA) have been implemented for
the lateral and vertical reference trajectories (Roberto Salvador Félix-Patréon & Botez, 2015;
Roberto S. Félix-Patron, Kessaci, & Botez, 2014). The vertical reference trajectory was
optimized by using the Golden Section Search (R.S. Felix Patron, Botez, & Labour, 2013).

The lateral reference trajectory avoiding contrails was as well optimized by treating the
problem as a two boundary value problem in (Sridhar, Ng, & Chen, 2013). In another
research, the vertical reference trajectory was optimized over the computed optimal lateral
reference trajectory (Ng, Sridhar, & Grabbe, 2014). Following current ATC restrictions and
by treating the aircraft vertical reference trajectory problem as trajectory patterns, an
algorithm was developed to optimize the reference trajectory (Valenzuela & Rivas, 2014).
An hybrid optimal control technique was evaluated for a complete flight consisting in climb,
cruise, one step climb and descent phases for four different wind profiles (Franco & Rivas,
2015). Graph Search techniques using the Dijstrkra’s and A*algorithms were also
implemented to optimize the reference flight trajectory (Dicheva & Bestaoui, 2014; Rippel,
Bar-Gill, & Shimkin, 2005).

As it can be seen in this literature review, and as it will be shown in detail in the next
Chapters, there is a gap in algorithms needed to evaluate the 4D aircraft reference trajectory.

Metaheuristic algorithms, besides the 3D Genetic Algorithms work by Felix-Patron at
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LARCASE, are practically not implemented for the solving of the 3D or 4D reference

trajectory problem, which constitutes one of this research originality.

Different Graph search based algorithms using deterministic and metaheuristic techniques for
the 3D and the 4D aircraft reference trajectories are proposed, and their optimization
capabilities are studied in this thesis. All algorithms were developed with the ultimate goal of

reducing fuel burn and when possible, the total flight cost.






CHAPTER 2

METHODOLOGY

The research project performed on the commercial aircraft reference trajectory optimization

presented in this thesis was divided in the following phases:

e Statement of the problem;

e Development of a methodology to compute the flight cost using a numerical performance
model and its validation;

e Development of an algorithm to compute the vertical reference trajectory optimization;

e Reduction of the vertical reference trajectory optimization computation time;

e Implementation and evaluation of the fuel saving potential for the 4D reference trajectory
optimization using and adapting the three following algorithms: the Artificial Bee’s

Colony, and the Ant Colony Optimization.

Each of these phases was implemented in the given order to achieve the research objective.
All of these phases, except the statement of the problem, were developed in Matlab®. Flights
were evaluated using an electronic commercial Flight Management System software called
Past Task Trainer (PTT), FlightSIM® developed by Presagis®, Exhaustive search
algorithms, and as flown flight information provided by FlightAware®.

The first phase consisted in performing an extensive literature review; identification of the
main problems to overcome, and creation of the working plan. The results of this analysis

were published in five journal articles (and some others) composing this thesis.

The second phase consisted in developing a methodology able to compute the flight cost
using a numerical performance model by taking into account all the flight phases, such as
initial climb, acceleration, climb in Mach, cruise, changes of altitude during cruise, descent in

Mach, deceleration, and descent in IAS was developed.
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The third phase consisted in developing an algorithm able to find the combination of speeds
and altitudes that provide the most economical vertical reference trajectory. The developed
algorithm brings the “novelty of modeling the set of speeds and altitudes as a graph”. The
Beam Search algorithm was implemented to obtain the most economical combination within

the created graph.

After obtaining interesting results at the end of the second phase, in the fourth phase, it was
of interest to develop an algorithm with a faster convergence than the algorithm in the 3rh
phase to the optimal vertical reference trajectory. It is desirable to implement this algorithm
in a low computation power device such as the Flight Management System (FMS), as

requested by CMC Electrnonics - Esterline.

The fifth phase consisted in developing three different metaheuristic algorithms to study the
state of the art trajectory optimization: the 4D reference trajectories. These algorithms couple
the vertical reference trajectory, the lateral reference trajectory and respect a Required Time
of Arrival (RTA) constraint. These algorithms focused in optimizing the cruise phase of long

haul aircraft.

Metaheuristic algorithms were selected as they have proved to solve problems in a dense
search space with great success. In this phase three journal papers were published that have

shown the optimization potential of three different metaheuristic algorithms.

2.1 Thesis Organization

As main author, five peer-review journal papers are contained in this manuscript-based
thesis. Three journal papers are already published and the other two journal papers are under

review for publication. These papers are presented from Chapter 3 to Chapter 7.

Dr. Ruxandra Mihaela Botez, as co-author for all journal and conference papers, supervised

the progress of this research through regular meetings in collaboration witn CMC Electronics
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— Esterline team. In the second and third journal papers, Bacherlor’s students Miss Lauranne
Ternisien and Mr. Bruce Beuce were included as co-authors as they contributed in the
development and testing of the Beam Search algorithm. In the fourth paper, Bachelor’s
student Mr. Audric Bunel was included as co-author as he was implicated in the development
and testing of the Artificial Bee’s Colony algorithm. In the fifth paper and last paper, Mr.
Antoine Hamy was included as co-author due to his implications in the development and

validation of the Ants Colony Optimization Algorithm

2.1.1 First Journal Paper

This paper is entitled “New Methodology For Nav Flight Traectory Cost Calculation Using a
FMS Performance Database” was published in the Journal of Aerospace Information

Systems in September 2015.

This paper details the methodology followed to systematically obtain data from the numerical
performance model and, to execute the set of Lagrange interpolations to compute the flight
cost which is composed of fuel burn and flight time. The technique developed in this paper
focuses on the vertical reference trajectory cost determination, but it can also be applied for

the lateral reference trajectory flight cost as it consists in the cruise phase.

Different flight costs obtained from the model were compared against the results obtained
from the PTT and FlightSIM®. Results showed that the developed methodology is able to

compute accurate flight costs in a short time.

2.1.2 Second Journal Paper

This paper entitled “New Reference Trajectory Optimization Algorithm For a Management
System Inspired in Beam Search” was accepted for publication in the Chinese Journal of

Aeronautics and it will be published in August 2017.
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In this paper, the combination of speeds, and altitudes was modeled as a graph. The Beam
Search algorithm was implemented to search the most economical combination of nodes in

order to find the most economical flight trajectory.

This paper also proposed a heuristic which estimates the flight cost with limited flight
information. This heuristic took into account step climbs and weather. This heuristic allows
rejecting nodes and thus reduces the computation time. A parameter called optimism
coefficient was introduced to control the effectiveness of this heuristic in estimating the flight
cost. Hypothetic and as-flown flights were studied to determine the trajectory optimization
potential. This algorithm was able to provide the optimal solution, or extremely good sub-

optimal solutions.

2.1.3 Third Journal Paper

This paper entitled “Aircraft Vertical Route Optimization By Beam Search And Initial
Search Space Reduction” was submitted to the AIAA Journal of Aerospace Information

Systems in May 2017, and it is currently under review.

After the development of an algorithm able to find the optimal reference trajectory, it was of
interest to reduce its computation time. The graph search composing the candidate solution
was reduced using a search space reduction technique developed for reference trajectory
optimization problems. This algorithm was also able to find the optimal trajectory or really
good sub-optimal in just a fraction of the time required by the Beam Search algorithm in the
second journal paper. This time reduction made this algorithm a good candidate to implement

it in the FMS.
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2.14 Fourth Journal Paper

This paper is entitled “4D Aircraft En-Route Optimization Algorithm Using the Artificial
Bee Colony” was submitted to the AIAA Journal of Aerospace Information Systems in

December 2016 and it is currently under review.

This paper is the first one of the series of papers evaluating a metaheuristic algorithm and its
application for an optimized trajectory. Besides the series of Genetic Algorithms developed
by Felix-Patron at LARCASE, this is one of the first metaheuristic algorithms developed to

solve the reference trajectory optimization problem.

The Artificial Bees’ Colony (ABC) was implemented for the 4D reference trajectory
optimization. For this algorithm, the reference trajectory was simultaneously optimized in the
vertical and lateral reference trajectories while complying with the Required Time of Arrival

(RTA) constraint.

This paper also set the main framework for other algorithms to be developed (to be presented
in Section 2.1.5 and Section 2.1.6). The search space was modeled under the form of a graph,
the solution is given as a combination of altitudes, speeds, and geographical position and the

optimization of the cruise phase only for long-haul flights.

2.1.5 Fifth Journal Paper

This paper entitled “3D and 4D Aircraft Reference Trajectory Optimization Using the Ant
Colony Optimization” was submitted to the AIAA Journal of Aerospace Information

Systems in February 2017 and it is currently under review.

The exploration of metaheuristic algorithms is continued in this paper. An algorithm inspired

from the Ant Colony Optimization (ACO) was implemented to find the most economical
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combination of waypoints (altitudes, and geographical coordinates) while fulfilling the RTA

constraint.

Besides finding the optimal trajectory, this algorithm finds a 3D trajectory which has a low
cost with a high potential to fulfill the RTA constraint. The Mach number for this 3D
trajectory is then optimized to provide a 4D reference trajectory. This allows exploring the

fuel savings that are lost as a consequence of fulfilling the RTA constraint.
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Résumé

L'optimisation de trajectoire de vol permet de réduire considérablement les cofits de vol et les
¢missions polluantes. La puissance de calcul d’équipement embarqué tel que le systeme de
gestion de vol est limité. Conséquemment, une méthode rapide pour calculer le colit d’un vol
a ¢été¢ développée. De nombreux systemes de gestion de vol utilisent des tables avec des
données expérimentales pour chaque phase de vol expérimental. Cette base de données est
appelée base de données de performance. Dans cet article, le colit de la trajectoire de vol est
calculé en utilisant une base de données de performance au lieu d'utiliser les équations de
mouvement. La trajectoire a calculer se compose de la montée, de l'accélération, de la
croisiére, de la descente, et de la décélération. L'influence de 1'altitude de croisement pendant
la montée et la descente, ainsi que les montées en escalade en croisiere ont été considérées.
Les interpolations linéaires de Lagrange ont été appliquées a la base de données de
performance pour calculer les valeurs requises. En fournissant un poids au décollage, les
coordonnées initiales et finales et le plan de vol souhaité, le mod¢le de trajectoire fournit les
coordonnées du sommet de la montée et du début de la descente, le carburant brilé et le
temps de vol nécessaire pour suivre le plan de vol donné. La précision des colts de
trajectoire calculés avec la méthode proposée a été¢ validée avec les résultats du modele

aérodynamique donné par FlightSIM®, développé par Presagis®, et avec le coit de
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trajectoire donné par le systéme de gestion de vol de référence. Les résultats ont montré que
pour les mémes trajectoires de référence et pour les mémes entrées, le cott calculé par la
méthode proposée dans cet article est proche ce ceux fournis par FlightSIM® et par le

systéme de gestion de vol de référence.

Abstract

Trajectory optimization has been identified as an important way to reduce flight cost and
polluting emissions. Due to the power capacity limitations in airborne devices such as the
Flight Management System (FMS), a fast method should be implemented to calculate the full
trajectory cost. Many FMSs use a set of look up tables with experimental data for each flight
phase, and are called Performance Database (PDB). In this paper, the trajectory flight cost is
calculated using a PDB, instead of using classical equations of motion. The trajectory to be
calculated is composed by climb, acceleration, cruise, descent and deceleration. The
influence of the crossover altitude during climb and descent, as well as step climbs in cruise
was considered. Lagrange linear interpolations were performed within the PDB discrete
values to calculate the required values. By providing a takeoff weight, the initial and final
coordinates and the desired flight plan, the trajectory model provides the Top of Climb
coordinates, the Top of Descent coordinates, the fuel burned and the flight time needed to
follow the given flight plan. The accuracy of the trajectory costs calculated with the proposed
method was validated with an aerodynamic model in FlightSIM®, software developed by
Presagis® and with the trajectory cost given by the FMS benchmark of reference. Results
showed that for the same reference trajectories, and for the same inputs, the cost computed
by the method proposed in this paper is close to the costs provided by FlightSIM, and by the

FMS benchmark or reference.

3.1 Introduction

Air transportation has become an important pillar to economical interchange transporting
around 35% of the world’s trade value according with a recent study by the Air Transport

Action Group (ATAG) (ATAG, 2014). Air transportation is also one of the preferred ways to
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travel with occupancy of 79% in 2013, higher than other means of transportation. This
activity has motivated air transportation providers to increment their fleets. The ATAG, in
the same study, estimated that for the year 2032, there will be around 41,000 airplanes in
operation, doubling the airplanes available in 2010. This could potentially increment the fuel

consumption, thus the polluting emissions.

Aircraft fly with conventional fuel, which has the disadvantage of releasing contaminant
emissions such as carbon dioxide (CO2), nitrogen oxides, (NOx), hydrocarbons, water,
among others (Murrieta-Mendoza, 2013). From these emissions, COz is of special interest
due to its contribution to global warming. The aeronautical industry is responsible for
approximately 2% of the total CO2 released to the atmosphere. The aeronautical industry has
set as goal to reduce their CO2 emissions in 2050 to the 50% of the emissions recorded in
2005 (IATA, 2011). Hydrocarbons and NOx are released to the atmosphere at high altitudes
which causes damage to the ozone layer (Crutzen, 1970; Nojoumi, Dincer, & Naterer, 2009;

Robinson, 1978).

Different technologies are being developed and implemented to reduce emissions and noise
such as engines improvements, air-to-air refuelling (Nangia, 2006), the use of biofuels
(ATAG, 2009), weight reduction by the use of advanced avionics, replace heavy materials
for composites and aircraft improvements such as winglets (Freitag, 2009), morphing wings
(Koreanschi, Sugar Gabor, & Botez, 2014), among others. These improvements focused on

fuel reductions.

Optimal flight planning and optimal flight trajectory have been identified as an area of
opportunity to reduce fuel consumption, thus reducing polluting emissions. Air authorities in
North America and Europe have considered this challenge and are redefining their airspace
with the Next Generation Air Transportation System (NextGen) (Theunissen, Rademaker, &
Lambregts, 2011) and the Single European Sky (SESAR).
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There are two reference trajectory components that can be optimized, using the Boeing
terminology, the reference trajectory for the Vertical Navigation (VNAV), and the reference
trajectory for the Lateral Navigation (LNAV). There also exists the possibility of coupling of
both. The VNAYV reference trajectory is composed by the speeds and altitudes to follow
during flight and the LNAV reference trajectory is the geographical coordinates set the

aircraft has to follow.

Trajectory optimization is of interest, not only for conventional aircraft, but also for
unmanned aerial vehicles (UAV). Wilburn in (Wilburn, Perhinschi, & Wilburn, 2013b)
developed a methodology to implement a clothoid planner for UAVs, and in (Wilburn,
Perhinschi, & Wilburn, 2013a) 3D trajectories were planned using the concept of the
Dubins’s particle.

Due to the proximity of airports to cities, the descent phase has been of great concern
regarding trajectory optimization. Murrieta ef a/ in (Murrieta-Mendoza, Botez, & Ford, 2014)
and Dancila et al. in (R. Dancila, Botez, & Ford, 2013) using information from the European
Monitoring and Evacuation Programme and the FEuropean Environment Agency
(EMEP/EEA) emission inventory guidebook developed methods to calculate the fuel needed

and the pollution generated by the execution of the missed approach (go-around) procedure.

The Continuous Descent Approach, descent with idle motors at a constant angle, has
provided excellent results. Stell in (Stell, 2010) developed a way to estimate the location of
the Top of Descent in order to execute a Continuous Descent Approach (CDA) at a 3 degrees
slope. Kwok-On et al. in (Kwok-On, Anthony, & John, 2003) measured the fuel burned
reduction effectiveness of the CDA in the airport of Louisville, Kentucky in the USA. Clarke
et al in (Clarke et al., 2013) proposed a method to implement the CDA at Los Angeles
International Airport. Bronsvoort ef al. in (Bronsvoort, McDonald, Boucquey, Garcia-Avello,
& Besada, 2013) performed a study using an Aircraft Intent Description Language, equations
of motion (EOM), and existing communication protocols to point out the importance of

communication to accurately predict the CDA trajectory. Wind estimation has also been of
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importance for descent trajectory generation. Oliveira in (Oliveira, Quachio, & Cugnasca,
2014) modeled the wind as a multivariate Gaussian stochastic process. This algorithm was
improved by using the idea of periodically discarding part of the history and using

conditional distributions.

Different studies from the MIT have shown the potential of savings in trajectory
optimization. Jensen in (Luke Jensen et al., 2014; Luke Jensen et al., 2013) studied speed
and altitude in over 200,000 flights within the continental United States using Enhanced
Traffic Management System data. These flights were then compared against optimal speeds
and optimal altitudes from models developed with information from Piano-X. These studies
showed the optimization opportunities available since many aircraft do not fly at their
optimal speed or/and altitude. Bonnefoy in (Bonnefoy & Hansman, 2010) using data from
the Bureau of Transport Statistics (BTS) studied the fuel burn benefits and the airlines
scheduling consequences of reducing cruise speeds and discussed how to mitigate these

consequences.

In the decade of 1970 a device called Flight Management System (FMS) was conceived and
widely introduced to aircraft in the decade of 1980 (Sam Liden, 1994). This device, among
other tasks, is responsible of managing the flight plan helping reducing the crew workload
and is responsible of computing the optimal trajectory (Collinson, 2011). There exist ground
teams that calculate the flight trajectory before airborne. However, it is of interest to provide
the FMS with the autonomy to calculate the optimal trajectory because pre-calculated routes
can change during or before airborne. The available processing power in the FMS to perform
all of its tasks is limited and only a fraction of this processing power is dedicated to finding
the optimal trajectory. Thus, fast methods to perform trajectory calculations are required.
Many different researches worked in trajectory optimization; some of them could have the

potential to be implemented in a FMS.

Lidén was one of the first researchers to study the flight trajectory for FMSs. In (Sam Liden,

1985) Lidén studied the speed control to minimize flight costs, the effects of arriving too late



30

at a given destination were considered, and a way to estimate the Cost Index (CI) was
discussed. Franco and Rivas in (Franco & Rivas, 2011) used the Equations of Motion (EOM)
of an aircraft at constant altitude and constant heading to calculate its optimal profile in the
presence of winds. For the flight cost, arriving early or late to a given destination was
modeled as a penalty. This paper suggested the use of singular optimal control to find the
optimal flight profile. Sridhar et al. in (Sridhar et al., 2013) utilized EOM to develop an
algorithm to calculate an optimal trajectory considering wind and avoiding regions favorable
to contrail formation. Fays et al. in (Fays & Botez, 2013) by using information from Boeing,
implemented metaheuristic algorithms to find the optimal trajectory while avoiding obstacle
along the routes. These obstacles can be interpreted as no fly zones, traffic or potential
weather affected routes. Dicheva in (Dicheva & Bestaoui, 2014) using the EOM as the
mathematical model of an airborne launch vehicle and solved the shortest path problem using
A*. In this paper fixed and mobile obstacles were considered and the capability of changing

the final destination en-route was implemented.

Miyazawa et al. in (Miyazawa et al., 2013) used the EOM to propose a technique called
“Moving Search Space Dynamic Programming” to calculate the optimal trajectory of a flight
considering weather and required arrival time (RTA). Hok et al. in (Ng et al., 2014) used the
Base of Aircraft (BADA) parameters to model the aircraft using the EOM, and used dynamic
programming to find the optimal trajectory considering winds. For altitude optimization,
weight was tracked with a pre-defined optimal weight-altitude relation; at the defined
threshold the aircraft would change altitude. Hagelauer and Mora-Camino in (Hagelauer &
Mora-Camino, 1998) also considered EOM to implement dynamic programming with
neuronal networks in order to optimize the trajectory. This paper points out the fact that the
FMS uses databases instead of EOM. To emulate these databases from this approach, the
EOM were discretized.

Thus, for optimization algorithms, the literature shows that researches normally use historical
data, which is not convenient to calculate real time optimization algorithms, and models

based on the EOM. Solving a set of differential equations (EOM) to find the optimal
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trajectory in a device with limited processing power such as the FMS might be time
consuming. Normally, the FMSs do not use these equations, but a set of look up tables with
experimental data called Performance Database (PDB). Different authors have considered a

PDB as the aircraft model to calculate the optimal trajectory.

Felix-Patron et al in (R. S. Felix-Patron, Botez, & Labour, 2012; R.S. Felix Patron et al.,
2013; Roberto Salvador Felix Patron, Oyono Owono, Botez, & Labour, 2013) used a PDB,
implemented step climbs, the golden section search and genetic algorithms to optimize the
VNAYV profile of an aircraft considering all flight phases of flight for three different
commercial aircraft. Dancila ef al. in (Bogdan Dancila, Botez, & Labour, 2012; B Dancila,
Botez, & Labour, 2013) used a PDB, developed a method to estimate the fuel burn for cruise

segments at constant altitudes.

Gagné et al. in (Jocelyn Gagné, Murrieta, Botez, & Labour, 2013) used the PDB to develop
an optimization algorithm by semi exhaustive search for a commercial aircraft considering
weather information along the trajectory. All stages of flight were analyzed and step climbs
opportunities were identified and performed during cruise to optimize the trajectory cost.
Murrieta et al. in (Murrieta Mendoza & Botez, 2014) developed an algorithm to reduce the
search space and calculate the optimal VNAV profile. Sidibé in (Sidibe & Botez, 2013)
implemented a conventional dynamic programming algorithm to find the optimal VNAV by

using the numerical model provided by the PDB.

Authors have also tried to couple LNAV and VNAV using a PDB as it was the case of
Murrieta in (Murrieta-Mendoza, 2013) where five lateral parallel trajectories were evaluated
taking advantage of weather parameters after determining the VNAYV. Felix-Patron et al. in
(R. Felix-Patron, Kessaci, & Botez, 2013) used genetic algorithms and information from the
PDB to develop an algorithm to find the optimal LNAYV trajectory at constant altitude taking
advantage of tailwinds. Later, Felix-Patron ef al. in (Roberto S. Félix-Patron & Botez, 2014;
Félix Patrén, Berrou, & Botez, 2014) used genetic algorithms to calculate the optimal

VNAV(with and without step climbs) profile, then coupled the optimal LNAV trajectory.
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Murrieta in (Murrieta-Mendoza & Botez, 2014a) used the Dijkstra’s Algorithm to find the

optimal route taking winds and temperature into account.

In spite of the number of optimization algorithms using a PDB present in the literature, there
are just a few papers that provided a brief overview of the method to calculate the trajectory
cost, they mostly focus in the optimization method. Felix-Patron et al. in (R. Felix-Patron,
Botez, & Labour, 2013) described a way to reduce interpolations. Nevertheless, only a brief

part of climb calculations was explained.

The objective of this paper is to develop a novel method to calculate the cost of the reference
vertical navigation reference trajectory using a PDB. The costs for different trajectories were
computed using the same inputs, and then compared using the novel method developed in
Matlab®, a real time commercial flight simulator such as FlightSIM®, and by a commercial
FMS benchmark known as Part Task Trainer (PTT). The PTT is a FMS simulator which
gives as an output a given trajectory cost. Results showed that the novel algorithm provides

good results.

The method developed in this paper is useful to compute flight costs for flight optimization
algorithms. The optimization algorithms using a PDB did not fully explain the methodology
to compute the trajectory cost. The PDBs, which were created from aircraft experimental
data including fuel burn, were provided by our industrial partner and were used for
commercial FMSs. The trajectory method is composed by a climb, acceleration, cruise,
descent and deceleration. Concepts such as crossover altitude effects during climb, during
descent, and step climbs in cruise were considered. Since the PDB is a set of discrete data,
Lagrange linear interpolations are performed within the PDB tables to calculate the trajectory

cost. Considerations to be taken into account for this application are discussed.

This paper is organized as follows: First the conventional flight to be calculated is defined.

Secondly the PDB with all its sub-databases is described. Thirdly the Flight Cost and its
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variables are discussed. Fourthly, the trajectory calculation method is described. Finally,

simulation using the methodology results are presented and discussed.

3.2 Methodology

3.2.1 The Conventional Flight

The flights analyzed in this paper are standard commercial flights composed of constant
climb at 250/240 kts Indicated Airspeed (IAS), an acceleration phase to the desired constant
climb speed. At a given altitude the Airspeed Indicator (ASI) reference is changed from IAS
to Mach while as continue climbing in Mach until the Top of Climb (TOC). During cruise
step climbs (change of altitudes) may be executed. At the Top of Descent, the descent is
calculated in the inverse order as the climb. Due to regulation, aircraft should not fly faster

than 250 TAS below 10,000 ft. Figure 3.1 shows the order of these flight phases.
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Figure 3.1 Conventional Flight

3.2.2 The Performance Database (PDB)

The PDB is a numerical experimental model of the aircraft and is divided in 7 sub-databases,

one for every phase of flight. In order to obtain data from the PDBs, all the input parameters
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have to be provided. Table 3.1 describes the inputs and outputs of the different sub-

databases.

Due to the fact that the sub-databases are defined in a discrete form, only certain parameters
are available in the PDB inputs. For example, the International Standard Atmosphere (ISA)
deviation temperature may be given in steps of 10 degrees, gross weight in steps of 15,000
kg, and so on. For the cases when the values required to be introduced in the inputs are not
exactly the ones available in the PDB, interpolations between the outputs of the available
data are performed as it will be shown below. Altitudes are normally given at a 1,000 ft step,

for this reason, to obtain data from the PDB, the aircraft should be placed at 1,000 ft step.

Table 3.1 PDB Description

Sub-database Inputs Outputs

Climb IAS IAS (knots) Fuel burned (kg)
Gross weight (kg) Horizontal traveled
ISA deviation distance (nm)
temperature (°C)
Altitude (ft)

Climb Gross weight Fuel burned (kg)

acceleration Initial IAS (knots) Horizontal traveled
Acceleration altitude (ft) | distance (nm)
Delta speed to accelerate | Altitude needed (ft)
(knots)

Climb Mach Mach Fuel burned (kg)
Gross weight (kg) Horizontal traveled
ISA deviation distance (nm)
temperature (°C)
Altitude (ft)
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Table 3.1 PDB Description (Continue)

Sub-database Inputs Outputs
Cruise Mach Mach Fuel flow (kg/hr)
Gross weight (kg)
ISA deviation

temperature (°C)

Altitude (ft)

Descent Mach Mach Fuel burned (kg)
Gross weight (kg) Horizontal traveled
ISA deviation distance (nm)

temperature (°C)

Altitude (ft)
Descent Gross weight Fuel burned (kg)
deceleration Initial IAS (knots) Horizontal traveled

Deceleration altitude (ft) | distance (nm)
Delta speed to accelerate | Altitude needed (ft)

(knots)

Descent IAS IAS (knots) Fuel burned (kg)
Gross weight (kg) Horizontal traveled
ISA deviation distance (nm)

temperature (°C)

Altitude (ft)

3.2.3 Flight Cost

Flight costs are not only measured with the fuel required to complete a given flight, but also
with flight time. The typical equation used in the literature, to define flight cost is given in

Eq. (3.1).
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Cost = Fuelgyrnea + CI * Flightyime * 60 3.1)

Where Fuelpumed (kg) is the total fuel burned during flight, Flightzime (hr) is the total duration
of flight and CI (kg/hr) is the Cost Index. CI is the variable that relates the cost of time to

cost of fuel.

It is of interest to develop a method to calculate the trajectory cost in terms of the variables
present in Eq. (3.1): fuel burned and flight time. Fuel burned can be obtained directly from
the PDB. However, to calculate Flight Time, the Aircraft Ground Speed (GS) has to be
known. In order to calculate the GS, the atmosphere is considered to be the ISA and winds to
be null. When speed is given in /4S, neglecting the instrument error, 7A4S is calculated with

Eq (3.2).

(3.2)

TAS. .« — 2a? (&)(V—l)/)’_l
14S v —1|\p,

where an 1s the speed of sound (kts) at the given altitude, vy is the specific heat of air, typically
1.4, P is the static pressure at the given altitude and Py is the stagnation pressure in the Pitot

tube calculated as in Eq (3.3) where Ps is the sea level pressure.

1AS%(y — 1) y/(y-1) (3.3)
2aj,

When the speed is given in Mach, the TAS is obtained with Eq (3.4). Commercial flights are

normally in subsonic Mach.

TASacn = mach - ay, (3.4)
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If no wind effects are considered, TAS equals GS. Knowing TAS and neglecting the path
angle, the Flight Time can be calculated from the Horizontal traveled distance distance
obtained from the PDB (Table 3.1) as shown in Eq (3.5). During cruise the
Horizontal traveled distance is pre-defined by the user as explained below in the cruise

Section.

Horizontal Traveled Distance (3.5

Flight Time = TAS

The rate of climb and the path angle for climb and descent are not provided in the PDB.
However, they can be computed using the data in the PDB as follows in equations (3.6) and
(3.7) where Delta Horizontal Traveled Dist is the horizontal distance traveled to climb from

the Lower Altitude to the Higher Altitude.

Higher Altitude (ft) — Lower Altitude (ft) (3.6)
Path Angle = arctan

Delta Horizontal Traeled Dist (ft)

1000 ft (3.7)
Climb Time (min)

RoC =

3.24 Trajectory Calculation Method

Variables such as weight and ISA deviation temperature are rarely the exact discrete values
in the PDB. For this reason, as mentioned above, interpolations in the outputs of the PDB are
required. The trajectory procedure uses the Lagrange linear interpolations from the PDB
outputs at the discrete input containing the desired value. Eq (3.8) describes the Lagrange
linear interpolation where fo and f; are respectively the lowest and highest value to

interpolate, either fuel burn, distance or altitude.

@ =(—L)fo+ (=) G8)

0~ X1 X1 — Xo
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The required interpolations path for the majority of the PDB tables, with exception of
acceleration and deceleration, is graphically shown in Figure 3.2. The word limit in this
figure refers to the interpolation discrete values taken from the PDB that contain the desired
value to interpolate. The desired outputs are fuel consumption and horizontal traveled
distance. For cruise, only fuel flow is calculated. For acceleration and deceleration, the

needed altitude to reach the desired speed is also given as an output.
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Figure 3.2 Typical Interpolations flowchart

The inputs required for the application of this method are: the aircraft total weight, the
LNAV reference trajectory (the waypoints to follow), the altitudes and speeds for the VNAV
reference trajectory, as well as the ISA deviation standard temperature at each waypoint. If
flying in ISA conditions, the ISA Deviation Standard is considered to be 0 along the flight.
Wind information is not required, but if desired, TAS in Eq. (3.5) needs to be changed for
GS. GS considers the effects of the winds as fully explained in (Roberto S. Félix-Patron &
Botez, 2014; Murrieta-Mendoza & Botez, 2014a).
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Each flight stage has some particularities which will be described next. At the end of each
phase, Fuel burned and the required Flight Time are accumulated to their respective variables

in Eq (3.1).

3.2.4.1 Climb IAS

In the method proposed in this paper, for this flight stage, the Sub-database “Climb IAS”
from Table 3.1 is used. Because the Take Off procedure is not considered, the flight always
initiates at 2,000 ft. At every 1,000 ft, an interpolation is executed to calculate the horizontal
traveled distance and the fuel burned to climb at a higher flight level. The fuel calculated is
subtracted from the aircraft weight every 1,000 ft to improve accuracy. Using TAS from Eq
(3.2) and the horizontal traveled distance obtained, the segment flight time is calculated with

Eq. (3.9).

The default speed used to perform the climb from 2,000 ft to 10,000 ft is normally at or
below 250 IAS. This is due to the International Civil Aviation Organization (ICAO)
regulation, which can also be found in local regulations such as the Code of Federal
Regulations 91.117 in the United States and the Canadian Aviation Regulation 602.32 limits
speed below 10,000 ft to 250 IAS.

3.2.4.2 Acceleration

Climb speed after 10,000 ft is normally higher than 250 IAS, thus an acceleration is required.
The acceleration phase has two different stages: The first stage computes the required fuel,
horizontal distance, and altitude to perform an acceleration using the “acceleration” PDB.
This stage normally gives a high fuel burned due to the power required to accelerate. Because
at the end of the acceleration, the required altitude is rarely a multiple of 1,000 ft, the second
is a small climb at the new constant IAS using the “climb IAS” sub database to reach the next

multiple of 1,000 ft altitude.
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Figure 3.3 describes the interpolations needed to calculate the acceleration outputs. The
required speed incremental (delta speed) that the aircraft has to accelerate is determined.
Interpolations for the required increment speed are performed. If the PDB initial speeds differ
from 250 IAS, interpolations in speed may be required. This first set of interpolations is
performed for the lower step weight. The same set of interpolations is performed for the
highest weight step. Finally, an interpolation between the results for the sets of both weights
is performed using the weight of the aircraft at the beginning of the acceleration phase. For
flight time calculation, speed is the average of the initial and the final speed. Fuel burned is
reduced from total gross weight. The required interpolations for accelerations are provided in

Figure 3.3.

Delta speed step 1

w PDB initial Required delta

speed 1 R .

interpolation
E Initial speed step 1
| Seit ( Delta speed step 2 | 5
G spZe?:i Initial requiered |
H needed speed interpolation
T Delta speed step 1
Initial speed step 2 PDB weight 1
— Required delta ( P P ( ( L 9 (

1 PDB |r:j|t|2al interpolation L Reauired weiht Fuel burned (kg)

Spee ?r?til:eolrt,iet;g Horizontal Distance (nm)

Delta speed step 2 R P Altitude needed (ft)

PDB weight 2

Idem for weight 2

Figure 3.3 Acceleration Calculations Flowchart

The second part of the acceleration phase computations begins after calculating the needed
acceleration altitude. As stated before, this altitude is rarely a multiple of 1,000 ft as required
by the PDB. Thus a small climb is calculated using the methodology described in Climb IAS.
An example is shown in Figure 3.4. In this figure, an acceleration from 250 IAS to 300 IAS
is performed at 10,000 ft and finishes at an altitude of 12,520 ft. With the gross weight after

acceleration, a climb at the constant new altitude from 12,000 to 13,000 is calculated. The
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percentage of the remaining climb (480 ft or 48% of climb) is added to the previously

calculated acceleration fuel burned and/or horizontal traveled distance.

A
CLIMB @ 300 IAS 14,000 ft
\ 13,000 ft
—
= // 12,520 ft
_:.j?' Acceleration /
= 250 — 300 IAS e
= /
10,000 ft
CLIMB @ 250
IAS
»
Distance (nm)

Figure 3.4 Acceleration Example

Eq. (3.9) expresses the total fuel cost added to the acceleration fuel burned.

(3.9)

Al - AO
Total fuel,.. = fuely.. + ( 1,000 )(fuel,As)
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Ao is the altitude after the acceleration, A1 is the next multiple of 1,000 ft altitude after Ao,
fuelace (kg) is the fuel obtained after the acceleration interpolations, and fueliss is the fuel
needed to climb from altitude 4o to 4;. A similar equation is used to obtain the total

horizontal traveled distance.

3.2.4.3 Climb Mach

When the crossover altitude is reached, the PDB table is changed from “Climb IAS” to
“Climb Mach”. Keeping the IAS reference may lead the aircraft to fly at higher speeds than
the desired Mach speed, sometimes near sonic speeds. Commercial aircraft are not normally
designed to fly at these speeds. The crossover altitude can be defined as the altitude where
the TAS of IAS equals the TAS of the scheduled mach. An approximation of the crossover
altitudes for some Mach/IAS calculated under ISA conditions is shown in Table 3.2. If the
crossover altitudes are not multiples of 1,000 ft, a part of the climb has to be calculated using
“Climb IAS” sub-database and the other part with the “Climb Mach” sub-database. Similar
considerations as the ones in acceleration are performed to define the cost percentage of

Climb in IAS and the percentage of climb in Mach.

Using TAS from Eq. (3.4), flight time for this phase is calculated with Eq. (3.5). Climb
finishes when the Top of Climb or the maximal altitude is reached. Figure 3.5 provides a

flow chart of the steps followed to calculate the climb of the trajectory.
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Table 3.2 TAS/Mach Crossover Altitude Approximation

IAS/
Mach
0.50 | 14000 | 12000 | 10000 | 10000 | 10000 | 10000
0.56 | 20000 | 18000 | 16000 | 14000 | 12000 | 11000
0.59 | 22000 | 21000 | 19000 | 17000 | 15000 | 13000
0.62 | 25000 | 23000 | 21000 | 20000 | 18000 | 16000
0.65 | 27000 | 26000 | 24000 | 22000 | 20000 | 19000
0.68 | 30000 | 28000 | 26000 | 24000 | 23000 | 21000
0.71 | 32000 | 30000 | 28000 | 27000 | 25000 | 23000
0.74 | 34000 | 32000 | 30000 | 29000 | 27000 | 26000

260 270 280 290 300 310

3.2.4.4 Descent Estimation

Before cruise, an approximate descent horizontal traveled distance is required in order to
define an estimated Top of Descent (TOD). In other words, define where cruise ends. The
estimation is performed by fetching the horizontal traveled distance for the given altitude and
the given Mach directly from the “Mach climb” PDB. A more precise descent is calculated at

the end of cruise.

3.2.4.5 Cruise

Cruise is normally the longest phase of flight; it begins at the TOC and ends at the TOD.
During this phase, the waypoints to be followed have to be proposed or obtained from a
proposed route. For this paper, equidistant great circle points are considered as waypoints.

The great circle, or geodesic, is the shortest distance between two points on a sphere.

At every waypoint the fuel burned to attain the present waypoint is reduced from the total

aircraft weight. This has an influence on the calculations accuracy. The more waypoints and
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shorter distance from one to another, the better the accuracy of the calculations will be since
fuel reduction will be reflected in the gross weight more often. However, a high resolution

will increment computation time since more interpolations and data fetching will be required.

Interpolations in weight and ISA Temperature Deviation such as the ones described in Figure

3.2 are performed in this stage.
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3.2.4.5.1 Step Climb

“Step climb” is the change of cruise altitude to a higher one to try to emulate an ideal
constant climb cruise (Ojha, 1995), which is desirable due to the weight reduction due to the
constant burn of fuel. This change in altitude was studied by Lovegren (Lovegren, 2011) and
proved to save fuel specially in long haul flights. A study of the importance of the step-climb
and the improvement opportunities in the United States was performed by Jensen et al. in
(Luke Jensen et al., 2014). The climb step is normally executed in 2,000 ft steps. This is to
respect the normal 1,000 ft separation between airways where aircraft flight at opposing
heading. However, depending on Air Traffic Management (ATM), steps of different heights

could be executed.

This change in altitude requires calculating the climb cost. Thus, the step climb cost is
calculated using the “Climb Mach” database at the desired geographical point. The first
waypoint at the new altitude is calculated with the climb horizontal distance obtained from
the PDB. Once the desired altitude has been reached, the computations are continued using
the “Cruise Mach” sub-database. Step climb procedure can be executed as many times as
required or until the maximal altitude is reached. In this method, steps can be executed to the
altitudes available in the PDB, which normally are 1,000 ft multiples. Figure 3.6 is a

flowchart to follow to perform the required Cruise calculations with “step climbs”.
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Figure 3.6 Cruise Calculations Procedure
3.2.4.6 Final Descent

Final Descent is assumed to be CDA. When the TOD has been reached, the final descent
begins. This phase is highly dependent on cruise since the weight to be used is the one at the
end of cruise and TOD location errors might exist. The last waypoint of cruise is not

equidistant. It is the distance that is left from the (TOD - 1) waypoint to the estimated TOD.

Descent is similar to climb, but the order of the databases to be used and the order of
calculations are performed backwards. First, the Mach descent is calculated until the
crossover altitude is reached. Second, a descent in IAS is calculated followed by a

deceleration. At 10,000 ft, per legislation, the final speed must to be 250 IAS. Finally, the
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descent is executed at this constant speed of 250 IAS and ends at an altitude of 2,000 ft. The
same considerations taken in climb are taken during descent phases. The final location of the
aircraft is then compared to the final point of the trajectory. If the final position of the aircraft
is located after the destination point, or if it is not located within a given distance before the
destination point, the missing or surpassed distance is added or removed from the cruise
phase, the TOD is redefined and the descent is recalculated. This process is repeated until the
aircraft ends within the imposed limits. For this paper the imposed limits are of +/- 0.3

nautical miles.

Figure 3.7 is a description of the final descent procedure and the coupling with the cruise
phase. The flight trajectory procedure ends here. At this point, fuel burned and flight time

were calculated for each section and accumulated in the fuel and the time variable in Eq.

3.1).
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33 Results

3.3.1 Flight Comparison

The parameters from flight trajectory cost to be evaluated are flight time and fuel
consumption because they are the variables that define Eq. (3.1). The validation consisted in
calculating the cost of a giving set of trajectories with our method, then flying the same
trajectories with either: a commercial flight simulator or the benchmark of a commercial

FMS. The method results and the testing platforms results were then compared.

Three different aircraft PDBs were implemented in using the method described in this paper.
These aircraft are referred as aircraft A, B and C. Aircraft A is a 3 engine commercial long
haul aircraft. Aircraft B is a 2 engine commercial long haul aircraft. Aircraft C is a 2 engine
regional jet. Tests for Aircraft A were performed comparing the results of the method
developed here against a full dynamical model simulated with the software FlightSIM® from
Presagis®. The FlightSIM® model was provided by our industrial partner who constructed
and validated the model based on actual flight data, including fuel burn. Aircraft B, and
Aircraft C results were validated with the Part Task Trainer (PTT), a simulator of the
commercial FMS of reference provided as well by our industrial partner. The PTTs use the
same PDBs as our algorithm, which was created from flight test data, to calculate fuel burned

with a commercial algorithm.

General characteristics of the evaluated aircraft are shown in Table 3.3. TO refers to Take-
off. Comparison between platforms is shown in

Table 3.4.
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Aircraft Min TO Weight | Max TO Weight Min Speed Max Speed
(kg) (kg) (IAS/Mach) (IAS/Mach)

A 125,000 245,000 250/0.78 365/0.84

B 80,000 160,000 240/0.6 335/0.82

C 27,000 47,000 240/0.5 310/0.8

3.3.1.1 Aircraft A: FlightSIM® and the Algorithm

Table 3.4 Platforms Comparisons for Validation

Platform/
Aircraft

Algorithm

FlightSIM®

PTT/FMS

A

B

C

Figure 3.8 and Figure 3.9 summarize the results for Aircraft A. The first eight flights were

Montreal (YUL) to Toronto (YYZ) with a distance of 272 nm. Flights nine and ten were
from Los Angeles (LAX) to Minneapolis (MSP) with a distance of 1324 nm, and the last

flight was YUL to Vancouver (YVR) with a distance of 1993 nm. Different gross weight and

speed were considered among flights. Tests with FlightSIM® are simulations in real time of

the aircraft flights therefore, from simulation time point of view, each FlightSIM® test takes

the same exact time as a real flight would take.
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Figure 3.9 Aircraft A Calculated Flight Time

Figure 3.8 and Figure 3.9 for Aircraft A serve to validate the results obtained with the

method explained in this paper. Figure 8 shows that, for all cases, the results of the method



53

calculated more fuel than FlightSIM®. The differences are attributed mainly to the fact that
the algorithm does not instantaneously update fuel burned from the gross weight, and for the
differences between the PDB and the aerodynamic model in FlightSIM®. This can be seen in
flights 9-11, which present higher percentage difference than the first eight flights. These
flights have the similarity that they have longer cruise phases. For these tests, the total weight
was upgraded every 25 nm. Reducing these distances would reduce the fuel burned

differences in Figure 3.8.

Figure 3.9 shows the differences in flight time are somewhat constant for all flights. This is
because flight speed is kept constant regardless of weight. Thus no error is induced by the
executed interpolations. These results indicate that the speed equations and considerations

taken along the method allow accurate time calculations.

3.3.1.2 Aircraft B and C: PTT and the Algorithm

This method is intended to be used for any aircraft with a PDB. To verify this, the algorithm
was implemented for two other aircraft. Figure 3.10 and Figure 3.11 are the results for
Aircraft B. The first six flights are from YUL to YYZ and the last two are from YUL to
YVR. The difference was obtained letting the results of the PTT as reference.

In Figure 3.10, it can be seen that the fuel burned has a similar difference percentage in all
flights. This difference average is of only 0.72%, where normally the algorithm results show
less fuel consumption than the PTT. As explained before, improving the distance of the
waypoints would improve the fuel consumption estimation. Flight Time in Figure 3.11 shows

a very little difference which can be neglected.
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Figure 3.11 Aircraft B Calculated Flight Time

Figure 3.12 and Figure 3.13 are the results for Aircraft C. The first two flights are from YUL
to Chicago (ORD) with a distance of 651 nm, flights three to five were from LAX to MSP,
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flights six and seven were from YUL to Dallas Forth — Worth (DFW) with a distance of 1317
nm, flight 8 is from YUL to La Havana (HAV) with a distance of 1416 nm, flight 10 was
from YUL to Cancun (CUN) with a distance of 1605 nm, and the last two were from YUL to
YVR. As with aircraft B, the difference was obtained letting the results of the PTT as

reference.

The results in Figure 3.12, are similar as those of Aircraft B, again with the algorithm
calculating less fuel than the PTT. This difference average for Aircraft C was of 1.62%.
Flight Time in Figure 3.13 suggests that the difference in flight time can be neglected.
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Figure 3.12 Aircraft C Calculated Fuel Burned
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Figure 3.13 Aircraft C Calculated Flight Time

3.3.2 Cost Index Effect

For the flights evaluated above, the CI was always equal to 0. Varying the CI in the same
flight would assign a cost to flight time as indicated in Eq (3.1) without modifying fuel burn.
From Figure 3.9, flight 11 from Aircraft A was taken and the flight time was multiplied by
different cost index values. The higher the cost index, the higher the time cost. This is of
interest for optimization algorithms where time represents an important constraint and a
compromise between fuel burned and flight time needs to be achieved to optimize the global
cost. It can also be observed that the percentage of difference between the algorithm and
FlightSIM® diminishes as the CI is higher. This is expected as according to Figure 3.9, flight
time calculations difference is lower, and since time becomes a higher part of the total cost,

the difference diminishes.
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3.33 Computation Time For Different Trajectories

In order to observe the algorithm execution time, different reference trajectories were flown

and their execution times were saved and are shown in Figure 3.5.

Table 3.5 Algorithm execution time

YUL [ YUL | YUL | YUL | YUL | YUL | YUL | YUL
YYZ | DET | WPG | REG | EDM | VAN | LAX | PAR
Execution Time (s) | 1.29 | 1.32 | 135 | 1.38 | 142 | 1.52 | 1.6 | 2.07

Distance (nm) 273 | 460 | 978 | 1272 | 1607 | 2013 | 2149 | 2993

The computation time increments as the flight distance is longer. This is expected since as
the cruise is longer, more interpolations in the cruise phase are required, thus more
computations. The execution time provides reliable computation at a lower execution time
than FlightSIM®, which require the real flight time. These tests were performed using
Matlab® in an AMD Phenom® B93 processor at 2.8Ghz.
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3.34 Cruise Aircraft Distance Between Weight Update Points

The length of segments in cruise or, in other words the distance between the points where the
fuel burned is reduced from the aircraft total weight, has a strong influence on the method
computation accuracy. Figure 3.15 shows the cost variance and the calculation time for a
flight from YUL to YVR. The length of the cruise segments was changed from 5 nm to 500

nm, the fuel burned and the execution time were analyzed.

Cruise Resolution Influence
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Figure 3.15 Cruise Segment Size Influence

From Figure 3.15, it can be observed that when reducing the fuel burned from the total gross
weight by small cruise segments, the fuel burned is at its lowest and it becomes higher for the
same flight as the cruise segment when the fuel burned is reduced from the gross weight
increments. This is because at 5 nm the total weight of the aircraft is updated more often, and
the interpolations performed to calculate the flight cost have a more accurate weight than
those of 500 nm. However, having so small cruise segments will require more interpolations
making the execution time higher. This can represent a problem for devices with small

computation power such as the FMS, since for flight trajectory optimization many different
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trajectories need to be calculated. From this same figure, it can be seen that separation
between 5 nm and 50 nm maintains the fuel burned difference practically negligible.
However, taking computation time into account, any value between 20 nm and 50 nm can be

considered a good compromise between fuel burn accuracy and execution time.

34 Conclusion

A method to calculate the VNAYV cost considering all stages of a commercial flight using a
Performance Database and typical aircraft speed equations were implemented and validated.
Lagrange linear interpolations were used to calculate values not available in the PDBs.
Particularities of each stage of flight such as the crossover altitude; acceleration and “step
climbs” were considered. The values of interest to calculate were flight time and fuel

consumption since those are the ones that define a typical VNAV flight cost function.

By comparing the reference trajectories costs results of the novel algorithm developed in
Matlab®, against the costs for the same trajectories provided by two different commercial
platforms of reference: FlightSIM®, and the PTT, have shown that the method provides an
accurate flight trajectories costs. The method results for Aircraft A were compared against
the results of a dynamic model developed in FlightSIM® to shown that the accuracy of fuel
burned and flight time calculations are reliable. This was also confirmed by comparing
results against the calculation generated by Aircraft B and Aircraft C by a commercial
PTT/FMS. This demonstrates that this method can be implemented in any experimental data
based model such as the PDB.

This method may be directly implemented in a FMS (or used in ground simulations) as base
of VNAV trajectory calculation for optimization algorithms. Using a PDB to calculate
needed parameters has the advantage of not having to be concerned about aerodynamic
parameters such as lift, drag, etc. It was observed that the CI changes the global costs by
giving time a cost without affecting fuel consumption. This is of use when calculating

optimal trajectories and time represents a constraint.
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A study was performed to analyze the influence of the length of the cruise segments where
the total weight is updated in order to observe its effect in the method calculation's accuracy.
It was observed that the shorter the length of these segments the more accurate the method

becomes, but the longer its execution time.

As future work it would be of interest to adapt this method to consider weather information,
such as wind and temperature in the calculations. Wind affects aircraft speed, and
temperature affects engines performance. This implementation would make this method
more adequate for the computation of optimal trajectories. It would be as well of interest to
compare this method against the methods commercially used to improve its execution time

and its accuracy.
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Résumé

Dans le but de réduire le colt du vol et la quantité¢ d'émissions polluantes rejetées dans
l'atmosphére, un nouvel algorithme d'optimisation est présenté pour la trajectoire verticale de
vol prenant en compte les phases de montée, de croisiere et de descente. La sélection des
vitesses verticales de référence et des altitudes a été effectuée avec la résolution d’un
probléme combinatoire discret au moyen d'un arbre graphique traversant des nceuds en
utilisant la technique d'optimisation de la recherche du faisceau. Pour obtenir un compromis
entre le temps d'exécution et la capacité de l'algorithme a trouver la solution optimale, une
méthode heuristique introduisant un parametre appelé "coefficient d'optimisme" a été utilisé
pour estimer le cofit du vol de la trajectoire a chaque nceud. Le colit optimal de la trajectoire
obtenu avec l'algorithme développé a été comparé au colt de la trajectoire optimale fournie
par un systéme de gestion de vol commercial. La solution globale optimale a été validée en
comparant les résultats avec un algorithme de recherche exhaustive, autre que I'algorithme
proposé. L'algorithme développé prend en compte les effets météorologiques, la montée par
paliers pendant la croisiére, et les contraintes de gestion du trafic aérien tels que des segments
d'altitude constante, la croisiére constante Mach et une voie de navigation latérale de
référence prédéfinie. La consommation de carburant de I'avion a été calculée en utilisant un
modele de performance numérique qui a été créé et validé en utilisant des données

expérimentales d’essais en vol.
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Abstract

With the objective of reducing the flight cost and the amount of polluting emissions released
in the atmosphere, a new optimization algorithm considering the climb, cruise and descent
phases is presented for the reference vertical flight trajectory. The selection of the reference
vertical navigation speeds and altitudes was solved as a discrete combinatory problem by
means of a graph-tree passing through nodes using the beam search optimization technique.
To achieve a compromise between the execution time and the algorithm’s ability to find the
global optimal solution, a heuristic methodology introducing a parameter called “optimism
coefficient was used in order to estimate the trajectory’s flight cost at every node. The
optimal trajectory cost obtained with the developed algorithm was compared with the cost of
the optimal trajectory provided by a commercial Flight Management System. The global
optimal solution was validated against an Exhaustive Search Algorithm, other than the
proposed algorithm. The developed algorithm takes into account weather effects, step climbs
during cruise and air traffic management constraints such as constant altitude segments,
constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel
burn was computed using a numerical performance model which was created and validated

using flight test experimental data.

4.1 Introduction

Several studies by aeronautical authorities and associations have estimated that the number of
aircraft in service will increase in the forthcoming years (IATA, 2011). Having more aircraft
airborne will bring new challenges to air traffic management to guarantee safe and efficient

flights.

Worldwide, several programs have been initiated for the research, development and
implementation of systems, regulations and procedures for future air traffic management.
These programs include the Next Generation Air Transport System (NextGen) in North
America, led by the United States, the Single European Sky ATM Research (SESAR) in
Europe, and the Collaborative Actions for Renovation of Air Traffic Systems (CARATS) in
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Japan. These programs improve Air Traffic Management to guarantee safety, expand air
space capacity, reduce polluting emissions, and to provide flight trajectories as efficient as

possible.

Efficient flight reference trajectories result in both flight time and fuel burn reductions.
Flying these trajectories is extremely desirable, since fuel burn reduction directly diminishes
polluting emissions, as well as saved on costs. As pointed out by the Air Transport Action
Group (ATAG), around 2% of the carbon dioxide (CO2) emissions released to the
atmosphere are caused by aeronautical activities (ATAG, 2014). The industry has set itself
the goal of reducing its CO2 emissions to 50% of those generated in 2005 by 2050 (ICAO,
2010). Many organizations have been created to address and solve the pollution problems.
One such example is the Business-led Network of Centers of Excellence (GARDN) in

Canada, which encourages services and products to reduce polluting emissions.

Several new technologies and aircraft modifications have already been considered with the
aim to reduce polluting emissions in which winglets have been proven to improve aircraft
efficiency (Freitag, 2009). What’s more, changes in materials and avionics equipment have
reduced aircraft weight, as well as the introduction of biofuels (ATAG, 2009), and engine
improvements have also reduced fuel burn. Airlines can achieve fuel savings with their
current fleets by implementing different operational measures, such as the single engine
taxiing, ground power units, engine washing, and flight reference trajectory optimization as
presented in (McConnachie et al., 2013). Therefore, implementing these improvements in
current fleets is becoming a necessity, since the newer aircraft generations alone will not be
enough to fulfill the industry’s polluting reduction goals (Randt P., Jessberger, & Ploetner,
2015).

The Continuous Descent Approach (CDA), an operational procedure related to flight
reference trajectory optimization, has been proven to reduce fuel consumption. With this
procedure, the aircraft descends with the engines in the IDLE mode (least fuel consuming

setting) instead of descending in the conventional step descent pattern. Several airports have
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implemented this technique because it contributes to fuel savings and noise reduction (Cao,
Kotegawa, & Post, 2011; Clarke et al., 2013; Kwok-On et al., 2003; Kwok-On, Daniel, &
Anthony, 2006). The CDA must be implemented correctly to avoid the need to execute a
missed approach procedure, which is expensive in terms of fuel burn and pollution emission
release(R. Dancila, Botez, & Ford, 2014; Murrieta-Mendoza et al., 2014). Other approaches,
such as air to air refueling was studied in (Nangia, 2006) and aircraft ground movement

optimization was suggested in (P. Godbole, J., A. G. Ranade, & R. S. Pant, 2014).

For “en-route” operations, Jensen et al. in (Luke Jensen et al., 2014; Luke Jensen et al.,
2013) stated that aircrafts in the United States do not fly at their optimal speed or altitude.
Other discussions have been conducted regarding the savings that flying at low cruise speeds
may bring, as well as at how lower cruise speeds would affect other aircraft flying near the
low-speed cruise aircraft (Bonnefoy & Hansman, 2010; Filippone, 2007). Turgut et al.
(Turgut et al., 2014) developed equations to obtain the fuel flow for different aircrafts and

found out that flight trajectories for national flight within Turkey can be improved.

Current reference trajectory optimization was done by ground teams or by airborne avionics
such as the commercial Flight Management System (FMS). The former can use algorithms
that require many computational resources to find the optimal reference trajectory; the latter

require fast algorithms to find an optimal or a sub-optimal reference trajectory.

The reference trajectory could be studied in two different dimensions: the vertical dimension
and the lateral dimension. The first consists in the speeds and altitudes that provide the most
economical flights, and the latter consists in the geographical waypoints where no obstacles
are present, and where the aircraft can take advantage of weather, such as tail winds, to

reduce the flight cost.

A number of optimization algorithms have been implemented to solve the reference
trajectory optimization problems. Different optimal control techniques considered various

constraints and optimization objectives (Franco & Rivas, 2011; Franco & Rivas, 2015; Guo
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& Zhu, 2013; Houacine & Khardi, 2010; McEnteggart & Whidborne, 2012; Pargett &
Ardema, 2007; Valenzuela & Rivas, 2014). Equations of Motion (EoM) were used in these
optimal control based algorithms in order to find the optimal solution. Other authors applied
the Dynamic Programming; such as Miyazawa et al. (Miyazawa et al., 2013) who developed
a moving search space algorithm by taking into account both weather and the Required Time
of Arrival (RTA) constraints. Ng et al. also used Dynamic Programming, by taking into
account winds for a fixed Mach number and by allowing changes in the flight level during
the cruise regime (Ng et al., 2014). Hagelauer and Mora-Camino utilized the EoM to
implement dynamic programming with neural networks to optimize trajectories,
underscoring the fact that FMSs use numerical performance databases instead of EoM

(Hagelauer & Mora-Camino, 1998).

Reference trajectory optimization focusing on avoidance (obstacles or weather constraints)
has also been investigated. Cobano et al. applied the Particle Swarm Optimization for a 4D
(RTA constraint considered) trajectory (Cobano et al., 2013). Ripper et al. used graph search
algorithms to optimize the route of a general aviation aircraft while avoiding obstacles
(Rippel et al., 2005). The dynamic physical principles of a stream avoiding obstacles were
adapted to the path trajectory optimization. This methodology allowed the avoidance of
objects of different shapes (Wang, Lyu, Yao, Liang, & Liu, 2015). An algorithm able to
optimize the flight trajectory of cooperative Unmanned Aerial Vehicles (UAV) able to avoid
obstacles was developed using a combination of the central force optimization algorithm and

genetic algorithms in (Chen et al., 2016).

All these optimization algorithms were able to optimize the flight reference trajectory by
fulfilling their imposed constraints. However, solving the EoM to find the optimal trajectory
in a system with limited processing power, such as an FMS, can be very much time
consuming, leading its implementation to be impractical. Therefore, the FMS do not
normally use these equations, and instead uses a set of look up tables with experimental data

called a numerical performance model.
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Numerical performance models provide fuel consumption information, and therefore
researchers have developed fuel burn estimators that work with this type of models to
compute the cost of a cruise segment (B. Dancila et al., 2013). These estimators were later
used to optimize flights in cruise (B Dancila, Botez, & D, 2012). Félix et al. used genetic
algorithms to find the optimal trajectory by taking advantage of winds (Roberto S. Félix-
Patron et al., 2014). Murrieta and Botez used the Dijkstra’s algorithm to find the optimal
trajectory by taking advantage of winds and temperatures (Murrieta-Mendoza & Botez,

2014a).

The vertical reference trajectory optimization problem applied on a numerical performance
model for all flight phases can be treated as a combinatorial problem. The number of possible
solutions (feasible or not) are defined by combinations of Indicated Air Speeds (IAS), Mach
numbers and altitudes available in the numerical performance model. Although the number
of combinations for evaluation available in the numerical performance model might be
considered low compared against the number of combinations available in classical
optimization problems (e.g. the Traveling Salesman Problem, where a salesmen at a given
origin city should visit every available city at least once and he must return to the origin city,
is a hard Nondeterministic Polynomial time (NP) problem. For a high number of cities, there
is no practical optimization solution able to guarantee optimality), it should be taken into
account that the FMS possesses low power computation capabilities. Just a small part of
these computation capabilities are dedicated to the reference trajectory optimization, as other
critical operations have higher priority (Collinson, 2011) such as to provide the current
trajectory guidance, to monitor the aircraft flight envelope so as to guarantee a safe flight, to
control automatically the engine thrust, and etcetera. In a real time environment, systems
such as the FMS, should be able to provide solutions (either “optimal” or good ‘“sub-

optimal”) in a short period.

To solve this optimization problem for an FMS, Gagné et al. developed a space reduction
search algorithm (Jocelyn Gagné, Murrieta-Mendoza, Botez, & Labour, 2013). Murrieta and

Botez developed an optimization algorithm by reducing the space search even further and
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thus the execution time (Murrieta-Mendoza & Botez, 2014b). Félix et al. used a numerical
performance database and the golden section search algorithm to find the climb speed
schedule and the Top of Climb (ToC) altitude in order to optimize a short flight, and to
implement step climbs in long haul flights (R.S. Felix Patron et al., 2013).

Coupling and optimizing the lateral and the vertical reference profiles has also been a
promising research area. Murrieta proposed five different reference lateral trajectories to be
evaluated using a previously computed optimal vertical reference trajectory (Murrieta-
Mendoza, 2013). Félix et al. implemented genetic algorithms to optimize the vertical
reference trajectory (Roberto Salvador Felix Patron et al., 2013). Felix et al. used genetic
algorithms to simultaneously optimize the lateral and vertical reference trajectories for the
cruise phase (Roberto S Félix-Patron, Berrou, & Botez, 2014; Roberto S. Félix-Patron &
Botez, 2014). Genetic algorithms provided good solutions, however their metaheuristic

nature made them difficult to certify, and thus implemented in current airborne avionics.

In this chapter, the vertical reference trajectory optimization problem is solved with the Beam
Search Algorithm. The implementation of this algorithm to the reference trajectory problem
has not yet been studied in the literature. Beam search is a deterministic algorithm which
requires low memory (the decision tree is reduced). This algorithm can quickly provide good
solutions, even if they are not the most economical (optimal for this paper) ones. All these

characteristics are desirable for the FMS.

The algorithm proposed in this paper, compared with the above mentioned algorithms used
for the vertical reference trajectory optimization by using numerical performance models,
brings the novelty of treating this problem in a “decision tree”. The speeds and altitudes in
the numerical performance model are discrete values. The Beam Search Algorithm,
unexplored for this problem, has been adapted to the vertical trajectory problem to explore its
optimization capabilities. This paper also introduces a new heuristic (technique used to
provide an approximate solution to a problem in a reasonable time) used by the algorithm to

estimate the flight cost at any node within the decision tree. This heuristic takes into account
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all flight phases, weather conditions, step climbs, and is designed to be used in a numerical

performance model.

The algorithm developed in this paper takes into account winds, temperature and current
traffic control constraints such as the constant speed and the constant flight level. Changes in
the flight level (step climbs) during cruise are evaluated at a pre-defined time frame to mimic
the cruise-climb regime. Since this algorithm was developed with the goal of being
implemented in current and future FMS generations, a numerical performance model was

used instead of the EoM.

The paper is organized as follows: Section 4.2.1 defines the performance database used to
compute flight costs; Section 4.2.2 offers a brief explanation of how a flight cost is computed
using a performance numerical model; The Beam Search Algorithm is briefly explained, and
its implementation is fully explained in detail in Section 4.3.2, and Section 4.3.3. Section 4.5

presents and discusses the results; and the conclusions are provided in the last section.

4.2 Methodology

4.2.1 Numerical Performance Model

The numerical performance model is a set of tables containing an aircraft’s performance in
different flight phases. The available flight phases are provided in Table 4.1. This numerical
performance model is developed and validated using experimental flight test data. It replaces
the conventional Equations of Motion (EoM) widely used in the literature. This model is
fairly expensive to be created with experimental flight data, and an alternative is to use a
Level D research flight simulator (Murrieta-Mendoza, Demange, George, & Botez, 2015).

The inputs in the numerical performance model are provided as discrete values. For example,
for the Indicated Air Speed (IAS) climb sub-database, the IAS input is provided in 10-knots
separations, as shown in Eq. (4.1), where 7 is the last available IAS. The abbreviation ISA

refers to International Standard Atmosphere.
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Table 4.1 Numerical Performance Model Sub-Databases

Sub-database Inputs Outputs

IAS (knots) Fuel burn (kg)

Gross weight (kg) Horizontal traveled distance (nm)
IAS Climb

ISA deviation temperature (°C)

Altitude (ft)

Gross weight (kg) Fuel burn (kg)
Climb Initial IAS (knots) Horizontal traveled distance (nm)

im

Acceleration altitude (ft) Altitude needed (ft)
Acceleration

Delta speed to accelerate

(knots)

Mach Fuel burn (kg)

Gross weight (kg) Horizontal traveled distance (nm)
Climb Mach

ISA deviation temperature (°C)

Altitude (ft)

Mach Fuel flow (kg/hr)

Gross weight (k
Cruise Mach sht (ke)

ISA deviation temperature (°C)

Altitude (ft)

Mach Fuel burn (kg)
Descent Gross weight (kg) Horizontal traveled distance (nm)
Mach ISA deviation temperature (°C)

Altitude (ft)
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(4.1)
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Table 4.1 Numerical Performance Model Sub-Databases (continue)

Sub-database Inputs Outputs

Gross weight (kg) Fuel burn (kg)

Initial IAS (knots) Horizontal traveled distance (nm)
Deceleration | Deceleration altitude (ft) Altitude needed (ft)

Delta speed to accelerate

(knots)
IAS (knots) Fuel burn (kg)
Gross weight (kg) Horizontal traveled distance (nm)

Descent IAS o
ISA deviation temperature (°C)

Altitude (ft)

4.2.2 Flight Cost Computation

The flight cost computations for the vertical reference trajectory were performed using the
method described in (Alejandro Murrieta-Mendoza & Ruxandra M. Botez, 2015). In this
method, climb in IAS, climb in Mach, acceleration, cruise, descent in Mach, deceleration and
descent in IAS are taken into account by considering the particularities of each phase, such as

“crossover altitudes”, “step-climbs”, etc. A brief explanation of this method is given here for

completeness.

By providing the input vector given by Eq. (4.2), along with a takeoff weight, a cost index
and a reference lateral route, the method computes the fuel burn, the flight time and the flight
cost. These parameters are accumulated in two different variables called Fuel Burn (kg) and
Flight Time (h), respectively. Eq. (4.3) is used for computing the trajectory reference flight

cost.

Vertical Profile = [IASciimp Mach  Cruisegtitude [ASpescent ) (4.2)
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Global Cost (kg) = Fuel Burned + Cost Index * Flight Time (4.3)

where Cost Index (kg/hr) is a parameter that relates time to cost in fuel terms. The Cost Index
is normally defined by airlines before take-off and considers crew, maintenance and other
time-related costs. A high Cost Index value makes the aircraft fly at higher speeds in order to
reduce Flight Time even if these speeds are not efficient in terms of fuel burn. This is because
Flight Time has a strong influence on Eq. (4.3). A low cost index value diminishes the
importance of Flight Time in Global Cost, thus the algorithm focuses mostly on reducing the

fuel burn. The aircraft can fly at lower speeds if they are more efficient in terms of fuel burn.

The altitudes and speeds considered to compute the flight cost are only those available in the
numerical performance model. However, the aircraft's gross weight constantly changes as
fuel is burned, and the ISA deviation temperature changes while the aircraft is in flight.
Weight and ISA deviation temperature deviations can take values that are not exactly those

available in the discrete numerical performance model input values.

For this reason, a series of linear Lagrange interpolations were executed using the numerical
performance models limits to compute the fuel burned and the horizontal traveled distance.
During climb and descent, interpolations were performed at altitudes multiples of 1000 ft.
During the cruise regime, interpolations were executed every 25 nautical miles for the current
aircraft weight and the local ISA deviation temperature. This method takes into account the
step climb costs as well as weather conditions. The possibility of executing step climbs is
evaluated every hour of flight. Weather information is obtained from forecasts provided by

Environment Canada. A typical vertical flight profile is shown in Figure 4.1.

Throughout the paper, when this interpolations method is used, it is referred to as “real cost
computation”. This method has the particularity that is time consuming, so it should be

executed as few times as possible.
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Figure 4.1 Typical reference vertical flight profile

4.3 The Optimization Algorithm

4.3.1 The Search Space: A Decision Graph

The decision variables for the vertical reference trajectory optimization problem are the IAS
climb, the IAS descent, the Mach number and the cruise altitude. Since the decision variables
can take only the pre-defined values in the numerical performance model, the problem
becomes a “discrete combinatory” one. The combinations available to solve the vertical
reference trajectory problem that fulfill Eq. (4.2) can be modeled by means of a “decision
graph”. By the International Civil Aviation Organization (ICAO) recommendation, aircraft
cannot fly faster than 250 IAS below 10,000 ft. The speed restrictions along with the

following conditions are imposed in order to build the “tree-graph:

e Flight begins at 2000 ft at an initial IAS of 240/250 kts;

e Acceleration can only be executed once at 10000 ft.;

e The Mach number for the cruise, climb and descent phases is the same, and is kept
constant along the flight;

e The initial cruise altitude is the one at the ToC;



73

e Step climbs are not taken into account to build the decision graph, only the altitude at
the ToC is considered. However, Step Climbs are taken into account for the optimal
trajectory;

e Deceleration can only be executed once during descent;

e While descending, IAS must be at or below 250 kts at 10000 ft.;

e The flight trajectory always ends at 2000 ft at or below an IAS of 250 kts.

With these conditions, the decision tree-graph can be constructed, starting from defining the
root node as 250 kts or 240 kts IAS at 2000 ft. The first tree level is composed of NodesaLr,
the second tree level is composed of Nodesmach, the third tree level, of NodesiascLs, and the
last tree level is composed of Nodesiaspes. These last nodes (the Nodesiaspes ) are called
“leaves”. The abbreviation “ALT” defines the Altitude, “CLB” defines the Climb Regime,
and “DES” defines the Descent Regime.

The tree-graph order level was determined based on its influence on the flight cost.
“Altitude” and “Mach” parameters are important for both short and long flights as explained

next.

For short flights, “Altitude” determines how much the aircraft has to climb (a higher climb is
normally more expensive). “Mach number” determines the crossover altitude (change from

IAS to Mach), which has an influence on the climb cost.

For long flights, the cruise is the most expensive part of a flight. The parameters of the cruise
phase are the Altitude and Mach number. For these reasons, Altitude and Mach number are
the first two levels of the vertical reference tree. As it will be explained in Section 4.3, this
order of the levels is important to reduce the total number of computations. A reduced graph-
tree is shown in Figure 4.2 where / is the first available value and # is the maximal available

value for that set.
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Figure 4.2 Vertical reference trajectory optimization graph-tree

4.3.2 Problem Definition

The vertical reference trajectory discrete optimization problem regards the selection of

speeds and altitudes that minimize the flight cost as an integer linear programming problem:

Minimize: Global Cost (IAS ;imp » Machppg, Cruisestitude » IASpescent)

[ASciimp € [AScLimB PDB

Machppp € Machppp

Cruiseyitituge € CTuiseaititude P

[ASpescent € IASpescenT PpB

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

where variables given by Egs. (4.5) to (4.8) have discrete finite values available in the

numerical performance model (see Eq. (4.1) - (4.4)) and compose the vector expressed by Eq

(4.2). The solution of this system is given in the VerticalorrimaL vector shown in Eq (4.9),

where “optimal” defines the combination given in Eq (4.4) that minimizes Eq (4.3).
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Verticalpprimal (4.9)

:[ClimbOptIAS Machg,, Altitudegy, Descendopt,AS]

The “design discrete variables” given in Egs. (4.5) to (4.8) are modeled, and form a decision
tree as shown in where each “node” is a “decision variable”. Depending on the decision, the
“decision variable” (e.g. a given “IAS node”) is taken (or not) into account for the flight cost

computation.

Using the “decision tree”, the problem can conceptually be formulated as constrained

programming as follows:

Minimize: Z x; * Branch cost; (4.10)
i € Total Nodes in the tree (4.11)
x; €{0,1} (4.12)

Z x;(per tree level) = 1 (4.13)

In Eq (4.10), x refers to the selection of nodes with a binary value of ‘1°, Branch cost refers
to the cost of branches connecting those nodes. Eq. (4.12) shows the binary value chosen for
each node. Eq. (4.13) is a node constraint stating that for every level, only one node can have

the binary value of ‘1°.

In other words, if a given node is selected as part of the optimal solution, it takes the binary
value of ‘1°. If a node is not selected as part of the optimal solution, it takes the binary value

of ‘0’. The cost between two levels is provided by the branches connecting the nodes with a
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binary value of ‘1’. Only one node per tree level can take the value of 1’ to form the final
solution. All the other nodes in a given level take the value of ‘0’, for example, for an
optimal vertical reference trajectory solution such as the one given by Eq. (4.14), the tree

takes the form shown in Figure 4.3.

VNAVOPTIMAL = [260 kts 0.82 Mach 36,000 ft 280 ktS] (414)

Figure 4.3 Decision tree example for given solution

Note that at Level 1, the altitude of 36,000 ft was selected as the optimal flight altitude, and
thus it took a binary value of ‘1’; all the other altitudes take a value of ‘0’ since they did not
compose the optimal solution. At Level 2, the Mach number 0.82 was selected as part of the
optimal solution, and thus it took the value of ‘1’; all the other Mach nodes took a binary
decision value of ‘0’ since they were not part of the optimal solution. Level 3 and Level 4
(leaves) behave in a similar way. The binary values defined the decision taken if a given
node was or not used as part of the solution. It is the Beam Search Algorithm explained in the

next section that makes these decisions.

The Beam Search Algorithm is an approximation of Branch and Bound (B&B) optimization
technique. In both algorithms, some promising nodes are further explored, while the
unpromising nodes and all their descendants are permanently pruned. The main difference
between these two algorithms is that B&B does not allow pruning unpromising nodes in

cases when it cannot guarantee that the node to be pruned do not contain the optimal
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solution. Guaranteeing the optimality before pruning a node might require extensive
computing time in the B&B algorithm. The Beam Search is more aggressive than the B&B to
prune the nodes; a node can be pruned without guaranteeing the optimality by reducing the

computing time (Sabuncuoglu & Bayiz, 1999).

The Beam Search Algorithm expands a pre-defined number of the most promising nodes per
tree level, that number of nodes is usually smaller than the total number of nodes. The
number of promising nodes per level to be developed is called beam width (b). Every tree
generated (node expansion) from a promising node is called a beam. To determine if a node
is promising or not, either a /ocal evaluation (node’s cost is just a projection) or a global
evaluation (all nodes composing the solution are known, so that cost can be more exact) are
executed. Local evaluations are quick, but normally discard good solutions. While, on the

contrary, global evaluations are accurate, but normally require high computational time.

At the beginning, after the expansion and the local evaluation of the root node, the Beam
Search Algorithm selects the b most efficient nodes at the first tree level. Neither promising
nodes nor nodes outside b are pruned. For example, if there are ten nodes defining the first
level, and b = 6, only the six most promising nodes are expanded, and the remaining nodes
are pruned. This operation is repeated for the descendent nodes. Expanding a descendent
node generates a new beam; thus the search is performed through different parallel beams.
There are many different ways of exploring these parallel beams, either independently, or
through a priority list as in the algorithm developed in this paper. New beams are generated

and nodes are explored until all nodes have been either explored or pruned.

4.3.3 The Beam Search Algorithm

After defining the tree representation of the vertical reference trajectory optimization
problem in Section 4.3.1, and the general theory of the Beam Search technique, the
optimization methodology used for the algorithm described in this paper is defined in the

following paragraphs.
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Every node evaluated in the tree is associated with a flight cost estimation that is calculated
using a heuristic. This heuristic is a local evaluation of nodes, which takes into account the
whole vertical reference trajectory. This flight cost estimation is used to evaluate if a node is
promising or not. Since this is a minimization problem, the lower the local evaluation cost is,
the more promising the node becomes. If a node is considered as promising (the local
evaluation cost is higher than the current best cost solution) and within the beam width (5), it
is expanded. However, if a node is not promising, then it is permanently pruned from the tree
together with all its descendants. In other words, it is pruned because it is not economical
enough to be included in b, and/or because the most optimistic cost prediction from the
combination of a node’s descendants will not give a more economical solution than the
current best solution. This particularity makes this algorithm desirable, as discarding nodes
reduces the number of available combinations to compute at the trade-off of not guaranteeing
optimality. This is because the optimal solution might be pruned due to the size of b or as the
local evaluation fails to provide a good cost estimation. The objective is to find a good
trajectory while pruning the highest number of nodes with the minimal number of leaves to
visit/evaluate; thereby, the algorithm execution time and the required memory are reduced.
However, care must be given to the not prune nodes that could lead to a potential optimal
solution, which is the reason why attention should be given to the evaluation function

(heuristic). This function is explained in details in Section 4.3.3.1.

In the beginning of the algorithm, the best current solution is defined as “infinite”. The first
real best solution is calculated the first time when a leaf (last level) is visited. At the last node
level (the leaves), all the parameters (nodes) shown in Eq. (4.2) are known. When all the
parameters in the solution are known, a complete solution has been found. At this point, a
global evaluation, which takes the form of the “real cost computation” described in Section
4.2.2, is performed to provide an accurate flight cost. As stated before, this real cost
computation method is time consuming; it is thus desirable to minimize the number of times
that the method is executed. Therefore, once at the last level (leaf), instead of executing the

real cost computation directly, a last local evaluation is computed. If the local evaluation
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suggests that a more economical cost should be found in that last leaf, then the real flight cost

is computed.

Reaching a leaf quickly is important because computing a “first solution” presents the
opportunity of pruning nodes, which reduces the search space. However, it is desirable to
give priority to the expansion of the most promising nodes in order to find the optimal
solution faster. The faster the optimal solution is found, the more branches can be pruned.
Within the developed algorithm, lists that rank the nodes by priority are used to keep track of

the existing beams.

The algorithm procedure is as follows. In the first level, after the root node expansion, all the
nodes’ costs estimations are computed using the local evaluation function (heuristic). A first
queue list (List4L7) containing beam width (b;) elements is sorted using the most promising
nodes (most economical nodes first), the nodes that are not included in List4rr due to b; are
permanently pruned. The first node from Listarr is selected. If this node is more economical
than the current best cost, it is further expanded, otherwise it is pruned. For the second level,
all descendant nodes’ costs are estimated with the local evaluation function. A queue list
(Listmacn) containing b2 elements is created and sorted with the most economical node first.
Nodes not included in Listyvach due to b2 are permanently pruned. The best node is selected. If
this node is more economical than the current best cost, it is expanded, otherwise it is pruned.
At the third level, after the node expansion, all nodes’ costs are estimated with the local
evaluation function. A third queue list (ListiascLs) containing b3 elements is created and
sorted with the most economical node first. Once again, the first best node is selected. If the
selected node is more economical than the current best cost, it is expanded to the last level:
the leaves, otherwise, it is pruned. At the last level the first encountered node’s cost is
estimated with the local evaluation function. If the cost estimation delivered by the local
evaluation function is higher than the current best solution’s cost, the node is pruned.
Otherwise, a global evaluation (time consuming method) is executed. When the global
evaluation cost is more economical than the current best solution’s cost, the combination of

nodes that form this trajectory becomes the new best solution. Otherwise, this node is
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discarded. The next node at the last level is evaluated following the same procedure as the
preceding node. Once all descendant nodes are evaluated at this level, the algorithm comes
back to the preceding level. The expanded node in Listiuscrs is removed from the list. The
next node in the list is selected. The local evaluation is executed. If this node’s cost
estimation is more economical than the current best cost, the node is expanded, otherwise it
is pruned. This is repeated until the Listiascrs is empty. Then, the algorithm returns to the
preceding level and the expanded node is removed from the Listamach, where the next node in
the list is selected. If the node’s estimation with the local evaluation is more economical than
the current best cost, the node is expanded, otherwise it is pruned. This is repeated until the
Listiuscrs 1s empty. Then, the algorithm comes back to the preceding level and the selected
node is removed from Lists.r. The next node in the list is selected. If the node’s cost
estimation is more economical than the current best cost, the node is expanded, otherwise it
is pruned. Once the List4r7 is empty, the algorithm stops and delivers the optimal trajectory.
So the next section will describe the local evaluation function (heuristics) and a pseudo code

describing the algorithm will be shown in Section 4.3.3.6.

4.3.3.1 The Local Evaluation Function: Heuristics

The heuristic in the local evaluation is the key element of the Beam Search Algorithm. This
function gives the flight cost estimation taking into account all the flight phases. The data in
the numerical performance model allows performing this flight cost estimation. The key is to
provide a good estimation that is optimistic enough to prevent the algorithm from pruning
high-potential branches. “Optimistic” in this application means that the estimated cost is

lower than the real flight cost.

Depending on a node’s position within the tree (Figure 4.2), some parameters of Eq. (4.2) are
known. Two cases exist, and they can be divided into many sub-cases. The first case is
identified when only some parameters in Eq. (4.2) are known and the rest of the parameters
are unknown. In this case, the local evaluation function identifies the known parameters and

provides a cost projection by considering the unknown parameters for the whole flight. The
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greater the numbers of parameters from Eq. (4.2) that are available for the local evaluation
function to produce the estimation, the more accurate the estimation is. In other words, the
estimation is more accurate the deeper it is executed in the tree. The second case is identified
when all the input parameters in Eq. (4.2) are known, which allows the computation of the
real flight cost (global evaluation/real computation module). In the first case (in which only
some parameters are known), different sub-cases are studied as the function of these known
parameters. The second case (in which all parameters are known) happens only at the last

tree level (the “leaves™).

The new estimation coefficient, called the “optimism coefficient”, is used to control the

optimism of the local evaluation, or how aggressively nodes can be pruned.

The local evaluation function becomes less optimistic as it gets closer to the leaves, where
more solution values become known. Since the function is less optimistic, it tends to prune
more nodes/branches, thereby reducing the calculation time. The local evaluation function’s

behavior at each level is explained next.

4.3.3.2 Local Evaluation at the First Node Level: Altitude

The altitude node value is known at the first node level. However, the Mach number, IAS
climb, and IAS descent parameters in Eq. (4.2) are still unknown. Giving random values to
the unknown parameters would likely result in an unrealistic estimation for the different

flight trajectories that an aircraft could actually perform.

The optimism coefficient (Copr) is introduced in the local evaluating function in order to
influence the optimism level while calculating the projected cost. This coefficient can have
any value between zero (0) to one (1). A Copr = 0 corresponds to a “completely pessimistic”
local evaluation function, and Copr = 1 corresponds to a very “optimistic” local evaluation

function. By taking this coefficient into account, the function takes the form in Eq. (4.15).
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Costgsy = Average — Cope * (Average — NPMp,;,) (4.15)

where Costesr is the flight cost estimation (or bound), NPMmin is the minimal value obtained
from the numerical performance model for the current flight phase, Copt is the optimism
coefficient, and Average is the mean between the maximal and minimal value found in the
numerical performance model for the given flight condition by taking into account the known

vertical flight profile parameters.

Flight time is computed using the ground speed and the flight distance. Since the Mach
number at this level is unknown, the maximal Mach number available is used to calculate the

flight time, as a high Mach number reduces flight time.

4.3.3.3 Local Evaluation at the Second and Third Levels: Mach & Climb IAS

Once at the second level, the Altitude and Mach parameters are known. Since the climb and
descent Mach numbers are considered to be the same as the cruise Mach number, as
formulated in the hypothesis in Section 4.3.1, a short climb and descent estimation can be
considered. This short climb/descent cost should be “optimistic”, since climb/descent in
Mach comprises just a short phase of a flight; therefore only a 1,000 ft. descent/climb is
considered. The flight cost estimation is computed using Eq. (4.15).

The evaluating function is able to consider the effect of step-climbs. To do so without
enlarging the tree or increasing the algorithm’s computation time, the maximum number of
altitude changes the aircraft can perform for a given cruise altitude is calculated, allowing
2,000-ft step climbs as suggested in the literature (Ojha, 1995). For example, at a cruise
altitude of 36000 ft (and a ceiling altitude of 40,000 ft), only two step climbs can be
performed. The fuel flow for the first and the last altitude are taken from the numerical
performance model. The fuel flow for the given Mach Cruise Altitude is then the mean of the

fuel flow, as shown in Eq. (4.16).
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Fuel Flowcyyise (4.16)

B Fuel Flow (Mach, Initial Cruise Alt) + Fuel Flow (Mach, Last Cruise Alt)
B 2

where Fuel Flowcnise 1s the fuel flow to be considered in the cruise regime, Fuel Flow
(Mach, Initial Cruise Alt) is the fuel flow at the beginning of the cruise, and Fuel Flow
(Mach, Last Cruise Alt) is the fuel flow at the highest altitude at which the aircraft can fly for

the given cruise.

At the third level, the parameters Climb IAS, Mach and Altitude are known, and therefore the
“crossover altitude” (altitude where the IAS reference speed is changed to Mach number) is
known. Consequently, the climb phase can be estimated by making the local evaluation

function more accurate.

4.3.3.4 Local Evaluation at the Fourth Level: Descent IAS

At the fourth and last level (the leaves), Eq. (4.15) takes a different Cop: value than in the
other tree levels. This is because the descent phase has a small effect on the fuel
computations and thus a lower Cop is used to correctly estimate the bound. This coefficient is
called Copr2. To limit the need to execute the real cost computation method as much as
possible, it is executed only if the resulting leaf bound is lower than the current best cost.
This delimiting factor is a practical one and is considered because the evaluating function

execution time is faster than the real cost computation method execution time.

4.3.3.5 Local Evaluation Function and Weather

When weather effects are considered, the real flight cost method considers weather changes
at every point along the flight. The execution time therefore increases since the method
fetches the weather at every point within the trajectory. Considering the weather
implementation in the evaluating function in the same way it is considered in the real flight

cost method would indeed make the evaluation function very time consuming.
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We base our solution on the fact that the wind speed is normally higher (in the jet stream) at
high altitudes over 30,000 ft. For the evaluating functions, starting at an altitude of 30,000 ft,
a tailwind speed starting from 1.5 knots is incremented linearly to 6.5 knots at a maximal
altitude of 40,000 ft. The temperature is considered to be the standard atmosphere (ISA DEV
= () throughout. The ground speed increment due to the tailwind does not change the speed
value in the input to the numerical performance model; the speed in the database is the IAS,

rather than the ground speed used to compute the flight time.

This pseudo code is summarized under the form of a flowchart in Figure 4.4.
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4.3.3.6 Pseudo-Code

Algorithm 4.1 Beam Search pseudocode

1. Inputs = coordinates, takeoff weight, C.,., Reference Cost = Inf, VNAVoprmmar = []
Step 1: first tree level

2. For each Node Altitude do

3. Local Evaluation

4. Insert Node Altitude into Listarr

5. End For

6. Rank Listaur

7. If number of elements in Listarr< beamwidth (b1)

8. Prune Node Altitude in Listarr to fit beamwidth (bl)

9. End If
Step 2: All other nodes

10. While Listarr is not empty

11. Take the first Node Altitude in Listarrs

12. Expand Node

13. For each Node Mach

14. Local_Evaluation

15. If Local Evaluation < Reference Cost then

16. Insert Node Mach into queue 1iStmach

17. Else

18. Prune

19. End If

20. End For

21. Rank LiStuach

22. If number of elements in LiStmach< beamwidth (b2)

23. Prune Node Mach in LiStmacn to fit beamwidth (b2)

24. End If

25. While listmach is not empty

26. Take the first Node Mach in liStmach

27. Expand Node

28. For each Node IAS do

29. Local_Evaluation

30. If Local_Evaluation < Reference_Cost

31. Insert Node IAS into queue listrascrs

32. Else

33. Prune

34. End If

35. End For

36. Rank Listrascrs

37. If number of elements in Listrascze< beamwidth (b3)

38. Prune Node Mach in Listrasczs to fit beamwidth (b3)

39. End If

40. While Listrascie is not empty

41. Take the first Node Climb IAS in LISTiascrs

42. Expand Node

43. For each Node Descent IAS (or List IAS Des)

44 . Local_ Evaluation

45. If Local_ Evaluation < Reference Cost then

46. Compute Real cost

47. If Real cost < Reference Cost then

48. Update Reference Cost

49. Save Solution in VNAVoprimar

50. End If

51. End If

52. End For

53. Remove tested Climb IAS Node from listrascrs

54. End while

55. Remove tested Mach Node from 1istwach

56. End while

57. Remove tested Altitude Node from listarr

58. End while

59. Display best cost and VNAVoprivaL




87

4.4 Exhaustive Search Algorithm

An algorithm able to compute the entire vertical reference trajectory combinations defined in
Eqgs (4.4) — (4.8) is developed. This Exhaustive Search Algorithm is impractical to be
implemented in a low processing power device such as the FMS. However, this algorithm is
interesting from the optimization perspective as it always provides the optimal solution. This
allows validating the solution provided by the Beam Search Algorithm developed in this
paper. This Exhaustive Search Algorithm uses the same numerical performance model as the

developed algorithm.

4.5 Results

The optimal trajectory was evaluated for three different aircraft. The general characteristics

of the aircrafts used for the validation are shown in Table 4.2.

Table 4.2 Aircraft General Characteristics

Min take-off | Min speed Max speed | Number of
Aircraft
weight (kg) (IAS/Mach) | (IAS/Mach) | turbofans
A 125000 245000 250/0.78 365/0.84
B 80000 160000 240/0.6 335/0.82
C 27000 47000 240/0.5 310/0.8

In the first part of the results, the effectiveness of the optimism coefficient (Copr) is shown
along with the values of the pruned nodes and branches at different levels. The optimal
vertical navigation profile obtained by the algorithm was compared with the vertical
navigation profile solution given by an Exhaustive Search Algorithm to validate the optimal
solution. The costs of trajectories obtained using the Beam Search Algorithm developed in
this paper were compared with the outputs from a Flight Management System (FMS)
simulator called the Part Task Trainer (PTT), obtained from our industrial partner. The PTT

used the same numerical performance model as the Beam Search Algorithm and the
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Exhaustive Search Algorithm to perform all the required computations. Finally, to validate
that introducing weather information does not affect the algorithm’s ability to find the
optimal (or near optimal) trajectory, these trajectories were evaluated considering the Beam
Search Algorithm and the weather parameters, and then these trajectories were compared

with the trajectories found by the Exhaustive Search Algorithm using the same weather

parameters.

Different city pairs were used to perform the required tests for different aircraft. Table 4.3

shows the different trajectories used for the tests described next with their ICAO codes.

Table 4.3 Flight Distances for Different Trajectories

Airport 1 Airport 2 Distance (nm)
Martinique (TFFF) Paris Orly (LFPO) 3713
Montreal (YUL) Vancouver (YVR) 1992
Los Angeles (LAX) | Minneapolis (MSP) 1334
Vancouver (YVR) Winnipeg (YWGQ) 1007
Montreal (YUL) Winnipeg (YWG) 983
Montreal (YUL) Minneapolis (MSP) 824
Toronto (YYZ) Winnipeg (YWGQG) 813

4.5.1 The Optimism Coefficient Effect

The “optimism coefficient” has an important influence on the optimal trajectory found. To
illustrate it, a Winnipeg to Montreal flight with a total cost of 12,587 kg was analyzed under

the standard atmosphere.
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4.5.1.1 The Optimism Coefficient and the Computation Time

The optimism coefficient (Cop:i/) value varied between 0 and 1 to observe its influence in
branch pruning at the different tree levels (between Level 1 and Level 4). The second
optimism coefficient was fixed to be Copz =0.65. As mentioned above in Section 4.3.3.4,
Copr2 was used only for the last tree level. As previously discussed in Section 4.3.4.4, there
are two coefficients, as the descent phase does not have much of an influence as the rest of
the other phases, thus it is desired to cut as many nodes at the last level as possible without

influencing the other levels.

Table 4.4 shows the flight cost, the number of nodes (branches) pruned at levels 1, 2, and 3-
4, the total number of nodes (leaves) not evaluated as a consequence of the pruned branches,
and the required computation time for seven different Cop1 values, and for a Coprz = 0.65 for

Aircraft A.

Table 4.4 Optimism Coefficient Results of a Winnipeg to
Montreal Flight for a Copz = 0.65

Copt1 0 0.2 0.4 0.6 0.8 0.9 1
Flight cost (kg) 12616 | 12616 | 12616 | 12587 | 12587 | 12587 | 12587

Branches (nodes)

pruned at the 1st level

Branches (nodes)
77 77 77 45 36 36 36
pruned at the 2nd level

Branches (node)
pruned at the 3rd and 3 2 2 80 128 129 132
4th level

Total of leaves not
9270 | 9260 | 9260 | 6200 5600 | 5610 | 5640
evaluated

Computation Time (s) 8.1 8.7 8.7 |231.56 | 280.21 | 279.7 | 275.03
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For a Copi1 close to zero, a pessimist coefficient value, more branches are pruned at the
highest level (level 1), thus reducing the algorithm execution time. This fact can be seen for
Copt1 < 0.6. However, this fast computation brings with it the consequence that the global
optimal cost was not found, because the branch that contained the optimal solution was
pruned at a higher level due to the Coprs pessimism value. According to the results in Table
4.4, for a Cop1 >= 0.6, the optimal trajectory was always found; however, the computation
time was considerable higher. For these same tests, for a Copis < 0.6, the algorithm was not
able to find the optimal result. However, for a different flight, the solution might be found for
a Copr1 <0.6.

The computation time is directly related to the number of leaves evaluated, as illustrated in
Table 4.4, where for a Copr = 0, a total of 9,270 possible trajectories (leaves) were not
evaluated (more branches were pruned) using the real cost, which lead to a computation time
of 8.1 s. A total of 5610 possible trajectories were not evaluated (less branches were pruned)
with a Copir = 0.8, which lead to a computation time of 280.2 seconds. Obviously, Copi1 needs

to be adjusted to the required value in order to obtain very good results.

Copr2 also has an important effect on the pruning process, as seen in Table 4.5, where the

same flight as the one shown in Table 4.4 was executed, but with a less optimistic Copr2 = 0.2.
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Table 4.5 Optimism Coefficient Results of a Winnipeg to
Montreal Flight for a Coprz = 0.2

Copt1 0 0.2 0.4 0.6 0.8 0.9 1
Flight Cost (kg) 12616 | 12616 | 12616 | 12587 | 12587 | 12587 | 12587

Branches pruned at

the 1st level

Branches pruned at

the 2nd level

77 77 77 45 36 36 36

Branches not
evaluated at the 3rd 3 2 2 101 209 209 209
and 4th level

Total of leaves not
9270 | 9260 | 9260 | 6410 | 6410 | 6410 | 6410
evaluated

Computation time (s) | 8.04 | 8.61 8.62 | 160.32 | 160.9 | 159.43 | 159.3

It is clear that the “Flight Cost” value is the same in Table 4.4 and Table 4.5, which shows
the importance of Coprs in finding the optimal solution. Copr2 contributes to rejecting the last
node to be evaluated by increasing the number of leaves not evaluated. For a Copis > 0.6, the
computation time was reduced for around 100 s in the results in Table 4.5 (Copz = 0.2)
compared against the results in Table 4.4 (Copr2z = 0.65). This computation time reduction is
due to the number of branches/leaves not evaluated at the 3rd and 4th levels due to the Cop2

pessimist in Table 4.5.

4.5.1.2 The Optimism Coefficient and its Effects in the Convergence of the Algorithm

The developed algorithm tends to converge to the optimal solution as it was seen in the
results provided by Table 4.4 and Table 4.5. However, the convergence was affected by the

selection of parameters Coprs and Copr2.



92

By selecting high values of Copt, the algorithm converges to the optimal solution (12,587 kg)
at the expenses of computation time. By selecting low values of Copt, the algorithm also
converges to the optimal solution, but fails to deliver the optimal solution staying in a “close”
local optimal (12,616 kg). Selecting the right combination of Copt values makes the algorithm

to systematically converge to the optimal solution.

4.5.2 The Beam Search Algorithm and the Exhaustive Search

The Beam Search Algorithm was compared with the Exhaustive Search Algorithm (which
guarantees the global optimal) for different flights to measure the quality of the solution. For
these sets of tests, the standard atmosphere was used, and the Cost Index = 0, since the goal
of these tests was to observe if the optimal flight profile was found. This test was performed

for three different aircraft

4.5.2.1 Aircraft A

The airports considered in the tests were Montreal (YUL), Vancouver (YVR), Toronto
(YYZ), Winnipeg (YWG), Minneapolis (MSP), Los Angeles (LAX), Martinique (TFFF) and
Paris Orly (LFPO). For aircraft A, the number of possible leaves (flight combinations) is
close to 15,730. Table 4.6 shows the optimal cost for each of the flights by means of an
Exhaustive Search Algorithm and by the Beam Search Algorithm developed in this paper.

For the evaluation of Aircraft A, the coefficients values were Copis = 0.6 and Coprz = 0.2. The
flight cost was compared in Table 4.6 as calculated by the Exhaustive (first row) and the
Beam Search (second row) algorithms. This comparison showed that 6 out of 7 flights
provided the same cost, while for one trajectory, the flight cost difference was of only 44 kg.
In order to find the optimal flight cost, the Copt1 should be higher to make the evaluating
function more “optimistic”, this way, fewer nodes (branches) would be pruned and the
optimal flight might be found. However, incrementing the Copis as seen in Table 4.4 and

Table 4.5 would increment the computation time.
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As shown in Table 4.6, the algorithm was capable of not evaluating up to 9350 leaves due to
pruned nodes (branches) for the flight YUL-YYZ in Table 4.6. This means that only around
30% of the space search was evaluated (4690 leaves).

Table 4.6 Algorithm Performance for Aircraft A

YUL- | YUL- | YVR- | YYZ- | YUL- | LAX- | TFFF-

Trajectory YVR | YYZ | YWG | YWG | MSP | MSP | LFPO
Exhaustive
Optimal 27793 | 4901 14790 | 12587 | 12692 | 19403 | 53091
Flight Cost (kg)

Beam Search

Flight cost (kg)

27793 | 4945 | 14790 | 12587 | 12692 | 19403 | 53091

# of leaves not
5140 9350 6370 6410 6370 6030 6540
evaluated

Step Climbs 3 0 1 0 0 2 1

Nodes evaluated
(%)

63 33 55 54 55 57 53

4.5.2.2 Aircraft B

For this Aircraft, the total number of leaves (flight combinations) is around 4320. As with
Aircraft A, Table 4.7 shows the optimal flight cost trajectories found by using the Exhaustive

Search Algorithm versus the trajectories found with the developed Beam Search Algorithm.
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Table 4.7 Algorithm Performance for Aircraft B

YUL- | YUL- | YUL- YVR- YYZ- | YUL- | LAX-

Trajectory YVR YYZ YWG | YWG | YWG MSP MSP
Exhaustive
Optimal 17685 2650 78794 12220 7188 15014 | 13075
Flight Cost (kg)

Beam Search

Flight cost (kg)

17685 2650 78794 12220 7188 15014 | 13075

# of leaves not
2712 1924 1850 1997 1939 1784 3250
evaluated
Step Climbs 1 0 0 0 0 0 0
Nodes

evaluated (%)

37 55 57 54 55 59 28

The algorithm was able to find the optimal solution for all flight cases. The optimism
coefficients used for aircraft B were: Copr = 0.6 and Coprz = 0.1. The numbers of nodes
(branches) note evaluated are shown in Table 4.7. Cases such as the Los Angles (LAX —
Minneapolis (MSP) can be found, where the search space was explored only by 28% (1070

leaves evaluated).

4.5.2.3 Aircraft C

For this aircraft, the total number of leaves (flight combinations) is close to 6,468. As with
Aircraft A, and Aircraft B, Table 4.8 gives the results found for Aircraft C. In the same way,
the Exhaustive Search Algorithm flight is compared against the developed Beam Search
Algorithm. Since this is a medium-range aircraft, the destinations considered are different
from the destinations for the other aircraft (A & B). The new airport added is Chicago
(ORD).
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Table 4.8 Algorithm Performance for Aircraft C

YUL- | YYZ- | ORD- | YUL- LAX-
Trajectory

YYZ ORD MSP MSP MSP
Exhaustive Optimal

1072 1387 1122 1060 1521

Flight Cost (kg)
Beam Search Flight cost (kg) 1072 1387 1122 1060 1521
# of leaves not evaluated 3990 5844 4320 3990 4992

Nodes evaluated (%) 38 10 33 38 23

For Aircraft C, the algorithm is able to find the optimal trajectory for all flights. For these
tests, the optimism coefficients are Copprr = 0.6 and Coprz = 0.1. The number of nodes
(branches) and leaves (flight combinations) not evaluated is shown in Table 4.8. For this
aircraft, it can be seen that for the YYZ-ORD flight, only around the 10% (624 flight

combinations) of the search space was evaluated.

4.5.3 The Beam Search Algorithm and Results Obtained from the FMS/PTT

It will be useful to determine if the Beam Search Algorithm is able to improve the trajectories
suggested by the FMS/PTT. A flight cost comparison between the optimal trajectories
generated by the FMS/PTT and the optimal trajectory generated by the algorithm developed
in this paper was executed. The FMS/PTT is considered as a black box since the
methodology used in the FMS/PTT is confidential.

To make this comparison, inputs were introduced first in the FMS/PTT, obtaining the
optimal Verticalrms/prr reference profile. The same inputs were then introduced to the Beam
Search Algorithm to obtain the optimal VerticaaLco reference profile. The costs of both
Vertical reference profiles were calculated using the “real cost computation” method (see
Section 4.2.2), and these costs were compared to observe the flight cost differences between

the commercial FMS and the developed algorithm.



96

The “input parameters” were: the initial and final destination points, the reference Lateral

Navigation trajectory, the Cost Index and the initial aircraft weight.

For Aircraft B, a flight from Montreal to Vancouver was simulated varying the Cost Index up

to 90. The results are visualized in Figure 4.5, and show the variation of the flight cost with

the Cost Index.

¥ Beam Search

BFMS/PTT

Flight Cust {1Ep)

0 10 30 50 70 90
Cost Index

Figure 4.5 FMS/PTT and algorithm cost comparison

As illustrated in Figure 4.5, the algorithm developed in this paper reduced more the flight

cost with the generated vertical reference trajectories than the reference FMS/PTT.

4.5.4 The Beam Search Algorithm Considering Wind Influence

Weather information was obtained from the Environment Canada website. The parameters of
interest were the wind speed, the wind direction, the temperature and the pressure. The tests
performed in this section validated if the developed algorithm was able to find the optimal

(or near-optimal) solution by considering the stochastic wind influence.
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Firstly, an Exhaustive Search was performed for different flights by considering the available
weather information. The same flights were executed using the algorithm developed in this
paper. The flight costs obtained using both algorithms (Beam Search and Exhaustive Search)

were compared and the results difference between both algorithms is shown in Figure 4.6.
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Figure 4.6 Flight Cost Solution Difference between the Exhaustive
Search and the Beam Search Algorithm

As expected, when the weather influence was introduced, the algorithm was not always able
to converge to the optimal solution, and for the flights tests set, only two flights, as shown in
Figure 4.6 (flight 1 and flight 2) provided the optimal solution. This lack of convergence was
obtained because the heuristics fail to capture the wind influence; thus, nodes corresponding
to the optimal solution were pruned. Very good suboptimal solutions were found because the
“worst” solution (flight 4 in Figure 4.6) was only 0.34% more expensive than the optimal

solution.

The optimal solutions provided by the Exhaustive Search and by the Beam Search Algorithm
for Flight 2 in Figure 4.6 are shown in Table 4.8. The developed algorithm was executed for

that flight with the same weather information for different values of Cop; and an arbitrary
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constant Copr2 = 0.3. The initial gross weight was of 120000 kg. Results are found in Table
4.9.

Table 4.9 Optimal Flight Provided by the Exhaustive Search Algorithm

Climb Descent | # Step Flight
Flight Mach | Altitude
IAS IAS Climbs | Cost (kg)
YUL-YVR 300 0.78 37000 335 1 26863

Table 4.10 Results Provided by the “Beam Search”
Algorithm Considering Weather

Coptl 0.4 0.6 0.8 1
Flight Cost (kg) 26892 | 26863 26863 26863
# of leaves not evaluated 4274 4200 4164 3984

The results in Table 4.10 show that, as expected, the number of pruned branches decreases as

the coefficient is less optimistic.

4.6 Conclusion

This paper described an algorithm to optimize the vertical reference flight trajectory by using
a numerical performance model. The problem was solved using a decision tree in the
implementation of the deterministic “Beam Search” algorithm. The “Optimism Coefficient”
has influenced the algorithm’s aggressiveness. The algorithm made a compromise between
flight time and fuel burn optimization. Fuel burn reduction has a direct effect in the reduction
of polluting emissions, which are known to cause global warming and health problems.
Therefore, the developed algorithm, taking advantage of “step climbs” and “weather

parameters” to calculate the optimal aircraft trajectory, was conceived by taking into account
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ATM constraints such as constant Mach and constant altitude segments following a pre-

defined lateral reference route.

The algorithm’s ability to reduce the number of possible combinations by up to 86 % in some
cases, was clearly demonstrated. This brings us a consequence of a low computation time,
which is desirable for low computation power avionics devices such as the Flight
Management System (FMS). It was also shown that by correctly selecting the “optimism

coefficients”, the algorithm found the optimal solution in many different flight cases.

It has been observed that the solutions found by the algorithm for different cost indexes were

always more economical than the results obtained using a commercial FMS.

As future work, it is desirable to improve the heuristics when implementing the weather. It
will be worthwhile to analyze the flights of a larger number of aircraft operating in the same
airspace to obtain the algorithm’s performance in the presence of other aircraft or even other
constraints such as Non-Fly Zones. It would also be of interest to develop a new technique to
determine the best locations to realize step climbs instead of using constant trajectories at

fixed time or fixed distance points.
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Résumé

Ce chapitre décrit un algorithme d'optimisation fournissant un profil de navigation verticale
¢conomique en déterminant les combinaisons de vitesse de montée, de croisiere et de
descente, ainsi que des altitudes, pour un avion afin de minimiser les colits de vol.
L'algorithme de calcul utilise une méthodologie de réduction de 1’espace de recherche pour
réduire le nombre initial de combinaisons de vitesse et d'altitude disponibles. La solution
optimale a été trouvée en mettant en ceuvre l'algorithme de recherche de faisceau. Une
fonction de délimitation qui estime correctement le colt du vol en considérant les paliers de
montées a ¢té¢ développé pour réduire le nombre de calculs requis par l'algorithme de
recherche de faisceau. La quantité de carburant requis pour le vol a été obtenue en utilisant
une méthode basée sur une base de données de performance plutot que sur les équations de
mouvement pour calculer la consommation du carburant. La base de données de performance
a été développée en utilisant des données expérimentales de vol. Pour valider 1'algorithme,
ses résultats ont été comparés a ceux de trois autres algorithmes: "une recherche exhaustive",

n

"l'algorithme de recherche de faisceau " et " la réduction de ’espace de recherche ". La
solution fournie par l'algorithme a également été comparée a la solution fournie par un
systéme de gestion de vol. A la suite de cette comparaison, 'algorithme a systématiquement
trouvé les solutions optimales, en termes de colit de vol, meilleures que celles fournies par le

systéme de gestion de vol.
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Abstract

This paper describes an optimization algorithm that provides an economical Vertical
Navigation profile by finding the combinations of climb, cruise and descent speeds, as well
as altitudes, for an aircraft to minimize flight costs. The computational algorithm takes
advantage of a space search reduction methodology to reduce the initial number of available
speed and altitude combinations. The optimal solution was found by implementing the beam
search algorithm. A bounding function that correctly estimates the flight cost by considering
step climbs was developed to reduce the number of calculations required by the Beam Search
algorithm. The full flight fuel burn was obtained using a performance database-based
method. The algorithm uses a numerical performance model instead of equations of motion
to compute fuel burn. The database was developed by using flight experimental data. To
validate the algorithm, its results were compared to those of three other algorithms: “an
exhaustive search”, “Beam Search” and “Search Space Reduction”. The solution provided by
the algorithm was also compared to the solution provided by a Flight Management System.
Following this comparison, the algorithm systematically found the optimal solutions, which

were better in terms of flight cost than those provided by the Flight Management System.

5.1 Introduction

The scientific community’s concern about global warming has led different industrial sectors
to develop highly efficient systems to reduce polluting emissions released to the atmosphere.
One of these sectors is the aeronautical industry, which has set the ambitious goal of reducing
its carbon dioxide (COz) emissions to 50% of those recorded in 2005 by the year 2050
(IATA, 2011). This ambitious goal, was set by considering that the aeronautical industry is
responsible for 2% of the annual COz released to the atmosphere (ICAO, 2010), and that air
traffic is expected to grow in the coming years. COz is well known for its effects on global
warming, and it has been shown that CO2 emissions affect the mean wind speed by making
round transatlantic flights longer than with current CO2 concentrations. Longer flights require

more fuel and therefore release more CO: to the atmosphere (Williams, 2016).
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In addition to CO2, other emissions are released to the atmosphere by aircraft. Table 5.1
shows some of the polluting emissions released by aircraft fuel consumption and their effects

on the atmosphere and/or directly on the population.

Table 5.1 Polluting emissions generated by fuel burn and their effects

Polluting Emission Effect
Carbon Dioxide (CO2) Global warming, and wind pattern change
Contrails Global warming (Green, 2009)
Nitrogen Dioxide (NOx) Ozone layer depletion (Crutzen, 1970)
Linked to respiratory problems and nervous system
Hydrocarbons
shock ((ATSDR), 1999)
_ Stress and heart problems (Black, Black,
Noise

Issarayangyun, & Samuels, 2007)

Models to estimate these emissions are available in the literature such as in (Ashok,
Dedoussi, Yim, Balakrishnan, & Barrett, 2014; Sabatini, Gardi, Ramasamy, Kistan, &
Marino, 2010).

Different alternatives to reduce fuel consumption have been applied on new generations of
aircraft and engines. Promising future technologies aiming to reduce fuel consumption were
developed, including new fuel resources such as biofuel (ATAG, 2009; Nojoumi et al.,
2009), morphing wing concepts (Vincent & Botez, 2015), and in flight re-fueling (Nangia,
20006).

With the present technology, implementing various measures in airline operations such as
engine and aircraft washing, taxiing with one engine, Auxiliary Power Unit (APU) use
reduction, and flight planning, among others, can bring significant fuel reduction benefits, as

discussed by McConnachie (McConnachie et al., 2013). Reducing fuel consumption is an
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ongoing concern for airlines, because of the fact that around 26 % of airlines expenses are
related to fuel requirements and expenses (ATAG, 2014). Fuel savings for different air
transportation procedures such as airport congestion, air traffic flow management and tools to

support a more efficiency decision process were discussed in (Balakrishnan, 2016).

Another way to reduce fuel burn is by optimizing the aircraft’s flight reference trajectory.
Jensen (Luke Jensen et al., 2014; Luke Jensen et al.,, 2013; Luke Jensen et al., 2015)
suggested the possible gains to be made in improving flight reference trajectories, as many
aircraft do not fly at their optimal speeds or altitudes. Another study on fuel flow in flights
within Turkey also suggested that aircraft trajectories should be improved to reduce fuel

consumption (Turgut et al., 2014).

Based on those studies, several countries acknowledge that the Air Traffic Management
(ATM) system should be improved to allow more aircraft to fly at their optimal trajectory
while guaranteeing safety. The United States is developing and deploying the Next
Generation Air Transportation System (NextGEN) (Jackson, 2008), while Europe is
developing and deploying the Single European Sky ATM Research (SESAR). These systems
are based on what is called Trajectory Based Operations (TBO), wherein each aircraft is able

to negotiate its most economical trajectory with ATM and other (relevant) airborne aircraft.

The future TBO will be time-based which means that trajectories will have a Required Time
of Arrival (RTA) constraint at a given destination or at a set of waypoints. This RTA will
allow ATM to ensure aircraft separation and will allow a smooth transition for the aircraft
flight between the end of cruise to the descent phase. These trajectories are also known as 4D
reference trajectories. There have been discussion about automated systems that will manage
this future air space (Gardi, Sabatini, Ramsamy, et al., 2015). However, current 3D
trajectories (filling a flight plan containing the waypoints to follow, the altitude, and speed of

the aircraft) still represent the basis of future trajectories development.
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Descent phase optimization in terms of fuel burn and noise reduction has been of great
concern due to descents proximity to populated areas and to the health effects that pollution
and noise can cause. The Continuous Descent Approach/Operation (CDA/CDO) has brought
benefits to fuel burn reduction. In this operation, the aircraft descends following a constant
slope, instead of the conventional cruise-step descent. This approach has been successfully
tested at different airports (Clarke et al., 2013; Kwok-On et al., 2003; Kwok-On et al., 2006;
Novak, Buckai, & Dadisic, 2009; Sprong et al., 2008; Stell, 2009). For this operation to be
carried out successfully, the aircraft’s weight and position at the beginning of its descent
must be estimated correctly (Johnson, 2011; Stell, 2010). A successful CDA/CDO avoids
missing the desired descent path and having to execute the Missed Approach (Go-around)
procedure, which entails high fuel consumption and thus high CO2 emissions (R. Dancila et
al., 2013; Murrieta-Mendoza et al., 2014). It is important to mention that besides the
conventional aircraft, it is expected that UAVs will also share the airspace. Optimization
algorithms for these devices have also been developed as in (A. Chamseddine, Zhang,
Rabbath, Join, & Theilliol, 2012; Abbas Chamseddine, Zhang, Rabbath, & Theilliol, 2012;
Chen et al., 2016)

Concerning operations during the cruise phase, the benefits and consequences of flying at
constant Mach have been analyzed (Filippone, 2007; Wieland, Hunter, & Schleicher, 2008),
as well as the benefits of reducing cruise speed (Bonnefoy & Hansman, 2010). Lovegren
discussed the importance of climb at different altitudes during the cruise phase as a means to

reduce fuel consumption (Lovegren, 2011).

For the reference trajectory optimization, the aircraft fuel burn can be modeled using a set of
differential equations called the Equations of Motion (EoM), or using a numerical
performance model, as shown in this paper. One of the most popular approaches found in the
literature to optimize reference trajectories is to use EoMs and optimal control for a mixed
linear programming problem. The flight trajectory has been analyzed in its different aspects:
by respecting ATM constraints (Valenzuela & Rivas, 2014), by taking advantage of the free
flight concept for the cruise phase (Franco & Rivas, 2011; Pargett & Ardema, 2007) and by
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considering all the main flight phases (Franco & Rivas, 2015). A dynamic programming
algorithm optimizing firstly the lateral reference trajectory and then the vertical reference

trajectory by taking winds into account was developed in (Ng et al., 2014).

Graph search theory, such as dynamic programming taking into account weather and RTA,
has been implemented (Miyazawa et al., 2013). Fixed Mach and step climbs were
considered, accounting for winds. Hagelauer (Hagelauer & Mora-Camino, 1998) used
Dynamic Programming with Neural Networks to optimize the trajectory, highlighting that
the Flight Management System (FMS) normally uses a database instead of EoM to solve the
trajectory optimization problem. Other authors have proposed algorithms that utilize FMS

functions and EoM, as shown in (Villarroel & Rodrigues, 2016).

Reference flight trajectories were optimized by taking into account object avoidance using
the A* algorithm (Sadovsky, 2014), in which dynamical weather was taken into account,
Dijkstra’s algorithm (Rippel et al., 2005) for low altitudes, and Particle Swarm Optimization
(Cobano et al., 2013). However, these algorithms would be difficult to implement in future
Flight Management System (FMS) functions due to memory and processing requirments.
They would be more appropriate to use in flight optimization systems prior to airborne flight

planning.

Due to processing power issues, the FMS normally uses a numerical aircraft performance
database, which contains the aircraft aero-propulsive performance data to compute the fuel
burn for the different flight phases. Murrieta et al. developed in (Murrieta-Mendoza,
Demange, et al., 2015) a numerical performance database by using a Citation X Level D

qualified flight simulator equipped with the highest qualification for flight dynamics.

Optimization algorithms using a numerical database must solve a combinatory optimization
problem, since the number of available speeds and altitudes is limited. Optimization
algorithms have been developed to find the most economical combination of speeds and

altitudes for the vertical reference trajectory using a numerical performance database.
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Dancila et al. (B. Dancila et al., 2013) developed a fuel burn estimator that was used to
determine a flight’s optimal altitude. Gagné et al. developed in (Jocelyn Gagné et al., 2013) a
semi-exhaustive optimization algorithm. Félix ef al. in (R.S. Felix Patron et al., 2013) used
the Golden Section Search algorithm to optimize the complete flight trajectory for short
flights, and they also implemented the step climbs for long haul flights. Sibid¢é in (Sidibe &
Botez, 2013) used dynamic programming to solve the vertical trajectory of reference
problem. In (Roberto Salvador Felix Patron et al., 2013), the genetic algorithms were
implemented to find the optimal vertical trajectory of reference. In (Murrieta-Mendoza,
Félix-Patron, & Botez, 2015), genetic algorithms were implemented to find the best

trajectory waypoints

Lateral reference trajectory profile optimization using a numerical performance database has
been developed in (Murrieta-Mendoza & Botez, 2014a), where the Dijsktra’s algorithm was
implemented by taking into account winds and temperatures. In (Roberto S. Félix-Patron et
al., 2014), Felix et al. implemented genetic algorithms to optimize the flight route. The bee’s
optimization algorithm was implemented using a dynamic grid to find the optimal reference

trajectory (Murrieta Mendoza, Bunel, & Botez, 2015).

Taking advantage of both types of reference trajectories (vertical and lateral) by using a
numerical performance database has also been proposed. The optimal vertical trajectory of
reference was found for executing step climbs by with a search space reduction technique,
and then, five different lateral reference trajectories were evaluated following the same
vertical reference trajectory to find the best combinations of both lateral and vertical
reference trajectories (Murrieta-Mendoza, 2013). Felix ef al. in (Roberto S Félix-Patron et
al., 2014; Roberto S. Félix-Patrén & Botez, 2014) implemented genetic algorithms to couple
both trajectories of reference in a larger search space. This allowed improved the results as

more search space was explored.
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In performing the 4D trajectory optimization using a numerical performance database, the
most economical combinations of Mach numbers to fulfill the RTA constraint was

determined using the ant colony optimization (Murrieta-Mendoza, Hamy, & Botez, 2015).

Most of the algorithms described above require high computation time and/or high memory
requirements for a low processing power device such as the FMS, or they require stochastic
concepts to generate the optimal trajectory solutions, which are difficult for authorities to
certify. For this reason, an algorithm that finds the optimal solution or a good sub-optimal

solution while requiring only a low computation power would be desired.

The objective of this paper is to expose a new computational algorithm which is able to
reduce the trajectory combinations (reduce the memory requirements), converges to the
optimal solution in a short time frame, and can be certified, as it is deterministic. All these
are desired requirements are desirable for algorithm implementation in an FMS. The solution
provided by the developed algorithm was compared to an “Exhaustive Search” algorithm to
validate how far the computed solution is from the optimal solution. In the new algorithm,
step climbs during cruise were evaluated and the CDA/CDO procedure was implemented for
the descent phase. ATM constraints such as “constant altitude segments” and “constant

speeds” and weather information were also taken into account.

This paper is organized as follows: Conventional flight is described first, and then the PDB
used to compute the flight cost. The method used to compute the flight cost with this PDB is
then described, followed by a detailed explanation of the new algorithm’s methodology. The
results and their interpretation are given next. Finally, the conclusions regarding the results

obtained using this new algorithm are presented.
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5.2 Methodology

5.2.1 The Studied Flight

A typical commercial flight consists of three main phases: climb to the targeted cruise
altitude phase, cruise with the ability of changing flight levels, and descent to the destination
airport. In accordance with international regulations, during climb, and descent the aircraft’s
speed must be at or below 250 Indicated Air Speed (IAS) while at altitudes below 10,000 ft.

The studied flight begins at 2,000 ft at 250 IAS; this is called the initial climb. After the
initial climb, if a speed higher than 250 kts is required, an acceleration is needed to reach the
desired speed. A constant IAS climb is then followed until after the crossover altitude
(altitude where the True Air Speed (TAS) of the scheduled IAS equals the desired Mach
number in terms of TAS) where climb is then executed during a constant Mach. This altitude
is called the crossover altitude. The point where the climb ends and the cruise phase begin is
called the Top of Climb (ToC). During long flights, changes in altitude during cruise (step
climbs) might be performed to improve the flight performance. For the algorithm developed
in this paper, when computing the cruise phase costs, step climbs are evaluated at a pre-
defined flight time. This is done to avoid executing step climbs that might be too close
together. In reality, step climbs executed too often might be denied by ATM. Once at the end
of cruise, at the Top of Descent (ToD), the descent phase procedure is executed in a similar

way as in climb, and is the CDA.

5.2.2 The Numerical Performance Model

The aircraft fuel information is provided in the form of a numerical performance model
which was developed from experimental flight data. This model consists of a set of databases
for different flight phases. The typical flight phases with their corresponding inputs and

outputs for a commercial aircraft are shown in Table 5.2.
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Table 5.2 Numerical Performance Model Sub-databases

Sub-database

Inputs

Outputs

IAS Climb

IAS (knots)

Gross weight (kg)

ISA deviation temperature (°C)
Altitude (ft)

Fuel burn (kg)

Horizontal traveled distance (nm)

Climb acceleration

Gross weight

Initial IAS (knots)

Fuel burn (kg)

Horizontal traveled distance (nm)

ISA deviation temperature (°C)

Altitude (ft)

Acceleration altitude (ft) Altitude needed (ft)
Delta speed to accelerate
(knots)
Climb Mach Mach Fuel burn (kg)
Gross weight (kg) Horizontal traveled distance (nm)
ISA deviation temperature (°C)
Altitude (ft)
Cruise Mach Mach Fuel flow (kg/hr)
Gross weight (kg)
ISA deviation temperature (°C)
Altitude (ft)
Descent Mach Mach Fuel burn (kg)
Gross weight (kg) Horizontal traveled distance (nm)
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Table 5.2 Numerical Performance Model Sub-databases (continue)

Sub-database Inputs Outputs

Descent Gross weight Fuel burn (kg)

deceleration Initial IAS (knots) Horizontal traveled distance (nm)
Deceleration altitude (ft) Altitude needed (ft)

Delta speed to accelerate

(knots)
IAS Descent IAS (knots) Fuel burn (kg)
Gross weight (kg) Horizontal traveled distance (nm)

ISA deviation temperature (°C)
Altitude (ft)

All inputs should be available in order to obtain the desired outputs. Altitudes in the inputs
column are multiples of 1,000 ft to comply with regulations; aircraft must fly at flight level

(pressure altitudes) multiples of 1,000 ft to guarantee their separation with traffic.

5.2.3 Flight Cost: Fuel burn and Flight Time Computations Using the Numerical

Performance Model

During cruise, the aircraft normally flies at constant Mach number and constant altitude
segments in order to comply with ATM constraints. This flight can be achieved by selecting
one speed and one altitude from the numerical performance model. However, the aircraft’s
gross weight and the ISA deviation temperature present high variation during the flight. Fuel
is burned, and thus its weight diminishes to a value that is not exactly among the ones
available within the performance model inputs. ISA deviation temperature has a stochastic
behavior as the weather changes during flight. For this reason, interpolations within the

available temperatures and gross weights inputs are executed.
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A method to compute a vertical trajectory flight cost using a numerical performance model
was proposed in (Alejandro Murrieta-Mendoza & Ruxandra M. Botez, 2015), and it is used

in this paper. A brief explanation of this method is described below.

5.2.4 Interpolations: Computing the Required Value from the Numerical

Performance Model

The numerical performance model presents a linear behavior for short intervals of weight,
temperature, speed and altitude. This allows the use of linear interpolation techniques such as

the Lagrange interpolation, as given in Eq. (1):

U_ll U_lo
L5 ot Lo

Interpolation(v) =

fi .1

where fo and f; are respectively the minimal and the maximal output values used for
interpolation. These values are directly obtained from the numerical performance model. v is
the value to interpolate. /o and /; are the low and the high input values enclosing the desired

value v. The interpolation sequence is shown in Figure 5.1.
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Figure 5.1 General Interpolation Graphic Representation
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It is important to identify the input values enclosing the required values. These values are the
limits in Figure 5.1. They are required for the gross weight W, and the ISA temperature
deviation TMP. For example, if for TMP = 3, the available ISA temperature deviations inputs
are defined as [..., 0, 5, 10,...], then the lower limit /o enclosing TMP is equal to 0, and the
higher limit /; enclosing 7MP is equal to 5. The same process is followed for the gross

weight.

Following the sequence shown in Figure 5.1, if the value of interest is the fuel flow, the

process defined from Eq. (5.2) to Eq. (5.8) is executed as follows.

Firstly, two different fuel flows are obtained from the lower weight value (W /o), and for the

two different ISA temperature deviation values (TMP lop and TMP [;) enclosing the required

TMP.

f fi1 = Cruise Mach Output (Mach Number, W l,, TMP l,, Altitude) (5.2)

f fi2 = Cruise Mach Output (Mach Number, W l,, TMP l;, Altitude) (5.3)

Then, the same type of equations is obtained for the higher weight value W /;.

ff21 = Cruise Mach Output (Mach Number,W l,, TMP l,, Altitude) 54

ff22 = Cruise Mach Output (Mach Number,W [, TMP l;, Altitude) (5.5)

An interpolation is performed to find the fuel flow (ff) for the required TMP value for each
value of W (higher and lower):

ff1 = Interpolation (f f11, f f12, TMP l,, TMP l,, TMP) (5.6)

f [, = Interpolation (f f21, f f22, TMP ly, TMP l,, TMP) (5.7
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Finally, interpolations are performed to compute the fuel flow (ff) for the required grow

weight .

ff = Interpolation (ff1, ffo, W lo, W [;, W) (5.8)

The same process can be performed to obtain the fuel burn, the horizontal traveled distance,

or the required altitude after an accelerated or decelerated flight.

5.2.5 The Flight Cost Computation: Fuel Burn and Considerations

Fuel burn is provided either as the total fuel burn required to climb (or descend) between two
altitudes, as the fuel burn required to accelerate to a given speed, or as a fuel flow during the
cruise phase. For the first two cases, the fuel burn is obtained directly. For the case of cruise,

a flight time should be provided.

The fuel burn during a cruise phase can thus be computed as shown in Eq. (5.9), where ff
corresponds to the interpolated value, and Flight Timeseg corresponds to the time required to
travel a given segment. In this paper, this segment is 25 nautical miles because it provides a

good compromise between computation time and accuracy.

FBcryise = ff X Flight Timeg,, (5.9

The total fuel burn is then the sum of all the required fuel. Fuel is burned as it is used by the
engine to generate thrust, thus diminishing the aircraft’s weight. To emulate this behaviour,
fuel burn is reduced from the total aircraft’s weight at each 1,000 ft during climb or descent

and at every 25 nautical miles during the cruise phase.

For the reference trajectory optimization, not only the fuel is of interest, but also the flight

time. The latter is computed using the aircraft ground speed defined in Eq.(5.10), where GS
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refers to the Ground Speed, 7A4S refers to the True Aircraft Speed, WS refers to the Wind

Speed, WD refers to the Wind azimuth, and ¢ refers to the aircraft’s azimuth.

GS =TAS + WS cos(¢ — WD) (5.10)

Flight time can then be computed using the GS and the pre-defined distance for cruise (25
nautical miles) or the horizontal traveled distance provided from the numerical performance

model. The Total Flight Time is then the sum of all the segments flight times.

Using the Total Fuel Burn, and the Total Flight Time, it is possible to compute the Total
Flight Cost. To avoid using currency, which can have important fluctuations, the total flight
cost is computed in terms of kg of fuel. For this calculation, Flight Time is related to Fuel
Burn terms by using a parameter called the Cost Index (CI). This parameter is defined by
each airline before each flight and represents the time related costs such as crew salary,
maintenance, missing connections, etc. Using fuel burn and flight time, the total flight cost is

computed in the FMS as shown in Eq. (5.11).

Total Flight Cost (kg) = fuel burn + CI * Flight Time * 60 (5.11)

The number of interpolations required to compute a single flight is obviously quite high, and
thus this method, while accurate, is time consuming; therefore, to follow the algorithm
described in this paper, it is desirable to avoid executing this total flight cost computation as

much as possible.

This accurate, but time consuming method is subsequently referred to as Real Flight Cost

Computation (RFCC) in the remainder of this paper.
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5.2.6 Problem Definition: The Vertical Reference Trajectory Optimization

The vertical reference trajectory consists of the combination of speeds and altitudes that the
aircraft has to follow given a ground track trajectory. Following this definition, and
according with the numerical performance model, the design variables are the IAS during

climb, the Mach number, the Altitude, and the IAS during descent.

An aircraft’s gross weight has an important influence on the fuel cost, as a heavier aircraft
requires more fuel to produce enough lift. However, an aircraft’s weight is not a control
variable, as it might be defined by airline policies, given the pilot’s preferences. Temperature
also has an influence on engine fuel requirements, as low temperatures are desirable for
optimal engine performance. Nevertheless, wind has a stochastic value that is completely not

possible to control.

Taking all these hypotheses into account, the conventional vertical reference trajectory

optimization solution can be defined as a vector in next Eq. (5.12)

Vertical Reference Trajectory (5.12)
= [Climb;y,s Mach Altitudes Descent; ] '

Each vector element on the right hand side of Eq. (5.12) is defined with discrete value in the
numerical performance database. The element called Altitudes is a vector containing the
cruise altitude per waypoint. Climbias and Descentiss are the scheduled IAS values for climb
and descent regimes. The main goal of the algorithm developed in this paper is to find the
most economical combination of speeds and altitudes that reduces the flight cost. The
problem can be treated as a combinatorial optimization problem, which can be defined as

follows:
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Minimize Total Flight Cost (Climb, 45, Mach, Altitude, Descent;ss)  (5.13)
Climbyys € IAScLimB mopEL (5.14)

Mach € Machyopgr (5.15)

Altitudes € Altitudeyopgr (5.16)

Descent;s € IASpgscent moDEL (5.17)

The discrete design variables defined in Eq. (5.13) to Eq. (5.17) can be modeled in the form
of a search tree-graph, as shown in Figure 5.2, where nodes at Level 1 within the tree-graph
are created with Altitudemoper, nodes at Level 2 are created with Machmoper, nodes at the
Level 3 are created with /AScLmmvs moper and nodes at the last level are created with

1ASpEscent mopeL, where MODEL refers to the values available in the numerical performance

model.
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Figure 5.2 Tree-Graph for the available combinations

The solution thus selects one node per level, thus one Mach number, one [ASclimb, one

IASdescent, and Altitude.
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5.3 The Optimization Algorithm

The new optimization algorithm proposed in this paper is based mainly on the Beam Search
optimization technique, mixed with an initial search space reduction technique. This
optimization algorithm consists of three different modules executed one after the other. The
first module is the Search Space Reduction Algorithm Module (SSRAM), followed by the
Beam Search Optimization Algorithm Module (BSOAM), and finally the Real Cost
Computation Module (RCCM). The SSRAM reduces the total search space by helping the
BSOAM to quickly converge to the solution, and then the RCCM provides an accurate flight

cost.

Combining the SSRMA with the BSOAM brings the advantage of reducing the computation
time required to converge to the most economical (optimal) solution. The SSRMA and the
BSOAM are described in the following sub-sections. However, a brief overview of the

algorithm and some of its generalities are described next.

For long haul flight, the most expensive flight phase is the cruise. The variables that have the
highest influence in the cruise phase are Alfitude and Mach. For this reason, in Figure 5.2 the
first two levels are composed of the available Altitude and Mach number nodes. Discarding
nodes at these levels, as a large number of combinations can be discarded, would be
advantageous to reduce the calculation load. This is the task that the SSRMA accomplishes:
it estimates an optimal cruise candidate solution and keeps it only those nodes close to this
candidate solution. After executing this module, the search space can be reduced up to 50%

of its total size.

The tree-graph is then constructed with the remaining nodes. The BSOAM evaluates the
remaining nodes to determine if a given nodes combination is worth computing, or if it is
better to discard it. Discarding nodes is desirable as it reduces the computation time. Within
the BSOAM module, the RCCM module is executed as many times as required to compute

the real flight cost.



119

The algorithm concept is shown below in Figure 5.3. First the search space is reduced with
the SSRM where some nodes are rejected (nodes in the left and right extremes), as a
consequence the search space is reduced. Then, the BSOA is executed cutting other nodes
(dark black shadow rectangles in the middle of the figure). Finally, the optimal solution is

shown in black. The RCCM module is executed only at the last level tree (also called leaves).
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Figure 5.3 The SSRM and the BSOAM effects reducing the combinations.

The algorithm overview is presented in Figure 5.4. Each module is explained in the following

paragraphs.
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Figure 5.4 Algorithm Modules Execution Order

5.3.1 Algorithm’s Input

The algorithm requires as inputs the airport departure and arrival coordinates, the aircraft
total weight, a given ground track trajectory, the cost index, and the weather information for
the search space. Once these parameters have been provided, the Search Space Reduction

(SSRM) module can be executed.
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5.3.2 Search Space Reduction Module (SSRM)

The SSRM is based on the algorithm detailed in (Murrieta-Mendoza & Botez, 2014b). The
objective of this module is to find a candidate Mach/Altitude pair that allows the search space
to be reduced. This module computes the cruise cost estimation for every available Mach
number/altitude pair for the cruise phase. This estimation is achieved by executing a fast, but
inexact cruise cost computation for each combination of Mach/Altitude available in the
numerical performance model. The Mach/Altitude combination that provides the least
expensive cost is defined as the optimal candidate. Only those Mach numbers and Altitudes

around the optimal candidate are considered in this new search space.

The steps followed to compute this optimal candidate are given next. However, it is
important to mention that this methodology focuses on medium and long haul flights. If short
flights are of interest, modifications should be made to give importance to the climb and the
descent phases. Contrary to long haul flights where climb and descent represent only a small
percentage of the flight cost, for short flights, these regimes costs could represent over 70%

of the flight cost.

Using Figure 5.5 as a guide to all the required parameters, the procedure to find the optimal
Mach/Altitude candidate for long and medium haul flights requires the computation of a

generic reference distance (Dcruise) and of an estimated weight at the ToC.
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Figure 5.5 Space Reduction Parameters Definition

The process is as follows:

The great circle (or geodesic) distance (Do) between the departing airport (Airporto) and
the destination airport (Airporti) is computed.

The aircraft takeoff weight (Wo), the fuel burn (#B/) and the horizontal traveled distance
(D1) required to climb to 10,000 ft at 250 IAS are computed from the numerical
performance model Eq.(5.2) - Eq.(5.11).

The designated cruise Mach number and altitude for the aircraft of interest should be
determined. This information can be found in the Aircraft Flight Manual. If this
information is not available, an arbitrary (but coherent) value can be selected.

Using the Mach number above obtained, the fuel consumption (FB2) and the distance
traveled (D2) to arrive at the designated altitude (or the ToC) are obtained directly from
the numerical performance model as only an approximation is needed.

For the descent phase, as the cruise phase is finished, weight is no longer an important
factor. The only parameter of interest is the required distance Distance (D3) from the ToD
to the destination Airport B. This distance is obtained directly from the numerical
performance model, assuming that the ToD is at the design cruise altitude. The maximum
descent aircraft weight, available in the numerical performance model, and a maximal
IAS of 250 kts are taken into account.

Using the distance parameter obtained in steps 1 to 5, the estimated Dcuise can be
computed as shown in Eq. (5.18).
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Diryise = Do — Dy — D, — D3 (5.18)

7) Similarly, using Wo and the fuel consumption obtained from steps 1 to 4, the Weuise is
determined as shown in Eq. (5.19).

Wernise = Wo — FBy — FB, (5.19)

8) Using the Wewuise and the Dcuise parameters, the cruise cost estimation for every
Mach/Altitude pair available in the numerical performance model is computed with Eq.
(5.2) - Eq.(5.11). The distance Dcruise 1s divided into n equidistant waypoints (such a § for
a long haul flight) assuming no step climbs. The number of waypoints is selected to allow
a fast computation.

9) The most economical Mach/Altitude pair is identified as the optimal candidate.

Next, the tree-graph is created using the two higher Mach numbers and the two Mach
numbers below the optimal Mach number, as well as the two higher altitudes and the two
lower altitudes available in the numerical performance database. Two speeds and two
altitudes were selected as it is considered that they cover the search space where the optimal
solution could be found. This reduces the search space to a maximum of 5 Mach numbers

and 5 altitudes for the cruise phase.

5.3.3 The Vertical Reference Trajectory Search Space: The Graph Construction

The tree-graph is created as nodes are expanded. In other words, the whole tree graph is not
completely constructed, but is constructed level by level as nodes are expanded. The

following hypotheses are taken into account for the graph construction:

e Flight begins at 2,000 ft at or below 250 IAS, so that different Standard Instrument
Departure (SID) available for different airports will not be considered.

e Acceleration is allowed only when the aircraft is at 10,000 ft.

e Mach number in climb and descent phases is constant, as it is the same as the Mach

number in the cruise phase.
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e Step climbs are possible; however they are not shown in the graph defining the search
space (see Figure 5.2). Altitudes at the graph represent only the ToC altitude.

e Deceleration is allowed only once during descent.

e [AS must be at or below 250 IAS when the aircraft reaches 10,000 ft.

e The flight ends at 2,000 ft and at 250 IAS. In the same way as in climb, the Standard
Terminal Arrival Route (STAR) is not considered as it changes depending on the airport,

runaway, and the instruments on board the aircraft.

The nodes at the first level are called Nodesarr, the descendant nodes at the second level are
called Nodesmuach, the descendant nodes at the third level are called NodesClimbis, and the

last level nodes, called leaves, are the NodesClimbpes as shown in Figure 5.2.

5.3.4 The Beam Search Algorithm

The Beam Search algorithm is a variation of the Branch and Bound algorithm. In both
approaches, the main idea is to determine a full cost associated with the visited node without
knowing all the required parameters to compute the whole flight. An early version of the
Beam Search algorithm was defined in (Murrieta-Mendoza, Beuze, Ternisien, & Botez,

2015), and was used as base for this module.

The cost associated to each node is called a bound. Since the algorithm is searching to find
the most economical combination of nodes, the bound is an estimation of the most
economical combination of nodes that can be obtained by considering all of the node’s
descendants. In other words, an estimated cost is computed using an heuristic by considering
all the tree levels, even when those levels (and nodes) have not yet been visited. This bound
is calculated using what is called a bounding function. Since the algorithm’s objective is to

reduce the flight cost, the lower the bound is, the more promising the node is.

A node is considered to be promising when the current Reference Cost (most economical real

cost so far) is higher than the Bound. This means that there might be a combination of the
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node’s descendants that provides a more economical flight cost than the current reference
cost. For this reason, the node should be expanded for its evaluation at the higher levels. (see
Figure 5.2). On the other hand, when the Bound is higher than the Reference Cost, it means
that expanding the node would not provide a flight cost more economical than the current
one. Thus the node is cut along with all its descendants. This means that the connecting
nodes along with their children are discarded. Cutting nodes reduces the number of available
combinations to compute, and thus the computation time. It is desirable to cut the highest
number of nodes as possible in order to obtain the optimal solution with the minimal number
of nodes and leaves to be evaluated. However, it is important to avoid cutting potential
nodes, as this cutting could lead to sub-optimal solutions. For this reason, it is important to

develop a bounding function with a compromise between accuracy and computation time.

5.3.5 The Bounding Function: Heuristics

This bounding function is the most important part of the BSOA module; it should provide an
“optimistic bound” to find the global optimal, however, this function should allow the
“cutting” of branches to reduce the search space, and thus to reduce the required
computations. An “Optimistic bound” means that the computed bound should be less than the

real flight cost.

The numerical performance database provides the information to estimate the fuel burn for
each flight phase. Depending on the position of the node within the tree-graph, the
parameters that define Eq. (5.12) are available. Two different options can be observed: only
some of the parameters in Eq. (5.12) are available, or all of them are available. In the first
case, when only some parameters are known, the behavior of the bounding function changes
depending on them. In the second case, when all parameters are known, the RCCM can be

executed.

In the first case, when only some of the parameters values in Eq. (5.12) are known, the

bounding function changes as it approaches the leaves. This function becomes less optimistic
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since more values from Eq. (5.12) are known, which allows a higher number of nodes and

branches to be cut.

The first level, as shown in Figure 5.2, is defined by the discrete available “altitudes”. When
visiting a node in the first tree-graph level, the “Altitude” (initial cruise altitude) of the
solution in Eq. (5.12) is the only one known. All values in the numerical performance model

related to that cruise altitude are taken into account. All values related to other altitudes are

discarded.

The optimism coefficient (Cop:) 1s used to influence the optimism level in the bounding
function computation. Copt can take any value from 0 and 1. When its value is zero, it
corresponds to a pessimistic bounding function by taking the Cop: into account, the bound for

a given node where unknowns are available can be computed with Eq. (5.20), as follows.

Bound = Databasesyerqge — Copt * (Databaseyyerage

— Databasey,;y, ) (5.20)

where Bound is the estimated cost of the node, Databasemin 1s the minim<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>