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ROBUST ADAPTIVE NONLINEAR CONTROL OF MICROGRID FREQUENCY 
AND VOLTAGE IN PRESENCE OF RENEWABLE ENERGY SOURCES 

 
Hamed TAHERI LEDARI 

 
SUMMARY 

 
Global warming of the planet and air pollution have prompted an increased use of renewable 

energy sources for power generation. These new sources of clean energy are now very much 

in demand for setting up microgrids that provide energy independence to communities far 

from major urban centers. These microgrids should be able to operate either in isolated mode 

or to be connected to the main power grid. These requirements pose significant challenges. 

Indeed, in isolated mode, small and medium power grids are very sensitive to fluctuations in 

consumer power use as well as changes in the power produced by generators. In grid-

connected mode, renewable energy sources do not contribute to the grid's stability and 

robustness as well as conventional generators do. 

 
Photovoltaic power plants pose some challenges when integrated with the power grid. The 

PV plants always focus on extracting the maximum power from the arrays. This makes the 

PV system unavailable for helping in regulating the grid frequency as compared to 

conventional generators. One of the main objectives of this research is to develop a robust 

adaptive nonlinear control technique which provides frequency regulation functionality to PV 

systems as well as voltage regulation. 

 
A small-scale power microgrid incorporating photovoltaic generators, synchronous generator 

and load is considered in our study. Dynamic models of the proposed microgrid were 

determined. The final model highlights the interactions between the sources of renewable 

energy and the rest of the network. A new robust adaptive nonlinear (exact input-output 

feedback linearization) control strategy was developed in order to meet the requirement of 

frequency regulation as well as voltage regulation. The new control strategy allows the PV 

system to have a similar response to changes in microgrid frequency as that of a conventional 

generator. The controller is also self-adjusting (adaptive) as well as robust in order to 

compensate the perturbation due to the changes in users’ power consumption, or any defects 
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in the MG electrical network. The performance of the proposed solutions was evaluated in 

simulation using the Matlab/Simulink. For further verification, a small-scale laboratory 

experimental prototype of proposed microgrid was developed in laboratory to implement the 

proposed technique. 

 
This research may be regarded as an important basis for the development of microgrid power 

station for remote communities isolated from the main power system or large-scale power 

network with higher penetration of renewable energy sources. 

 

Keywords: microgrid, photovoltaic, synchronous generator, frequency and voltage 
regulation, robust adaptive nonlinear control.  
 



 

CONTRÔLE ROBUSTE NON LINÉAIRE ADAPTATIF DE LA FRÉQUENCE ET 
LA TENSION DU MICRORÉSEAU EN PRÉSENCE DES SOURCES D'ÉNERGIE 

RENOUVELABLES 
 

Hamed TAHERI LEDARI 
 

RÉSUMÉ 
 
Le réchauffement climatique de la planète et la pollution de l'air ont incité une utilisation 

accrue des sources d'énergie renouvelables pour la production d'électricité. Ces nouvelles 

sources d'énergie propre sont maintenant très demandées pour la mise en place d'un micro 

réseau qui fournit l'indépendance énergétique aux communautés éloignées des grands centres 

urbains. Ces micro réseaux doivent être capables de fonctionner soit en mode isolé ou d'être 

connectés au réseau électrique principal. Ces exigences posent des défis importants. En effet, 

en mode isolé, petits et moyens réseaux électriques sont très sensibles aux fluctuations de la 

consommation d'énergie ainsi que des changements dans la puissance produite par des 

générateurs. En mode connecté au réseau, les sources d'énergie renouvelables ne contribuent 

pas à la stabilité et la robustesse des réseaux tels que des générateurs conventionnels font. 

 

Centrales photovoltaïques représentent des défis lorsqu'ils sont intégrés avec le réseau 

électrique. Les installations photovoltaïques se concentrent toujours sur l'extraction de la 

puissance maximale. Cela rend le système de PV plus disponible pour aider à réguler la 

fréquence du réseau par rapport aux générateurs conventionnels. L'un des principaux 

objectifs de cette recherche est de développer une technique de contrôle non linéaire 

adaptative robuste qui fournit des fonctionnalités de régulation de fréquence pour les 

systèmes photovoltaïques, ainsi que la régulation de tension. 

 

Un micro réseau à petite échelle est pris en compte dans notre étude incorporant des 

générateurs photovoltaïques, générateurs synchrones et la charge. Les modèles dynamiques 

du micro réseau proposé ont été déterminés. Le modèle final met en évidence les interactions 

entre les sources d'énergie renouvelable et le reste du réseau. Un nouveau stratégie de 

contrôle non linéaire adaptatif robuste (exacte d'entrée-sortie rétroaction linéarisation) a été 

développé afin de répondre à la fois à l'exigence de régulation de la fréquence ainsi que celle 
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de la tension. La nouvelle stratégie de contrôle permet au système de PV d'avoir une réponse 

similaire à des changements dans la fréquence du micro réseau que celle d'un générateur 

classique. Le contrôleur est également autoréglage (adaptatif), ainsi que robuste pour 

compenser la perturbation due à l'évolution de la consommation d'énergie des utilisateurs, ou 

des défauts dans le micro réseau électrique. La performance des solutions proposées a été 

évaluée en utilisant la simulation Matlab / Simulink. Pour de plus amples vérifications, un 

prototype de laboratoire expérimental du micro réseau petite échelle proposé a été élaborée 

en laboratoire pour la mise en œuvre de la technique proposée. 

 

Cette recherche peut être considérée comme une base importante pour le développement de 

la centrale du micro réseau pour les collectivités éloignées isolées du réseau principal 

d'alimentation ou d'un réseau d'électricité à grande échelle avec une plus forte contribution 

des sources d'énergie renouvelables. 

 

Mots clés: micro réseau, photovoltaïque, générateur synchrone, régulation de la fréquence et 

la tension, contrôle non linéaire adaptative robuste. 
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INTRODUCTION 

 

1. Overview 

During recent years, the utilization of renewable energy sources has been promoted quickly 

to fulfill increasing energy demand and to deal with global climate change. Due to growing 

penetration of renewable energy sources into power grid systems, motivations of studies on 

advanced control systems are increasing to support voltage and frequency of microgrid 

(Phadke, Thorp et al.) when significant contingencies occur (Ekanayake, Holdsworth et al. 

2003). In the traditional grid-connected mode of microgrid (MG), the changes at output of 

renewable energy sources (i.e. active or reactive powers) can be transferred to the grid 

system. In this case, the frequency and voltage are compensated by the grid. Traditionally, 

microgrids are disconnected from the upstream grid when a fault occurs. In this situation, if 

active and reactive power generated by renewable sources remain unchanged, it could 

increase the risk of instability for the entire microgrid especially when the net amount of 

generated power becomes significant (Mauricio, Marano et al. 2009). The imbalance 

between generated power and load power causes over frequency or over voltage that can trip 

off the inverter integrated into MG design. 

 

More particularly, photovoltaic power plants, as one of the most significant family of 

renewably energy resources, pose important challenges when integrated into the microgrid. 

Photovoltaic (PV) inverters always focus on extracting maximum power from the PV array 

system; this makes the PV system unavailable to contribute in regulating the microgrid 

frequency as compared to the conventional generators (Taheri, Akhrif et al. 2012). The 

problem of making PV systems have similar behavior as that of the conventional generators 

remains a big challenge (Datta, Senjyu et al. 2010).  

 

In this context, this research mainly provides advanced strategies of voltage and frequency 

control for islanded microgrid system in the presence of PV generators. This thesis (i) states 

the problems that result from integrating PV systems into microgrids, (Saito, Niimura et al.), 



2 

(ii) gives a literature review of advanced control methodologies of MG frequency and 

voltage such as nonlinear, adaptive and robust control, (iii) suggests a nonlinear model of 

PV/battery generator, (iv) proposes innovative strategies based on improved linear, nonlinear 

and robust adaptive nonlinear control techniques and (v) finally discusses the results 

regarding implementing the proposed advanced control using both simulation in 

Matlab/Simulink and experimentation in laboratory for validation purposes. 

 

2. Motivation of research 

Constant growth in global energy demand remains a serious concern between energy and 

environment. Ideally energy resources that cause no environmental impact must be utilized 

by a society looking for a sustainable development. However, every energy resource leads to 

some negative environmental impact. These negative impacts of energy can be in part 

overcome through increased energy efficiency. In addition, in the electrical energy 

generation sector, electric utilities are facing other challenges such as rising fuel costs, aging 

assets, and pressure to adopt renewable portfolio standards. Most of these issues can be 

overcome without any imperil of overall performance and quality of the power systems. 

Renewable energies have drawn the most attention in comparison with conventional energy 

generations in recent years. Among renewable energy sources, photovoltaic as clean, 

pollution free and inexhaustible energy resource is expected to be one of the biggest 

contributors of electricity generation by 2050.  Figure 0.1 shows a rapidly increasing of the 

global PV installation during years between 2010 and 2017.  In 2010, installation of PV was 

20GW while IHS research expects the PV installation to grow up to 61GW by 2017 (Beehler 

2008, IHS 2013). Looking further ahead, if the United States of America is to achieve the 

ambitious target of an 83% reduction in carbon emissions by 2050, this will require that 

renewable sources contribute at least 50% of the energy used for electricity generation (Eric 

Martinot 2007). With a rise in the PV penetration and its progress into the global market, PV 

systems with advanced features to create an efficient economic system are required. 
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Figure 0.1 IHS Worldwide Photovoltaic Installation Forecast (Gigawatts) 
Taken from IHS (2013)  

 

3. Problem statement 

Generally, a PV system is categorized into stand-alone and grid-connected types. In the 

global market, a large proportion of power is supplied by the grid-connected type because of 

its investment saving, high efficiency, convenient topology and simple control strategy 

(Chunqing, Yong et al. 2009, Lee, Kim et al. 2009). 

 

The problem is that the outputs of renewable generators such as PV and wind generators are 

enormously affected by weather conditions. In fact, this intermittent power from the 

renewable sources consequently has some severe impacts on power system operation. 

Frequent voltage regulation in distribution lines may cause voltage fluctuation which 

accordingly damages the voltage-regulating devices (ElNozahy and Salama 2013). They also 

may cause frequency deviation of power systems which depreciate high PV power 

penetration (Rikos, Tselepis et al. 2008). In fact, the more distributed generation grows the 

more storage capacity is required. It infers that the spinning reserve for frequency control 
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also decreases. If renewable energies are to provide a huge amount of microgrid power, they 

will need to maintain some power in reserve. On the other hand, the sunlight or wind is not 

always present or predictable. Therefore, a consideration of energy reserve facilities 

supplementing a virtual spinning reserve seems to be one of the challenges of providing 

frequency responsiveness and dispatchability to PV or wind systems. In fact, they store 

power during normal operation and inject power during a fault, to maintain the proper micro 

grid frequency and voltage. These storage facilities are newly deployed as distributed energy 

storage (DES). However, they require extra cost and the sophisticated energy management is 

necessary (Kakimoto, Takayama et al. 2009, Sow, Akhrif et al. 2011,Watson and Kimball 

2011).  

 

Another important challenge of current PV systems is that they are not well designed to 

participate in the frequency regulation of the microgrid when it is affected by large 

disturbances. Indeed, in conventional power systems, each synchronous generator (SG) could 

respond to the frequency deviation because of the kinetic energy stored in rotor. However, 

PV generator doesn’t have this rotating part to provide spinning reserve for frequency 

regulation. Moreover, the typical concept of maximum power point tracking (MPPT) 

conflicts with frequency regulation. Unlike the power deloading concept in conventional 

power system, the MPPT algorithm doesn’t leave any power reserve to compensate the 

frequency deviation. This results in a significant reduction of the robustness and frequency 

regulation capabilities under higher PV penetration into microgrid system. As a consequence, 

the frequency may change abruptly due to disturbances and parameters uncertainties in 

generation or loads. Therefore, new trends of PV systems in a microgrid require being 

equipped with an advanced and robust control unit which is able to contribute not only to 

voltage but to frequency regulation as well (Yan, Jianhui et al. 2011). To be able to achieve 

high performance renewable sources interacting appropriately with traditional micro power 

grids, PV systems require reacting like conventional generators, such as synchronous 

generator. Power network needs these types of renewable generators to support both voltage 

and frequency regulation. To simultaneously support renewable generators with MPP 
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tracking and frequency regulating, PV systems should operate in conjunction with storage 

components to have some power in reserve.  

 

Considering storage devices in parallel with PV systems in a microgrid, the concepts of 

energy management become necessary.  Intelligent mechanisms are required to make PV and 

microgrid interact properly. On the other hand, control techniques used in conventional PV 

systems are mainly linear. However, to have PV and storage elements working together, 

sophisticated switching power electronics devices are required. In the case when the 

application calls for less power losses or large power transfer, it is necessary to use different 

types of converters with more power electronics switches. Since the aforementioned system 

(hybrid PV-battery generator) has severe nonlinear behavior, the use of a simple linear 

controller is not adequate for such applications and doesn’t provide good performances. 

 

4. Objectives of research 

The main objective of this research is to make the PV-battery system behave like a 

conventional generator e.g. synchronous generator while automatically managing power 

sharing between different modules using an advanced and innovative control strategy. This 

minimizes the costs and problems associated with the presence of rotating machines. On the 

other hand the generated power (active or reactive) by PV-battery system increases when 

both the MG frequency and voltage decrease respectively due to load demand increment, and 

vice versa.  

 

Specifically, this research aims to: 

• ensure high performance voltage and frequency regulation in the presence of   

 fluctuations and load variations (Objective.1);  

• integrate a conventional MPPT to ensure the PV operates at its maximum power point 

 (Objective.2); 

• coordinate the power delivery among different units i.e. PV and battery system in  a 

MG without the need for a separate energy management system (Objective.3). 
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The overall expected configuration of the microgrid system associated with above-mentioned 

objectives is presented in Figure 0.2. 

 

2S

infL

 

Figure 0.2 Suggested microgrid system 

5. Methodology 

To achieve the objectives stated in previous section, this study is structured based on 

modeling, control design and validation using both simulation and experimental investigation 

at GREPCI laboratory. The proposed methodology is briefly described below: 

 

First, in order to integrate photovoltaic, battery, synchronous generator using corresponding 

power electronics converters and isolation transformers into a microgrid and to design a 

unified controller for this system, a detailed model of the system is required. Hence an 

accurate and nonlinear multi-input multi-output (MIMO) dynamical model of system is 

extracted based on mathematical relationship among physical components. This model is 

used for the design of an advanced control scheme i.e. robust adaptive nonlinear control.  

 

Second, an advanced and innovative voltage and frequency control strategy which is robust, 

adaptive and nonlinear is proposed via nonlinear dynamics of system. These controllers are 

designed to drive switching converters such that the perturbation, uncertainty and 
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nonlinearity of the system as well as power sharing by battery are taken into account in 

control design. To extract the optimum power of PV generator, a maximum power point 

tracking (MPPT) algorithm is integrated into the controller.  

 

Finally, validations of the proposed strategy are respectively conducted in two steps; 

simulation and laboratory experimentation. To implement the proposed control methods, a 

simulation model (see Figure 0.2) of the proposed system is developed in Matlab/Simulink 

software. This includes modeling of controllers, PV array, power electronics converters, 

lead-acid battery, transformer, load and synchronous generator. Some test methods are 

applied to the simulation model to validate the control performance such as sun insolation 

variation and load changes. Then, a hardware test bench is developed to verify the 

effectiveness of control method. This experimental setup includes a PV array emulator, lead-

acid battery, synchronous generator, induction motor (IM) developed by Lab-Volt, drive 

system with speed controller developed by ABB, three-phase transformer, DC-DC converter, 

three-phase inverter and load. The developed control scheme is programmed and 

implemented using Texas Instrument TMS320F28335 microcontroller. In fact, the C code 

generated from the proposed controller through Simulink will be downloaded to the 

microcontroller board, where it is executed in real time. The system is tested under different 

scenarios in order to ensure the effectiveness of the proposed control methods such as 

insolation and load changes. 

 

6. Statement of the originality of the thesis 

The lack of a systematic strategy for maintaining the voltage and frequency of microgrid when 

PV system largely will be used has motivated the present study, which aims at developing an 8th 

order dynamical model of the proposed PV-battery system (the first contribution). The 

novelty of this model is the integration of the nonlinear dynamics of the microgrid frequency, 

delivering powers and voltages. Using this comprehensive state variables representation, the 

second contribution of this thesis is the design of unified multivariable controllers based on 

techniques such as an improved linear, a nonlinear (an exact input-output feedback 
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linearization scheme) and a robust adaptive nonlinear control for the hybrid photovoltaic-

battery source in a MG system. These unique controllers (i) guarantee proper voltage and 

frequency regulation in the presence of uncertainties, nonlinearities and disturbances (Saito, 

Niimura et al.), (ii) integrate a conventional MPPT to ensure the PV operates at its maximum 

power point and (iii) coordinate the power sharing among different units of the PV-battery 

system. 

 

7. Structure of the thesis 

This thesis discusses major topics dealing with contribution of the PV system into the 

frequency and voltage regulation of the microgrid system, as follows: 

 

Chapter 1 is dedicated to the review of the recent approaches used for modeling, control and 

implementation of microgrid with discussion on their specialties and abilities. 

 

Chapter 2 describes thoroughly the full mathematical modeling of the selected configuration 

of PV-battery generator in a MG. 

 

Chapter 3 presents the design of the modified linear control for frequency and voltage 

regulation in a microgrid including PV, battery system as well as synchronous generator. The 

method is validated using simulation. 

 

Chapter 4 proposes the design of a nonlinear control, based on exact input-output feedback 

linearization for frequency and voltage regulation of a hybrid PV-battery system in parallel 

with synchronous generator. The proposed nonlinear control is validated using both 

simulation and laboratory experimentation. 

 

Chapter 5 presents the design of a robust adaptive nonlinear control for frequency and 

voltage support by a hybrid PV-battery system in parallel with synchronous generator. The 

simulation result is included for validation of the proposed system. 



9 

Chapter 6 gives the general conclusions of this work and also highlights several 

recommendations for future researches. 
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CHAPTER 1 
 
 

 LITERATURE REVIEW 

1.1 Introduction 

A literature review pertinent to recent methods on the performance of microgrid and its 

control systems in the presence of renewable energy (RE) generators, in particular, 

photovoltaic systems are presented in this chapter. Strengths, weaknesses as well as existing 

challenges of state-of-the-art methods, categorized into the following four general subjects, 

are well addressed. 

 
First, different types of MG models suggested in literature including linear and nonlinear 

models are presented. Second, various methods of classical and modern controls with the 

contribution of photovoltaic generator into frequency and voltage regulation of the MG are 

described. Third, several conventional maximum power point tracking (MPPT) methods, 

used to harvest maximum energy from photovoltaic systems, are presented. Last, a set of 

experimental testbeds of the MG energized by RE resources is discussed.  

 

1.2 Overview of Microgrid Modeling 

Different mathematical models have been so far suggested by researchers for a microgrid 

system with various components consisting of power electronics converters, storage devices, 

renewable energy sources, conventional generators and loads. The microgrid modeling 

changes from one structure to another on the basis of used components. This section reviews 

the main models which have been presented to date under the structure of both linear and 

nonlinear models. 

 

A first-order transfer function of each microsource in a microgrid consisting of photovoltaic 

system, wind turbine, fuel cell, diesel engine generator, battery and flywheel storage system 

is suggested in (Senjyu, Nakaji et al. 2005) as: 
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ܩ = 1ܭ +  ܶݏ
(1.1) 

 

where G, T and K represent respectively the transfer function, the time constant and the 

transfer function gain of the model of each generator. This method introduces a simple 

approximation of microgrid model commonly for large-scale system and its power flow 

analysis. The weakness of this method is that the exact dynamics of the system such as power 

converter modeling are not considered. In other words this model doesn’t represent the real 

behavior of MG to be used for control design. To address this drawback, a bunch of 

researches have focused on dynamic modeling of microgird. For example in (Berridge 2010, 

Karimi, Davison et al. 2010, Bidram, Davoudi et al. 2013), a microgrid structure, consisting 

of a single DC source connected to a voltage-source converter (VSC) with inductive L filter 

and passive RLC load, is selected as illustrated in Figure 1.1. 

 

 

Figure 1.1 Microgrid model  
Taken from Karimi, Davison et al. (2010) 

 

In these works, the dynamics of MG illustrated in Figure 1.1 is modeled by a nonlinear 

equation in d-q (direct-quadrature) frame to obtain the standard state space model. The high 

switching frequency harmonics, considered as disturbance signals, are added to the non-

polluted input control signals. 
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The idea of representing microgrid with a DC source is extended for two generators 

interfaced in parallel while the passive load is connected at point of common coupling (PCC) 

(Marwali and Keyhani 2004, Moradi, Karimi et al. 2010, Babazadeh and Karimi 2011). The 

configuration of this MG is illustrated in Figure 1.2. The nonlinear dynamical equations of 

microgrid are then obtained by applying Kirchhoffs Voltage Law (KVL) and 

Kirchhoffs Current Law (KCL) in dq-frame. These models are used for designing the 

decentralized control where each generator is equipped with a separate controller. In these 

two previous methods, distributed generators dynamics are neglected by a DC source for the 

sake of simplicity. Since the dynamics of DGs affect the system performance especially for 

control design, other studies choose a complete configuration as shown in Figure 1.3. 

 

 

Figure 1.2 The microgrid structure with two generators in parallel  
Taken from Babazadeh and Karimi (2011) 

 

The microgrid architecture in (Pogaku, Prodanovic et al. 2007, Nejati, Nobakhti et al. 2013) 

includes the model of distributed generators such as photovoltaic array, fuel cell and micro-

turbine i.e. synchronous generator in addition to the converter models.  
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Figure 1.3 Configuration of a complete microgrid system  
Taken from Pogaku, Prodanovic et al. (2007) 

 

In recent years, the contribution of the renewable energy-based generators as of conventional 

generators to frequency support of a microgrid has taken some attention. Therefore a 

complete microgrid model including the frequency model supported by renewable energy 

generators is of interest. In (Sow, Akhrif et al. 2011) authors suggested a nonlinear model of 

DFIG-based wind generator to contribute to the primary and secondary frequency support of 

MG. In this work, the rotor speed dynamics are added to the dynamics of inverter to increase 

inertia of the system. Authors consider a transformer for connecting the DFIG to high voltage 

system, while the dynamics of transformer and its parameters such as leakage inductance are 

neglected in the model. The model in this work is limited to a very specific application of 

wind generator. For other types of RE generators with no rotating part such as photovoltaic 

arrays, this model is not effective.   

 

Authors in (Okou, Akhrif et al. 2012) suggest a general frequency dynamics for PV 

application independent of the speed dynamics. In fact the inertia is added by deloading the 

PV power. The drawback of this approach is that it adds some unknown parameters, such as 

the equivalent droop coefficient of power system and the time constant, to the MG model. 

Therefore it needs a modern controller to compensate the uncertainties. In addition there 

remains a trade-off in meeting both requirements of the MPPT and frequency regulation due 

to the lack of an actual storage system. 
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The most recent researches addressed this problem by suggesting Synchroconverters, i.e., 

inverters that mimic synchronous generators (Zhong 2010, Qing-Chang and Weiss 2011, 

Qing-Chang, Phi-Long et al. 2014). This model of inverter behaving like a synchronous 

generator can be used in a traditional power system where a significant proportion of the 

generation is inverter-based. Similar to the previous method, the model poses several 

unknown parameters which authors leave the methodology of choosing these parameters and 

their impact on real power system as a future work. Therefore, this model remains a 

challenge for control design engineers. 

 

Table 1.1 summarizes the state-of-the-art methods in microgrid modeling in recent years. It 

presents a comparison of different methods in terms of modeling of power electronics 

converters, distributed generator, load and frequency. 

 

Table 1.1 MG modeling and analysis 

MG modeling method Power 
converter 
modeling 

DG 
modeling 

Load 
modeling 

Frequency 
dynamic 

Modeling 
type 

First-order 
dynamics(Senjyu, Nakaji 
et al. 2005) 

×     × linear 

Inverter with DC 
source(Karimi, Davison et 
al. 2010) 

  ×   × nonlinear 

Paralleled inverter with 
DC sources(Marwali and 
Keyhani 2004) 

  ×   × nonlinear 

Inverter-based 
DGs(Nejati, Nobakhti et 
al. 2013) 

      × nonlinear 

Inverter-based DGs with 
frequency dynamics(Qing-
Chang, Phi-Long et al. 
2014) 

        nonlinear 
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1.3 Overview of MG Control methods 

Microgrid control can be classified into three layers as of the primary, secondary and tertiary 

control (De Brabandere, Vanthournout et al. 2007). The primary layer or field level, which is 

the main concentration of this thesis, is principally performed on a local control of power 

converters ensuring frequency and voltage regulation based on the reference signals received. 

On this layer there is no communication among devices. The secondary layer (Katiraei, 

Iravani et al. 2008) is responsible for modifying the commanded signals (desired frequency 

and voltage) to be sent to the primary level control, according to the grid synchronization  

(via phase locked loop PLL), frequency and voltage restoration techniques. The tertiary 

control is responsible for dispatching power on the basis of economic and availability of the 

generators in distribution network operation. On the other hand, the tertiary control task is the 

management of the importation or exportation of active and reactive power to or from the 

grid by sending reference signals to the secondary control (Vasquez, Guerrero et al. 2010, 

Mohamed and Radwan 2011). Figure 1.4 demonstrates the architecture of a typical microgrid 

control. 

 

 

Figure 1.4 A typical microgrid control architecture 
Taken from Vasquez, Guerrero et al. (2010) 
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Since this PhD work concentrates on MG islanded mode operation, recent primary control 

approaches in a microgrid with participation of renewable energy generators (i.e. 

photovoltaic (PV) generator) including frequency and voltage regulation along with MPPT 

methods are mainly presented in this section.  

 

Frequency and voltage control strategies: A primary control level 

 

In autonomous (islanded) mode, where the microgrid system is not supported by the 

robustness of the main grid, several works have been carried out on MGs’ frequency and 

voltage control in recent years. These controllers are categorized into two groups: classical 

and modern control approaches which are presented as follow. 

 

A. Classical control 

The conventional techniques of the voltage and frequency control without the presence of 

communication protocols are based on droop controls (Chandrokar, Divan et al. 1994, Piagi 

and Lasseter 2006, Barklund, Pogaku et al. 2008, De and Ramanarayanan 2010). The 

conventional droop control of MG is based on mimicking the Synchronous Generator (SG) 

operation. In conventional generator like SG, the measured power, P, is changed by droop 

control as a function of frequency, P(f). When the output ac power is larger than input 

mechanical power of SG, the generator slows down due to its inertia. As a consequence, the 

frequency (and on the other hand the phase angle) at SG terminal lowers. In fact, inverter 

based MG lacks the inertia. The droop controls in these types of MGs are based on the line 

characteristics. 

 

The droop control technique in MGs avoids the requirement of complex and costly 

supervisory system. In addition, the plug-and-play feature of each unit makes the expansion 

of these systems easier. However, the droop controls have shown some drawbacks such as 

dependencies on inverters output impedance and trade-off between the accuracy of power 

sharing and voltage/frequency deviation (with respect to nominal set-points). Some following 
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modifications of the droop control based on the line characteristics and power flow between 

buses have been proposed to lessen the effect of these problems. Active and reactive powers 

(P and Q respectively) flowing between sources ܧଵ∢ߜଵ and ܧଶ∢ߜଶ with the line impedance 

Z=R+jX are calculated as (Yun Wei and Ching-Nan 2009): 

 ܲ = ଵܴଶܧ + ܺଶ ଵܧ)ܴ] − ଶܧ cos(ߜଵ − ((ଶߜ + ଶܧܺ sin(ߜଵ −  [(ଶߜ
ܳ = ଵܴଶܧ + ܺଶ ଶܧܴ−] sin(ߜଵ − ((ଶߜ + ଵܧ)ܺ − ଶܧ cos(ߜଵ −  [((ଶߜ

 

(1.2) 

 

For inductive line impedance with negligible relative phase angle (i.e. ܴ = 0, ଵߜ)	 −  (ଶߜ

small) the above equations are simplified to, 

 ܲ ≈ ଵܺܧ ଵߜ)ଶܧ] −  [(ଶߜ
ܳ ≈ ଵܺܧ ଵܧ] −  [ଶܧ

 

(1.3) 

 

Therefore, for inductive network the active and reactive power values are controlled directly 

by the phase angle and the voltage amplitude respectively. Due to a linear relationship 

between the angle and the frequency, the frequency is used in control purposes for the sake 

of simplicity (Phadke, Thorp et al. 1983).  Therefore, the generator power is controlled by 

measured frequency (P(f)). Unlike in SGs where the frequency depends on the rotating 

speed, in inverter-based MG the frequency is controlled independently. In addition, the 

power measurement is easier than the instantaneous frequency measurement in microgrid 

(Arboleya, Diaz et al. 2010). Therefore the drop of frequency as a function of active power is 

proposed f(P) 

 ݂ = ଴݂ − ݇௣(ܲ − ଴ܲ) (1.4) 
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where ݂, ଴݂, ܲ and ଴ܲ represent the actual and reference of frequency as well as active power 

respectively. The coefficient ݇௣ is the slope of the frequency droop characteristics. Figure 1.5 

shows typical droop characteristics.  

 

 

Figure 1.5 p-f droop characteristics 

 

Similarly, the voltage amplitude of microgrid terminal is controlled by reactive power such 

that, 

ݒ  = ଴ݒ − ݇௤(ܳ − ܳ଴) (1.5) 

 

where ݒ ,ݒ଴, ܳ and ܳ଴ represent the actual and reference of voltage amplitude as well as 

reactive power. The coefficient ݇௤ is the positive droop gain. Figure 1.6 illustrates the 

configuration of the traditional droop control methods based on Q-v and P-f for two VSCs 

with sharing a common load. 
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Figure 1.6 Traditional P-F and Q-V droop control methods for microgrid  
Taken from Hu, Kuo et al. (2011) 

 

In fact, the droop gain is chosen such that to compromise between high gain which causes 

system instability due to the big frequency/voltage drop in steady state regime and low value 

gain which increases the settling time. Moreover big load change can vary the 

frequency/voltage far from its nominal value which reduces the MG stability or even makes 

it unstable. This approach poses a steady state frequency/voltage drop with respect to load 

changes (Guerrero, Matas et al. 2006, Guerrero, Vasquez et al. 2011). Despite the droop 

control being  a decentralized control approach, the autonomous power sharing of output 

power converters are highly dependent on the inverter output impedances (Tuladhar, Hua et 

al. 2000). These impedances are unknown or vary from each design to another (Lee, Chu et 

al. 2013). A slow dynamic response of system with conventional droop control is obtained 

due to the low pass filter which is used for the calculation of average active and reactive 

powers. 

 



21 

To remove the static error and to reduce the dependency of the conventional droop on the 

load changes, the integral term is added in previous works (Katiraei and Iravani 2006, Lee 

and Wang 2008, Haruni, Gargoom et al. 2010, Ray, Mohanty et al. 2010, Jayalakshmi and 

Gaonkar 2011, Kasal and Singh 2011) as, 

 ݂ = ଴݂ + ݇௣(ܲ − ଴ܲ) + ݇௣,௜ݏ (ܲ − ଴ܲ) (1.6) 

ݒ = ଴ݒ + ݇௤(ܳ − ܳ଴) + ݇௤,௜ݏ (ܳ − ܳ଴) (1.7) 

 

in which, the parameters ݇௣,௜	and	݇௤,௜ are the coefficients of the integral terms. To improve 

the transient response of the system, a derivative term is added to the conventional droop 

control as, (Goya, Omine et al. 2011).  

 ݂ = ଴݂ + ݇௣(ܲ − ଴ܲ) + ݇௣,ௗ ݐ݀݀ ܲ 
(1.8) 

ݒ = ଴ݒ + ݇௤(ܳ − ܳ଴) + ݇௤,ௗ ݐ݀݀ ܳ 
(1.9) 

 

where the parameters ݇௣,ௗ	and	݇௤,ௗ are the coefficients of the derivative terms.This method is 

effective for a small microgrid with large load change through avoiding large start-up 

transience (Mohamed and El-Saadany 2008). However, the high derivative gain causes noise 

amplification in control system. One common approach is to use a washout filter which is in 

fact a high pass filter (
௄೏்ೈ௦௦ା்ೈ ) with time constant	 ௐܶ and derivative gain	ܭௗ. Although 

washout filters have been successfully used in many control applications, there is no 

systematic way to choose the constants of the washout filters and the control parameters 

(Hassouneh, Lee et al. 2004). This causes a trade-off between high frequency attenuation (a 

satisfactory damping using	ܭௗ) and the error of the fundamental components (	 ௐܶ, high 

enough allowing the input signals to pass) (Farahani 2012).  
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Another problem facing the conventional droop control is the active and reactive power (P-

Q) coupling. To overcome this problem a method based on virtual output inductance is 

proposed. 

According to Equation (1.3), to have a decoupled droop characteristics, line impedance 

should be inductive. Therefore, on the control design stage, a virtual inductor is included at 

the inverter output without the information of line impedance (Funato, Kamiyama et al. 2000, 

Dranga, Funato et al. 2004). The reference voltage in voltage controller of Equation (1.9) is 

modified as, 

଴௡௘௪ݒ  = ଴ݒ − ௩௜௥ܮ ݀݅௜௡௩݀ݐ  
(1.10) 

 

where ݒ଴, ݒ଴௡௘௪, ܮ௩௜௥, and ݅௜௡௩ are the reference and modified reference voltage of the droop 

control, virtual inductance and line inverter current. Although this method is effective in 

decoupling the active and reactive powers (He and Li 2011, Cheng, Li et al. 2012, Savaghebi, 

Jalilian et al. 2012), it causes high frequency noise amplification due to the derivative term as 

well as reactive power sharing error due to the increased voltage drop as shown in Equation 

(1.10). In (Yun Wei and Ching-Nan 2009), the reactive power control is enhanced by the 

estimation of the inductor voltage drop as well as the load estimation. Droop control with 

virtual inductor control is shown in Figure 1.7. 

 

 

Figure 1.7 Droop control with virtual inductor control 
Taken from Cheng, Li et al. (2012) 
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The previous methods are essentially devoted to the high voltage application of microgrid. In 

traditional power system with high voltage (Holland, Kirschvink et al.) transmission line 

where	ܺ ≫ ܴ, the voltage is directly controlled by reactive power and frequency is controlled 

by active power (conventional P-f and Q-v droop control). However, in low voltage (Vallvé, 

Graillot et al.) microgrid where the feeder impedance is not inductive, the line resistance 

should not be neglected (Laaksonen, Saari et al. 2005), because	ܴ ≫ ܺ. In case of resistive 

line impedance the power flow becomes, 

 ܲ ≈ ଵܴܧ ଵܧ] −  [ଶܧ
ܳ ≈ ଵܴܧ ଵߜ)ଶܧ−] −  [(ଶߜ

 

(1.11) 

 

Thus the active and reactive powers are controlled respectively by voltage and angle (or 

frequency) resulting in P-v and Q-f droop control for low voltage MGs (Sao and Lehn 2006, 

Sao and Lehn 2008, Au-Yeung, Vanalme et al. 2009) as, 

 ݂ = ଴݂ + ݇௤(ܳ − ܳ଴) (1.12) ݒ = ଴ݒ + ݇௣(ܲ − ଴ܲ) (1.13) 

 

One of the main challenges of the conventional droop control methods is that the tuning of 

controller gains as well as system coefficients are not systematic. To avoid the difficult task 

in finding the controller parameters in previous works, Fuzzy control technique was proposed 

in (Salhi, Doubabi et al. 2010) to tune the proportional-integral (PI) controller gains 

according to changes in the system parameters. Similarly a particle swarm optimization 

(PSO) technique is applied in (Das, Roy et al. 2011) to tune the PI controller gains. However, 

the online implementation of these approaches is complicated. Fuzzy control needs a trial-

and-error process in finding its membership function. In addition, PSO is very dependent on 

the randomly generated vectors and the initial parameters which their convergences are not 

mathematically guaranteed.  



24 

In addition to the droop control methods, some other researchers suggest different techniques 

based on deloading power and virtual inertia for the inverter-type microgrid system 

(Kakimoto, Takayama et al. 2009, Das, Roy et al. 2011). A control method based on simple 

fuzzy logic was proposed in (Datta, Senjyu et al. 2011) for the PV–diesel hybrid system to 

introduce the frequency control by the PV and to produce the output power command. Three 

inputs-frequency deviation (from frequency reference) of the isolated utility, average 

insolation, and change of insolation- are considered for fuzzy control. A control method 

based on a load power estimator and an energy storage system is proposed for isolated 

photovoltaic–diesel hybrid system to provide frequency control. In this method, photovoltaic 

power is controlled according to the load variation to minimize the frequency deviations. 

Load power is estimated by a minimal-order observer. Then, a load variation index is 

calculated. A base photovoltaic power, produced from the available maximum photovoltaic 

power using a low-pass filter, is added to the load variation index to generate the command 

photovoltaic power. Since the voltage source inverter along with renewable energy sources 

(such as PV array generators) are inertia-less, this method of deloading enhances the inertia 

of the MG system. The weakness of this method is that the maximum power of PV is not 

always available. On the other hand, PV generator permanently operates below the optimal 

power to provide a reserve under load power disturbance in order to participate to frequency 

regulation. The low pass filter used in this design which slows down the system dynamic 

response is another drawback of this technique. 

 

To increase the inertia and avoid the confliction of frequency and MPPT mentioned in 

previous publications, frequency regulation in an island and weak power system using large 

battery energy storage is discussed in (Kottick, Blau et al. 1993). The sole purpose of 

frequency control is dependent on the battery. In (Li, Song et al. 2008), frequency control 

was applied to a microgrid consisting of hybrid fuel-cell/wind/PV system. Required power of 

the electrolyser system is supplied mainly by the wind and PV, and the hydrogen produced 

by the electrolyser system is stored in the hydrogen tank to be converted back to electricity in 

the fuel cells. This mechanism emulates storage for the MG system to increase the inertia.  
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In addition to frequency participation through renewable generator, PV inverters which 

provide the reactive power to support voltage control have drawn more attention in recent 

years (Farivar, Clarke et al. 2011, Jahangiri and Aliprantis 2013,Robbins, Hadjicostis et al. 

2013). However there are some drawbacks that prevent the PV inverters to support reactive 

power in order to compensate the voltage. Based on the effective IEEE Std. 1547 the utilities 

do not accept the PV inverter to inject the reactive power. This conflicts with the unity power 

factor inverter although the new IEEE standards try to lessen some of these constraints 

(Basso and DeBlasio 2004). In addition, more expensive oversized inverter reduces the profit 

of the PV inverter owner. Moreover, the coordination between this type of PV inverter and 

other traditional inverters is reduced.  

 

In conclusion to the classical control techniques in microgrid design, these model-free 

control works do not explicitly take into account the nonlinear behavior of MG systems 

incorporating renewable energy sources and power electronic interfaces. In addition, these 

linear controllers are not designed to perform uniformly over a wide range of operating 

conditions or in the presence of nonlinearities, uncertainties and disturbances. Moreover, the 

different control modules are designed independently. The lack of coordination among the 

disparate units makes it a difficult task to meet frequency and voltage regulation as well as 

MPPT requirements. In most applications, a complex and often costly energy management 

unit is needed. Table 1.2 which summarizes the traditional methods of frequency and voltage 

control with their different features is presented below. 
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Table 1.2 Classical frequency and voltage control of microgrid 

MG control method MPPT 
Frequency 

control 
voltage 
control 

P/Q 
decupling 

application 

Conventional P-f vs. Q-v 
droop control (Yun Wei 
and Ching-Nan 2009) 

×       HV MG 

conventional droop with 
integral term (Ray, 
Mohanty et al. 2010) 

×       HV MG 

conventional droop with 
derivative term (Goya, 
Omine et al. 2011) 

×       HV MG 

conventional droop with 
virtual output inductor 
(Funato, Kamiyama et al. 
2000) 

×       HV MG 

conventional P-v and Q-f 
droop (Sao and Lehn 
2006) 

×       LV MG 

Conventional droop P-v 
with virtual output 
resistance (Guerrero, 
Matas et al. 2007) 

×       LV MG 

Modified droop control 
with soft-computing 
techniques (Datta, 
Senjyu et al. 2011) 

×       
HV or LV 

MG 

Power modulation and 
virtual inertia control for 
PV inverter with storage 
system (Li, Song et al. 
2008) 

        
HV or LV 

MG 

 

 

B. Modern control 

Among existing modern control methods, those commonly used in power network such as 

nonlinear control, adaptive nonlinear control and robust adaptive nonlinear control are 

presented in this section. 
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i. Nonlinear control 

Recently nonlinear control techniques such as sliding mode control, backstepping and input-

output feedback linearization have drawn interest in power electronics applications since they 

offer systematic, powerful and easy-to-implement methods (Marino and Tomei 1996). A 

nonlinear frequency and voltage control based on backstepping technique is developed for 

PV generator in (Okou, Akhrif et al. 2012). A multi-input multi-output MIMO nonlinear 

frequency and voltage control based on feedback linearization technique is developed for 

doubly-fed induction generators (DFIG) generator connected to synchronous generator (Sow, 

Akhrif et al. 2011). It is shown in these studies that the nonlinear control approach improves 

the general system performance in both transient and steady-state regimes since the exact 

nonlinearity of system is taken into account in control design. The lack of storage system in 

both techniques causes the renewable generator to operate below its maximum power point, 

MPP. The effectiveness of these nonlinear control approaches is highly dependent on the 

system parameters. On the other hand uncertainties in parameters such as load power, 

terminal voltage of SG, line inductance and SG, PV, DFIG model parameters affects the 

controller tracking. 

 

ii. Adaptive nonlinear control 

The design of adaptive control was introduced in 1950s. The first and most important 

applications of adaptive control were in mill industries in Sweden. Another important 

application of adaptive control has been the design of autopilots in flight control. The 

airplanes operate over a wide range of speeds and altitudes with nonlinear and time-varying 

dynamics. The different operating conditions of aircraft lead to the different unknown 

parameters in the system model. A sophisticated feedback control needs to be able to learn 

about parameter uncertainties. Two adaptive approaches were introduced in the literature; 

"direct and indirect" adaptive controls. In indirect adaptive control, the plant parameters are 

estimated online and used to calculate the control parameters. In direct adaptive control, the 

controller parameters are estimated directly without estimating the plant parameters (Krstic, 

Kanellakopoulos et al. 1995, Kaufman, Barkana et al. 1998, Åström and Wittenmark 2013).  
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In a microgrid system with renewable energy integration, the system parameters change due 

to the load perturbation or the fluctuation in the intermittent power of renewable generator. 

Moreover there are some parameters in the system model which are unknown. An adaptive 

control can improve the system performance by estimating the unknown parameters 

(Yazdani, Bakhshai et al. 2008). Some applications of adaptive control within a microgrid in 

recent years are listed as: the estimation of the grid frequency in a phase-locked loop (PLL) 

for active power filtering (Hogan, Gonzalez-Espin et al. 2014), the regulation of the common 

DC bus voltage with different renewable energy generators (Dragicevic, Guerrero et al. 

2014), the adjustment of the weighted coefficients of active power-frequency droop (Li, 

Wang et al. 2015), the load sharing in a parallel-connected DC-DC converters in a DC 

microgrid (Augustine, Mishra et al. 2015), the protection and control (Laaksonen, Ishchenko 

et al. 2014) and the power balance during transition from grid-connected to islanding mode 

in a microgrid (Shi, Sharma et al. 2013). A nonlinear controller based on sliding mode 

control with adaptive voltage droop was proposed for a microgrid (Ferreira, Barbosa et al. 

2013). The advantage of the adaptive nonlinear control is that it improves system behavior 

under both nonlinearities and uncertainties. To the best of our knowledge, no research has 

addressed the adaptive nonlinear control of a microgrid integrated with photovoltaic 

generators along with storage devices in the literature. Therefore it motivates us to 

investigate this subject in the next chapters of this thesis.  

 

iii. Robust adaptive nonlinear control 

The adaptive laws and control discussed in previous section are designed with the 

assumption that the plant model is free of noise and disturbance. The designed controller is to 

be implemented on a practical system that is likely to differ from its mathematical and ideal 

models. The actual plant can be corrupted by noising measurement or any external 

disturbance. The discrepancies between the developed and real models may affect the system 

performance and robustness.  
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The theory of robust adaptive nonlinear control was first presented by Kokotovic and Marino 

in 1991 (Kanellakopoulos, Kokotovic et al. 1991). A new robust adaptive nonlinear control 

based on backstepping scheme for frequency and voltage regulation was designed for DFIG 

wind turbine (Okou and Amoussou 2008). This strategy takes into account the uncertainty, 

disturbance and nonlinearity of the system in the control design. However the problems 

associated with the microgrid lacking the storage system (i.e. MPPT vs. frequency 

confliction) and inertia-less generators such as PV system (i.e. virtual inertia) are not 

addressed. 

 

Overview of the recent maximum power point tracking approaches 

 

The low energy conversion efficiency of PV array hinders the widespread use of PV in 

power systems.  In order to overcome this drawback, maximum power should be extracted 

from the PV system. This objective can be achieved by a MPPT which identifies the optimal 

operation of the PV systems. 

 

To date, several MPPT techniques have been reported which can be sorted into three 

categories; namely the conventional, soft computing and advanced model-based methods. 

Among conventional MPPT methods reported in the literature, the hill climbing (Elgendy, 

Zahawi et al. 2011, Ahmed, Li et al. 2012, Kumar 2012, Abuzed, Foster et al. 2014), perturb 

and observe (P&O) (Femia, Petrone et al. 2004, Liu and Lopes 2004, Femia, Petrone et al. 

2005, Khaehintung, Wiangtong et al. 2006, Fangrui, Yong et al. 2008) and incremental 

conductance (IC) (Yuansheng, Suxiang et al. 2012, Guan-Chyun, Hung et al. 2013, Latif and 

Hussain 2014) are commonly used since they are quite simple to implement and they exhibit 

a good convergence speed. However, the oscillation around the MPP is the major drawback 

of theses algorithms (Banu, Beniuga et al. 2013). The oscillatory behaviour around the MPP 

reduces considerably the system efficiency due to power losses. Moreover, when the 

atmospheric condition varies, these methods may be confused since the operating point can 

move away from the MPP instead of working around it. In order to minimize the oscillation, 

several attempts were made by reducing the perturbation step size. However, a smaller 
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perturbation size affects the tracking speed adversely (Sera, Mathe et al. 2013, Shah and 

Joshi 2013).  

 

In order to improve the abovementioned drawback, soft computing (SC) techniques such as 

fuzzy logic control (FLC) (Ze, Hongzhi et al. 2010, Chin, Tan et al. 2011, Ze, Hongzhi et al. 

2011, Arulmurugan and Suthanthira Vanitha 2013, Roy, Basher et al. 2014), Artificial 

Neural-Network (ANN) (Kaliamoorthy, Sekar et al. 2010, Phan Quoc, Le Dinh et al. 2010, 

Pachauri and Chauhan 2014), genetic algorithm (Ramaprabha, Gothandaraman et al. 2011, 

Daraban, Petreus et al. 2013, Hadji, Gaubert et al. 2014, Mohamed, Berzoy et al. 2014), 

differential evolution (DE) (Taheri, Salam et al. 2010, Sheraz and Abido 2012, Taheri, Taheri 

et al. 2012), particle swarm optimization (PSO) (Kondo, Phimmasone et al. 2010, 

Phimmasone, Kondo et al. 2010) and firefly (FA) (Sundareswaran, Peddapati et al. 2014) 

algorithms have attracted much interest over the past years. One of the distinctive features of 

the soft-computing MPPT techniques comparing with other MPPT approaches is that they 

outperform in global searching during partial shading condition in PV system. Despite of 

their effectiveness, SC algorithms are more highly dependent on the complexity of 

computing programs (Paul 2013). In FLC MPPT, the membership function is generated 

through a time-consuming process. One of the major criticisms of ANN MPPTs is that they 

are considered as black boxes. Therefore no satisfactory explanation of their behaviour is 

offered. In stochastic techniques the decision variable, either the duty cycle of the power 

electronic converter or the reference voltage of the controller, is employed by the random 

vectors during the execution of algorithm. Therefore the global MPP convergence cannot be 

mathematically guaranteed. 

 

In order to overcome the problems of previous methods, in particular, the oscillatory 

behaviour and complexity of existing MPPT algorithms, a new trend of MPPTs based on 

model-based approaches has been suggested in very recent years. Sliding mode controller 

MPPTs (SMC-MPPTs) (Siew-Chong, Lai et al. 2007, Siew-Chong, Lai et al. 2008, Yan Ping 

and Fang Lin 2009, Pradhan and Subudhi 2015) possess robustness of tracking control and 
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stability against internal system parameters and load uncertainties. Adaptive MPPT based on 

variable scaling factor has been suggested in using proposed small-signal model (Kui-Jun 

and Rae-Young 2012, Kui-Jun and Rae-Young 2012). Robust adaptive sliding mode control 

scheme has been developed for MPPT in (MacKunis, Reyhanoglu et al. 2012). Unlike the 

MPPTs based on soft computing techniques such as DE, PSO, and FA MPPTs which 

outperform under partial shading condition (the existence of the multiple peaks on PV 

characteristics), the model-based MPPTs (i.e. nonlinear MPPT controller) suggested in the 

literature are not ready for PV system exposed in partial shading condition. Therefore these 

types of model-based MPPTs can be improved for global optimization. The comparison of 

recent MPPTs is listed in the following table. 

 

Table 1.3 Comparison of MPPTs in PV application 

MPPT methods and  Criteria 

 

 

Conventional MPPTs 

(P&O, IC, etc.) 

Soft-computing MPPTs 

(ANN, FLC, DE, PSO, 

etc.) 

Modern control 

(adaptive, SMC, 

nonlinear MPPTs) 

Convergence in uniform 
condition 

Yes Yes Yes 

Convergence in partial 
shading condition 

No Yes No 

Design complexity simple complex moderate 

Convergence speed vs. 
accuracy 

very low high high 

Dependency on initial 
parameters 

moderate high moderate 

 

1.4 Microgrid testbeds 

This section lists the recent development in the industrial and academic microgrid testbeds 

and example cases as of either remote MG or utility MG supplied by both diesel and 

renewable DGs for different applications such as military, remote area, uninterruptable 

power supply, emergency power, electric vehicle and residential application. 
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Boston Bar – British Columbia (BC) Hydro, Canada: 

Boston Bar substation is connected to BC Hydro grid through a 60Km, 69KV transmission 

line and a 14MVA transformer. This traditional transmission faces frequent blackouts due to 

climate conditions. To provide improved reliability on rural feeders, a microgrid with three 

feeders has been interconnected to the 69KV by a 69KV/25KV substation since 1995. The 

MG includes two hydropower generators 8.75 MVA, 0.8pf. Although no physical storage 

system is considered in the design of microgrid, the inertia of generators is enlarged (Peralta, 

Iosfin et al. 2009). Figure 1.8 demonstrates the configuration of the Boston Bar microgrid. 

 

 

Figure 1.8 The Boston Bar BC hydro microgrid 
Taken from Katiraei, Abbey et al. (2008) 
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Boralex islanding plant at Senneterre Substation-Hydro Quebec (HQ): 

The objective of HQ microgrid is to support 55-year-old, 40Km, 120KV transmission line 

that serves 3000 clients. The arrangement of the Boralex islanding plant is shown in Figure 

1.9. The microgrid is managed by Boralex (thermal power plants) 31 MVA, 0.85 pf through 

13.8KV/120KV transformer. Since this system is operated with a single, comparatively large 

generator and is operated in an islanding mode during the planned system maintenance, it 

does not use any storage or communication system (Katiraei, Abbey et al. 2008). 

 

 

Figure 1.9 Boralex islanding plant at Senneterre Substation-Hydro Quebec, HQ 
Taken from Bakken (2014) 

 

Converter fed MG at University of Toronto: 

The converter fed microgrid testbed comprises both static and motor-types loads and 

capacitors. At point of common coupling, the MG is connected to the utility.  Multiple VSCs 

are used to control the voltage and frequency in islanded mode while the grid helps the power 

quality during the grid-connected mode (Sao and Lehn 2008). The scheme of the MG is 

shown in Figure 1.10. The voltage-power or frequency-reactive power droop control is used 

in this project. Each VSC shares the common load power as determined by droop 

coefficients. 
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Figure 1.10 Converter fed MG at Toronto 
Taken from Sao and Lehn (2006) 

 

Microgrid testbed at Rochester Institute of Technology (RIT) New York: 

This testbed integrates energy production and storage resources within a single 

microgrid. The microgrid testbed has several units including wind turbines, solar panels, 

400KW fuel cells, 50KWh battery bank, geothermal heating/cooling system with intelligent 

energy tracking system and research data center as illustrated in Figure 1.11. The power 

generated by RIT microgrid is used for vehicle charging station, building lighting and electric 

outlets (RIT, 2015). 
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Figure 1.11 Microgrid testbed at Rochester Institute of Technology  
(RIT) New York 
Taken from RIT (2015) 

 

Microgrid project at Los Alamos, NM: 

A reliable power supply testbed is developed from PV/battery system under unstable cloud 

coverage conditions and real time pricing into the charging/discharging of the batteries (Los 

Alamos, NM, 2015). The MG project under US-Japan collaboration includes 1MW PV, 

1.8MW battery and EMS system with integration to US distribution system as shown in 

Figure 1.12. The optical fiber is used for communication purposes.  

 

Table 1.4 shows a list of the world's largest photovoltaic power plant projects with the 

generation capacity range from 250 MW to 579 MW.  
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Figure 1.12 Microgrid project at Los Alamos, NM 
Taken from Los Alamos, NM, (2015) 

 

Table 1.4 The world's largest photovoltaic power plant projects 

Taken from Dara Jegede (2017)  
 

Photovoltaic power plant projects Country 
Generation 

capacity 

Solar Star Projects, California 
USA 579MW 

Desert Sunlight Solar Farm, California 
USA 550MW 

Topaz Solar Farms, California USA 550MW 
Longyangxia Dam Solar Park, Qinghai China 530 MW 
Golmud Solar park, Qinghai China 500MW 
Copper Mountain Solar Facility, Nevada USA 458 MW 
Charanka Solar Park, Gujurat India 345MW 
Cestas Solar Farm, Bordeaux France 300 MW 
Agua Caliente Solar, Arizona USA 290MW 
California Valley Solar Ranch (CVSR) in San Luis Obispo USA 250MW 

  



 

CHAPTER 2 
 
 

MATHEMATICAL MODELING 

2.1 Introduction 

This chapter presents a number of models associated with the microgrid elements, developed 

at GREPCI laboratory during this Ph.D. project. As sketched in Figure 2.1, the model 

comprises a PV/battery generator consisting of a photovoltaic array in series with a DC-DC 

boost converter, a storage device in series with a bidirectional DC-DC boost converter, a 

three-phase DC-AC inverter, smoothing inductors and a step-up transformer. The secondary 

of the transformer is connected to an AC load and a synchronous generator (SG) via a 

transmission line. This chapter is structured in two general sections as follows: a commonly 

used model of a PV system (i.e. PV cell/module/array), power electronic converters (i.e. 

modulation techniques, steady-state and dynamic analysis), synchronous generator (i.e. 

voltage vs. speed control, the transient and saturated model and swing equation) and 

frequency model is described. The model includes a novel nonlinear dynamical model (of 8th 

order) of the PV/battery generator along with power conditioning system. This model will be 

used for the design of advanced control schemes such as the nonlinear and robust adaptive 

nonlinear controllers in next chapters. 

 

2S

M
ot

orinfL

 

Figure 2.1 Microgrid system 
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2.2 Photovoltaic (Cell/module/array) model 

2.2.1. Solar cells 

 Solar cells are constructed by semiconductor materials (e.g. silicones) which form an electric 

field positive on backside and negative towards the sun. In the dark, the solar cell treats as a 

diode device. If it is connected to an external voltage source, it generates a current DI  which 

is named diode or dark current. When exposed to the light, photons (solar energy) are 

absorbed by the semiconductors and create a current phI
 

proportional to the incident 

irradiance (Lorenzo 1994). Figure 2.2 depicts one of the more commonly used solar cell 

equivalent circuit models (Liu and Dougal 2002). 

 

 

Figure 2.2 PV cell equivalent circuit 

 

This circuit simplifies the PV cell by a model including a current source phI , a diode, the 

series and parallel resistances SR and PR respectively. In order to extract the parameters of 

the equivalent electrical circuit, it is required to know the PV current-voltage or power-

voltage curve in standard conditions of measurement (SCM) as illustrated in Figure 2.3 (a). 

Short-circuit current SCI is the current flowing into PV cell when a short circuit performed at 

its terminal. The open-circuit voltage OCV is the maximum voltage that PV cell can generate 

when no current flows. The maximum power maxP  is the product of the voltage ( mpV ) and 
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current ( mpI ) at the maximum operating point of power-voltage characteristics (see Figure 

2.3 (b, c)). 

 

 

(a) 

 

(b) 
 

 
Figure 2.3 Electrical Characteristics of Mitsubishi Electric Photovoltaic Module, 260Wp  

(a) PV current-voltage curves, (b) Temperature dependence of Isc, Voc and Pmax 
Taken from PV-MLE260HD, Mitsubishi (2013) 
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(c) 

 

Figure 2.3 Electrical Characteristics of Mitsubishi Electric Photovoltaic Module, 260Wp 
(c) Irradiance dependence of Isc, Voc and Pmax  

Taken from PV-MLE260HD, Mitsubishi (2013) 
 

The output current of the PV cell is represented by Equation (2.1) as: 

 I = I୮୦ − I଴ ቆe౒శ౅౎౏ౣ౒౪౞ − 1ቇ − V + IRୱR୔  
(2.1) 

 

where V୲୦ = ୩୘୯ . The parameters in Equation (2.1) are introduced as: 

I: PV cell output current, 

V: PV cell output voltage, I୮୦: photo current, I଴: saturation current of diode, Rୱ: series resistance, R୔: parallel resistance, 
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m: ideality factor of diode, V୲୦: thermal voltage, 

k: Boltzmann’s constant, 

q: electron charge, 

T: temperature in Kelvin. 

 

Equation (2.1) can be simplified by a high value of R୔ in SCM as (Walker 2001): 

 I = Iୱୡ_ୱୡ୫ − I଴_ୱୡ୫ ቆe౒శ౅౎౏ౣ౒౪౞ − 1ቇ 
(2.2) 

 I୮୦ is equal to the short-circuit current (Iୱୡ_ୱୡ୫) in SCM. Considering open-circuit voltage 

(V୭ୡ_ୱୡ୫) and cell temperature (TC_scm) in SCM, the saturating current I଴_ୱୡ୫ can be 

obtained as, 

 I଴_ୱୡ୫ = Iୱୡ_ୱୡ୫e ౧.౒౥ౙ_౩ౙౣౣ.ౡ.౐ి_౩ౙౣ − 1 
(2.3) 

 

The series resistance of Rୗ is calculated by an empirical relation between V୭ୡ_ୱୡ୫ and Iୱୡ_ୱୡ୫ 

as, 

 Rୱ = (1 − FFFF଴) V୭ୡ_ୱୡ୫Iୱୡ_ୱୡ୫  
(2.4) 

 FF଴ is defined as the fill factor of the ideal PV cell such that (Molina and Espejo 2014) 

 FF଴ = v୭ୡ − ln	(v୭ୡ + 0.72)v୭ୡ + 1  
(2.5) 

 

where v୭ୡ = ୚౥ౙ_౩ౙౣ୚౪౞ . The fill factor of PV cell in SCM is calculated as 
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FF = V୫୮_ୱୡ୫. I୫୮_ୱୡ୫V୭ୡ_ୱୡ୫. Iୱୡ_ୱୡ୫  
(2.6) 

 

where V୫୮_ୱୡ୫ and I୫୮_ୱୡ୫ are voltage and current of an operating point which delivers a 

maximum power in SCM. 

 

The changes in irradiance and cell temperature affect the values of short-circuit current and 

open-circuit voltage (see fig. 2.3) as, 

 I = Iୱୡ౩ౙౣ GGେ౩ౙౣ (1 + α(Tେ − Tେ_ୱୡ୫)) (2.7) 

I଴ = Iୱୡ౩ౙౣ ୋୋి౩ౙౣ (1 + α(Tେ − Tେ_ୱୡ୫))e౧.(౒౥ౙ_౩ౙౣశβ(౐ిష౐ి_౩ౙౣ)ౣ.ౡ.౐ి_౩ౙౣ − 1  

(2.8) 

 

The cell temperature Tେ depends on ambient temperature Tୟ and irradiance G according to the 

following empirical equation, 

 Tେ = Tୟ + CG (2.9) 

 

where the coefficient C is computed under nominal operating condition as, 

 C = Tେ୒୓େ − 20℃800w/mଶ  
(2.10) 

 Tେ୒୓େ is the cell nominal temperature at ambient temperature 20℃ and irradiance 800w/mଶ 

(Tsai, Tu et al. 2008). 
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2.2.2. Solar module 

 The manufacturers provide PV cells into modules including Npm branches in parallel with 

Nsm PV cells in series as illustrated in fig. 2.4 in order to achieve the desired output current 

and voltage. The PV module current IM is implicitly described in (Chenni, Makhlouf et al. 

2007): 

ெܫ  = ௦௖ெ[1ܫ − exp	(ܸெ − ௢ܸ௖ெ + ܴ௦ெ. ெ௧ܸ௛ெܫ )] (2.11) 

where: ܫ௦௖ெ = ௣ܰ௠. ௦௖஼ܫ , module short-circuit current, 

௢ܸ௖ெ = ௦ܰ௠. ௢ܸ௖஼ , module open-circuit voltage, ܴ௦ெ = ேೞ೘ே೛೘ . ܴ௦஼, module equivalent series resistance, 

௧ܸ௛ெ = ௦ܰ௠. ௧ܸ௛஼ , thermal voltage of module, ܸெ, PV module voltage. 

MI

MV

smN

pmN

 

Figure 2.4 PV cells configuration in a module 
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Under standard (irradiance 1000W/m2, ambient temperature 25℃) or normal (irradiance 

800W/m2, ambient temperature 20℃, wind speed 1m/s) conditions, the PV module 

characteristics are given by manufacturers as illustrated in fig. 2.3. 

 

2.2.3. Solar array 

 PV modules are connected in an array with Npa× Nsa elements as depicted in Figure 2.5. 

Assuming that the modules are the same and the distribution of the irradiance on all modules 

is uniform, the PV array terminal voltage ܸ஺ and current ܫ஺ are denoted as (Luque and 

Hegedus 2011): 

 ܸ஺ = Nୱୟ. ܸெ ܫ஺ = N୮ୟ.  ெܫ

 

(2.12) 

 

This PV model as the part of microgrid model is developed and implemented in 

Matlab/Simulink for simulation purposes.  

 

AI

AV

saN

paN

 

Figure 2.5 PV module configuration in an array 
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2.3 DC-DC boost converter steady-state analysis: 

The DC-DC boost converter circuit consists of a semiconductor power switch, diode and 

inductor to transfer the energy from input to output. Control circuitry is added to the boost 

converter to handle the energy transfer and to maintain the output in normal operating range. 

The inductor stores the energy as a function of current (
1Li ): 

 

2
1 12

1
LiLE =

 

 

(2.13) 

pvU
dcU

1L

pvC DCC1s

pvi
Di

1Li

 

Figure 2.6 DC-DC boost converter 

 

The slew rate of current through the power switch is limited by the inductor. As a result the 

stress on power switch due to the high peak current is limited by inductor. Switching 

converters reveal higher efficiency than the linear power supplies which use the resistive 

voltage drop to regulate the voltage (the power losses in the form of heat). The switching 

regulator has a voltage drop and corresponding current which is 90° phase shift. The energy 

as a result can be stored in charging period and recovered in discharge period respectively.  

Figure 2.6 shows a simple configuration of a boost (step-up) converter. When the switch 

closes, the inductor is in charge mode. The input voltage pvU is across the inductor so that its 

current (
1Li ) rises linearly at a rate as: 
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1

1

L

U

dt

di pvL =  
(2.14) 

 

It is seen that the diode prevents the output capacitor voltage ( dcU ) from discharging. If the 

switch opens, the inductor current flows into the rectification diode in order to charge the 

output capacitor. This results in raising the output voltage at an inductor current rate as: 

 

1

11

L

V

dt

di LL −=  
(2.15) 

 

In steady state the average inductor voltage (<
1LV >=0) is zero (equilibrium point) over the 

entire switching cycle (Ts), i.e., 
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1

111
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sT
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ON

t

L
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L
s

L dtVdtV
T

V  
(2.16) 

 

This volt-second rule implies that: 

 

ONpvOFFL tUtV =
1

 (2.17) 

 

Where tON and tOFF are the charge and discharge times of inductor respectively. Consider that 

 

pvLdc UVU +=
1

 (2.18) 

 

we can simplify the equation as: 

 

pv
OFF

ON
dc U

t

t
U )1( +=  

(2.19) 
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Defining duty cycle D as: 

 

OFFON

ON

tt

t
D

+
=  

(2.20) 

 

then the output voltage of boost converter in steady state is formulated as: 

 

pvdc U
D

U ]
1

1
[

−
=  

(2.21) 

 

2.4 Photovoltaic Converter Dynamics 

This section presents a detailed model which considers the converter transient response. A 

DC-DC boost converter which connects the PV array to the DC bus is considered in Figure 

2.6. The voltage of the capacitor ܥ௉௏ at the terminal of the PV has the following dynamics, 

 ܷ݀௉௏݀ݐ = − ௉௏ܥ1 ݅௅భ + ௉௏ܥ1 ݅௉௏ 
(2.22) 

 

where ܷ௉௏ and ݅௉௏  are the PV voltage and current, and ݅௅భ is the inductor (ܮଵ) current. The 

PV voltage, the inductor current and the DC bus voltage,	ܷ஽஼ are interrelated by the 

following formula:  

 ݀݅௅భ݀ݐ = ൬ ଵܮ1 ܷ௉௏ − ଵܮ1 ܷ஽஼൰ + ܷ஽஼ܮଵ  ଵݏ
(2.23) 

 

where	ݏଵ is a discontinuous signal which defines the converter switch position. The inductor ܮଵ and capacitors ܥ௉௏ and ܥ஽஼ are considered to be known constants. Equations (2.22) and 

(2.23) are essential in the design of a controller that regulates the DC-DC converter's input 

voltage to a reference value that corresponds to the maximum power point of the PV system. 
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2.5 Voltage Source Inverter (VSI) and Space Vector Modulation (SVM): 

A two-level Voltage Source Inverter (VSI) for three-phase system is considered in this thesis 

as illustrated in Figure 2.7. Six power switches, SW1~SW6 with free-wheeling diodes in 

parallel are contrived in the inverter. Each switching group consists of two or more power 

switch devices (i.e.  Insulated-Gate Bipolar Transistors (IGBTs) or MOSFETs) connected in 

series depending on the DC input operating voltage level of the inverter. The selection of the 

power switching devices depends on the switching frequency range, application power level 

and acceptable power losses of the inverter. The desired output voltage of the inverter is 

achieved by changing the frequency and amplitude of the reference signal. The comparison 

between the references and the carrier waveforms results in Pulse Width Modulation (PWM). 

This low level PWM signals from microcontrollers are translated to appropriate high voltage 

level through DC-AC inverters. Among PWM techniques sinusoidal PWM (SPWM) and 

Space Vector PWM (SVPWM) are known as popular modulation synthesis in inverter 

applications. 

 

 

Figure 2.7 Three-phase two-level voltage-source inverter 
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The principle of the SPWM for VSI is illustrated in Figure 2.8 for one switching period. 

Considering two triangles PMQ and SMT, the corresponding length of two triangles satisfies: 

 

SM

PM

ST

PQ =  
(2.24) 

 

This relation can be solved to: 

 

)1(
2 ,, Aref

s
Aon V

T
T +=  

(2.25) 

 

If the Vref,A is adjusted to zero, the duty cycle is 50%, corresponding to half of the period. 

Similarly the value Vref,A equal to one gives the duty cycle of one (full on state) which is 

maximum positive voltage. At last, the value Vref,A equal to -1 gives the duty cycle of zero 

(full off state) which is maximum negative voltage. To achieve required output voltage, an 

appropriate duty cycle with -1<Vref,A<1 is selected. 

 

 

Figure 2.8 PWM signal for one switching period 
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Space vector modulation as one of the preferred real time modulation techniques is widely 

used for digital control of VSIs. The operation of the inverter switches can be defined by 

switching states. If the upper switches in inverter (Figure 2.7) are on, the switching state is 

denoted by "H". As seen in Figure 2.7, the terminal voltage (VA, VB or VC) at each inverter 

leg is Vd. Switching state "L" denotes the lower switches conduct with terminal voltage equal 

to zero. There are eight states as listed in Table 2.1. For instance, the switching state [HLL] 

denotes that the switches S1,S2, and S6 conduct in inverter phases. Two states of [LLL] and 

[HHH] are defined as zero states while the others are active states. These active and zero 

states can be demonstrated by six active space vectors 1V to 6V forming a hexagon with six 

sectors I to VI. with the zero vector 0V on the center of the hexagon. 

 

Table 2.1 Space Vector Modulation 

Space vector Switching 

state 

Switch position 

("on") 

Vector definition 

Zero vector 
0V  [HHH] or 

[LLL] 

(S1,S3, S5) or (S4,S6, 

S2) 

00 =V  

Active vector 
1V  [HLL] (S1,S6, S2) 0

1 3

2 j
d eVV =  

Active vector 
2V  [HHL] (S1,S3, S2) 

3
2 3

2 π
j

deVV =  

Active vector 
3V  [LHL] (S4,S3, S2) 

3

2

3 3

2 π
j

deVV =  

Active vector 
4V  [LHH] (S4,S3, S5) πj

deVV
3

2
4 =  

Active vector 
5V  [LLH] (S4,S6, S5) 

3

4

5 3

2 π
j

deVV =  
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Active vector 
6V  HLH (S1,S6, S5) 

3

5

6 3

2 π
j

deVV =  

Reference 

vector 

refV  N.A. N.A. θj
refref eVV =  

 

Assuming that the inverter is in three-phase balanced operation, we have the load phase 

voltages as, 

 

0)()()( =++ tVtVtV CNBNAN  (2.26) 

 

Equation (2.26) denotes that one of the phase voltages is redundant such that the third voltage 

can be readily calculated. Therefore it is possible to transform the three-phase voltages to 

equivalent two-phase voltages using Clarke transformation as: 
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(2.27) 

 

The space vector can be represented in the α-β plane as: 

 

)()( tjVtVV βα +=  (2.28) 

 

For φφφ sincos je j +=  and 0=φ ,
3

2π and 
3

4π substituting Equation (2.27) into (2.28), we 

have 

 









++= 3

4

3

2

)()()(
3

2 ππ
j

CN

j

BNAN etVetVtVV  
(2.29) 
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The phase voltages are calculated for the switching state [HLL] considering the balanced 

three-phase system as, 

 

dAN VtV
3

2
)( = , dBN VtV

3

1
)( −= and dCN VtV

3

1
)( −=  

(2.30) 

 

The space vector 1V therefore can be found by substituting (2.30) into (2.29) as, 

 

0
1 3

2 j
d eVV =  

(2.31) 

 

similarly the other active vectors can be derived as, 

 

33

2 )1( π−= rj
dr eVV , r=1,2,...,6 

(2.32) 

 

the Space vector diagram for the two-phase inverter is illustrated in Figure 2.9, 

 

 

Figure 2.9 Space vector diagram for the two-level inverter 
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The active and zero vectors are stationary vectors and do not move in space while the 

reference vector as illustrated in Figure 2.9 rotates in space at an angularly velocity ( fπω 2= ) 

where f  is the fundamental frequency of the inverter output voltage. The next step is to 

determine the duty-cycle time (on-state time) using the reference vector. 

Assuming for the sufficiently small sampling time sT , the reference vector refV is constant 

during sT . As demonstrated in Figure 2.9 refV can be approximated by two adjacent active 

vectors and zero vector. Suppose refV falls into the sector I. Therefore refV can be obtained 

by 1V , 2V  and 0V . According to the volt-second balance, we have 

 

0021 TVTVTVTV basref ++=  

0TTTT bas ++=  

(2.33) 

 

where the parameters aT , bT  and 0T  are defined as the dwell times for the corresponding 

vectors ( 1V , 2V  and 0V  respectively). Solving the equation according to table 2.1 yields 

 

)
3

sin(
3

θπ −=
d

refs
a V

VT
T  

)sin(
3

θ
d

refs
b V

VT
T =  for 

3
0

πθ <≤  

bas TTTT −−=0  

 

(2.34) 

 

Defining the modulation index m  such that, 
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d

ref

V

V
m

3
=  

(2.35) 

 

Equation (2.34) can be expressed as, 

 

)
3

sin( θπ −= mTT sa  

)sin(θmTT sb =  for 
3

0
πθ <≤  

bas TTTT −−=0  

(2.36) 

 

As the maximum of refV corresponds to the radius of the largest circle in hexagon shown in 

Figure 2.9, the maximum magnitude of refV is obtained, 

 

3
30cos.

3

2max d
dref

V
VV == °  

(2.37) 

 

That is the case of the maximum modulation index, 1max =m . The modulation index for the 

space vector modulation is, 

 

10 ≤≤ m  (2.38) 

 

The maximum fundamental line-to-line rms voltage modulated by SVM technique is 

therefore calculated by, 

 

d
ref

SVM V
V

V 707.0
2

3
max

max ==  
(2.39) 
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Note that 
2

max
refV

is the maximum rms of the phase voltage of the inverter. The inverter 

modulated by the SPWM scheme, the maximum fundamental line-to-line voltage is 

dSPWM VV 612.0max = . The ratio of the maximum fundamental line-to-line voltage for both 

schemes is 

 

155.1
612.0

707.0

707.0
2
33

612.0
2

23

max

max

max

max

==

==

==

d

d

SPWM

SVM

d

d

SVM

d

d

SPWM

V

V

V

V

V

V

V

V

V

V

 

(2.40) 

 

The Equation (2.40) states that for a given dc bus voltage the maximum fundamental line-to-

line voltage of the inverter produced by the SVM method is 15.5% higher than that by the 

SPWM. 

 

The next step in SVM synthesis implementation is to determine the switching sequence. A 

typical seven-segment switching sequence is presented in Figure 2.10 for refV  in sector I 

which is synthesized by 0V , 1V  and 2V . The transition from LLL to HLL is performed by 

turning 1S  on and 4S  off that is a complementary command. These switching patterns finally 

generate the appropriate SVPWM signals to the corresponding IGBTs. 
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Figure 2.10 Seven-segment switching sequence 

 

2.6 Inverter Voltage and Current Dynamics 

A three-phase DC-AC inverter which connects the DC bus to the AC bus at the point of 

common coupling (PCC) is illustrated in Figure 2.1. The voltages at the AC terminals of the 

inverter, the currents through the filtering inductors (ܮ௙) and the voltages at the transformer 

primary are related as follows, 

௔௕௖ݒ  = ௙ܮ ݀݅௔௕௖݀ݐ +  ௧ (2.41)(௔௕௖ݒ)

 

where ݒ௔௕௖ = ,௔ݒ) ,௕ݒ ௖)் and ݅௔௕௖ݒ = (݅௔, ݅௕, ݅௖)் are the three-phase voltage and current at 

the inverter output, while (ݒ௔௕௖)௧ = ,௔௧ݒ) ,௕௧ݒ  ௖௧)் is the voltage at the transformer primaryݒ

side, as illustrated in Figure 2.1. Equation (2.41) is converted in the D-Q reference frame 

using the Park transformation as follows, ܮ௙ ݀݅ௗ݀ݐ = ௙߱݅௤ܮ + ௗݒ −  ௧ (2.42)(ௗݒ)

௙ܮ ݀݅௤݀ݐ = ௙߱݅ௗܮ− + ௤ݒ −  ௧ (2.43)(௤ݒ)
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Where	݅ௗ and ݅௤ stand for inductance currents in the D-Q reference frame. ݒௗ and	ݒ௤ are the 

converter terminal voltage components. The D-Q reference frame components for the voltage 

at the transformer primary are (ݒௗ)௧	and (ݒ௤)௧. ߱	is defined as angular frequency which is 

measured by a phase-locked loop (PLL) module. When the voltage at the transformer 

primary is used as the reference for the Park transformation, the Q-component for the voltage 

at the transformer primary is zero, i.e. (ݒௗ)௧ = ௧(௤ݒ) and	௦ݒ = 0. 

 

For voltage regulation purposes, it is essential to represent the relationship between the 

voltage at the transformer primary and the microgrid voltage. The following equation 

represents the dynamic relationship between the PV-battery system and the AC line. Note 

that the AC system is referred to the transformer primary, 

 

௧(௔௕௖ݒ) = ௦ܮ ݀݅௔௕௖݀ݐ +  ௦ (2.44)(௔௕௖ݒ)

 

where	ܮ௦ and (ݒ௔௕௖)௦ are the AC line inductance and the three-phase voltage referred to the 

transformer low-voltage side. Since the DC bus voltage is usually very low compared to the 

AC bus voltage level, it is realistic to assume that the transformer has a large turn ratio in this 

study. The dynamics of the transmission line inductance become negligible compared to the 

filtering inductor when it is referred to the transformer primary. As a consequence, ܮ௦ ௗ௜೏ௗ௧ =0	and ܮ௦ ௗ௜೜ௗ௧ = 0. Equation (2.44) simplifies to (2.45) in the D-Q reference frame. Only the 

D-component of the relationship is formulated as, 

௦ݒ  =  ௦ represents the d-component of the(ௗݒ) ௦ is the terminal voltage at the AC bus, andݒ ௦߱݅௤ (2.45)ܮ−௦(ௗݒ)

microgrid AC voltage. 
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2.7 Bidirectional Converter Voltage and Current Dynamics 

The bidirectional DC-DC converter connected to the battery and the DC bus, as illustrated in 

Figure 2.1 plays an important role in energy management in the microgrid. The DC bus 

voltage (ܷ஽஼) dynamics are obtained through applying the Kirchhoff Current Law (KCL) at 

the DC bus node, 

 

஽஼ܥ ܷ݀஽஼݀ݐ = ݅஽ − ݅௅మ − ݅஽஼ 
(2.46) 

 

where ݅஽, ݅஽஼ and ݅௅మ are the diode current in the photovoltaic converter, the inverter input 

DC current and the current through the inductor ܮଶ, respectively. Note that ܥ஽஼ is the DC bus 

capacitance. This gives in steady state: 

 ݅஽஼ = ݅஽ − ݅௅మ (2.47) 

 

Applying KVL to the battery converter circuit in Figure 2.1 gives the dynamics of the current 

through inductor	ܮଶ, 

ଶܮ  ݀݅௅మ݀ݐ = ܷ஽஼ − ܷ௕௔௧ݏଶ 
(2.48) 

 

where ܷ௕௔௧ and ݏଶ are the battery terminal voltage and the converter switching position. The 

two switches (ݏଶ,  ଶ) have complementary positions in a manner when one is closed, theݏ̅

other is open. In order to control the power flow among the PV, the battery, the synchronous 

generator and the AC loads, it is essential to find the dynamics of the power exchanged in the 

microgrid. These equations will relate the energy stored in the DC bus, the power generated 

by the PV system, the power supplied by the battery and the power conveyed to the AC bus. 

It can be shown that the energy stored in the DC bus (ܧ஽஼) satisfies the following equation, 
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ݐ஽஼݀ܧ݀ = ௉ܲ௏ − ௕ܲ௔௧ − ஺ܲ஼ 
(2.49) 

 

where ܧ஽஼ = ଵଶ ஽஼ܷ஽஼ଶܥ . ௉ܲ௏, ௕ܲ௔௧ and ஺ܲ஼ are the power delivered by the PV to the DC bus, 

the power delivered from the DC bus to the battery and the power sent to the AC side, 

respectively. When the converter losses are ignored, the power at the battery output has the 

following expression in terms of the inductor current and the DC bus voltage, 

 

௕ܲ௔௧ = ܷ஽஼݅௅మ (2.50) 

 

Differentiating (2.50), multiplying both sides of the equality by ܥ஽஼ܷ஽஼ and substituting 

(2.48) and (2.49) yield, 

 ݀ ௕ܲ௔௧݀ݐ = ݅௅మܥ஽஼ܷ஽஼ ( ௉ܲ௏ − ௕ܲ௔௧ − ஺ܲ஼) +	 ஽஼ܷ஽஼ܥଶܮ஽஼ܧ2 (ܷ஽஼ − ܷ௕௔௧ݏଶ) (2.51) 

 

Similarly when the DC-AC converter losses are neglected, the power exchanged between the 

DC bus and the AC bus is equal to the power expression at the transformer primary. This 

power has the following expression, 

 

஺ܲ஼ = 32 (݅ௗ(ݒௗ)௧ + ݅௤(ݒ௤)௧) (2.52) 

 

where (ݒௗ)௧ = ௧(௤ݒ) ௦ andݒ = 0 represent the terminal voltage at the primary side of the 

transformer. 
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2.8 Synchronous machine model 

This section aims to present the general structure of a conventional compensator of a 

synchronous generator (SG) including excitation system and speed controller.  

 

2.8.1 AVR, PSS and speed governor modules 

One of the traditional excitation controls is the Automatic Voltage Regulator (AVR) that 

compensates the terminal voltage. The AVR normally augments the field voltage to restore 

the terminal voltage to its pre-fault level. Under large disturbances, due to a three-phase fault, 

the terminal voltage of SG could be very low. After the faults are cleared the generator 

reconnects to power system; however, this recovery causes post-fault oscillations due to the 

energy stored in the generator rotor. Therefore another basic function of the excitation system 

is to damp the oscillations. With addition of power system stabilizer (PSS) to the AVR, the 

excitation system could eliminate any negative effect of damping post-fault oscillations (due 

to the fast recovery of terminal voltage using the AVR).  

 

The commonly used control signal of the PSS is the speed deviation as an additional 

feedback signal for introducing a damping torque control component. Generally the PSS 

includes the phase compensation module, which provides the phase-lead characteristic to 

compensate for the phase lag between the exciter input and the generator electrical torque, 

the high-pass wash-out filter, and the gain which determines the amount of damping 

introduced by PSS. The PSS can generate a component of electrical torque which is in phase 

with the rotor speed deviation. Thus, the oscillations corresponding to the rotor speed can be 

detected and damped by the PSS. Figure 2.11 shows the excitation control system which is 

combination of the PSS and the AVR.  
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Figure 2.11 PSS and AVR configuration in SG system 

 

The basic function of the speed governor is to adjust prime mover output power for changes 

in system speed. If the frequency decreases, due to load increment or loss of generation, the 

speed of each connected generator will also decrease. The deviation in speed with respect to 

its nominal value will be used to modify the position of the fuel valve. The objective is to 

allow each generator to share the load power in interconnected power system. The droop 

control and speed regulation are commonly used methods in synchronous generator governor 

(see Figure 2.12). The term droop is the amount of the speed change necessary to cause the 

prime mover control to move from fully closed to fully open position. In small isolated SGs, 

the zero droop is considered such that the governor keeps the valve open until the speed is 

restored to its nominal value. Therefore, speed droop is used to control the magnitude of 

governor response for a given frequency change so all generators will share response after a 

disturbance. On the other hand the definition of the speed regulation refers to the amount of 

speed variation that is necessary to cause the output of the synchronous generator to change 

from zero output to full output.  

 

In contrast with droop, this term focuses on the output of the generator, rather than the 

position of its valves. 
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(a) 

 

(b) 

 

Figure 2.12 Governor Control: Droop governor (a), speed regulation (b) 

 

2.8.2 Transient Model of Saturated Salient Pole Synchronous Machine: 

This section presents the traditional model for the transient analysis of Saturated Salient Pole 

Synchronous Machine. Figure 2.13 shows the complete equivalent d-q circuit model of a 

Salient Pole Synchronous Machine. 
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Figure 2.13 Salient Pole Synchronous Machine Model: Equivalent q-axis (a), Equivalent d-
axis (b) 

 

The d-q voltage equations in the rotor reference frame remain as follows: 
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(2.53) 
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where operator p is the time derivative dt
d . The flux linkages incorporating the effect of 

saturation are given as follows: 

 

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )satiX

satiXsat

satiX

satiXsat

satiX

satiXsat

satiX

satiXsat

satiX

drckdfdfd

mddrrdrbdrc

drckdkdkd

mqqrrqrbqrc

qrckqkqkq

mddsssbdsc

dscdssads

mqqsssbqsc

qscqssaqs

ψψ
ψψ

ψψ
ψψ

ψψ
ψψ

ψψ
ψψ

ψψ

+=
+=

+=

+=

+=
+=

+=

+=

+=

1

1

1  

(2.54) 

 

The flux linkages qsλ and dsλ have been multiplied by a base frequency bω  to yield the d-q 

stator flux linkages qsψ and dsψ . The variables qscψ , dscψ  and qrcψ  are the d, q stator core 

and rotor core flux linkages respectively. The variables kdψ   and fdψ  are the d-axis flux 

linkages of the damper and field windings respectively, and kqψ  represents the q-axis damper 

flux linkage. The machine currents are derived as follows: 
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(2.55) 

By substituting the (2.55) into (2.53) the flux equations are obtained as: 
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(2.56) 
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The unsaturated magnetizing flux in the q and the d axes are as follows: 
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(2.57) 

 

The saturated magnetizing flux in the q and the d axes are given: 
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where the mqK  and mdK  are the saturation factors for magnetizing flux in the q and the d 

axes. The total unsaturated magnetizing flux is given as: 
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By substituting the (2.55) into (2.57) the unsaturated flux equations are obtained as: 
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(2.60) 

where 
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(2.61) 

The unsaturated core flux equations are given: 
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(2.62) 

By substituting the current equations (2.55) into (2.62) the above unsaturated flux equations 

are obtained as: 
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where 
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(2.64) 

 

The changes in the flux linkages in the core due to saturation are given as: 
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The saturated core flux linkages are written as: 
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(2.66) 

 

where the parameter sK  is the saturation factor for the stator core and is a function of the 

total unsaturated stator core flux linkage as: 

 

( ) ( ) ( )unsatunsatunsat dscqscsc
22 ψψψ +=  (2.67) 

 

The rotor saturation factors drK  and qrK are defined similarly.  
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The electromagnetic torque with poles number P is given as: 
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(2.68) 

 

2.8.3 Swing equation: 

The swing equation neglects all electrical dynamics, considered much faster than mechanical 

dynamics. The equation of motion of the synchronous machine rotor that is driven by a prime 

mover is given by: 

 

aem TTT
dt

d
J =−=

2

2θ
 

(2.69) 

 

where: 

J is the total moment of inertia of the rotor mass in kgm2; 

Tm is the mechanical torque supplied by the prime mover in N-m; 

Te is the electrical torque output of the alternator in N-m; 

θ is the angular position of the rotor in rad. 

 

If mechanical and electrical torques are exactly equal, there can be no angular acceleration, 

and this is the case when the machine is in synchronism, i.e., 

 

em TT =  (2.70) 

 

During this period the rotor will move at synchronous speed ωs in rad/s. When there is a 

difference between mechanical and electromagnetic torques, the machine accelerates. The 

amount of acceleration is proportional to the difference between Tm and Te. This difference is 

called the accelerating torque Ta, 
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ema TTT −=  (2.71) 

 

We define  ωr as the rated mechanical angular velocity of the shaft, in rad/sec such that 

 

2/P
e

r

ωω =  
(2.72) 

 

where P is the number of poles. We also define a synchronously rotating reference frame as: 

 

αωθ += trref  (2.73) 

 

where α is the initial angle. Derivation of Equation (2.73) gives, 

 

rrefdt

d ωθ =  
(2.74) 

 

This implies that the reference speed is constant. Let us define the rotor mechanical torque 

angle, mδ as, 

 

refm θθδ −=  (2.75) 

 

Where θ and refθ designate rotor and reference positions respectively. The above relation is 

illustrated in Figure 2.14. 
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Figure 2.14 Rotor angular position with respect to the reference position in phase-a of 
synchronous machine 

 

The position mδ is the angle of the internal voltage of a synchronous machine (see Figure 

2.15) and it corresponds to the amount of power that can be transferred. This angle is called 

the load angle. 

 

mE δ∠ °∠ 0V

X

 

Figure 2.15 Per-phase equivalent circuit of the three-phase synchronous machine 

 

We can rewrite the Equation (2.75) as 

 

mrt δαωθ ++=  (2.76) 

 

Considering the transient condition, by taking the first derivative of (2.76), we have: 
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mr dt

d

dt

d δωθ +=  
(2.77) 

 

The second derivative results in 

 

mdt

d

dt

d δθ
2

2

2

2

=  
(2.78) 

 

Therefore the Equation (2.78) can be written as 

aem
m TTT

dt

d
J =−=

2

2δ
 

(2.79) 

 

Equation (2.79) describes the behavior of the rotor dynamics and hence is known as the 

swing equation. For the general case of P-pole machine we have the Equation (2.79) in 

electrical radian as, 

 

aem
e TTT

dt

d

P
J =−=

2

22 δ
 

(2.80) 

Since 2

2

dt

d

dt

d ee δω =
 
, finally the swing equation for the synchronous machine can be written 

as: 

aem
e TTT

dt

d

P
J =−=ω2

 
(2.81) 

 

2.9 Frequency and voltage models 

The frequency model is essential for the proposed model-based design strategy. Since the 

frequency is proportional to the synchronous generator rotor speed, the frequency dynamics 

are obtained from the well-known swing equation (i.e. 4-pole machine): 
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12 ௠߱ܬ ݀߱௠݀ݐ = ௠ܲ − ௘ܲ − ௠ଶ߱ܤ  
(2.82) 

 

where ߱௠, ܬ and ܤ are the synchronous generator mechanical speed, the inertia and friction 

coefficient, respectively. ௘ܲ is the synchronous generator output power and ௠ܲ is the 

mechanical power. The synchronous generator power, the load power and the power 

generated by the PV-battery system are related by the algebraic relationship: 

 ௘ܲ = ௟ܲ௢௔ௗ + ஺ܲ஼ (2.83) 

 

The mechanical power is provided by a prime mover. It is assumed that the synchronous 

generator is equipped with its own automatic voltage regulator (AVR) and speed governor 

which has droop characteristics. Therefore, the following relationship between the 

mechanical power and the mechanical speed can be assumed, 

 

௠ܲ = −݇൫߱௥௘௙ − ߱௠൯ + ௥ܲ௘௙ = −݇∆߱ + ௥ܲ௘௙ (2.84) 

 ௥ܲ௘௙ is the reference power for the speed governor of the synchronous generator. Let the 

frequency 

 ߱௠ = ߱ܲ = ݂ܲߨ2  
(2.85) 

 

where ܲ is the number of pole pairs. 

The frequency dynamical model has the following expression: 

ݐ݀߱݀  = 2ܲଶ߱ܬ ൬− ݇ܲ ∆߱ + ௥ܲ௘௙ − ௟ܲ௢௔ௗ − 32 ݅ௗݒ௦ − ଶܤܲ ߱ଶ൰ 
(2.86) 
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To considerably reduce the steady state error of the voltage at the transformer primary, an 

integrator is added to the voltage control loop. This requires defining a new variable which is 

the integral of the voltage deviation from its reference value. 

 Ω = න ൫ݒ௦ − ௦௥௘௙൯݀߬௧ݒ
଴  

(2.87) 

 

The dynamics of this new variable are given by the following equation which is added to the 

model presented in this section. dΩ݀ݐ = ௦(ௗݒ) − ௦߱݅௤ܮ −  ௦௥௘௙ݒ
(2.88) 

 

2.10 Nonlinear model of the entire system 

Equations (2.22), (2.23), (2.42), (2.43), (2.49), (2.51), (2.86), and (2.88) represent the 

dynamic model of the hybrid PV-Battery generator. This model has eight states and four 

inputs/outputs. It can be rewritten in the following closed form,   

 xሶ = (ݔ)݂ + y ݑ(ݔ)݃ = ℎ(ݔ) (2.89) 

 

where	ݔ = [ܷ௉௏, ݅௅భ, ݅௤, Ω, ,஽஼ܧ ௕ܲ௔௧, ݅ௗ, ߱]் is the vector of state variables, ݑ ,ଵݏ]= ,௤ݒ ,ଶݏ ݕ ௗ]் is the vector of control inputs, andݒ = ℎ(ݔ) = [ܷ௉௏, Ω, ,஽஼ܧ ߱]் is the vector 

of outputs. The nonlinear vector function ݂(ݔ) and the matrix ݃(ݔ) are given as: 
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(ݔ)݂ =

ێێۏ
ێێێ
ێێێ
ێێێ
ێێێ
ۍ − ௉௏ܥ1 ݅௅భ + ௉௏ܥ1 ݅௉௏1ܮଵ ܷ௉௏ − ଵܮ1 ܷ஽஼−߱݅ௗ(ݒௗ)௦ − ௦߱݅௤ܮ − ௦௥௘௙ݒ

௉ܲ௏ − ௕ܲ௔௧ − 32 ݅ௗݒ௦݅௅మܥ஽஼ܷ஽஼ ( ௉ܲ௏ − ௕ܲ௔௧ − 32 ݅ௗݒ௦) +	 ஽஼߱݅௤ܥଶܮ஽஼ܧ2 + ௗݒ − ߱ܬ௙2ܲଶܮ௦ݒ ൬− ݇ܲ ∆߱ + ௥ܲ௘௙ − ௟ܲ௢௔ௗ − 32 ݅ௗݒ௦ − ଶܤܲ ߱ଶ൰ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې

 

(ݔ)݃ =

ێێۏ
ێێێ
ێێێ
ێێێ
ۍێێ
0ܷ஽஼ܮଵ000000

					0					0					 0					0					0					0					0					௙ܮ1

0					0					஽஼ܷ஽஼ܥଶܮ஽஼ܷ௕௔௧ܧ2−					0					0					0					0					0					

					0					0					0					0					0					0					 0					௙ܮ1

		

ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ېۑۑ

 

(2.90) 

This model is nonlinear, multivariable and highly coupled with the independent variables ܷ௉௏, ݅௅భ, ݅௤, Ω, ,஽஼ܧ ௕ܲ௔௧, ݅ௗ and ߱.The model is used in next chapters for designing advanced 

nonlinear control. 
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2.11 Conclusion 

This chapter firstly described the commonly used models of a PV system (i.e. PV 

cell/module/array), power electronic converters (i.e. modulation techniques, steady-state and 

dynamic analysis), synchronous generator (i.e. voltage vs. speed control, transient and 

saturation model and swing equation) and frequency model. It was followed by proposing a 

novel mathematical model (8th order) of a PV-battery generator in a microgrid paralleled with 

synchronous generator. This suggested model, in addition to the nonlinear model of PV 

array, is nonlinear, multivariable and highly coupled. This model is used for designing an 

innovative and advanced control technique.  

 

 

 

 



 

CHAPTER 3 
 
 

CLASSICAL CONTROL OF MICROGRID 

3.1 Introduction 

This chapter proposes a classical control approach based on backstepping control technique 

composed of a group of several cascaded control loops. The control strategy will not use the 

complete nonlinear model that was presented in chapter 2. To tackle the microgrid (MG) 

problems discussed in the introduction of this thesis, the control scheme is structured into 

three controller modules: (i) three-phase dc-ac inverter (i.e. decoupled frequency and voltage 

controller), (ii) photovoltaic dc-dc converter (i.e. maximum power point tracking controller) 

and (iii) battery dc-dc converter (i.e. DC bus voltage controller). The proposed classical 

approach offers advantages over existing ones as the PV generator emulates the reaction of a 

conventional generator in frequency and voltage regulation. The motivation of the classical 

control is to propose a method of MG control which doesn't use the exact nonlinear model 

suggested in previous chapter. The frequency, as a global state variable is formulated by a 

droop characteristics. The charging or discharging decision is made by a simple algorithm 

based on the state of the power of the PV and the load. The simplicity and independence of 

the controllers allow for an extension to more complex and large-scale microgrid which is a 

significant advantage. The controller performance is evaluated in simulation using the 

SimPowerSystems blockset in Simulink/Matlab. 

 

3.2 Microgrid System and Control 

The proposed microgrid in this chapter, as presented in Figure 3.1, includes a PV array, a 

battery storage, a synchronous generator and a load.  The primary objective is that the hybrid 

PV-battery system participates in frequency and voltage regulation just as the synchronous 

generator does despite the power changes from either the local sources (i.e. insolation 

variation) or the load perturbation. This primary objective is associated with the control of 

the dc-ac inverter: (i) cascaded frequency and power controller and (ii) cascaded terminal 
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voltage and current controller. It is then followed by designing cascaded control of battery to 

regulate the dc bus voltage as well as the battery current. Finally the design of a classical 

maximum power point tracker (i.e. Perturb & Observe (P&O) method) and cascaded 

controller for the PV system is suggested. 

 

 

Figure 3.1 General configuration of the suggested microgrid  

 

3.2.1 Inverter control 

This section presents the design of frequency and terminal voltage control modules. The 

frequency control is based on droop technique along with the design of active power control 

module. The reference of the power control module is modified by suggested droop control. 

The terminal voltage control is based on backstepping control (Okou 2012) with inner 

current control loop. 

 

Frequency control design: 

Conventionally, the imbalance in active power between generation and demand in a 

microgrid (MG) causes the frequency deviation. Consider the power flow transferred by a 

transmission line between two generators as depicted in Figure 3.2, 
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Figure 3.2 Power flow between two generators 

 

the power flow into a power line is calculated as, 
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where 

 

:θ Line angle; 

:δ Power angle;  

:jXRZ += Line impedance. 

 

The active power can be obtained using Euler formula such that, 
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(3.2) 

With the line reactance much greater than the resistance (X>>R and 
2

πθ → ), the active 

power can be simplified as, 
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X

VV
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(3.3) 

If the power angle δ is small, then δδ ≅sin . Rewriting the Equation (3.3) gives, 

 

δ
X

VV
P 21≅

 

 

(3.4) 

Linearizing (3.4) around equivalent points ( 0δ ) using Taylor series, assuming 00 =δ  gives,  

 

δΔΓ≅Δ .pP  

 

(3.5) 

 

where coefficient pΓ is given by 

 

X

VV
p

0
2

0
1 .

=Γ  

 

(3.6) 

The active power can be therefore controlled through regulation of the power angle. 

Frequency control leads to regulate the power angle and this in turn controls the real power 

flow (Alvaro et al. 2011). Assuming linear relationship (Emadi, A. et al. 2004) between the 

power angle and frequency ( fΔ=Δ .αδ ), Equation (3.5) can be rewritten as, 

 

fP p ΔΓ≅Δ ..α  (3.7) 

 

This observation leads to droop characteristics such that, 
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fkP Δ−=Δ .1  (3.8) 

where k1 is the droop gain of the MG characteristics discussed in Chapter 2. The first order 

model of frequency deviation with decoupled active power deviation is obtained. 

Considering the first-order measurement filters with small time constant T1, the variables ∆ ௠݂ which is the measured frequency is given as: 

 ∆ ௠݂ = 11 + ଵܶݏ ∆݂ 

 

(3.9) 

As illustrated in Figure 3.5, the deviations of active power of the PV-battery (i.e. ∆݌) is 

added to the corresponding power produced by conventional generator (i.e. synchronous 

generator,	∆݌ௌீ) in order to reduce the deviation in load power (∆݌௅). The power deviation ∆݌ is defined as, 

݌∆  = ݌ − ௥௘௙݌ −  ∗݌
 

(3.10) 

Note that in above formulation, a high efficient converter design with negligible power losses 

is assumed to be used. This implies that the apparent power deviation ∆ܲ converges to zero 

in steady state when the power balance meets in islanded microgrid. 

 

The proposed control offers both the dynamic and steady state power participation of PV 

generator to restore the frequency and voltage. In fact, a bigger compensation coefficient is 

needed to damp the initially fast power variation. In case of load increase or decrease, 

respectively a high positive or negative equivalent compensating signal is chosen to damp the 

deviation to a prescheduled rating range. On the contrary, the slow continuous power 

changes need smaller coefficient. On the other hand, very large values of a compensation 

index in steady state results in instabilities in the microgrid, while small values cause big 

frequency drop so that the inverter trips off. Therefore the selection of a dynamic index plays 

an important role in microgrid performance. This section proposes a multi-rate curve so that 
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a dynamic coefficient is chosen to damp both fast and slow power variation. A dead zone 

with zero droop is defined for the slight frequency variation, thus the microgrid is maintained 

at its rated power. 

 

According to the compensation characteristic shown in Figure 3.3, the proposed curve is 

divided into three regions: (i) high load sharing (positive droop), (ii) rated load sharing (zero 

droop) and (iii) low load sharing (negative droop). At the beginning of the load increment, a 

fast power injection is supported by a big compensating gain (positive). It can therefore 

compensate the frequency fluctuation caused by the inrush load power until the deviation is 

maintained in an acceptable range. Then the PV generator supports the load by the small 

compensating index with its nominal power participation. This strategy provides enough time 

for conventional generators to participate into the load power sharing. On the contrary, in a 

condition when the load is decreasing or the generation power of the microgrid is higher than 

the load power demand, the negative compensating index updates the deviation references to 

avoid the over frequency and to maintain power balance. The strategy provides an automatic 

feature of load sharing for the PV generation unit. Note that the frequency and angle are 

estimated by phase-locked loop (PLL) module. 
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Figure 3.3 Multi-ratio compensating index 
Taken from Han, Hua, et al. (2016) 

 

A three-phase DC-AC inverter which connects the DC bus to the AC bus at the point of 

common coupling (PCC) is illustrated in Figure 3.4.  
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Figure 3.4 Three-phase inverter 
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Figure 3.5 Control structure for inverter; frequency loop control with inner power loop 
control 
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Power controller design: 

To maintain the ac power generated by PV-battery generator close to its reference value, the 

output power dynamics are required. The dynamics for the active power have the following 

expression, 

 dp݀ݐ = ଷଶ(ݒௗ)௧ ୢୢ୲݅ௗ + ଷଶ݅ௗ ୢୢ୲(ݒௗ)௧ dp݀ݐ = ଷଶ(ݒௗ)௧ ቈ߱݅௤ + ௙ܮௗݒ − ௙ܮ௧(ௗݒ) ቉ + ଷଶ݅ௗ ୢୢ୲(ݒௗ)௧ 
(3.11) 

 

These power dynamics are nonlinear. Therefore, the following power control law is 

proposed. 

 

ௗݒ = ଶ௅೑ଷ(௩೏)೟ ቈ−݇୮൫݌ − ௥௘௙݌ + ൯∗݌ − ଷଶ(ݒௗ)௧ ቈ߱݅௤ − ௙ܮ௧(ௗݒ) ቉ − ଷଶ݅ௗ ୢୢ୲(ݒௗ)௧቉ (3.12) 

 

The parameter ݇୮ is positive gain. Substituting (3.12) into (3.11) gives the following closed 

loop dynamics. 

 dp݀ݐ = −݇୮൫݌ − ௥௘௙݌ +  ൯ (3.13)∗݌

 

The system represented by (3.13) is stable for any positive gain. The variable ݌௥௘௙ is the 

reference value for the active power. The reference variable ݌∗ is modified by the frequency 

control module when the frequency deviation becomes large. 
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Terminal voltage controller design: 

To maintain the terminal voltage close to its reference value, the following variable which 

represents the integral of the voltage deviation is introduced.  

 Ω୴ = න ൫ݒ௦ − ௦௥௘௙൯݀߬௧ݒ
଴  

(3.14) 

 

The dynamics for this new variable have the following expression when the power 

expression is substituted. 

 dΩ୴݀ݐ = ௦(ௗݒ) − ௦߱݅௤ܮ −  ௦௥௘௙ݒ
(3.15) 

 

Equation (3.15) is used to find the value of the q-axis current so that the terminal voltage 

converges to its reference value. To facilitate the design, the following error variable is 

given, 

 ∆݅௤ = ݅௤ − ݅௤∗  (3.16) 

 

Substituting (3.16) into (3.15) gives the following dynamics, 

 dΩ୴݀ݐ = ௦(ௗݒ) − ∗௦߱݅௤ܮ − ௦߱∆݅௤ܮ −  ௦௥௘௙ݒ
(3.17) 

 

 The value that the inductor current must have so that the error dynamics converge to zero 

has the following expression, 

 ݅௤∗ = − ଵ௅ೞఠ൛−݇ஐ౬Ω୴−(ݒௗ)௦ +  ௦௥௘௙ൟ (3.18)ݒ
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The parameter ݇ஐ౬ is positive gain. Substituting (3.18) into (3.17) gives the following closed 

loop dynamics. 

 dΩ୴݀ݐ = −݇ஐ౬Ω୴ −  ௦߱∆݅௤ܮ
(3.19) 

 

The objective is to find the input value ݒ௤ so that ݅௤ converges to its reference value ݅௤∗ . The 

error dynamics have the following expression, 

 ୢୢ୲∆݅௤ = −߱݅ௗ + ௙ܮ1 ௤ݒ − ୢୢ୲݅௤∗  
(3.20) 

 

This equation is used to find the expression for the control input so that the current error 

dynamics converge to zero as, 

௤ݒ  = ௙ܮ ቄ−݇௜೜∆݅௤+ܮ௦߱Ω୴ + ߱݅ௗ + ୢୢ୲݅௤∗ቅ (3.21) 

 

The parameter ݇௜೜ is positive gain. Substituting (3.21) into (3.20) gives the following closed 

loop dynamics. 

 ୢୢ୲∆݅௤ = −݇௜೜∆݅௤ +  ௦߱Ω୴ (3.22)ܮ

 

It is simple to prove that the closed loop system which includes the recursive voltage and 

current controllers is stable. The closed loop dynamics have the following form: 
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dΩ୴݀ݐ = −݇ஐ౬Ω୴ −  ௦߱∆݅௤ܮ

ୢୢ୲∆݅௤ = −݇௜೜∆݅௤ +  ௦߱Ω୴ܮ

(3.23) 

 

The following positive definite Lyapunov function is used: 

 ܸ = Ω୴ଶ + ∆݅௤ଶ (3.24) 

 

The derivative of this Lyapunov function has the following expression 

 ሶܸ = −2݇ஐ౬Ω୴ଶ − 2݇௜೜∆݅௤ଶ (3.25) 

 

The closed loop system (3.23) is therefore asymptotically stable since the (3.25) is negative 

definite. As a consequence error signals converge asymptotically to zero. Figure 3.6 

demonstrates the structure of the suggested cascaded terminal voltage control based on 

backstepping control method (Okou 2012).  

 

  
fsL

1 sv
ref
sv svΔ *

qi

qi
qiΔ qv

df iL ω

ωsL 

sdv )(

s

1

VΩ

 

Figure 3.6 Control structure for inverter (vq); terminal voltage loop control with inner current 
loop control 
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3.2.2 Battery converter control 

A backup system is considered for the proposed microgrid system to reserve power when the 

load demand is lower than the generation and to support the microgrid when more generation 

power is requested. On the other hand, to avoid the mismatching power between generation 

and demand, it is important to use a battery in the microgrid design rather than load dumping 

approaches. A DC-DC converter is used to connect the battery to the rest of the microgrid 

system at DC bus connection (Figure 3.7).  
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Figure 3.7 Bidirectional DC-DC converter 

 

This section presents a control approach to charge and discharge the battery while 

contributing into the frequency and voltage regulation introduced in previous section. Figure 

3.8 demonstrates a cascaded battery controller consisting of an outer DC bus voltage 

regulator and an inner current regulator. The goal to maintain the power balance at DC bus is 

obtained by regulating the DC bus voltage. The dc-dc converter model as presented in 

chapter 2 is: 

 

஽஼ܥ ܷ݀஽஼݀ݐ = ݅஽ − ݅௅మ − ݅஽஼ 

ଶܮ ݀݅௅మ݀ݐ = ܷ஽஼ − ܷ௕௔௧ݏଶ 

(3.26) 
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Udc controller design: 

The Equation (3.26) is used to design this controller. The objective is to find the value the 

inductor current ݅௅మ must have so that the DC bus voltage ܷ஽஼	converges to its reference 

value ܷௗ௖∗ . The following error variable is therefore defined to facilitate the design. 

 ∆ܷ஽஼ = ܷ஽஼ − ܷௗ௖∗  ∆݅௅మ = ݅௅మ − ݅௅మ∗  

(3.27) 

 

which ݅௅మ,	݅௅మ∗  and  ∆݅௅మ are inductor current, its reference and error dynamics. The error 

dynamics ∆ܷ஽஼ have the following expression, 

 

∆ ሶܷ஽஼ = ஽஼ܥ1 ݅஽ − ஽஼ܥ1 ݅௅మ − ஽஼ܥ1 ݅஽஼ 
(3.28) 

 

The value that the inductor current must have so that the error dynamics converge to zero has 

the following expression, 

 

݅௅మ∗ = ஽஼ܥ− ൜−݇௣ଵ௏ ∆ܷ஽஼ − ( ஽஼ܥ1 ݅஽ − ஽஼ܥ1 ݅஽஼)ൠ (3.29) 

 

The parameter ݇௣ଵ௏  is positive gain. Substituting (3.29) into (3.28) and considering	݅௅మ = ∆݅௅మ + ݅௅మ∗  gives the following closed loop dynamics. 

 ∆ ሶܷ஽஼ = −݇௣ଵ௏ ∆ܷ஽஼ − ஽஼ܥ1 ∆݅௅మ 
(3.30) 
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The system represented by (3.30) is stable for any positive gain. The controller output will 

become the input of the inductor current controller. Next section discusses how this 

controller equation is obtained. 

 :૛ controller designࡸ࢏ 

Equation (3.26) is used for the design. The objective of the controller is to maintain the 

inductor current ݅௅మ to its reference ݅௅మ∗  which is obtained from the previous control module. 

The following error variable is defined to facilitate the design. 

 ∆݅௅మ = ݅௅మ − ݅௅మ∗  (3.31) 

 

The error dynamics have the following expression, 

 ∆ଓ௅మሶ = ଶܮ1 ܷ஽஼ − ଶܮ1 ܷ௕௔௧ݏଶ − ଓ௅మ∗ሶ  (3.32) 

 

The controller equation is deduced from Equation (3.32). It has the following form, 

 

ଶݏ = ଶܷ௕௔௧ܮ [݇௣ଵூ . ∆݅௅మ − ஽஼ܥ1 ∆ܷ஽஼ + ଶܮ1 ܷ஽஼ − ଓ௅మ∗ሶ ] (3.33) 

 

The parameter ݇௣ଵூ  is positive gain. Substituting (3.33) into (3.32) gives the following closed 

loop dynamics. ∆ଓ௅మሶ = −݇௣ଵூ . ∆݅௅మ + ஽஼ܥ1 ∆ܷ஽஼ 
(3.34) 

 

It is simple to prove that the closed loop system which includes the recursive voltage and 

current controllers is stable. The closed loop dynamics have the following form: 
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∆ଓ௅మሶ = −݇௣ଵூ . ∆݅௅మ + ஽஼ܥ1 ∆ܷ஽஼ 

∆ ሶܷ஽஼ = −݇௣ଵ௏ ∆ܷ஽஼ − ஽஼ܥ1 ∆݅௅మ 

(3.35) 

 

The following positive definite Lyapunov function is used: 

 ܸ = ∆ܷ஽஼ଶ + ∆݅௅మଶ (3.36) 

 

The derivative of this Lyapunov function has the following expression 

 ሶܸ = −2݇௣ଵ௏ ∆ܷ஽஼ଶ − 2݇௣ଵூ ∆݅௅మଶ (3.37) 

 

The closed loop system (3.35) is therefore asymptotically stable since the (3.37) is negative 

definite. As a consequence error signals converge asymptotically to zero. When the voltage 

at DC bus is high, the controller reduces its discharging power by reducing the current 

reference and vice versa. As this voltage controller provides the reference for the current 

controller, the outer voltage controller should be slower than the inner current controller. 

Note that in Figure 3.8 ܴ௘௤௕௔௧௧ is defined as, 

 ݅௘௤௕௔௧௧ = ܷ஽஼ܴ௘௤௕௔௧௧ = ݅஽஼ − ݅஽ 
(3.38) 

 

A "seamless" charging-discharging mechanism of the proposed bidirectional dc-dc converter 

is based on dc bus voltage regulation. If ௣ܲ௩ > ௟ܲ௢௔ௗ the converter controller turns to 
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charging mode that is ݏଶଶ = 0	and ݏଶଵ is equal to modulation of ݒ௔which is the controller 

output. If	 ௣ܲ௩ < ௟ܲ௢௔ௗ, the converter controller turns to discharging mode that is ݏଶଵ = 0	and ݏଶଶ is equal to modulation of ݒ௔ which is the controller output. On the other hand this leads 

to energy balance at the dc bus.  
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Figure 3.8 Control structure for battery converter; Voltage loop control with inner current 
loop control 

 
3.2.3 Photovoltaic converter control 

Because of the nonlinear characteristics of the PV array system and the intermittent condition 

of the weather, the PV optimal operating point is unknown and it should be estimated using 

maximum power point tracker (MPPT). This process is conducted simultaneously with a 

controller (a cascaded regulator) to change the duty cycle which commands the DC-DC 

converter connected to the PV array. Figure 3.9 shows the PV converter diagram.  
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Figure 3.9 Photovoltaic dc-dc converter 
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As presented in chapter 2, the model of dc-dc converter is given, 

 ܷ݀௉௏݀ݐ = − ௉௏ܥ1 ݅௅భ + ௉௏ܥ1 ݅௉௏ 

݀݅௅భ݀ݐ = ൬ ଵܮ1 ܷ௉௏ − ଵܮ1 ܷ஽஼൰ + ܷ஽஼ܮଵ  ଵݏ

(3.39) 
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Figure 3.10 PV converter control; Maximum power point tracker (MPPT), voltage loop 
control with inner current loop control 

 

Upv controller design: 

The Equation (3.39) is used to design this controller. The objective is to find the value the 

inductor current ݅௅భ must have so that the PV voltage ܷ௣௩ converges to its reference value ܷ௣௩∗  given by MPPT module. The following error variable is therefore defined to facilitate the 

design. 

 ∆ܷ௣௩ = ܷ௣௩ − ܷ௣௩∗  ∆݅௅భ = ݅௅భ − ݅௅భ∗  

(3.40) 
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which ݅௅భ,	݅௅భ∗  and  ∆݅௅భ are inductor current, its reference and error dynamics. The error 

dynamics ∆ܷ௣௩	have the following expression, 

 ∆ ሶܷ௣௩ = − ௉௏ܥ1 ݅௅భ + ௉௏ܥ1 ݅௉௏ − ሶܷ௣௩∗  
(3.41) 

 

The value that the inductor current must have so that the error dynamics converge to zero has 

the following expression, 

 

݅௅భ∗ = ௣௩[−݇௣ଶ௏ܥ− . ∆ܷ௣௩ − ௉௏ܥ1 ݅௣௩ + ሶܷ௣௩∗ ] (3.42) 

 

The parameter ݇௣ଶ௏  is positive gain. Substituting (3.42) into (3.41) and considering	݅௅భ = ∆݅௅భ + ݅௅భ∗  give the following closed loop dynamics. 

 

∆ ሶܷ௣௩ = −݇௣ଶ௏ . ∆ܷ௣௩ − ௉௏ܥ1 ∆݅௅భ 
(3.43) 

 

The controller output will become the input of the inductor current controller. Next sections 

discuss how this controller equation is obtained. 

 :૚ controller designࡸ࢏ 

Equation (3.39) is used for the design. The objective of the controller is to maintain the 

inductor current ݅௅భ to its reference ݅௅భ∗  which is obtained trom the previous control module. 

The following error variable is defined to facilitate the design. 
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∆݅௅భ = ݅௅భ − ݅௅భ∗  (3.44) 

 

The error dynamics have the following expression, 

 

∆ଓ௅భሶ = ൬ ଵܮ1 ܷ௉௏ − ଵܮ1 ܷ஽஼൰ + ܷ஽஼ܮଵ ଵݏ − ݐ݀݀ ݅௅భ∗  
(3.45) 

 

The controller equation is deduced from Equation (3.45). It has the following form, 

 

ଵݏ = ଵܷ஽஼ܮ [−݇௣ଶூ . ∆݅௅భ + ௉௏ܥ1 ∆ܷ௣௩ − (൬ ଵܮ1 ܷ௉௏ − ଵܮ1 ܷ஽஼൰ − ݐ݀݀ ݅௅భ∗ )] (3.46) 

 

The parameter ݇௣௏ is positive gain. Substituting (3.46) into (3.45) gives the following closed 

loop dynamics. 

 

∆ଓ௅భሶ = −݇௣ଶூ . ∆݅௅భ + ௉௏ܥ1 ∆ܷ௣௩ 
(3.47) 

 

It is simple to prove that the closed loop system which includes the recursive voltage and 

current controllers is stable. The closed loop dynamics have the following form: 

∆ଓ௅భሶ = −݇௣ଶூ . ∆݅௅భ + ௉௏ܥ1 ∆ܷ௣௩ 

∆ ሶܷ௣௩ = −݇௣ଶ௏ . ∆ܷ௣௩ − ௉௏ܥ1 ∆݅௅భ 

(3.48) 

The following positive definite Lyapunov function is used: 
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ܸ = ∆ܷ௣௩ଶ + ∆݅௅భଶ (3.49) 

 

The derivative of this Lyapunov function has the following expression 

 ሶܸ = −2݇௣ଶ௏ ∆ܷ௣௩ଶ − 2݇௣ଶூ ∆݅௅భଶ (3.50) 

 

The closed loop system (3.48) is therefore asymptotically stable since the (3.50) is negative 

definite. As a consequence error signals converge asymptotically to zero. Note that in Figure 

3.10 ܴ௘௤௣௩is defined as, 

 ݅௘௤௣௩ = ܷ஽஼ܴ௘௤௣௩  
(3.51) 

∗ܞܘܞ  	MPPT	design:	
A conventional MPPT (Hua, Chihchiang et al. 1998) is chosen in this chapter to guarantee 

that the PV array operates at the optimal voltage while delivers its peak power. The perturb 

and observe (P&O) method is probably the most often used MPPT algorithm today, due to its 

simplicity and generic nature. It is based on the fact that the derivative of power in function 

of voltage is zero at MPP. At an operating point on the P–V curve, if the operating voltage of 

the PV array is perturbed in a given direction and 0>Δ pvP , it is known that the perturbation 

moved the array’s operating point toward the MPP. The P&O algorithm would then continue 

to perturb the PV array voltage in the same direction. If 0<Δ pvP , then the change in 

operating point moved the PV array away from the MPP, and the P&O algorithm reverses the 

direction of the perturbation. Figure 3.11 demonstrates the P&O operation. Note that k and k-

1 are the actual and previous sampling instances respectively. Since the P&O technique is 
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based on sequential perturbation, unwanted disturbance or noise on sensors could confuse 

this MPPT. To avoid this problem, a very mall threshold η  is considered in this MPPT 

design. As known, the operating point oscillates around the MPP with amplitude of C (see 

Figure 3.11). The output of this Upv-reference generator becomes the input of the Upv-

controller whose design was presented in the previous sections. 

 

 

 

Figure 3.11 Flowchart of the MPPT based on P&O method 
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3.3 Results and Discussion 

To validate the proposed control system, a microgrid is simulated in MATLAB/SIMULINK 

using its detailed model. Considering the diagram illustrated in Figure 3.1, the microgrid 

includes a synchronous generator, photovoltaic array generator, battery unit and load. The 

system parameters are presented in Table 3.1. Several scenarios with changes of loads and 

insolation are considered in this study in order to examine the performance of the control 

system with frequency and voltage control of microgrid and the load sharing capability 

between DC and AC microgrid. The synchronous generator is assumed to have its own speed 

governor as well as automatic voltage regulator (AVR).  

 

Both active and reactive power of the load increase 20% at time 100s to evaluate the 

performance of the frequency and voltage controller. 

The amplitude of AC bus voltage at the point of common coupling, PCC is controlled as 

shown in Figures 3.12 during adding of the load power (time 100s). Figure 3.12 shows that 

the terminal voltage starts to deviate during a transient time 0.8 s after load disturbance at 

time 100 s but it maintains at its nominal set point by contribution of reactive power (see 

Figure 3.14) from both PV and SG. 

 

 

Figure 3.12 Terminal voltage performances under load increment 
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(a) 

 

(b) 

Figure 3.13 Active powers variation; hybrid PV & battery (a), synchronous generator (b) 
under load increment 
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(a) 

 

(b) 

Figure 3.14 reactive powers variation; hybrid PV & battery (a), Synchronous generator (b) 
under load increment 
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The generators (PV and SG) increase their output power, both active and reactive power to 

support the load active and reactive power increment respectively (see Figure 3.13 and 

Figure 3.14). This guarantees the power sharing between different generators.  

 

Figure 3.15 confirms that the frequency is regulated during the increment of load power at 

time 100s. Figure 3.15 shows that the frequency starts to deviate after load disturbance at 

time 100 s but it maintains at its nominal set point by contribution of active power (see 

Figure 3.13) from both PV and SG. Therefore this test shows that PV generator participates 

into frequency regulation as that of synchronous generator.  

 

Figure 3.16 shows the droop control output p* which modifies the power reference of the 

power control module. It is seen that the small frequency variation is neglected by zero 

droop. Larger variation is augmented and added to the power reference. Figure 3.17 indicates 

that control efforts vd and vq are bounded during this scenario (load step up).  

 

Figure 3.18 shows the current id and iq during the increase in load power to participate in 

active and reactive power regulation. Figure 3.19 shows the total dc current by PV-battery 

generator is increased to support frequency and voltage regulation. The energy balance at dc 

link is observed in figure 3.20(a). The control effort s2 shown in Figure 3.20(b) is bounded 

during the disturbance. 
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Figure 3.15 Frequency performance 

 

 

Figure 3.16 Droop performance p* 
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(a) 

 

(b) 

Figure 3.17 Control effort during load step up (a) vd (b) vq 
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(a) 

 

(b) 

 
Figure 3.18 PV-battery a.c. current; (a) id; (b) iq 
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Figure 3.19 PV-battery d.c. current 

 

In addition, to test the PV performance in tracking the efficient power (maximum power 

point tracking, MPPT) an insolation step change is applied to the system (1000w/m2 to 

600w/m2) at times 96s and (600w/m2 to 1000w/m2) 96.5s. The PV power is tracked as shown 

in Figure 3.21 (a) under applied insolation scenario. Figure 3.21 (b) shows the tracking of PV 

voltage vpv.  Small oscillation is seen on the tracking power due to the drawback of P&O 

MPPT during fast insolation changes.  

 

Figure 3.21 (c) demonstrates that the battery power compensates the load power under PV 

power changes. The load power sharing is therefore provided by both PV-battery power even 

under insolation changes. 
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(a) 

 

(b) 

 
Figure 3.20 Energy performance under load change (a) EDC; (b) s2 
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(a) 

 

(b) 

 
Figure 3.21 MPPT algorithm performance; (a) PV power; (b) PV voltage 
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(c) 

 
Figure 3.21 MPPT algorithm performance; (c) battery power 

 

 

Table 3.1 MG parameters used for simulation 

MG Parameters Value 

PV terminal capacitor, Cpv  590	ܨߤ 

Battery terminal capacitor, Cbat 590	ܨߤ 

DC link capacitor, CDC 1320	ܨߤ 

Boost converter inductance, L1 1	݉ܪ 

Battery boost converter inductance, L2 1	݉ܪ 

Filtering inductance, Lf 1	݉ܪ 

Nominal frequency, fn 60	ݖܪ 

Switching frequency, fsw 10	݇ݖܪ 
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Microgrid rated power, Pn  540 W 

Microgrid rated voltage, Vn 120 V 

STC PV power rating, PMPP 140 W 

Speed governor gain, k 0.0017 

AVR gain 0.0011 ݇ஐ౬ 100 ݇௜೜ 5000 ݇௣ଵூ  10000 ݇௣ଵ௏  1100 ݇௣ଶூ  10000 ݇௣ଶ௏  1000 

 

3.4 Conclusion 

This chapter proposed an islanded microgrid consisting of a PV array, a battery storage and a 

synchronous generator. A classical cascaded control approach based on backstepping control 

with a group of cascaded control loops was proposed in order for the microgrid to participate 

into: (i) voltage and frequency support, (ii) battery control and (iii) PV control. A classical 

droop characteristics are suggested for frequency regulation along with the active power 

control. The charging or discharging is made by implementing a simple algorithm based on 

the state of the PV and load power. In addition an efficient load sharing was guaranteed. The 

microgrid was validated using simulation with different scenarios such as static load power 

variation (both active and reactive power) as well as insolation changes. The results show 

good performance of proposed controller in frequency and voltage control. 

 

 



 

CHAPTER 4 
 
 

NONLINEAR CONTROL OF MICROGRID 

4.1 Introduction 

This chapter presents the design and implementation of a unified multivariable nonlinear 

controller for a hybrid PV/battery system in a microgrid with two sources, as shown in Figure 

4.1 consisting of a hybrid photovoltaic-battery source and a conventional synchronous 

generator, equipped with its own Automatic Voltage Regulator (AVR) and speed governor.  

This nonlinear controller (i.e. exact input-output feedback linearization) is designed using the 

exact nonlinear model suggested in chapter 2. The main contributions of the suggested 

nonlinear controller are to ensure high performance voltage and frequency regulation in the 

presence of fluctuations and load variations and to integrate a conventional MPPT to enable 

the PV to operate at its maximum power point. As a result of the proposed control strategy, it 

is possible to use the PV-battery system to emulate a conventional synchronous generator 

while automatically managing power sharing between the different units in the MG. This 

feature minimizes the costs and problems associated with the presence of rotating machines. 

The chapter is structured as follows: firstly the control design is presented in terms of 

decoupling and linearizing control laws along with the stabilizing linear control laws. It is 

followed by simulation studies. Finally, the experimental validations are presented and 

discussed. 
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Figure 4.1 Microgrid system 

 
4.2 Controller Design 

In this section, the design of a nonlinear voltage and frequency controller for the hybrid PV-

battery generator is discussed. The controller is designed to regulate the voltage at the 

transformer primary and to participate in the regulation of the microgrid frequency close to 

its reference value, while allowing the PV to operate at its maximum power point. This 

implies that the control system will integrate a MPPT routine while implicitly managing the 

power flow between the PV, the load and the battery. These multiple objectives are addressed 

simultaneously via the multivariable design approach adopted to obtain the controller 

equations. As described in chapter 2, the nonlinear model of PV-battery generator with eight 

states and four inputs/outputs is represented by the following closed form,   

 xሶ = (ݔ)݂ + y ݑ(ݔ)݃ = ℎ(ݔ) (4.1) 

 

where ݔ = [ܷ௉௏, ݅௅భ, ݅௤, Ω, ,஽஼ܧ ௕ܲ௔௧, ݅ௗ, ߱]் is the vector of state variables, ݑ ,ଵݏ]= ,௤ݒ ,ଶݏ ݕ ௗ]் is the vector of control inputs, andݒ = ℎ(ݔ) = [ܷ௉௏, Ω, ,஽஼ܧ ߱]் is the vector 

of outputs. The nonlinear vector function ݂(ݔ) and the matrix ݃(ݔ) are given as: 
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(ݔ)݂ =

ێێۏ
ێێێ
ێێێ
ێێێ
ێێێ
ۍ − ௉௏ܥ1 ݅௅భ + ௉௏ܥ1 ݅௉௏1ܮଵ ܷ௉௏ − ଵܮ1 ܷ஽஼−߱݅ௗ(ݒௗ)௦ − ௦߱݅௤ܮ − ௦௥௘௙ݒ

௉ܲ௏ − ௕ܲ௔௧ − 32 ݅ௗݒ௦݅௅మܥ஽஼ܷ஽஼ ( ௉ܲ௏ − ௕ܲ௔௧ − 32 ݅ௗݒ௦) +	 ஽஼߱݅௤ܥଶܮ஽஼ܧ2 + ௗݒ − ߱ܬ௙2ܲଶܮ௦ݒ ൬− ݇ܲ ∆߱ + ௥ܲ௘௙ − ௟ܲ௢௔ௗ − 32 ݅ௗݒ௦ − ଶܤܲ ߱ଶ൰ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ۑۑۑ
ې

 

(ݔ)݃ =

ێێۏ
ێێێ
ێێێ
ێێێ
ۍێێ
0ܷ஽஼ܮଵ000000

					0					0					 0					0					0					0					0					௙ܮ1

0					0					஽஼ܷ஽஼ܥଶܮ஽஼ܷ௕௔௧ܧ2−					0					0					0					0					0					

					0					0					0					0					0					0					 0					௙ܮ1

		

ۑۑے
ۑۑۑ
ۑۑۑ
ۑۑۑ
ېۑۑ

 

 

 

 

 

 

 

 

 

(4.2) 

 

The selection of the variables that represent the system outputs is related to our objectives; 

voltage and frequency regulation. Indeed, the variables Ω and ߱	are selected as outputs since 

two of the controller design objectives are the regulation of the voltage at the transformer 

primary and the microgrid frequency respectively. By regulating the variables ܷ௉௏ and	ܧ஽஼ 

the controller ensures that the PV system operates at its maximum power point and manages 

the power flow among the PV module, the battery and the load. Equation (2.23) clearly 

shows that the power balance among these three elements is achieved when the variation of 

the energy stored in the DC bus is maintained at zero. The following paragraphs present the 
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different steps used to obtain the controller equations using the input-output feedback 

linearization technique. This method consists of a change of coordinates and a nonlinear 

feedback control law to cancel system nonlinearities, in order to obtain a linear system that 

will be mathematically equivalent to (4.1). 

 

4.2.1 Decoupling and Linearizing Control Law 

The dynamics of the system outputs are obtained by differentiating each output until at least 

one of the inputs appears explicitly in the expression. Differentiating twice the first output 

which is the PV voltage (ݕଵ = ܷ௉௏) yields the following equation, 

ሷଵݕ  = (ݔ)ଵߙ +  ଵ (4.3)ݏ(ݔ)ଵߚ

 

where ߙଵ(ݔ) and ߚଵ(ݔ) are given in Table 4.1. The second output	(ݕଶ = Ω), which was 

selected to achieve the objective of terminal voltage regulation, is now differentiated until 

one input appears in the expression. This gives the following equation, 

ሷଶݕ  = (ݔ)ଶߙ +  ௤ (4.4)ݒ(ݔ)ଶߚ

 

Recall that the input signal ݒ௤ is the Q-component of the D-Q reference frame representation 

of the DC-AC converter terminal voltage. Similarly, the second derivative of the third output 	(ݕଷ = E஽஼) gives, 

ሷଷݕ  = (ݔ)ଷߙ + ଶݏ(ݔ)ଷଵߚ +  ௗ (4.5)ݒ(ݔ)ଷଶߚ

 

The input signal ݒௗ is the D-component of the D-Q reference frame representation of the 

DC-AC converter terminal voltage. The frequency dynamics are obtained to achieve the final 

objective; participation in the microgrid frequency regulation. When the output 	(ݕସ = ω) is 

differentiated until one input appears, the following equation is obtained: 
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ሷସݕ = (ݔ)ସߙ + ௤ݒ(ݔ)ସଵߚ +  ௗ (4.6)ݒ(ݔ)ସଶߚ

 

The input variable ݏଶ is the signal that will be used to control the switches of the bidirectional 

DC-DC boost converter connected to the battery. Note that the expressions (ݔ)ߙ ,(ݔ)ଵߙ)= ,(ݔ)ଶߙ ,(ݔ)ଷߙ (ݔ)ߚ	and்((ݔ)ସߙ = ,(ݔ)ଵߚ) ,(ݔ)ଶߚ ,(ݔ)ଷଵߚ ,(ݔ)ଷଶߚ ,(ݔ)ସଵߚ  ்((ݔ)ସଶߚ

are given in Table 4.1. The nonlinear model (4.1) is therefore equivalent to the following 

form: 

ሷݕ = ێێۏ
ۑۑے(ݔ)ସߙ(ݔ)ଷߙ(ݔ)ଶߙ(ݔ)ଵߙۍ

ې + ൦ߚଵ(ݔ)000
(ݔ)ସଵߚ0(ݔ)ଶߚ0

0(ݔ)ଷଵߚ00
൪(ݔ)ସଶߚ(ݔ)ଷଶߚ00  ݑ

(4.7) 

 

Table 4.1. The parameters of control system 

(ݔ)1ߙ  = ܸܲܥ1 ݐ1݀ܮ݅݀ − ܸܲܥ1 ቆ 1ܮ1 ܷܸܲ − 1ܮ1  ቇܥܦܷ

(ݔ)2ߙ = ݍ݅ݏܮ− ߱ܬ2ܲ2 ൭− ݇ܲ ∆߱+ ݂݁ݎܲ − ݀ܽ݋݈ܲ − 32 ݏݒ݀݅ − 2ܲ2ܤ ߱൱ +  2݅݀߱ݏܮ

(ݔ)3ߙ = ݐܸ݀ܲܲ݀ − ܥܦܷܥܦܥ2ܮ݅ ቆܸܲܲ − ݐܾܽܲ − 32 ቇݏݒ݀݅ − ܥܦܥ2ܮܥܦܧ2 − ݏݒ32 ቆ߱݅ݍ − ݂ܮ1  ቇݏݒ

(ݔ)4ߙ = ߱ܬ2ܲ2 ቈܲ߱ܬ ൫2(݇ + ܲ) + ൯ݍ݅݀݅ݏܮ3ܲ ቆ− ݇ܲ ∆߱ + (ݔ)1ߚ ቇ቉݂݁ݎܲ = (ݔ)2ߚ ܥܦܥ1ܮܥܦܷ = ݂ܮ߱ݏܮ− (ݔ)31ߚ  =  ܥܦܷܥܦܥ2ܮݐܾܷܽܥܦܧ2

(ݔ)32ߚ = −32 ݂ܮݏݒ − ݀ܽ݋݈ܲ − 32 ݏݒ݀݅ − 2ܤܲ ߱2 − ݐ݀݀ܽ݋݈ܲ݀ − ݏݒ32 ቆ߱݅ݍ − ቇ݂ܮݏݒ −  2݅2݀߱ݏܮ32

(ݔ)41ߚ = ݂ܮܬݏܮ3ܲ2݅݀ (ݔ)42ߚ  = ݂ܮ߱ܬݏݒ3ܲ2−  

 

 



116 

Equation (4.7) shows the nonlinear and coupled nature of the PV/battery generator's input-

output dynamics. Applying linear control directly to this model without cancelling the system 

nonlinearities, as traditionally done in the literature, may result in unsatisfactory steady state 

and transient performances, in general. The control laws, which are used to cancel the system 

nonlinearities while decoupling the model dynamics, have the following expression: 

 

ݑ = ൦ߚଵ(ݔ)000
(ݔ)ସଵߚ0(ݔ)ଶߚ0

0(ݔ)ଷଵߚ00
൪(ݔ)ସଶߚ(ݔ)ଷଶߚ00

ିଵ
ێێۏ
ଵݒۍ − ଶݒ(ݔ)ଵߙ − ଷݒ(ݔ)ଶߙ − ସݒ(ݔ)ଷߙ − ۑۑے(ݔ)ସߙ

ې
 

(4.8) 

 

Note that the inverse of the above-mentioned matrix exists as long as its determinant  (ߚଵ(ݔ)ߚଶ(ݔ)ߚଷଵ(ݔ)ߚସଶ(ݔ)) is nonzero or, in other words, when the frequency and voltages 

are nonzero. This is indeed the case in any range of operation. This determinant may become 

zero when a short circuit occurs at the AC bus	(ݒ௦ = 0, (ݔ)ସଶߚ	 = 0). In this case, the input 

will be equal to the saturating value 	ݑ௠௔௫ = ,ଵ௠௔௫ݏ] ,௤௠௔௫ݒ ,ଶ௠௔௫ݏ  ௗ௠௔௫]். For the protectionݒ

of inverter under short-circuit fault the gating signals are reset to zero. The vector ݒ ,ଵݒ)= ,ଶݒ ,ଷݒ  ସ)் is representing the new input that will be used to stabilize the followingݒ

decoupled linear system, obtained when (4.8) is substituted in (4.7): 

 

ቈ݀ଶܷ௉௏݀ݐଶ 		݀ଶΩ݀ݐଶ 		݀ଶܧ஽஼݀ݐଶ 		݀ଶ߱݀ݐଶ ቉் =  ்[	ସݒ					ଷݒ					ଶݒ				ଵݒ]
(4.9) 

 

It can therefore be concluded that the cancellation of the nonlinear terms relating the old 

inputs to the outputs by the nonlinear control law (4.8) has transformed the MIMO 

PV/battery generator model into four Single-Input Single-Output (SISO) decoupled linear 

systems. This model-based approach provides a systematic approach for obtaining the 

controller equations using well known control design methods. The next step of the design is 

to obtain the expressions for the new input signals	ݒଵ, ,ଶݒ ,ଷݒ  .ସݒ
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Remark I: Note that the order of the exactly linearized system (4.9) is 8, which is equal to 

the order of the original nonlinear model (4.1). It can therefore be concluded that there are no 

hidden internal dynamics. 

 

Remark II: According to (4.8), the controller output signals are continuous-time signals 

since they depend on state variables that are continuous-time signals. PWM modules are used 

to convert these controller output signals into binary (ON and OFF) signals that are 

appropriate to drive the converter switches. This is illustrated in figure 4.2. It is common to 

say that controller output signals represent the switches' duty cycles. 

 

 

Figure 4.2 Exact input-output feedback linearization scheme. 

 

4.2.2 Design of the Stabilizing Linear Control Laws 

The following linear expressions are proposed for the stabilizing auxiliary inputs, so that the 

output ݕ = (ܷ௉௏, Ω, ,஽஼ܧ ߱)் tracks the reference signal	ݕ௥ = (ܷ௉௏௥ , Ω௥, ஽஼௥ܧ , ߱௥)், 
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ଵݒ = ݇ଵଵ݁ଵ + ݇ଵଶ ሶ݁ଵ + ሷܷ௉௏௥ ଶݒ  = ݇ଶଵ݁ଶ + ݇ଶଶ ሶ݁ଶ + Ωሷ ௥ ݒଷ = ݇ଷଵ݁ଵ + ݇ଷଶ ሶ݁ଵ + ሷ஽஼௥ܧ ସݒ  = ݇ସଵ݁ସ + ݇ସଶ ሶ݁ସ + ωሷ ௥ 

(4.10) 

 

where	݁ଵ = ܷ௉௏௥ − ܷ௉௏, ݁ଶ = Ω௥ − Ω, ݁ଷ = ஽஼௥ܧ − and ݁ସ	஽஼ܧ = ω௥ − ω. ܷ௉௏௥ , Ω௥, ஽஼௥ܧ	  and ߱௥ are the reference signals of the PV terminal voltage, which are determined by the MPPT 

module, the terminal voltage deviation, the energy stored in the DC bus capacitor ଵଶ ஽஼(ܷ஽஼௥ܥ )ଶ and the angular frequency, respectively. The ܷ஽஼௥  is the DC bus voltage 

reference signal. Note that the references are constant in this application. The controller gains ݇௜௝	(݅ = 1,… ,4; ݆ = 1,2) are judiciously selected in such a way that the four characteristic 

polynomials of the decoupled linear systems obtained when (4.10) is substituted in (4.9) are 

Hurwitz polynomials, i.e. 

 Δ௜(ݏ) = ଶݏ + ݇௜ଶݏ + ݇௜ଵ ݅ = 1,… ,4 

(4.11) 

 

This ensures that the tracking errors converge to zero. The controller gains ݇௜ଵ and ݇௜ଶ are 

tuned in order to obtain good dynamic performance. Considering the desired characteristic 

polynomial of the second-order system as, 

 Δௗ(ݏ) = ଶݏ + 2߫߱௡ݏ + ߱௡ଶ (4.12) 

 

and given natural frequency ߱௡ and damping ratio ߫, one can calculate the controller gains so 

that, 

 Δ௜(ݏ) = Δௗ(ݏ) (4.13) 
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This results into: 

 ݇௜ଵ = ߱௡ଶ ݇௜ଶ = 2߫߱௡ 

(4.14) 

 

As mentioned in Equation (4.9), the nonlinear system is converted into four decoupled linear 

systems with transfer functions written as, 

(ݏ)ܩ  =  ଶݏ1
(4.15) 

 

Remark III: In practice, it is not necessary to differentiate the output variables in the 

implementation of (4.10). For instance, the derivative of ܷ௉௏ is implemented by taking the 

right-hand side of the ܷ௉௏	dynamics, 

 ܷ݀௉௏݀ݐ = − ௉௏ܥ1 ݅௅భ + ௉௏ܥ1 ݅௉௏ 
(4.16) 

 

4.3 Simulation Results and Discussion 

In this section, the proposed voltage and frequency controller for the PV-battery generator is 

first evaluated through simulation. The PV panel, battery, DC-DC converters, DC-AC 

converter, transformer, load and synchronous generator illustrated in Figure 4.1 are 

represented in Matlab-Simulink using SimPowerSystems blockset elements. Table 4.3 

summarizes the microgrid specifications. The PV panel maximum power is 140W at 

1000W/m2 with a cell temperature of 25℃. 

 

The nonlinear controller, AVR and speed governor for the synchronous generator are 

implemented using Matlab-Simulink elements. The nonlinear controller gains are obtained as 
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݇௜ଵ=105, ݇௜ଶ=1100. These characteristics guarantee asymptotical stability and good transient 

performance to the system. The PV-battery controller gains, along with the AVR and speed 

governor parameters, are summarized in Table 4.3.  

 

Two case studies are considered to evaluate the functionality of the proposed controller. 

First, the frequency and voltage regulation capability is evaluated when the microgrid 

operates in islanded mode. Next, the power sharing capability is tested and discussed. 

 

4.3.1  Frequency and Voltage Regulation in MG Islanding 

The following scenario is used to evaluate the frequency and voltage regulation capability of 

the PV-battery generator. The microgrid operates in an islanded mode, and the active and 

reactive power demands are changed abruptly at time t = 100 s. In Figures 4.3 through 4.7, 

the simulation results are illustrated in per unit (p.u.) using a base power of 440 W and a base 

voltage of 120 V. The active and reactive powers are increased by 0.2 p.u. respectively. 

Figure 4.3 shows that the frequency begins to deviate at time t = 100 s due to the load 

change, but is regulated at its rated value because of the frequency support from both 

generators. Figure 4.4 shows that the voltage at the transformer secondary is regulated at its 

rated value. Figure 4.5 (a,b) shows the active power sharing between the PV-battery 

generator and the synchronous generator respectively. One can notice that the PV-battery 

generator provides 0.1 pu of the demanded active power, increasing to 0.147 p.u. to 

participate in load active power sharing. Similarly, the SG provides 0.04 p.u. and 0.19 p.u., 

respectively, before and after the load perturbation occurs. Simulation results therefore show 

that the PV-battery generator and SG achieve active power participation rates of 25% and 

75%, respectively. Figure 4.6 (a,b) shows the reactive power sharing between the PV-battery 

generator and the synchronous generator respectively. One can notice that the PV-battery 

generator provides 0.15 pu of the demanded reactive power, increasing to 0.19 p.u. to 

participate in load reactive power sharing. Similarly, the SG provides 0.05 p.u. and 0.26 p.u., 

respectively, before and after the load perturbation occurs. Simulation results therefore show 

that the PV-battery generator and SG achieve reactive power participation rates of 16% and 
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84%, respectively. This confirms that the PV generator behaves like a conventional generator 

with a droop characteristic. Control signals vd and vq, shown in Figure 4.7, are bounded. The 

d-q  currents id and iq increase to provide the required active and reactive power by load as 

shown in Figure 4.8. 

 

  

Figure 4.3 Simulation results of microgrid frequency (p.u.) 

 

 

Figure 4.4 Simulation results of microgrid terminal voltage 
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(a) 

 

(b) 

 
Figure 4.5 Simulation results in MG islanding mode, active power sharing (a) PV active 

power, (b) SG active power 
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(a) 

 

(b) 

 
Figure 4.6 Simulation results in MG islanding mode, reactive power sharing (a) PV reactive 

power, (b) SG reactive power 
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(a) 

 

(b) 

Figure 4.7 Simulation results in MG islanding mode, (a) Control action signal, vd , (b) 
Control action signal, vq 
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(a) 

 

(b) 

Figure 4.8 Simulation results in MG islanding mode, (a) d-axis current, id , (b) q-axis current, 
iq 
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4.3.2 Power Sharing Capabilities 

The capability of the proposed control strategy to ensure adequate power sharing among 

different components of the microgrid is tested in this section. Two different test scenarios 

are used. In the first test, the insolation is changed linearly. The initial insolation is 

1000W/m2. At time t = 12 s, the insolation is smoothly decreased from 1000W/m2 to 

800W/m2, returning to 1000W/m2 at t = 14 s. Simulation results shown in Figure 4.9 

represent the PV power, current and voltage. They demonstrate that the perturbation and 

observation (P&O) technique used for the MPPT controller can quickly and accurately track 

the maximum operating point of the PV panel. Figure 4.10 illustrates the control signal s1, 

which is bounded. Figure 4.11 clearly shows that the battery output power is affected by the 

PV power variation.  

 

 

Figure 4.9 Simulation results of PV maximum power point tracking performance, PV MPPT 
test under insolation ramp changes, p.u. 
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Figure 4.10 Simulation results of PV maximum power point tracking performance, control 
action signal, s1 during insolation ramp changes, p.u. 
 

 

Figure 4.11 Simulation results of PV maximum power point tracking performance, battery 
power during insolation ramp changes, p.u. 
 

4.4 Experimental Validation 

The nonlinear controller is now evaluated experimentally. Figure 4.12 illustrates the 

microgrid setup developed in the laboratory. It includes a PV array emulator, a lead-acid 

battery pack, a bidirectional DC-DC converter, a unidirectional DC-DC converter, a DC-AC 

converter, AC transformers, a synchronous generator, a three-phase load and a four-pole 

squirrel cage induction motor. The motor is used to supply the mechanical power required by 

the synchronous generator. The induction motor is controlled by the ABB motor drive. The 
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Synchronous Generator (SG) consists of a 4-pole machine rated at 2 kW. Each phase of the 

stator winding is accessible via the connection module to allow wye or delta connections. 

The rotor winding is connected to two slip rings for external connection to a dc power 

source. A squirrel cage damper winding is inserted in the salient-pole rotor to produce 

induction-motor action, making the synchronous motor self-starting. The synchronous 

generator specification is given in Table 4.2. The solar photovoltaic array consists of 5 panels 

in series and 40 panels in parallel. The open circuit voltage of each panel is 9.7V and the 

short circuit current is 106mA at 1000W/m2. The PV-battery controller is implemented in a 

Texas Instruments TMS320F28335 digital microcontroller. The switching frequency is 10 

kHz. The microgrid parameter values for this experimental setup are given in Table 4.3. A 

three-phase breaker and the three-lamp method are used to synchronize the PV-battery 

generator and synchronous generator. Figure 4.13 shows the AC bus voltage before and after 

the synchronization. 

 

 

Figure 4.12 Hardware setup of MG system 
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Table 4.2. The synchronous generator specifications 

Parameters Value 

Line voltage  120/208V 60 Hz 

Power  1.5 kVA 

Speed 1800 r/min 

Current 4.2A-AC 

Exciter current 0.9 A-DC 

Torque 10.6 N.m 

Efficiency  79 % 

Friction and windage losses 150 W 

Iron losses  125 W 

Resistance Per Phase At 25°C (77°F) 

Stator 0.6 Ω 

Rotor 81 Ω 

Synchronous Reactance 18.5 Ω 

Exciter Inductance 6 H 

Physical Characteristics 

Moment of Inertia 0.097 kg·m² 

Dimensions (H x W x D) 830 x 400 x 605 mm 

Net Weight 89 kg 
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Figure 4.13 Experimental results in microgrid, synchronization of PV generator to 
synchronous generator, V 100V/div, 10ms/div 

 

 

Figure 4.14 Experimental results of microgrid frequency (p.u.), with and without PV 
participation in MG islanding mode 

 

 

Figure 4.15 Experimental results of microgrid voltage (p.u.) at AC bus 
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Figure 4.16 Experimental results, PV/battery generator ac power, p.u. 

 

 

Figure 4.17 Experimental results, synchronous generator ac power, p.u. 
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Figure 4.18 Experimental results, DC bus voltage(V) 200V/div, battery voltage(V) 50V/div, 
phase current(A) 5A/div and DC current (PV and battery discharging current)(A) 5A/div 

200ms/div 

 

 

Figure 4.19 Experimental results, PV power(W) 100W/div, PV current(A) 2A/div, PV 
voltage(V) 50V/div 10s/div 
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A load step change of 0.38 p.u. is applied to the microgrid at the time instant t = 1 s. Figure 

4.14 illustrates frequency profiles when the PV-battery is both contributing and not 

contributing to the system frequency regulation. It is evident that when the PV-battery 

generator controller is used, the frequency steady state error is smaller. The PV/battery 

generator therefore improves the frequency profile in steady state. Figure 4.15 demonstrates 

that the line voltage at the AC bus is regulated at its nominal value 1 p.u. Figures 4.16 and 

4.17 show that the output power of both the PV-battery generator and the synchronous 

generator increase simultaneously when the load increases. This clearly demonstrates that 

both generators exhibit the same behavior. Figure 4.18 represents the DC current waveform, 

which is the sum of the PV current and the battery current. It should be noted that this current 

increases when the load power increases. As a consequence, the AC current increases while 

the DC bus voltage is regulated at its reference value. These experimental results demonstrate 

both the effectiveness and robustness of the proposed model-based nonlinear controller. 

Indeed, the system remains stable in spite of changes in MG parameters, such as load power. 

Moreover, estimated values for the synchronous generator inertia and speed regulator gains 

are used during this experimentation. 

 

The power sharing capability of the proposed controller is also evaluated experimentally. The 

PV insolation is changed linearly from 1000W/m2 to 400W/m2 and back to 1000W/m2. The 

PV power, the voltage and current waveforms are shown in Figure 4.19. These results clearly 

demonstrate the MPPT controller ability to track the maximum PV output power while 

adequately managing the power share in the PV-battery generator when the latter contributes 

to microgrid frequency and voltage support. 
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Table 4.3. The parameters of microgrid system 

MG Parameters Value 

PV terminal capacitor, Cpv  590	ܨߤ 

Battery terminal capacitor, Cbat 590	ܨߤ 

DC link capacitor, CDC 1320	ܨߤ 

Boost converter inductance, L1 1	݉ܪ 

Battery boost converter inductance, L2 1	݉ܪ 

Filtering inductance, Lf 1	݉ܪ 

Nominal frequency, fn 60	ݖܪ 

Switching frequency, fsw 10	݇ݖܪ 

Microgrid rated power, Pn  540 W 

Microgrid rated voltage, Vn 120 V 

STC PV power rating, PMPP 140 W 

Controller proportional gain, ki1 25000 

Controller derivative gain, ki2 1100 

Speed governor gain, k 0.0017 

AVR gain 0.0011 
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4.5 Conclusion 

This chapter proposes a nonlinear voltage and frequency regulator for a hybrid photovoltaic 

(PV)-battery generator through a model-based design approach. First, a multivariable input-

output feedback linearization controller was developed, based on a novel multivariable 

nonlinear model which was suggested (see chapter 2) for the PV/battery generator, composed 

of a PV panel with its unidirectional DC-DC converter, a lead-acid battery with its 

bidirectional DC-DC converter and a DC-AC converter connected to a smoothing 

inductance. Then, the proposed controller was evaluated through both simulation study and 

hardware experimentation with a microgrid consisting of a PV-battery generator and a 

synchronous generator equipped with its own voltage and speed regulators. Simulation and 

experimental results demonstrate that the proposed control system allows the PV-Battery 

generator to behave like a conventional generator. It provides both frequency and voltage 

supports to the microgrid when the load's active and reactive power increases or decreases. 

Moreover, an additional module is not required to manage the power between the PV, the 

battery and the load. Battery output power changes automatically when the PV power 

changes with the insolation, or when the load power demand changes while maintaining the 

PV at its maximum power point.  





 

CHAPTER 5 
 
 

ROBUST ADAPTIVE NONLINEAR CONTROL OF MICROGRID 

5.1 Introduction 

A robust adaptive nonlinear control approach for frequency and voltage regulation in a 

hybrid PV/battery generator is presented in this chapter. The detailed nonlinear dynamical 

model of system (hybrid PV/Battery system) suggested in chapter 2 is used. Using this 

model, a robust adaptive exact input-output feedback linearization controller, which takes 

into account the uncertainty of parameters subjected to the disturbance is designed. The load 

power and terminal voltage of the conventional generator are assumed to be unknown 

parameters of the system. One of the important feature of this controller is that the control of 

PV/battery system is independent to the model of the conventional power system. The system 

performance under different scenarios has been tested by simulation using Matlab/Simulink. 

The results show the validity of the proposed system. A comparison study of the proposed 

methods of frequency and voltage regulation is presented in this chapter.  

 

2S

infL

Figure 5.1 System configuration 
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5.2 System configuration and modeling 

To design a robust adaptive nonlinear controller for the hybrid PV/battery system, the 

detailed model of system along with interfacing power electronic circuits are needed. Figure 

5.1 demonstrates the structure of system suggested in this thesis that is connected to the load 

and conventional diesel synchronous generator at the point of common coupling (PCC). With 

no loss of generality this system can be extended to a larger scale power system network at 

PCC with different sources. The complete nonlinear state-space model of 8th order is 

suggested as 

 

)(

).(),(

xhy

uxgxfx

=
+= θ

 
(5.1) 

 

where the vector of the state variables x , the nonlinear vector function ( , )f x θ   and the 

matrix ( )g x are given as, 

 

1
, , , , , , ,

T

PV L q DC bat dx U i i E P i ω = Ω   
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where 1 2, , ,
T

q du s v s v =   is the vector of control inputs, [ ]( ) , , ,
T

PV DCy h x U E ω= = Ω is the 

vector of control outputs and [ ]1 2,
Tθ θ θ= is the vector of unknown variables. The parameters 

1θ  and 2θ  denote the synchronous generator terminal voltage ( syn
dv ) and the load power (

loadP ) 

to be estimated. The output variables are chosen based on the objectives to be achieved. To 
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meet the objectives of system to participate into voltage and frequency regulation, the 

variables Ω and ω  are chosen as outputs. On the other hand, in order to satisfy photovoltaic 

optimization requirements and to manage power flow among PV, battery and loads, U୮୴ and Eୈେ are selected as the secondary objectives. In fact as demonstrated in chapter 2, by 

minimizing the variation of reserved energy at DC bus the power balance is achieved among 

these elements. The corresponding control action of system are the continuous-time signals 

to generate binary signals through PWM modules for IGBT switches of power electronic 

converters. 

 

This system is nonlinear, multivariable and highly coupled with its eight state variables. 

Moreover it is observed that some parameters are unknown. To handle the parameter 

uncertainties subject to disturbance on the one hand, and nonlinearity on the other hand, a 

systematic approach based on a robust adaptive nonlinear control strategy is designed for this 

application. Next section mainly presents the design of the proposed robust adaptive exact 

multivariable input-output feedback linearization for the suggested nonlinear model of PV-

battery system. The main objective of this chapter is to make the closed-loop system behave 

like a conventional generator to participate into regulation of voltage as well as frequency. 

The main advantages of the proposed model-based control design strategy are that these 

highly coupled nonlinear dynamics will be exactly compensated. As a result, the closed-loop 

system will behave exactly (and not in an approximate way around the operating point) like a 

set of decoupled linear systems that can be easily controlled by linear controllers. Good 

transient performances will therefore be achieved. In addition robust adaptive laws (i.e. a 

direct adaptive approach) are proposed in this chapter to handle the parameter uncertainty 

and disturbances in the system. 

 

Next paragraphs demonstrate the controller design steps based on a robust adaptive exact 

input-output feedback linearization technique, consisting of linearizing the nonlinear model 

of Equation (5.1), and developing the robust and adaptation laws. The obtained linearized 

model is decoupled and therefore a linear controller is used to stabilize the system.  
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5.3 Proposed control scheme 

This section discusses the design of a robust adaptive nonlinear controller in order to satisfy 

voltage and frequency regulation in the presence of nonlinearity, uncertainty and disturbance. 

On the other hand voltages at the PV terminal, DC bus and AC bus need to be controlled to 

their set points respectively. Additional control objectives are the regulation of system 

frequency close to its nominal value, while allowing the photovoltaic system to operate at its 

maximum power point (MPP) and to contribute into power sharing. The latter implies that 

the control system will implicitly manage the power flow among the PV, the battery and the 

load. These multiple objectives are addressed simultaneously via the proposed multivariable 

design approach.  

 

5.3.1 Decoupling and feedback linearization control laws 

The dynamics of the system outputs are obtained by differentiating each output until at least 

one of the inputs appears explicitly in the expression. When the input appears at the r୲୦ 

derivative of the output, the latter is said to have a relative degree of order r. First it is 

assumed that all parameters are known. 

 

The first objective is to control photovoltaic terminal voltage to its optimized value, namely 

maximum power point voltage. This value is given by MPPT module, typically a 

conventional P&O strategy (see chapter 3). Recall that the vector of state variables is ݔ =[ܷ௉௏, ݅௅భ, ݅௤, Ω, ,஽஼ܧ ௕ܲ௔௧, ݅ௗ, ߱]். The first step in the feedback linearization technique is to 

apply a nonlinear change of coordinates ݖ = Τ(ݔ). In this case the transformation is given 

by: 
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(5.2) 

 

The output vector ݕ = [ܷ௉௏, Ω, ,஽஼ܧ ߱]் is expressed in terms of the new variables as ݕ ,ଵݖ]= ,ଷݖ ,ହݖ ݔ ଻]். The inverse transformationݖ = Τିଵ(ݖ) is given by: 
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(5.3) 

 

Differentiating the new defined state variables z until at least one of the inputs appears 

considering Equation (5.2) gives, 

 



143 

dqd
f

s

ref
s

s

s

s

s

s

s

dds
DCDC

bat

s

s

f

sref
s

s

s

DCDCDC

L
PV

qq
f

sref
s

DCDC

bat

s

s

DC
PV

PV
PV

DC
PVPV

vvv
zJL

Pv

Vz
L

v

L

v

P

B
z

P

k
z

JP

zz

v

v
dt

d

z
J

kP

P

kJ
zzz

P

k

z

JP

J

zP

JP

zz

P

k
z

zJ

P
z

zz

vsvvsz
UCL

U

P

B
z

P

k
z

JP

zz

v

v
dt

d

L

v
Vz

L

v

CL
z

UC

i
zP

dt

d
z

zz

vv
L

L
zz

J

P

JP

zz
z

P

k
Vz

Jz

P

P

B
z

UCL

U

P

k
z

P

J
zz

v

L
zz

zz

ssU
LC

i
dt

d

C
U

LC
z

LC
z

zz

42414
7

2

14

2

2
2
7272

87
2

738772

2

7

2
27

2

2
87

73
7

2

4

8

87

32231325
2

2
2
727

2
87

2

14
2

566

65

2277

2

2
87

7142
7

2

2
2
72

2
7287

2
714

43

1111
11

1
1

2

21

.
3

)](
2

3

2

3
)](

/2
[

2
)

2
([

/2
]

2

/2
[

4

2

32
)](

/2
[

2

3
)(

2

3
)

2
()(

)
2

/2
)((

2

))(
2

)
2

((
3

2

1111

2

ηης

θθθ

ηηςθ

θ

ηςθ

θθ

ης

++=−

−+−−+−−+−−−

−++−+−=

=

++=−−−−

+−−+−+−−−−=

=

+=−−+−+−−

−−−+−+=

=

+=−++−=

=



















 

 

 

 

 

 

(5.4) 

 

The vector z in terms of the outputs is given by: 
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(5.5) 

 

Since all four inputs appear in the second derivative of respective outputs, the relative vector 

of system is r = ሼ2,2,2,2ሽ. Since ∑ݎ௜ = ݊ = 8 the system is fully linearizable and there are 

no zero dynamics. 
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The linearizing and decoupling control laws are obtained from (5.5). The following 

expression is used to cancel the nonlinear terms that appear in (5.1). 
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(5.6) 

where vሬԦ = (vଵ, vଶ, vଷ, vସ)୘ is the vector of auxiliary inputs that will be used to stabilize the 

following decoupled linear system obtained when (5.6) is substituted in (5.5): 
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(5.7) 

 

Therefore the cancellation of the nonlinear dynamics by the nonlinear control law (5.6) has 

transformed the MIMO system model into four SISO decoupled linear systems.  

 

The next step of the design is to obtain robust and adaptation laws for online estimation of 

conventional generators’ terminal voltage and load power. In fact the uncertain parameter θ 

is assumed to be unknown and subjected to disturbances. Thus a robust adaptive mechanism 

is proposed to update the nonlinear controller to improve the system responses under real 

situation. 
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5.3.2  Robust and adaptation laws with parameter estimation 

All the computation performed so far (see Equation (5.2) to Equation (5.7)) have assumed 

that the parameter [ ]T21,θθθ = is known. In this section we go back to the change of 

coordinates (Equation (5.2)) when [ ]T21,θθθ = is unknown. The state variables that will be 

directly affected by above assumption are 4z  and 8z  since they explicitly depend on 1θ  and 

2θ . These state variables on the other hand affect the outputs 3z  and 7z  respectively. Since 

the same equations (see Equation (5.2) to Equation (5.4) ) hold for other variables 1z , 2z , 5z  

and 6z , the repetition of those equations are avoided in this section. 

 

We use the following transformation: 
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The state variables are found as: 
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The hat symbol “^” denotes the estimation of the unknown variables. Differentiating the 

output gives, 
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where θ෨ଵ = ଵேߠ − ଵߠ ෠ଵ andߠ = ଵேߠ +  ,The equation (5.10) simplifies to	.(ݐ)ଵߠ∆
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Note that θ෨ଵ,	ߠଵே and ∆ߠଵ(ݐ) represent the estimation error, the nominal term and the small 

variation of the estimated parameter respectively. Differentiating the estimated output 4ẑ , 

one obtains: 
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Defining the control input qv : 
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the 4ẑ is obtained as:
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Similarly we use the following transformation for the last two states: 
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The state variables are found as: 
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Differentiating the output 7z  gives, 
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where θ෨ଶ = ଶேߠ − ଶߠ ෠ଶ andߠ = ଶேߠ +  :one obtains (ݐ)ଶߠ∆
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where θ෨ଶ, ߠଶே and ∆ߠଶ(ݐ) represent the estimation error, the nominal term and the small 

variation of the estimated parameter respectively. Differentiating the estimated output 8ẑ , 
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Recall that qv is given in Equation (5.13). By proposing dv  as: 
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(5.20) 

the dynamics of 8ẑ is obtained as, 
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By defining the new variable as: 
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the closed loop dynamics of the entire system is formed as, 
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The state-space representation is obtained as, 
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Considering the following general form, 

 zොሶ = Azො + Bv + ψθ෨ +Wθ෠ሶ + ψ∆θ(t) 
zො = ,ଵݖ) ,ଶݖ ,ଷݖ zොସ, ,ହݖ ,଺ݖ ,଻ݖ zො଼)୘, θ෨ = ൫θ෨ଵ, θ෨ଶ൯୘, θ෠ሶ = ቀθ෠ሶ ଵ, θ෠ሶ ଶቁ୘, ∆θ(t) = (∆θଵ(t), ∆θଶ(t))୘ 
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we choose the auxiliary control input v = −Hzො + p(t) where H = (hଵ, hଶ, hଵ, hସ)୘. The 

Equation (5.21) is simplified to 

ሶݖ̂  = ܣ) − ݖ̂(ܪܤ + ෨ߠ߰ ෠ሶߠܹ+  (5.25) 

 

The gain H is chosen so that A − BH	to be Hurwitz. The term p(t) is considered into the 

control Equation (5.22) to compensate the perturbation ∆θ(t) and to guarantee the robustness 

in control design. The objective in this stage is to obtain the robust and adaptation laws. 

Supposing Aୱ = A − BH	,	we define eො and εො such that: 

 eොሶ = Aୱeො +Wθ෠ሶ , eො(0) = 0 (5.26) εො = zො − eො (5.27) 

 

where	εො is the augmented error and eො is the error augmentation.  

It is easy to show: 

 εොሶ = Aୱεො + Bp(t) + ψθ෨ + ψ∆θ(t) (5.28) 

 

To determine the robust and adaptation laws, we consider the following Lyapunov candidate: 

 

V = 12 εො୘Pεො + 12θ෨୘Γିଵθ෨  
(5.29) 
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where	ܲ is such that ܣ௦்ܲ + ௦ܣܲ = −ܳ, ܳ > 0  and 	Γ > 0. The derivation of V gives: 

 Vሶ = εො୘(Aୱ୘P + PAୱ)εො + 2θ෨୘ψ୘Pεො + 2∆θ୘ψ୘Pεො + 2εො୘PBp(t) + 2θ෨୘Γିଵθ෨ሶ  = −εො୘Qεො + 2θ෨୘ ቀψ୘Pεො + Γିଵθ෨ሶ ቁ + 2∆θ୘ψ୘Pεො + 2εො୘PBp(t) 
(5.30) 

 

To find the robust and adaptation laws such that Vሶ ≤ 0,	we choose θ෨ሶ = −θ෠ሶ  so that the 

adaptation law is obtained as: 

 θ෨ሶ = −θ෠ሶ = −Γψ୘Pεො (5.31) 

 

where Γ is the vector of positive gains. Using the following relationship, 

 

|X୘Y| ≤ K4 X୘X + 1KY୘Y							,			X, Y ∈ ℛ୮, K ∈ ℛା 
(5.32) 

 

Equation (5.27) is simplified to the inequality as: 

 

Vሶ ≤ −εො୘Qεො + 2εො୘PBp(t) + 1K∆θ୘∆θ + Kεො୘Pψψ୘Pεො (5.33) 

 

Choosing robust term p(t) as, 

 p(t) = −K2 B୘(B୘B)ିଵψψ୘Pεො (5.34) 
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the inequality in (5.33) is simplified to: 

 

Vሶ ≤ −εො୘Qεො + 1K∆θ୘∆θ 
(5.35) 

 

Bound using Bellman-Gronwall Lemma and Transition Matrix Approach: 

The Lyapunov candidate V	satisfies: 

 

Vሶ ≤ −∝ V + 1K(5.36) (ݐ)ߜ 

 

Where ∝ and (ݐ)ߜ are found using inequality (5.35) as 

 ∝= 2εො୘Qεො(εො୘Pεො + θ෨୘Γିଵθ෨)ିଵ (ݐ)ߜ = ∆θ୘∆θ 

 

 

The term (ݐ)ߜ is called the perturbation function of inequality (5.36). The perturbed system 

with the differential Equation (5.28) is stable if 

‖V‖‖(ݐ)ߜ‖  ≤ μ 
(5.37) 

 

The solution of (5.33) is  
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V(t) ≤ ݁ି∝(௧ି௧బ)ݒ(ݐ଴) + 1Kන ݁ି∝(௧ିఛ)௧
௧బ  ߬݀(߬)ߜ

(5.38) 

 

then, 

 

‖V(t)‖ ≤ ฮ݁ି∝(௧ି௧బ)ฮ‖ݒ(ݐ଴)‖ + 1Kන ฮ݁ି∝(௧ିఛ)ฮ௧
௧బ  ߬݀‖(߬)ߜ‖

(5.39) 

 

Substituting (5.37) in the above, we have 

 ‖V(t)‖ ≤ ฮ݁ି∝(௧ି௧బ)ฮ‖ݒ(ݐ଴)‖ + μKන ฮ݁ି∝(௧ିఛ)ฮ௧
௧బ ‖ܸ(߬)‖݀߬ 

(5.40) 

 

Remark: System is exponentially stable if and only if there exists positive scalars h and ∝௦ 
such that for all ݐ଴ ≥ 0	and for all ݐ ≥  ଴ (Yedavalli 2013)ݐ

,ݐ)∅‖  ‖(଴ݐ ≤ ℎ݁ି∝ೞ(௧ି௧బ) (5.41) 

 

The matrix function  ∅(ݐ,  ଴) is defined as the transition matrix. ∝௦ is the stability degree ofݐ

the system, which is a positive scalar. ∝௦= max௜  (5.42) [(∝)௜ߣ]ܴ݁

 

where	ߣ௜(∝) is the "eigenvalue" of the complex matrix ∝. Using the above remark: 
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‖V(t)‖ ≤ hฮ݁ି∝ೞ(௧ି௧బ)ฮ‖ݒ(ݐ଴)‖ + h. μK න ฮ݁ି∝ೞ(௧ିఛ)ฮ௧
௧బ ‖ܸ(߬)‖݀߬ 

(5.43) 

 

that is, 

 

݁ା∝ೞ௧‖V(t)‖ ≤ h݁ା∝ೞ௧బ‖ݒ(ݐ଴)‖ + h. μK න ݁ା∝ೞఛ௧
௧బ ‖ܸ(߬)‖݀߬ 

(5.44) 

 

Using the Bellman-Gronwall lemma, which says that when ℎ(ݐ) ≤ ܿ + ׬ ݇(߬)௧௧బ ℎ(߬)݀߬ then: 

 

ℎ(ݐ) ≤ ׬݁ܿ ௞(ఛ)೟೟బ ௗఛ (5.45) 

 

with	݇(߬) = ୦.ஜ୏ 	,	we obtain 

 ݁ା∝ೞ௧‖V(t)‖ ≤ h݁ା∝ೞ௧బ‖ݒ(ݐ଴)‖݁׬ ౞.ಔే೟೟బ ௗఛ (5.46) ‖V(t)‖ ≤ h݁ିஒ(௧ି௧బ)‖ݒ(ݐ଴)‖ (5.47) 

 

where β =∝௦− ୦.ஜ୏ . Choosing μ∗ = ∝ೞ௞୦ , we have that ∀μ ∈ [0, μ∗), β > 0 and therefore, V(t) → 0 exponentially fast, which implies that the equilibrium state ݖ௘ = 0 of (5.24) is 

uniformly asymptotically stable (u.a.s) in large. 

 

The stability of the system subject to perturbations is therefore assured. The robust and 

adaptation laws are therefore given as,  
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θ෠ሶ = Γψ୘Pεො εො = zො − eො eොሶ = Aୱeො +WΓψ୘Pεො,     eො(0) = 0 

p(t) = K2 (B୘B)ିଵB୘ψψ୘Pεො 

 

 

(5.48) 

 

The next step of the design is to obtain the expressions for the auxiliary signals that are the 

inputs of system (5.7). 

 

5.3.3  Design of stabilizing linear control laws 

In order for the outputs to track their respective references, the following stabilizing control 

inputs are suggested,   

 vଵ = hଵଵ	(yଵୖ ୉୊ − yଵ) + hଵଶ	(−yሶଵ) + pଵ	(ݐ) vଶ = hଶଵ	(yଶୖ ୉୊ − yଶ) + hଶଶ	(−yሶ ଶ) + pଶ	(ݐ) vଷ = hଷଵ	(yଷୖ ୉୊ − yଷ) + hଷଶ	(−yሶ ଷ) + pଷ	(ݐ) ݒସ = ℎସଵ	(ݕସோாி − (ସݕ + ℎସଶ	(−ݕሶସ) + pସ	(ݐ) 
(5.49) 

 

where y1
REF,	y2

REF, y3
REF and y4

REFare the set-points for the corresponding outputs. The term p(ݐ) is included in (5.49) to assure the robustness of the controller. In order for the tracking 

errors to converge to zero, the positive controller gains are appointed such that the 

characteristic polynomials of the systems, obtained by substituting (5.49) into (5.7) are 

Hurwitz. The configuration of the proposed controller is demonstrated in Figure 5.2. 
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Figure 5.2 Robust adaptive exact input-output feedback linearization scheme 

 

5.4 Simulation Results 

This section presents the evaluation of the suggested model demonstrated in Figure 5.1 using 

simulation. The tests include different scenarios such as load and insolation changes. The 

main objective is to verify the performance of the proposed robust adaptive nonlinear 

controller in frequency and voltage regulation, load sharing and MPPT. In addition 

comparison studies are given for three suggested methods of droop backstepping control, 

nonlinear control, robust adaptive nonlinear control. 

 

The simulation model is developed in MATLAB/SIMULINK including PV array, battery, 

synchronous generator, power electronic converters and load (see Figure 5.1). As mentioned 

in previous chapters, the synchronous generator is assumed to have its own speed governor 

as well as automatic voltage regulator (AVR). The simulation parameters are given in Table 

5.1. 

 

To evaluate the frequency and voltage regulation capability of the PV-battery generator, the 

active and reactive power demands are changed abruptly at time t = 100 s. Figure 5.3 (a,b) 

shows the active power sharing between the PV-battery generator and the synchronous 

generator respectively. One can notice that the PV-battery generator provides 0.11 p.u. of the 

demanded active power, increasing to 0.158 p.u. to participate in load active power sharing. 
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Similarly, the SG provides 0.03 p.u. and 0.175 p.u., respectively, before and after the load 

perturbation occurs. Simulation results therefore show that the PV-battery generator and SG 

achieve active power participation rates of 26.4% and 73.6%, respectively. Figure 5.4 (a,b) 

shows the reactive power sharing between the PV-battery generator and the synchronous 

generator respectively. One can notice that the PV-battery generator provides 0.16 p.u. of the 

demanded reactive power, increasing to 0.217 p.u. to participate in load reactive power 

sharing. Similarly, the SG provides 0.04 p.u. and 0.27 p.u., respectively, before and after the 

load perturbation occurs. Simulation results therefore show that the PV-battery generator and 

SG achieve reactive power participation rates of 19.86% and 79.04%, respectively. This 

confirms that the PV generator behaves like a conventional generator with a droop 

characteristic.  

 

Figure 5.5 (a,b) shows that the SG terminal voltage and rotor speed which are considered 

unknown in control design. 

 

The d-q currents id and iq increase to provide the required active and reactive power by load 

as shown in Figure 5.6. Control signals vd and vq, shown in Figure 5.7, are bounded.  

 

Figure 5.8 confirms that the frequency is regulated during increment of load power at time 

100 s. Figure 5.9 shows the regulation of the AC bus voltage. Therefore this test shows that 

hybrid PV/battery generator participates into frequency and voltage regulation as that of 

synchronous generator. 
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(a)  

 

(b) 

 

Figure 5.3 Load sharing active power; (a) PV/battery active power; (b) SG active power 
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(a)  

 

(b) 

 

Figure 5.4 Load sharing reactive powers; (a) PV/battery reactive power; (b) SG reactive 
power 
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(a) 

 

(b)  

Figure 5.5 SG regulation; (a) SG terminal voltage , (b) speed regulation 
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(a) 

 

(b)  

Figure 5.6 inverter current regulation; (a) id , (b) iq 
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(a) 

 

(b)  

Figure 5.7 Inverter control action; (a) vd , (b) vq 
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Figure 5.8 Frequency performance 

 

 

Figure 5.9 AC bus voltage performance  
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(a) 

 

(b)  

Figure 5.10 Parameter estimation; (a) 1Θ  , (b) 2Θ  
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According to robust and adaptation laws (see Equation (5.48)), the proposed controller is fed 

by unknown parameters 1Θ and 2Θ . The estimation of these parameters is presented in Figure 

5.10 (a) and Figure 5.10 (b) respectively. The parameter 1Θ  which is the SG terminal voltage 

is well estimated at its nominal value. The parameter 2Θ which is the load active power 

follows the load step change discussed in previous results. Since the Direct (robust) adaptive 

nonlinear controller is used, the precise estimation of unknown variables is not necessary. 

The objective of the direct adaptation approach is to estimate the variable such that the 

controller tracks the reference under uncertainty. Therefore these results confirm the 

proposed controller performance under disturbance and uncertainty. 

 

In addition, to test the PV performance in tracking the efficient power (maximum power 

point tracking, MPPT) an insolation ramp change is applied to the system shown in Figure 

5.11 (a). The PV optimal power is tracked as shown in Figure 5.12 ("a" and "b") under 

applied insolation scenario. 

 

 

(a)  

Figure 5.11 MPPT test;  (a) insolation ramp change 
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(a) 

 

(b) 

 
Figure 5.12 MPPT test; (a) insolation ramp change (b) PV current (c) PV power 
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Comparison studies of modern control vs. classical control 

In this section a comparison studies are performed for three suggested methods in this thesis: 

droop backstepping control, nonlinear control and robust adaptive nonlinear control. Figure 

5.13 shows that the robust adaptive nonlinear control outperforms other methods in 

regulation of frequency. The frequency transient is improved compared to classical control 

approach. Moreover the steady state error is reduced by modern control. Figure 5.14 

indicates an improvement in transient in AC bus voltage regulation using modern control 

method compared to the classical control method. These improvements in frequency and 

voltage regulation are resulted by accurate active and reactive power support by PV-battery 

system as the exact nonlinearity of system with proper estimation of unknown parameters is 

taken into account.   

 

 

Figure 5.13 Frequency comparison between RANLC (Robust adaptive Nonlinear Control), 

NLC ( Nonlinear Control) and classical droop control 

 

80 100 120 140 160 180
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

Time(s)

F
re

q
u

en
cy

(p
u

)

 

 

RANLC
NLC
Droop



169 

 

Figure 5.14 AC bus voltage comparison between RANLC (Robust adaptive Nonlinear 

Control), NLC ( Nonlinear Control) and classical control 

 

Table 5.1. The parameters of microgrid system 

MG Parameters Value 

PV terminal capacitor, Cpv  590	ܨߤ 

Battery terminal capacitor, Cbat 590	ܨߤ 

DC link capacitor, CDC 1320	ܨߤ 

Boost converter inductance, L1 1	݉ܪ 

Battery boost converter inductance, L2 1	݉ܪ 

Filtering inductance, Lf 1	݉ܪ 
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Nominal frequency, fn 60	ݖܪ 

Switching frequency, fsw 10	݇ݖܪ 

Microgrid rated power, Pn  540 W 

Microgrid rated voltage, Vn 120 V 

STC PV power rating, PMPP 140 W 

Controller proportional gain, hi1 25000 

Controller derivative gain, hi2 1100 

Adaptive gain, Γ 600 

Robust gain, K 80 

 

 

 

5.5 Conclusion 

This chapter proposed a systematic control development based on robust adaptive nonlinear 

controller (exact input-output feedback linearization). The controller was designed for hybrid 

PV/battery generator in a microgrid including synchronous generator. The controller 

objectives were frequency and voltage regulation, load sharing and maximum power point 

tracking. The complexity of nonlinear controller (see chapter 4) to be extended in a large-

scale power system is eliminated using the proposed advanced controller. On the other hand 

the control design is independent to the rest of power system as the unknown variables 

(imposed by the power system) are estimated. The controller performance was verified in 

simulation. The results confirmed that the proposed hybrid PV/battery generator behaves as 

that of conventional synchronous generators. A comparative studies were presented for three 

methods of classical control, nonlinear control and robust adaptive nonlinear control. The 

results shows that the proposed modern control outperforms other classical control methods.



 

CONCLUSION 

 

Concluding Remarks: 

This research thesis suggested advanced and innovative control strategies to make the PV-

battery system behave like a conventional generator e.g. synchronous generator in voltage 

and frequency regulation while automatically managing power sharing between different 

modules. This thesis was structured based on modeling, control design and validation using 

both simulation and experimental investigation at GREPCI laboratory. 

 

First, an accurate and nonlinear multi-input multi-output (MIMO) dynamical model of 

system was extracted. This model was used for the design of a systematic control scheme i.e. 

robust adaptive nonlinear control.  

 

Second, a classical control approach consisting of a group of control loops was developed to 

tackle the problem associated with frequency and voltage regulation of PV system. 

Maximum power point tracking (MPPT) was integrated into the controller. While the results 

confirmed that the PV system participates into the frequency and voltage regulation, the 

exact system nonlinearity and parameter uncertainty were not taken into account in the 

design. The control method needed a power sharing algorithm i.e. charging or discharging 

battery power. A simulation was done to validate the controller performance. 

 

Third, a systematic nonlinear voltage and frequency control strategy in which the system 

nonlinearity was considered in the design was proposed (according to the proposed MIMO 

model). The power sharing was automatically met in the control development. An MPPT was 

integrated to extract the maximum PV power. The parameter uncertainties subjected to 

disturbance were not considered in this design. The control method was validated using both 

simulation and laboratory experimentation.  

 

Fourth, an advanced and innovative voltage and frequency control strategy which is robust, 

adaptive and nonlinear is proposed via nonlinear dynamics of system. These controllers are 
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designed to drive switching converters such that the perturbation, uncertainty and 

nonlinearity of the system as well as power sharing by battery are taken into account in 

control design. To extract the optimum power of PV generator, a maximum power point 

tracking (MPPT) algorithm is integrated into the controller. The validations of the proposed 

strategy were conducted in simulation. A comparison studies using simulation were 

performed to show the effectiveness of the proposed modern control compared to classical 

approach.



 

RECOMMENDATIONS  

 

1) Due to the lack of the synchronous generator (SG) and load models in this thesis, a 

primary recommendation might involve integrating the load model and the complete 

model of SG (transient-saturation model) to the proposed model in chapter 2;  

2) The design and implementation of robust adaptive nonlinear control using the extended 

model of hybrid PV-battery-SG is recommended; 

3) A model based control for parallel operation of PV inverters, their synchronization and 

load sharing in a microgrid are recommended; 

4) Fast islanding detection method is recommended; 

5) An automatic synchronization between the PV and SG is recommended;  

6) The topology of the hybrid PV/battery/SG microgrid system lacks the static transfer 

switch. It is recommended to consider a static transfer switch (STS) module at the point 

of common coupling (PCC); 

7) The design of the control and transfer algorithm for the STS is recommended; 

8) It is recommended to develop a nonlinear MPPT method which is suitable for partial 

shading situation which PV characteristics impose multiple peaks; 

9) It is recommended to develop a model of MG for unbalanced and dynamic loads and to 

apply robust adaptive nonlinear control for these loads.  
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