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1. INTRODUCTION

Droplets are widely encountered in various cooling applica-
tions that use electrowetting,1,2 mist,3,4 spray,5 and traditional air
conditioning and refrigeration.6 Emerging cooling techniques
such as electrowetting use droplet motion to transport heat.7,8 A
study of droplet dynamics can shed light on the cooling achieved
from droplets actuated electrically (or gravitationally). Many
microfluidic applications would also benefit from a better under-
standing of droplet dynamics under electrical actuation.9�11

Electrowetting on a dielectric material was first proposed by
Berge.12 Since then, many studies have been conducted to
understand the steady-state droplet response to a dc voltage
input.13�16 However, the transient response of the droplet to dc
actuation has not been studied in detail and has attracted interest
only over the past decade. Blake and Haynes17 originally pro-
posed a molecular kinetic (MK) theory to predict the motion of
the triple contact line. It was shown that for a simplified case the
velocity of the contact line is proportional to the difference in the
cosines of the apparent contact angle and the intrinsic contact
angle. An equivalent contact line force term was developed on
the basis of the theory. Blake et al.18 extended the MK theory to
include electrostatic equations along with dynamic wetting to
predict the wetting behavior of coated flows on dielectric layers
under external electrical actuation forces. Decamps and De
Coninck19 showed the use of this modified MK theory to predict
transient electrowetting on the dielectric (EWOD) of droplets.
They established that the contact line friction coefficient is inde-
pendent of voltage. Independently, Schneemilch et al.20 presented
similar results for the case of water droplets on a Parylene dielectric
layer. The experimental data also followed the MK theory.

By means of a simple energy balance and comparison with
experiments, Ren et al.21 showed that viscous forces are small
when compared to the contact line friction forces during the
transient EWOD process. Wang and Jones22 analyzed the column
rise in a modified Pellat experimental apparatus23 under a step
voltage response. A reduced-order model was used to predict the
1D transient height rise of the interface including the contact line
friction, which was modeled on the basis of the MK theory.
Because it is a simple reduced-order model, its use is limited to
column rise predictions.

Sen and Kim24 observed the contact line motion under a step
input but for a coplanar EWOD device. The transient behavior of
droplet spreading and the parameters at the contact line were
characterized. The time required to reach the maximum contact
line speed and its absolute value were predicted on the basis of an
order-of-magnitude analysis. Recently, Oh et al.25 reported the
use of shape mode equations to describe the unsteady motion of
a sessile drop during dc electrowetting. The model is simplified
and is valid for simple EWOD cases and cannot take into account
changes in electrode shape and variable thickness.

These studies show that a comprehensive flexible model that
predicts transient droplet motion has not been forthcoming. The
volume of fluid (VOF) technique provides the framework for
such a model. The VOF model has successfully been used to
predict droplet statics26 and dynamics27 on hydrophobic surfaces
under gravitational actuation.
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ABSTRACT: The static shape of droplets under electrowetting
actuation is well understood. The steady-state shape of the
droplet is obtained on the basis of the balance of surface tension
and electrowetting forces, and the change in the apparent contact
angle is well characterized by the Young�Lippmann equation.
However, the transient droplet shape behavior when a voltage is
suddenly applied across a droplet has received less attention.
Additional dynamic frictional forces are at play during this
transient process. We present a model to predict this transient
behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The
electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact
line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting
actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our
experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact
line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the
overall droplet motion and the contact line velocities.
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Mohseni et al.28 and Arzpeyma et al.29 considered electrowet-
ting effects and used VOF to predict the transient shape and
linear motion of droplets sandwiched between two parallel
electrode arrays. The model was recently improved upon by
Keshavarz-Motamed et al.30 and Rajabi et al.31 to include the
dynamic aspects given by the simplified MK theory as a correc-
tion to the static electrowetting contact angle. The dynamic
model provided better predictions of droplet dynamics than did
the static electrowetting model.

In the present work, we use the contact angle boundary
condition of Mohseni et al.28 using the VOF model to predict
the transient, free-surface shape during the spreading of a droplet
under the action of electrowetting. A force balance at the contact
line is employed, and the droplet motion under a step voltage
response is predicted. The time history of the droplet shape,
contact line radius, and contact line speeds are computed and
compared with measurements from experiments conducted as
part of this work for validating the model. The effect of contact
line friction on the transient droplet motion is analyzed. An
approximate mathematical model is also developed on the basis
of the contact line force balance to help interpret the detailed
VOF computations. The model is used to predict the transient
contact line motion and the maximum contact line velocity. It is
found to be in good agreement with experiments and with the
detailed VOF model.

2. EXPERIMENTAL SETUP

The experimental setup is shown in Figure 1. A conducting droplet is
placed on a thin layer of dielectric coated with a Teflon surface and
surrounded by air. The experimental droplet response to the applied
actuation is recorded at 1000�2000 fps using a high-speed camera
(Photron 1024 PCI). All of the images are processed using MATLAB32

to determine the dynamic contact angle and the interfacial contact
radius. The experimental uncertainties in the contact angle and contact
radius measurements are (2� and (0.03 mm, respectively.
A highly conducting silicon wafer with a 1-μm-thick thermally grown

oxide layer is utilized as the substrate. The substrate is spin coated with
1% Teflon solution (DuPont, Wilmington, DE) forming a 0.5-μm-thick
later to impart hydrophobicity. An aluminum needle of 125 μmdiameter
is inserted into the droplet from the top, as shown in Figure 1. An image
of the experimental droplet and the aluminum needle is shown as an
inset. A voltage difference is provided between the silicon wafer and the

needle to actuate the droplet. A 5 ( 0.1 μL deionized water droplet is
used in all of the experiments. The initial contact angle and the contact
radius of the droplet in the absence of electrical actuation are 120 ( 2�
and 0.98 ( 0.03 mm, respectively.

3. NUMERICAL MODEL

In the current work, the volume of the fluid-continuum surface
force (VOF-CSF) model in the commercial fluid dynamics
software package, FLUENT,33 is used. A custom contact-angle
model based on the force balance at the contact line is imple-
mented using user defined functions to capture the effects of
surface tension, electrowetting, and dynamic contact line forces.
3.1. VOF-CSF Method. In the VOF method, the flow of

noninterpenetrating fluids is simulated by solving a single set
of Navier�Stokes equations and tracking the volume fraction of
one or more secondary fluids in the domain. The volume fraction
of the secondary phase s is obtained by solving the continuity
equation for this phase:

∂

∂t
ðRsÞ þrðRs vBÞ ¼ 0 ð1Þ

The volume fraction of the primary phase is calculated from

Rp þ∑Rs ¼ 1 ð2Þ
The shape of the interface is necessary to accurately calculate the
advective and diffusive terms of the continuity and momentum
equations in the finite volume formulation. For this purpose,
Youngs’ geometric reconstruction scheme,34 which is based on a
piecewise linear reconstruction of the interface in a partially filled
computational cell, is used. Further details of the implementation
may be found in the FLUENT manual.33

The momentum equation is solved for the average velocity of
themixture, and the influence of multiple phases appears through
the phase-fraction-dependent local properties of the material in
each cell.

∂

∂t
ðF vBÞ þrðF vB vBÞ

¼ �rpþr½μðr vBþr vB
TÞ� þ F gBþ FB ð3Þ

Here, the gravitational acceleration is specified as gB = g cos βþ g
sin β, where β is the angle of inclination of the surface, as shown
in ref 33. Physical properties such as the density and viscosity are
volume averaged as follows

F ¼ RsFs þ ð1� RsÞFp ð4Þ

μ ¼ Rsμs þ ð1� RsÞμp ð5Þ
where subscripts p and s represent the primary and secondary
phases, respectively. In the CSF formulation, when only two
phases exist, the volumetric force FB in eq 3 is given by

FB ¼ σ
FksrRs

1
2
ðFp þ FsÞ

ð6Þ

where σ is the coefficient of surface tension and ks is the
interfacial curvature for the secondary phase, given by Brackbill
et al.35 to be

ks ¼ � ðr 3 n̂Þ ð7Þ

Figure 1. Droplet system for transient droplet spreading under elec-
trical actuation. An experimental image of a conducting droplet (water)
with a conducting needle is shown in the inset.
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In 7, n̂ is the unit vector normal to the free surface. The normal
is obtained on the basis of the volume fraction gradient given by

n ¼ rRs

jrRsj ð8Þ

The interface shape at the triple line, where the two phases
meet the wall, is imposed by specifying n̂ through the specifica-
tion of the contact angle as

n̂ ¼ n̂w cosðθwÞ þ t̂w sinðθwÞ ð9Þ
where n̂w and t̂w are the unit vectors normal and tangential to the
wall (w) respectively; n̂w points into the secondary fluid and θw is
the contact angle that the interface makes with the wall. In the
current model, volume fraction smoothing is used to reduce the
spurious velocities at the interface associated with the VOF
method.36,37 Smoothing is performed by averaging the volume
fraction on the basis of the neighboring cell volume fractions.
However, oversmoothing may result in smearing of the interface
to more than two cells. A smoothing relaxation value of 0.25 was
found to be optimal.33

3.2. Contact AngleModel Based on the Contact Line Force
Balance. The VOF-CSF model requires contact angles to be
specified as a boundary condition; therefore, an accurate speci-
fication of the apparent contact angle at the contact line is
important. The apparent contact angle is obtained on the basis of
a force balance at the triple contact line. The forces acting on the
contact line are surface tension, electrowetting, and contact line
friction forces. The combined effect of the former two forces
gives the electrowetting contact angle (θe) given by the Young
�Lippmann equation:

cos θe ¼ cos θ0 þ 1
σ

kε0V 2

d

 !
ð10Þ

Here, θ0 is the intrinsic contact angle, k is the dielectric constant
of the dielectric layer, ε0 is the permittivity of free space, V is the
applied voltage, and d is the dielectric layer thickness. The
dynamics of the contact line motion can be understood on the
basis of the MK theory, which predicts that the contact line
friction force (FCL) per unit length acting at the triple contact line
is given by

FCL ¼ ξvðtÞ ð11Þ
where ξ is the coefficient of friction and v(t) is the instantaneous
velocity of the contact line. The value of ξ during electrowetting
was shown to be independent of voltage by Decamps and De
Coninck.19 The new apparent angle, θe,dyn, including the contact
line friction in the force balance at the contact line, is given by

cos θe, dyn ¼ cos θ0 þ 1
σ

kε0V 2

d
� ξvðtÞ

 !
ð12Þ

The main inputs required for this contact angle model are the
intrinsic contact angle θ0 and the coefficient of contact line
friction, ξ. The implementation of the contact line friction is
similar to that of Keshavarz-Motamed et al.30

3.3. Simulation Setup. The simulation mimics the experi-
mental setup, which is shown in Figure 1. Because droplet
motion is axisymmetric in nature, a 2D axisymmetric VOF
computation is performed in FLUENT. A square grid in the
r�y plane is used. A hemispherical cap of water of the required
droplet size is initialized in the domain. Any shape changes due to

the presence of the electrode needle at the top of the droplet are
neglected. Acceleration due to gravity is applied throughout the
domain in the negative y direction. A no-slip boundary condition
is specified at the bottom wall. The remaining domain bound-
aries are specified-pressure boundaries, set at a gauge pressure of
zero.34 The computational domain, mesh, and boundary condi-
tions are shown in Figure 2 along with the initial droplet shape
shaded black.
The contact angle model based on the contact line force

balance discussed above is implemented as a contact angle
boundary condition on the contact line. It is implemented in
the VOF-CSF model through user-defined functions (UDFs) in
FLUENT.

4. RESULTS AND DISCUSSION

In this section, we present results from a simulation of the
transient motion of a 5 μL water droplet on a smooth Teflon
surface. The droplet is actuated using different step input
voltages. The predictions from the simulations are compared
and validated against experiments. The effect of contact line
friction on the contact line motion is examined by means of a
comparison to computations in which the contact line friction is
neglected.

The voltages applied are chosen on the basis of those applied
in the experiments using water on a smooth Teflon surface.
Voltages of 40, 50, and 60 V are used. Because Lippmann’s
equation is not valid beyond the saturation voltage (of 65 V),
higher voltages are not considered. The water/air surface tension
is taken to be 0.072 N/m. The value of ξ is set at 0.4 Ns/m2 on
the basis of experimental data for the water/Teflon combination
from Wang and Jones.22

4.1. Validation. Figure 3 shows a comparison of the experi-
mental results32 (left) with the VOF simulation predictions
(right) of the time evolution of droplet shape for a step input
voltage (V = 60 V). The contour Rs = 0.5 is taken to be the free
surface location. Contour lines of Rs = 0.1 and 0.9 (in white) are
also superposed on the experimental droplet images to facilitate
easier comparison. The contact line is seen to move outward as
soon as the voltage is applied. This is due to the change in
equilibrium contact angle from 120� at 0 V to 84� at 60 V as
predicted by the Lippmann equation (eq 10). The remaining part
of the droplet moves to keep the droplet volume constant. This is
better visualized through velocity vectors inside the droplet, as
shown in Figure 4. The velocity vectors (red) and the droplet

Figure 2. Axisymmetric mesh with the initial shape of the droplet (in
black).
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shape (black) are shown at different instants in time. The droplet
motion originates at the contact line with high velocities around
the region at t = 0.1 ms, and the rest of the fluid inside the droplet
remains stationary. As time progresses to t = 2 ms, more bulk
fluid and the remaining interface participate in the motion of the
droplet. At t = 3 ms, the ripple reaches the top of the droplet and
the height of the droplet starts to decrease. This is marked by
high velocities at the top of the droplet. The process continues
through t = 5ms. At t = 20ms, the velocities inside the droplet die
down and the droplet reaches its equilibrium shape.
The time evolution of normalized droplet contact radius is

shown in Figure 5. The contact radius is normalized on the basis
of the initial contact line radius (before the application of voltage).

The contact line accelerates from a stationary state to a constant
velocity; the velocity then slowly goes to zero as the droplet
reaches maximum spreading (rCL) at around 8ms. The initial rise
in velocity is not seen in the experiments because of small capture
rates. Similar transient contact radius behavior is reported by Oh
et al.25 andWang and Jones.22 The presence of oscillations is less
pronounced in the experiments than in the simulations because
of damping by contact angle hysteresis. The computed and
experimental time histories of the contact line radius for step
voltages of 40, 50, and 60 V are compared in Figure 6. The uncer-
tainty of the length measurement in the experiments ((0.03 mm)
is shown as error bars in the Figure. The agreement is reasonable,
and predictions of the contact line radius fall within experimental
error bands. The maximum spreading and the time required to
attain it are accurately predicted by the model. The predicted
droplet shapes also match reasonably well (Figure 3). The exper-
imental droplet images lie in between the Rs = 0.1 and 0.9
contour lines obtained from the numerical solution, validating
the numerical methodology. However, because of the asymmetry
of the needle, as seen in the insets of Figures 1 and 5, some of the
droplets are seen to have nonaxisymmetric shapes.
4.2. Damping Time. The predicted time history of the

normalized height of the droplet and the contact radius are
shown in Figure 7. The contact radius and height are normalized

Figure 3. Comparison of the computed transient droplet shape with experiments for a step input voltage of 60 V at different instants in time. Gray (left):
experimental results. Color (right): simulation results (red, water; blue, air). The contour lines for Rs = 0.1 and 0.9 (in white) are superposed on the
experimental images.

Figure 4. VOF simulations of the velocity vectors (in red) and droplet
shape (in black) for a step input voltage of 60 V at different instants
in time.

Figure 5. Comparison of the computed time evolution of the normal-
ized contact radius with experiments for a step input voltage of 60 V.

Figure 6. Time history of the normalized contact line radius for
different step input voltages (40, 50, and 60 V).
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on the basis of the initial and final states given by (r� rt=0ms)/(r�
rt = 50ms) and (h � ht = 50ms)/(h � ht = 0ms), respectively. The
contact radius reaches an equilibrium value within 10 ms,
whereas the height does not reach its equilibrium value within
the entire simulation time of 250 ms. This can be understood by
looking at the dominant damping mechanism for the contact
radius and height oscillations. The damping mechanism for the
contact radius oscillation is dominated by the contact line
friction, whereas for the height, it is purely viscous dissipation.
The ratio of the time constants for the damping processes are
inversely related to the value of the damping constants, which for
the case of the contact radius and height are the contact line
friction coefficient and the droplet liquid viscosity, respectively.
Hence, the ratio of the damping time constants for the height and
contact radius is τh/τCL≈ ζ/μwater = 0.4 N sm�2/0.001 N sm�2

= 400. The time constant for the oscillation of droplet height is
approximately 4 s. This explains why the oscillations in height are
not damped out even after 250 ms has elapsed.
4.3. Effect of Contact Line Friction. The time histories of the

predicted contact line radius with (solid line) and without
(dashed line) the contact line friction are shown (Figure 8) for
a step input voltage (60 V) along with the experimental mea-
surements (symbols). The absence of contact line friction causes
a far larger amplitude of oscillation than is seen in the experiment.
The time required to reach equilibrium also exceeds the experi-
mental value by over 2 orders of magnitude. These results
indicate that contact line friction dominates viscous damping
during the transient spreading of the droplet. A similar conclu-
sion was reached by Wang and Jones22 in the case of transient
capillary rise experiments.
4.4. Approximate Mathematical Model. A simplified math-

ematical model is developed to understand the transient radial
motion of the droplet contact line. The major horizontal forces
acting on the contact line (i.e., surface tension forces, the
electrowetting force, and contact line friction) are included in
the model. Viscous forces are neglected becauase they are small
compared to these forces.21 The droplet is assumed to be well
described by the spherical cap assumption26 during transient
motion. This is a valid assumption because the Bond number is
small (Bo = 0.17). However, the nonspherical shapes observed at

t = 2.0 and 3.0 ms in Figure 4 would not be captured by this
assumption. When the droplet contact line is in quasi-static
equilibrium, the radial forces acting at the contact line are
balanced and the droplet transport is governed by

σðcos θ� cos θ0Þ � ξr0 þ 1
2

kε0V 2

d

 !
¼ 0 ð13Þ

which is a reformulation of eq 12. Here, θ is the instanta-
neous contact angle and r0 is the instantaneous velocity.
Under nonequilibrium conditions, the droplet transport
equation is obtained by equating the radial force imbalance
at the contact line to the rate of change of radial momentum
and is given by

ðmrr
0Þ0 ¼ � ξr0 � σ cos θþ σ cos θ0 þ 1

2
kε0V 2

d

 ! !

ð14Þ
The instantaneous effective mass (mr) involved in the
droplet motion is taken to be the mass displaced from the
original droplet shape shown in Figure 9 and is given by

mrðr, θÞ ¼ r2ð�4þ cosðθÞÞcosðθÞ sinðθ0Þ2 þ ð�4þ cos2ðθ0ÞÞ sin2ðθÞr20
�
þ 2rr0ð�2þ ð�2þ cosðθÞÞcosðθ0Þ sinðθÞ sinðθ0ÞÞ

� F
24r

½r cosðθÞ sinðθ0Þ þ ð�2þ cosðθ0ÞÞsinðθÞr0�2
ðsin3ðθÞ sin3ðθ0Þ½rð�1þ cosðθÞÞsinðθ0Þ þ ð�1þ cosðθ0ÞÞsinðθÞr0Þ�

 !

ð15Þ
The droplet contact radius (r) and the contact angle (θ) are

related through the conservation of volume, ":

" ¼ πr3

3
2� 3 cos θþ cos3 θ

sin3 θ
ð16Þ

This assumes that the remaining mass does not move in the
horizontal direction at this instant.
The radial momentum equation (eq 14) is a second-order

ordinary differential equation. It is discretized using the finite

Figure 7. Time history of the normalized height and contact line radius
from the VOF simulations for a step voltage of V = 60 V.

Figure 8. Comparison of the computed (with contact line friction, �;
without contact line friction, ---) and experimental time evolution of the
normalized contact radius for a step input voltage of 60 V.
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difference method with an explicit time marching scheme
for rn

rn ¼ rn � 1 þmr
n � 1ðr0n � 1ΔtÞ � σðcosðθrn � 1Þ � cosðθeÞÞΔt2

mr
n � 1rþ ζþ

dmr

dr

n � 1

ðr0n � 1Þ2

Δt

0
BB@

1
CCAΔt

ð17Þ
Here, Δt is the time step, r0 is the velocity of the contact line,
and θe is the Lippman contact angle. The value of the radius at
the previous time level is denoted by rn�1, and the contact line
velocity is denoted by r0n�1. The initial condition for time
marching is given by

r0 ¼ 3 " sin3 θ0
πð2� 3 cos θ0 þ cos3 θ0Þ

" #1=3

r00 ¼

kε0V 2

2d

 !

ζ

ð18Þ

The initial velocity condition is derived from eq 13 by setting
the inertial term on the LHS to zero. This is justified because the
instantaneous effective mass at t = 0 s is zero. The model is used

to predict the droplet behavior seen in the experiments. Time-
step-independent results were achieved for time steps smaller
than Δt = 0.1 ms.
The material properties and contact line friction coefficient

from the volume of fluid simulations are used in themathematical
model. The contact radius time history obtained from the
mathematical model is compared with the experimental results
(Figure 10) for different step input voltages. The mathematical
model accurately predicts the overall trend in the droplet contact
line behavior. However, because the droplet does not allow for
nonspherical droplet shapes, the additional motion due to the
surface waves on the interface is not captured by the mathe-
matical model.
Themaximum contact line velocity occurs at t = 0 according to

the mathematical model and is given by

r0max ¼

kε0V 2

2d

 !

ζ
ð19Þ

The r0max value shows quadratic growth with the step voltage
input, which contradicts the predictions from Sen and Kim,24

who found a linear voltage dependence. Sen and Kim24 con-
sidered the droplet to be dominated by inertial motion and
frictional forces were neglected, which results in a discrepancy
with our predictions. In the present model, the effective mass
involved in the beginning of the simulation is negligible and
hence the inertial force is small compared to the frictional forces,
as can be seen from the time history of the effective mass
(Figure 11). This is also supported by the velocity vectors at t
= 0.1 ms (Figure 4), which show high velocities at the contact
line, with the rest of the fluid remaining stationary. Hence, the
main retarding force due to high contact line velocities is the
contact line friction given by FCL = ζr0. The actuation forces
acting on the droplet in the early stages go as FA � V2. After
these forces are balanced, the contact line velocity shows a
quadratic dependence (eq 19) on voltage. The predictions are
further validated by comparing them against the detailed
numerical predictions and are tabulated in Table 1, showing
good agreement.

Figure 11. Time history of the effective mass per unit radial length for
different step input voltages obtained with the approximate mathe-
matical model.

Figure 9. Effective mass involved in the droplet motion (gray region).
The original droplet shape is shown by a dashed line, and the droplet
shape at the current time is shown by a solid line.

Figure 10. Time history of the normalized contact line radius obtained
from the approximate mathematical model for different step input
voltages (40, 50, and 60 V) compared to experimental values.
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5. CONCLUSIONS

A generalized numerical model to predict the transient
behavior of the droplet shape under electrowetting actuation is
formulated and implemented in a VOF framework. The electro-
wetting and dynamic frictional forces are included as an effective
dynamic contact angle through a force balance at the contact line.
The model is accurately able to predict the transient behavior of
water droplets on smooth hydrophobic surfaces with a dielectric
layer below, under a step voltage input. The predictions of the
time history of the droplet shape and contact radius are in good
agreement with experiments conducted for model validation.
The contact line frictional force is shown to be the dominant
damping force during the transient process. The droplet motion
is shown to originate at the contact line.

An approximate mathematical model is developed to describe
the transient droplet dynamics and to understand the governing
phenomena. The effective mass involved in the horizontal
droplet motion is taken to be the mass displaced from the
original droplet shape. The simplified model adequately predicts
the general behavior of the droplet motion. The maximum
contact line velocities are also accurately predicted.
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Table 1. Comparison of the Predicted Maximum Contact
Line Speeds Using the Detailed Numerical Predictions and
the Approximate Mathematical Model

40 V 50 V 60 V

VOF 40 mm/s 68 mm/s 105 mm/s

approximate mathematical model 38 mm/s 72 mm/s 110 mm/s
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