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Finding the optimal number of realizations to represent the model uncertainty when applying stochastic
approaches is still a relevant question in geostatistics. The essence of the method is to visualize the
realizations in a suitably constructed attribute space. To construct this space, the static connectivity metrics
of the realizations were used. Within this framework, the creation of new realizations can be regarded as a
sampling process, in which each new stochastic image is the equivalent of a new sampling point in the
attribute space. The sampling process begins with the first few realizations appearing in a dispersed manner
in random parts of the attribute space. The addition of more realizations causes the gradual emergence of
higher point densities, which in the end, results in a point structure where most of the points are located in
areas of high point densities with areas of low point densities surrounding them. High point densities
represent typical realizations showing very similar connectivity characteristics, whereas low point densities
correspond to atypical realizations with stronger deviations from the bulk. In this sense, reaching the optimal
number of realizations is the equivalent of reaching a state in the sampling process where high- and low point
densities are present at the same time, yet high point densities do not dominate the overall structure of the
attribute space, as they also reflect the redundancy of the information content. This desired structure is
strongly analogous to the complete spatial randomness of spatial point processes, where the points are
neither dispersed nor aggregated in space. Based on this analogy, the normalized version of Ripley’s
K-function and the L-function for the spatial inhomogeneous Poisson point process was applied to find the
optimal number of realizations. The method is illustrated on a computed tomography slice and on the real-
life data of the Tisza-2 reservoir.
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Introduction

Giving estimates of values between sample data locations is a common task in the
field of geology. Practitioners may face it in petroleum geology when working on
reservoir modeling problems when characterizing ore reserves or modeling hydro-
geologic features. In dealing with this sort of problem, it is important to keep in mind
that estimates are always uncertain, regardless of the chosen estimation method. The
sources of uncertainty may be the randomness of the studied process, our limited
understanding and measurement error among others (Caers 2011).

This means that it is essential to characterize the inherent uncertainties in addition to
producing estimates. Stochastic approaches enable us to do so by generating several
equally probable realizations (Goovaerts 2001). In this way, the model uncertainty can
be described and quantified by characterizing the differences between the individual
stochastic images.

Possible ways for characterizing the model uncertainty

To characterize the model uncertainty, the probability distribution of the studied
attribute must be described along the nodes of the simulation grid based on the
realizations. Several descriptive parameters can be used to highlight areas of low,
medium, and high uncertainties, such as the conditional variance linked to the
E-type estimates, the confidence interval (Goovaerts 2001; Mucsi et al. 2013),
and statistical entropy (Journel and Deutsch 1993; Geiger and Újhelyi 2012).
Based on these parameters, we can obtain a rough idea of the regional uncertain-
ties, but only if the number of the produced realizations is sufficient to provide a
reliable outline.

However, in practice, the number of realizations is often limited by the available
computational capacity, since in the case of a high grid resolution, simulating even one
realization can be very time-consuming. Thus it is reasonable to ask how reliable an
idea about the uncertainty can be that was constructed based on 5 or 10 stochastic
realizations, how much new information can be gained by producing an additional 50
or 100 realizations, or from what number of realizations onward does the information
content of any newly generated realization become redundant. The most important
question, summarizing all previous ones, however, is: how many realizations are
enough? Goovaerts (1999) sought the answers to these questions using the conver-
gence of the variances of the stochastic realizations. Following his train of thought,
Geiger et al. (2010) used variance decomposition and the convergence of the within-
group and between-group variances to address the same question.
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The generated stochastic images are often post-processed, as for example in the case
of ore-body evaluations, where the net present value is calculated. In petroleum geology
applications, a dynamic flow simulation may be performed; however, only a fraction of
the realizations can be processed in this way, due to the time required for
the flow calculations. The selection of these representative realizations can be performed
subjectively, or by ranking them based on any parameter correlated with the studied flow
property. In this manner, stochastic images corresponding to the P10, P50, and P90
cutoff values can be selected and passed on to the flow simulator (Ballin et al. 1992).
Another possible way to select representative realizations was introduced by Scheidt and
Caers (2009), who suggest representing the realizations in a Euclidean attribute space.
The essence of the method is that distances between realizations in this attribute space
are correlated with the differences between their flow parameters. As a result, the
realizations become separable using any suitably selected multivariate method, such as
principle component analysis or cluster analysis. Then, for example, the cluster centers
can be selected as representative realizations for post-processing.

The aim of this study is to introduce a novel approach in harmony with the
previously mentioned methods to address the question of the optimal number of
stochastic realizations.

Sequential Gaussian simulation (SGS)

SGS is a type of conditional stochastic simulation (Srivastava 1990), meaning it
produces realizations honoring the input data values at their locations. It generates several
equally probable alternative realizations of the studied spatial phenomenon, utilizing
its modeled spatial continuity. The Gaussian approach assumes parametric distributions
both in the case of the input data and the simulated values. The implementation of the SGS
consists of the following steps (Gómez-Hernández and Srivastava 1990; Isaaks 1990;
Deutsch and Journel 1998; Goovaerts 2001; Geiger 2006):

(1) Normal score transform of the input data.
(2) Define a simulation grid over the study area.
(3) Define a random path through the grid nodes.
(4) Construct the conditional distribution of the studied variable at the first grid

node given the (n) conditioning data, then draw a random value from this
distribution and assign it to the grid node.

(5) Add this randomly assigned value to the conditioning dataset and use it when
building the conditional distribution for the next grid node on the path
according to step (4).

(6) Repeat step (5) until a simulated value is generated for all grid nodes.
(7) Back transform the simulated values.
(8) Choosing different random paths and repeat steps (4)–(7) until the required

number of realizations is produced.
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Problem statement

Simulation techniques are usually considered as tools capable of creating a large
number of equally probable alternatives which may contain an unmanageable amount of
information if we disregard the problem of the required computational capacity. This
impression is mostly inflicted by the multiplicity of random paths which can be chosen
on the grid, and by the random selection used to assign the values to the grid nodes.

It is therefore crucial to consider how the effective difference, based on which two
realizations may be deemed different at the decision-making level, can be defined
between the several, pairwise different stochastic images.

Methods

Connectivity attributes

To define these differences, we must turn to the connectivity metrics of the
simulated stochastic images. Connectivity metrics are widespread descriptive attri-
butes used from the field of reservoir modeling (Deutsch 1998) through landscape
ecology (McGarigal et al. 2012). They are used to characterize the heterogeneity of
surfaces. Unlike spatial continuity, they are not included among the input parameters
of the model-building phase; thus, they are able to highlight differences between
realizations. A detailed overview of the several existing connectivity attributes can be
found in the work of Renard and Allard (2013).

In this study, global and static metrics of connectivity were used. Based on the work
of Renard and Allard (2013), static metrics are statistical measures describing the
connectivity and thereby the flow characteristics of a field without considering a
specific physical process. This means they characterize units within the studied field
that show similar flow properties.

The global nature of these metrics, in turn, reflects that they provide information
about the entirety of the model, and not just about a highlighted sub-unit, such as a
selected well and its neighborhood. Such global metrics of connectivity are often
referred to as geo-body or geo-object connectivity.

There are several software implementations available for performing the connectivity
analysis by Deutsch (1998), Pardo-Igúzquiza and Dowd (2003), and McGarigal et al.
(2012). These all perform the connectivity analysis following the two steps (Fig. 1):

(1) Establish a binary indicator of net cells, separating cells that are considered net
and non-net considering their flow properties.

(2) Scan through the field aggregating corner- or edge-wise connected blocks of
net cells, labeling each different connected unit.

Following the outlining of the geo-objects, their connectivity attributes can be
calculated depending on the question at hand. The work by Deutsch (1998) only
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utilizes the sizes of the different geo-objects, whereas in the paper by Pardo-Igúzquiza
and Dowd (2003), various other metrics can be found, such as their average, minimal,
and maximal areas and extents in X, Y, and Z dimensions. However, the most detailed
characterization of the geo-objects can be found in the landscape ecology-themed
work of McGarigal et al. (2012). In addition to the basic metrics, this also provides
tools to characterize the geometric complexity of the geo-objects using metrics like the
length of edges on the inner and outer boundaries of the geo-objects, the number of
internal cells and the fractal dimension.

Sampling the field of uncertainty

Returning to the work of Scheidt and Caers (2009), which suggests representing the
realizations in an n-dimensional attribute space, let us imagine there is a way to limit
the location of the realizations in this space. This would mean that the realizations are

Fig. 1
Steps of the connectivity analysis: (a) a stochastic image, (b) its indicator transform, and (c) the identified
geo-objects
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not spread in the infinite attribute space in an unbounded manner, but rather that they
are confined to a precisely defined finite subspace. Such finite n-dimensional space can
be created if the defining axes are selected to represent attributes, which can take their
values only over closed intervals. As a result, the realizations can be enclosed in an
n-dimensional box, its size defined by the theoretically possible values of the
realizations on the attribute axes.

The resulting subspace can be regarded as an uncertainty field, which is sampled
with the simulation process to obtain an understanding of the spread of the realizations
in it. This means that each individual realization can be regarded as a sample in this
space.

Following the introduced logic, the question asked at the beginning of this study
can be rephrased in this way: How many realizations are required for the sampling of
the uncertainty field to be considered sufficient? And the other aspect of the same
question: After what number of realizations can it be stated that the uncertainty field is
oversampled, meaning part of the information content of the realizations is redundant?
To answer these questions, the spread of the points representing the realizations within
the field of uncertainty must be studied.

One important characteristic of the simulation approach is that it only ensures
reproduction of the input statistics, such as the estimated value and covariance, in the
average sense, if a reasonably high number of realizations are generated. Thus,
comparing the model statistics with those of the individual realizations, different levels
of discrepancies will be found (Deutsch and Journel 1998). This is the phenomenon
referred to in geostatistics as ergodic fluctuation. It also causes the variability of other
derivative attributes, such as the connectivity parameters, which is thus observable in
the field of uncertainty.

Consequently, if a high enough number of realizations is generated, the point cloud
representing them in the uncertainty field will have different point densities. High
point densities represent the bulk of the realizations, in the form of groups of typical
stochastic images having similar connectivity attribute combinations with each other.
Conversely, areas of low point densities suggest connectivity attribute combinations
that are more uncommon, representing realizations characterized by higher ergodic
fluctuations, deviating strongly from the bulk. In addition, there are also areas in the
uncertainty field that are devoid of realizations, which may represent one of the three
possible cases. First, these may represent the theoretically possible attribute combina-
tions that are not depicted by any of the realizations. These may be extremities and
their neighborhoods, such as realizations with all net or all non-net cells, which are
impossible in practice. Second, realizations that are probable in practice but are not
obtainable using the given model of spatial continuity and the selected simulation
settings, which also belong to these areas. And lastly, these are also the places of
realizations that are theoretically possible and with the chosen simulation settings
obtainable, but not yet included in the generated n realizations.

This type of representation of the stochastic images can also facilitate assess-
ment whether the number of realizations is sufficient to represent the model
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uncertainty. If we imagine the simulation as a process where the points represent-
ing the realizations are placed in the uncertainty field one by one, the following can
be seen: The first few points are randomly dispersed in the uncertainty field,
without any structure suggesting where groups of typical realizations may form
later. The addition of more realizations causes the gradual emergence of higher
point densities, with areas of low point densities still present. After creating a few
hundred realizations, this process results in a point structure where most of the
points are located in areas of high point densities with areas of low point densities
surrounding them. At this stage, any new realizations generated are most likely to
appear in the areas of high point densities.

In this sense, reaching the optimal number of realizations is the equivalent of
reaching a state in the sampling process where high- and low point densities are
present at the same time, yet high point densities do not dominate the overall structure
of the attribute space. The reason for this is that besides outlining groups of typical
realizations, high point densities also reflect the redundancy of the information
content, as they suggest similar attribute combinations.

Ripley’s K-function

To find the number of realizations from which the sampling stops being sufficient
and becomes redundant, it may help to consider the uncertainty field and the points in
it representing the realizations as a spatial point process. A spatial point process is a
stochastic process each of whose realizations consists of a finite or countably infinite
set of points in the plane (Gelfand et al. 2010).

In the study of spatial point processes, the Poisson process is one of the most
commonly used reference models, due to the fact that it embodies complete spatial
randomness (Illian et al. 2008). Since in practice complete spatial randomness implies
that the points are neither dispersed nor aggregated in space, it may be a suitable
benchmark for the optimal number of realizations.

The Poisson point process can be characterized by its first moment, the intensity (λ),
giving the mean number of points per unit area. For homogeneous Poisson processes
the intensity is constant, whereas for the inhomogeneous case the intensity varies in
space (Illian et al. 2008). Due to the uncertainty field having high- and low point
densities, the inhomogeneous Poisson process is the most appropriate model for its
characterization.

To check whether a point process is dominantly dispersed, aggregated, or spatially
random, Ripley’s K-function can be applied. The K-function is the second moment of
the point process. It is the expected number of points N within a distance r of another
point normalized by the intensity (Ripley 1977),

K ðrÞ= 1
n

Xn
i =1

Npi ðrÞ
λ
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where pi is the ith point. The value of K(r) for an arbitrary Poisson point process is r
2π.

Consequently, to decide whether an empirical point process is aggregated, dispersed,
or random, its K-function should be compared with the K-function of the theoretical
Poisson process. Empirical K(r) values below r2π suggest the dispersion of the point
process, whereas higher empirical K(r) values imply aggregation. Instead of the K(r)
function, often its normalized version, the L-function (Besag 1977) is used because it
is linear with an expected value of r.

LðrÞ=
ffiffiffiffiffiffiffiffiffiffiffi
K ðrÞ
π

r

While the K(r) and L(r) functions were originally defined for the homogeneous
Poisson point processes, Baddeley et al. (2000) modified them for the inhomogeneous
case.

Demonstrating the method on the example of a computed tomography (CT) slice

To demonstrate the approach, a CT slice of a core-size sedimentary structure was
used. The image and the corresponding dataset consisted of 16,000 Hounsfield Unit
values measured on a 125 × 128 regular grid. From this dataset, 100 data locations and
the corresponding measurements were randomly chosen as the input data (Figs 2 and 3).

After the normal score transform of the input data, the spatial continuity was
modeled using two empirical directional variograms and one omnidirectional empiri-
cal variogram. The variogram modeling was performed according to the Matheronian
method (Journel and Huijbregts 1978), by averaging the squared differences of values
at the ends of h vectors of different lengths:

γ̂ðhÞ= 1
2N ðhÞ

XN ðhÞ

i =1

½zðuiÞ − zðui + hÞ�2 (1)

where z(ui) and z(ui+ h) are the measured Hounsfield Unit values at the ends of
vector h, and N(h) is the number of data points separated by h distance. From the
permissible models, an exponential model with the main continuity direction of 45°,
an anisotropy ratio of 0.5, and a range of 52.23 units was fitted. The goodness of the
fitted model was assessed based on the visual inspection of the curves and the
variogram surface (Fig. 4).

The SGS was used to render 1,024 realizations on a 2 × 2 grid resolution. The
realizations were then back-transformed and connectivity analysis was performed on
them using the software package by McGarigal et al. (2012). For the connectivity
analysis, the value of 2,700 Hounsfield Units was set as the indicator threshold, as
values below this correspond to the highest porosities on the original CT slice
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Fig. 2
The CT slice used as the exhaustive dataset and the random sample

Input data Variogram
modeling

SGS Connectivity 
analysis

PCA
Point 

process
analysis

Fig. 3
Steps of the workflow

Fig. 4
Fitted variogram models. The range is indicated by the vertical dashed line (R2= 0.96, SSErr= 0.15)
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according to Győry et al. (2012). As net cells tend to concentrate into one large geo-
object on all of the generated stochastic images, only the connectivity parameters of
this largest geo-object were used. The parameters were the following:

(1) Area
(2) Area of inner net cells (net cells not in contact with non-net cells)
(3) Area of boundary net cells inside the geo-object (net cells in contact with non-

net cells on the inside of the geo-object)
(4) Area of boundary net cells on the boundary of the geo-object (net cells in

contact with non-net cells on the edge of the geo-object)
(5) Perimeter–area ratio
(6) Shape index (ratio of the perimeter to the square root of area adjusted for a

square standard)
(7) Fractal dimension
(8) Ratio of inner net cells to the area of the geo-object.

As the next step, a principal component analysis was performed on the data to
facilitate visualization of the uncertainty field in two dimensions. The principal
component axes were calculated for the sequence of 8, 16, 32, 64, 128, 256, 512,
and 1,024 realizations to follow the sampling process of the uncertainty field. The
retained two principal component axes were able to preserve ∼ 99% of the variance of
the original attribute space. The stochastic images were then placed into the uncer-
tainty fields defined by the corresponding two principal component axes. The resulting
point clouds were then regarded as two-dimensional spatial point processes.

Results

The point processes representing the selected number of stochastic images can be
seen in Fig. 5. The sampling process of the PCA-derived uncertainty field described on
the previous pages can be followed through the sequence of plots. Figure 5a and b
shows the initial dispersion of the point process followed by the emergence of local
high point densities as can be seen in Fig. 5c–e. The gradually increasing aggregation
of points reflecting the redundancy of the information content behind the stochastic
images can be seen in Fig. 5f–h.

The corresponding inhomogeneous L-functions can be seen in Fig. 6. The
continuous lines with a gradient of 1 represent the L-functions of the theoretical
inhomogeneous Poisson point process, whereas the dashed lines represent the
L-functions of empirical inhomogeneous Poisson point processes calculated using
two different edge corrections. Figure 6a–e shows the dispersion of the point processes
very clearly: the dashed lines run below the continuous line, suggesting lower
empirical point densities compared with the theoretical inhomogeneous Poisson point
process. Figure 6f–h suggests increasing empirical point densities, initially only at

144 Jakab

Central European Geology 60, 2017



longer distances, then also at smaller distances, depending on the edge correction used.
According to Fig. 6, the optimal number of realizations is between 128 (Fig. 6e) and
256 (Fig. 6f).

To find the optimum state, realization numbers between 128 and 256 were checked
using smaller increments. The point processes representing these were also generated
using the two principal component axes corresponding to the studied number of
stochastic images. Based on the L-functions, the optimum state is reached at about 151
realizations (Fig. 7), where the structure of the empirical point process most closely
approximates the structure of the empirical inhomogeneous Poisson process (Fig. 7b).

Since the hypothesis of having a Poisson process cannot be validated solely relying
on the second moment, a model approximating the intensity of the inhomogeneous
Poisson point process was fitted to the empirical data. After comparing the fitted model
to the empirical data, the hypothesis of having a Poisson process was accepted (two-
sample Kolmogorov–Smirnov test: x coordinate D= 0.047965, p value= 0.878;
y coordinate D= 0.04014, p value = 0.9681).

Fig. 5
Point processes representing the following number of realizations: (a) 8, (b) 16, (c) 32, (d) 64, (e) 128,
(f) 256, (g) 512, and (h) 1,024
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Case study: Tisza-2 reservoir

A real-life application of the method is presented using the example of the
Tisza-2 reservoir. The rock body is situated at the top of the Upper Pannonian
sequence of the Algyő Field. The best reservoir qualities occur in the southeastern
part of the area, where very fine, fine, and medium-grained sandstone can be found
in a thickness of 10–15 m. The characteristic well log shapes of the area suggest
three typical fluvial sub-environments: point bars, crevasse splays, and channels.
The detailed study regarding this rock body can be found in Geiger (2006), where a
SGS was used to produce 100 realizations of the well-averaged porosity values

Fig. 6
Inhomogeneous L-functions representing the point processes for (a) 8, (b) 16, (c) 32, (d) 64, (e) 128, (f) 256,
(g) 512, and (h) 1,024 realizations
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(Fig. 8). Since the prospective parts of the reservoir are only found in the
southeastern part of the area, only this part of the realizations was used in the
further steps.

A 25% porosity value was selected as the threshold between net and non-net cells
for the connectivity analysis; values higher than 25% were used to outline the geo-
objects. Analyzing the point processes with the inhomogeneous L-function (Fig. 9)
showed that for this particular dataset approximately 64 stochastic images are
sufficient to obtain a reliable understanding of the field of uncertainty. Creating
additional realizations is more likely to increase redundancy of the information content
than to provide valuable new information about the possible arrangement of net cells
over the area.

Fig. 7
L-functions for (a) 150, (b) 151, and (c) 152 realizations

Fig. 8
Southeastern part of the E-type map for 100 realizations of the SGS for the Tisza-2 reservoir (Geiger 2006)
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Discussion

For the studied CT slice, it can be stated that the number of realizations should not
exceed 151 as any additional realizations will most likely enhance the aggregation of
the point process (Fig. 6f–h), instead of providing new information. As can be seen in
Fig. 5, the changes in the global structure of the point process become less prominent
as more stochastic images are generated. This means that 1,024 realizations (Fig. 5h)
do not provide proportionally more insight into the model uncertainty than 512
(Fig. 5g) or 256 realizations do (Fig. 5f). This proves that there is a limit, above which
it is not sensible to increase the number of stochastic images.

At the same time, in the initial stages of sampling the uncertainty field, the structure
of the point process changes very dynamically, as can be seen in Fig. 5. Thus, at this
stage, the decision regarding which realizations may be deemed typical or atypical
strongly depends on the number of realizations the decision is based on. This
subjectivity cannot be bypassed until the structure of the point process, and thus the
structure of the uncertainty field, stabilizes.

While the SGS for the CT measurements required 151 realizations, the SGS for the
Tisza-2 well-averaged porosity values only required around 64. It is also worth
noticing that, while in the case of the CT slice, the optimum state was reached with a
very crisp change in the structure of the point process linked to the 151st realization, in
the case of the Tisza-2 reservoir the transition was much smoother.

The reason for this is that the optimal number of realizations depends on the
geometry of the studied phenomenon, the chosen grid resolution, the range of the
modeled spatial continuity, the location of the input data as well as the number of

Fig. 9
(a–c) Point processes and (d–f) L-functions for 32, 64, and 70 realizations of the Tisza-2 reservoir
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grid nodes used to construct the local probability distributions during the
simulation.

If the input data and the simulation settings jointly overdetermine the location of
simulated net cells on the grid, redundancy may set in after generating a relatively
small number of realizations. This means the simulation algorithm is not able to
generate any more significantly different new realizations, despite choosing new
random paths as we saw in the case of the Tisza-2 reservoir. On the other hand, if the
input data and simulation settings allow greater variability in the spatial distribution of
simulated net cells, a larger number of realizations may be necessary to reach sufficient
sampling of the uncertainty field; hence, more than twice as many realizations were
needed in the case of the CT slice.

The advantage of the presented method is that it highlights the optimal number of
realizations and facilitates the selection of representative realizations at the same time.
This is due to the fact that it places the stochastic images into an attribute space where
distances between the realizations reflect the differences between them (Fig. 10).

Since point processes can extend beyond two dimensions, the applicability of the
method is also extendable to cases where two attributes are not sufficient to represent
the variation of the original attribute space. Similarly, the applicability of the approach
is not dependent on the choice of using connectivity attributes, since the uncertainty
field may be constructed based on any suitable multidimensional attribute space that is
able to reflect the differences between the individual stochastic images. The chosen

Fig. 10
Point process characterized by 151 stochastic images and position of a few highlighted realizations
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dimension reduction technique, if required, however, may affect the structure of the
resulting point process. Thus, the effect of using multidimensional scaling, for
example, instead of principal component analysis, should be studied.
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– In: Geiger, J., E. Pál-Molnár, T. Malvić (Eds): Theories and Applications in Geomathematics.
GeoLitera, Szeged, Hungary, pp. 15–37.
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