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Stress and Cognition

Cognition refers to the acquisition, transformation, storage and use of knowledge 
and includes many di"erent mental processes such as attention, memory, 
language, perception, reasoning and decision-making. Cognition allows us to 
interpret the world in which we are living, learn from the past and communicate 
with others and thereby make adaptive changes when our environment is 
changing or suddenly becomes a threat. It is well established that stress induced 
by environmental challenges (i.e., a stressor) can have pronounced e"ects on 
cognition at many di"erent levels (Lupien et al., 2009; Roozendaal et al., 2009; 
Campeau et al., 2011). Stress invokes behavioral and physiological changes that 
help the organism to cope with the situation and thereby promotes survival. This 
thesis will investigate the e"ects of stress on two di"erent aspects of cognition 
in rats, namely social cognition and memory. Part I will investigate the role of 
social information as a valuable trigger of stress, studied in a rodent model of 
empathy and Part II will focus on the involvement of the endocannabinoid system 
in regulating the e"ects of stress hormones on memory. 

Empathy: A focus on rodent models

While the study of empathy has had a di#cult history, marked by many di"erent 
de!nitions of the concept (Preston and de Waal 2003; de Vignemont and Singer 
2006; Leiberg and Anders 2006; Decety and Meyer 2008), empathy-related 
responding is thought to play a key role in prosocial behavior, altruism and 
moral reasoning (Eisenberg 2000; de Waal 2008; Decety 2010). Several theoretical 
models have described distinct emotional and cognitive facets of empathy 
(Preston and de Waal 2003; Decety and Jackson 2004; Leiberg and Anders 2006; 
de Waal 2008). Although empathy is not unique to humans, humans are particular 
for high-level cognitive abilities such as executive function, language, theory of 
mind that are layered on top of the phylogenetically older social and emotional 
capacities (Preston and de Waal 2003; de Waal 2008; Decety and Meyer 2008; 
Decety 2010). According to Panksepp and Lahvis (2011), emotional empathy 
requires that two conspeci!cs share an a"ective state, however the degree of 
empathy can be modulated by cognitive processes, such as the integration of 
information related to past experience of the subject, familiarity or similarity with 
the object. Some views of empathy consider it as an evolutionarily continuous 
phenomenon across species that exists in all social animals in varying degrees 
(Preston and de Waal 2003; Panksepp and Lahvis 2011). For example, Preston and 
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de Waal (2003) suggested that both emotional and cognitive processes involved 
in empathy could be uni!ed into an ancient perception-action mechanism. These 
authors view empathy as any process where the attended perception of the 
object’s state automatically generates a similar state in the subject. A perception-
action model makes empathy a superior category that includes all subclasses 
of phenomena that share the same mechanism such as emotional contagion, 
sympathy, cognitive empathy, helping behavior, et cetera. These phenomena all 
share aspects of their underlying process and cannot be totally disentangled. For 
instance, emotional contagion, a change in an individual’s emotional state as a 
result of the perception of the other individual’s similar emotional state, might be 
the lowest common dominator of all empathic processes (Preston and de Waal 
2003; de Waal 2008). 

The recent discovery of mirror neurons in the ventral premotor cortex of monkey 
that are active both during execution and observation of action (Gallese et al., 
1996; Rizzolatti et al., 1996; Rizzolatti and Craighero 2004) prompted a series of 
studies in humans. These studies have shown that brain regions responsible for 
our own actions, sensations and emotions are recruited when we observe the 
actions, sensations and emotions of others (Iacoboni et al., 1999; Buccino et al., 
2001; Wicker et al., 2003; Keysers et al., 2004; Singer 2004; Keysers and Gazzola 
2006; Keysers and Gazzola 2009; Keysers et al., 2010). These !ndings led to an 
understanding of the neural basis of empathy: seeing states of others triggers 
the representation of corresponding states in our brain. Although empathy has 
been exhaustively studied in higher primates and humans, studies focusing on 
the existence of this phenomenon in low-order social animals, e.g. rats and mice, 
have largely remained missing until recent years. However, further understanding 
of the neural circuits underlying empathy would require the usage of invasive 
techniques such that manipulations of neural activity in targeted brain regions by 
intracranial drug infusions or by using combination of genetic and optical tools 
as referred together as optogenetics in behaving animals. These methods have 
been established and commonly used in rodents but currently not applicable 
in humans and have limited practice in non-human primates (but see (Diester 
et al., 2011)). Thus, establishing rodent models of empathy is timely and would 
present a valuable tool in this !eld. A small number of studies performed more 
than four decades ago evidenced that rodents are attentive to the a"ective state 
of conspeci!cs; however, a further interest in this !eld was not pursued for a 
long time (Church 1959; Rice and Gainer 1962). Recently, Langford et al. (2006) 
demonstrated that pain sensitivity of mice is modulated by the observation of a 
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cagemate’s similar pain response in a way that a mouse that observes the other 
in pain also displays more pain response, suggesting the existence of true adult-
adult empathy in mice. Further evidence stemmed from studies that tested the 
social transfer of fear in rodents. Some of these studies indicated that animals 
that observe the conditioned fear responses of demonstrators to cue, either 
express freezing behavior (fear response in rodent) during the observation of fear 
responses of demonstrators to the cue or display freezing when they are only 
tested with the cue or context that predicted the distress of the demonstrator 
(Chen et al., 2009; Bruchey et al., 2010; Jeon et al., 2010; Kim et al., 2010). Response 
to the observation of fear behavior of the demonstrator required observers to 
have a prior experience with the aversive stimuli that was associated with the cue 
(Bruchey et al., 2010; Kim et al., 2010) whereas in other studies, observers were 
naïve and did not require the presence of demonstrator expressing freezing to 
the cue (Bruchey et al., 2010; Jeon et al., 2010). Jeon et al. (2010) also found that 
observers express freezing when they are adjacent to the demonstrator mouse 
receiving repeated footshocks. This latter e"ect is consistent with the emotional 
contagion phenomenon since the freezing behavior of the demonstrator and 
observer mice occurred at the same time.

Other evidence for rodent empathy originated from studies that focused on the 
modulation of learning by social cues in rodents, !ndings of these studies showed 
that a brief social interaction with a distressed conspeci!c a"ects the subsequent 
fear learning, retention and extinction (Bredy and Barad 2009; Bruchey et al., 
2010; Knapska et al., 2010; Panksepp and Lahvis 2011). For instance, Knapska et 
al. (2010) showed that an interaction with a distressed conspeci!c, shortly after it 
underwent a fear-conditioning paradigm, facilitated the acquisition and retrieval 
of contextual fear conditioning in observers. Interestingly, in another study, 
Knapska et al. (2006) reported that the interaction with a distressed conspeci!c 
induces the expression of the neuronal activity-dependent transcription factor 
c-fos in many regions of the amygdala in observers similar to that in the distressed 
conspeci!c. These !ndings suggested that a speci!c pattern of amygdala activation 
occurs following the experience of self-distress and the experience of distress in 
others. The amygdala contributes to cognitive processes such as emotion, reward, 
learning, memory and attention (Davis and Whalen 2001; Adolphs 2003; Murray 
2007). Its role in aversive learning and fear expression is well established (LeDoux 
1996; LeDoux 2000; Davis and Whalen 2001; Maren 2001; Phelps and LeDoux 
2005). Lesion and functional neuroimaging studies in humans that used pictures 
of emotional facial expressions as social signals also indicated that the amygdala 
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participates in processing of information about basic emotions of others (Adolphs 
2003; Phelps and LeDoux 2005).

Empathy is modulated by some factors such as familiarity or similarity with the 
conspeci!c (species, age, gender), past experience (with the situation of observed 
distress) and salience of the stimulus from the conspeci!c (Preston and de Waal 
2003). Few studies of rodent models of empathy focused on the modulation 
of empathy by familiarity with the conspeci!c or past experience with the 
observed distressing situation. Langford et al. (2006) found that familiarity is 
strictly necessary for empathic response in mice, whereas Jeon et al. (2010) 
showed that the empathic response was only enhanced by familiarity but was 
not necessary for the response, per se. Most rodent empathy studies reported 
that exposing observers to a prior similar distressing experience is required for 
empathic response (Langford et al., 2006; Bredy and Barad 2009; Kiyokawa et al., 
2009; Knapska et al., 2010) but some found e"ects also in naïve animals (Bruchey 
et al., 2010; Jeon et al., 2010). The channel or sensory modality that is vital to 
convey the information between conspeci!c have been examined by a number 
of studies, these demonstrated a role for visual (Langford et al., 2006; Jeon et 
al., 2010), olfactory (Bredy and Barad 2009; Kiyokawa et al., 2009) and auditory 
channels (Chen et al., 2009; Kim et al., 2010), suggesting that sensory modality 
seems to depend on the nature of the employed paradigm and the expression of 
the distress response. 

Outline of this thesis

The overall aim of this thesis is to examine the multifaceted e"ects of stress on 
cognition. The thesis consists of two parts, Part I comprises of a single chapter 
with its own introduction and discussion. This part explores whether a rat’s stress 
response can a"ect the behavior of other rats, which can represent a simple form 
of empathy. Part II, which consists of a separate introduction, four empirical and 
discussion chapters, deals with the neurobiological mechanism of stress hormone 
e"ects on di"erent memory functions. In particular, this part examines the role 
of the endocannabinoid system in regulating the e"ects of glucocorticoids on 
di"erent memory processes.
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ABSTRACT 

The study of the neural basis of emotional empathy has received a surge of interest 
in recent years but mostly employing human neuroimaging. A simpler animal 
model would pave the way for systematic single cell recordings and invasive 
manipulations of the brain regions implicated in empathy. Recent evidence has 
been put forward for the existence of empathy in rodents. In this study, we describe 
a potential model of empathy in female rats, in which we studied interactions 
between two rats: a witness observes a demonstrator experiencing a series of 
footshocks. By comparing the reaction of witnesses with or without previous 
footshock experience, we examine the role of prior experience as a modulator 
of empathy. We show that witnesses having previously experienced footshocks, 
but not naïve ones, display vicarious freezing behavior upon witnessing a cage-
mate experiencing footshocks. Strikingly, the demonstrator’s behavior was in turn 
modulated by the behavior of the witness: demonstrators froze more following 
footshocks if their witness froze more. Previous experiments have shown that rats 
emit ultrasonic vocalizations (USVs) when receiving footshocks. Thus, the role of 
USV in triggering vicarious freezing in our paradigm, is examined. We found that 
experienced witness-demonstrator pairs emitted more USVs than naïve witness-
demonstrator pairs, but the number of USVs was correlated with freezing in 
demonstrators, not in witnesses. Furthermore, playing back the USVs, recorded 
from witness-demonstrator pairs during the empathy test, did not induce 
vicarious freezing behavior in experienced witnesses. Thus, our !ndings con!rm 
that vicarious freezing can be triggered in rats, and moreover it can be modulated 
by prior experience. Additionally, our result suggest that vicarious freezing is 
not triggered by USVs per se and it in$uences back onto the behavior of the 
demonstrator that had elicited the vicarious freezing in witnesses, introducing a 
paradigm to study empathy as a social loop.
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INTRODUCTION

The study of the neural basis of empathy has received a surge of interest in the last 
years following the description of brain activity in humans that suggests that the 
representations of a subjects’ own emotional states and sensations are partially 
activated when witnessing the disgust, pain or pleasure of others (Hutchison et 
al., 1999; Carr et al., 2003; Wicker et al., 2003; Keysers et al., 2004; Morrison et al., 
2004; Singer, 2004; Avenanti et al., 2006; Decety and Jackson, 2006; Decety and 
Lamm, 2006; Keysers and Gazzola, 2006; Jabbi et al., 2007; Jabbi et al., 2008). In 
particular, this evidence has been taken to suggest that a neural mechanism, 
similar to the mirror neurons found in the ventral premotor and inferior parietal 
lobe of the monkey, which respond both during the execution of goal directed 
actions and the observation of the same actions executed by others (Gallese et 
al., 1996; Umiltà et al., 2001; Kohler et al., 2002; Keysers et al., 2003; Fogassi et 
al., 2005; Fujii et al., 2008; Rozzi et al., 2008; Caggiano et al., 2009), could be at 
work in emotional and somatosensory brain circuits as well (Bastiaansen et al., 
2009; Keysers et al., 2010). Testing this idea would require single cell recordings 
and experimental manipulations of the brain regions involved in empathy. Such 
invasive techniques are not readily applicable in humans (but see (Hutchison et 
al., 1999; Mukamel et al., 2010)); therefore an animal model of emotional empathy 
would be essential to further our understanding of empathy. 

It has been proposed that empathy exists in social animals because the detection 
of discomfort, distress or fear in conspeci!cs carries information of high survival 
value (Preston and de Waal, 2003). In the context of developing an animal model 
of empathy, here we will focus on whether rats and mice, the two most readily 
available laboratory mammals, show such social transmission of distress cues. 
Social transmission of information in rats does occur in a wide range of behaviors 
such as food preference (Galef, 1985; Galef and Beck, 1985), motor (Kohn and 
Dennis, 1972; Zentall and Levine, 1972) and avoidance behaviors (Masuda et al., 
2009). Moreover, rats, can respond with fear and learn from fear reactions of others; 
for instance, a neutral stimulus can acquire aversive value after an observation of 
conditioned responses of another rat (Church, 1959; Bruchey et al., 2010; Kim et 
al., 2010). Additionally, interactions with a distressed conspeci!c seem to recruit 
the amygdala that is also active when experiencing !rst hand distress (Knapska et 
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al., 2006). Also mice show evidence of similar social transmission: the observation 
of a conspeci!c being shocked has been shown to induce vicarious freezing in 
mice (Jeon et al., 2010) and to enhance subsequent fear learning in this species 
(Chen et al., 2009a). Vicarious behavior in mice seems to be regulated by the 
degree of relatedness between the interacting individuals (Langford et al., 2006; 
Jeon et al., 2010). Together, these evidences suggest that rodents are sensitive 
to what happens to other rodents. Rodents might therefore provide a powerful 
animal model for studying and manipulating the neural mechanisms of empathy.

In the e"ort to develop animal models of empathy, it is important to determine 
what aspect of empathy can actually be modeled. Current conceptualizations of 
empathy de!ne it as being composed of two components/processes. First, if an 
individual has an a"ective reaction that resembles that of another and is triggered 
by perceiving or imagining the state of that other individual, the individual is said 
to experience ‘emotional contagion’ (de Vignemont and Singer, 2006; Singer and 
Lamm, 2009). Emotional contagion occurs early in human development: babies 
are more likely to cry if they hear other babies cry. Second, if that individual is 
also aware of the fact that its emotional reaction is triggered by that of another, it 
experiences true empathy. This distinction is important, because empathy proper 
is more likely to trigger prosocial behavior than emotional contagion. In animals, 
it is however often impossible to assess whether they are aware of the source of 
their emotions, and accordingly to disentangle models of emotional contagion 
from models of empathy. 

Since empathy in humans has been shown to be modulated by experience (see 
Refs. (Preston and de Waal, 2003; de Vignemont and Singer, 2006; de Waal, 2008; 
Bastiaansen et al., 2009) for reviews) in this study we aimed at establishing a 
paradigm to study both empathy/emotional contagion itself and its modulation 
by prior experience. A vast number of studies in the literature reported gender 
di"erences in empathy and social perception (Ho"man, 1977; Eisenberg and 
Lennon, 1983; Connellan et al., 2000; Alexander and Hines, 2002; Baron-Cohen 
and Wheelwright, 2004; Baron-Cohen et al., 2005), moreover, gender di"erences 
in social modulation of behaviors have been reported in rats (Westenbroek et al., 
2003; Westenbroek et al., 2005; Yee and Prendergast, 2010) with stronger e"ects 
in females. We therefore use female rats in this study.  
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In Experiment 1, we examined the behavior of two interacting female rats while 
one of them, the demonstrator, experiences a series of unconditioned aversive 
stimulus (5 footshocks) while the other, the witness, can hear, see and smell 
the reaction of the demonstrator. To investigate whether prior experience with 
a similar aversive stimulus would modulate the reaction of the witness, we 
compared the behavior of witnesses that had previously experienced footshocks 
with that of witnesses that had not. Finally, we also quanti!ed the relationship 
between the witnesses’ behavior and that of the demonstrators to examine if the 
way that the witness responds to the behavior of the demonstrator might in turn 
in$uence the behavior of the demonstrator.

We predicted that witnessing the distress reactions of the demonstrator would 
alter the behavioral pattern of the witness and make the witness’ behavior 
resemble that of the demonstrator, for instance by showing an increased freezing 
or by expressing other distress-related behaviors. Moreover, we expected such 
vicarious fear responses to be more pronounced in witnesses that had previously 
experienced footshocks. Finally, it is reported that rats, when paired with a 
conspeci!c, express less conditioned fear responses, suggesting the existence of 
social bu"ering e"ects (Kiyokawa et al., 2004). Furthermore, the stress status of 
the partner plays an important role in social bu"ering e"ects, e.g. a non-shocked 
partner (not pre-exposed to footshocks) is more e"ective in attenuating fear 
responses than a shocked partner (pre-exposed to footshocks) (Kiyokawa et 
al., 2004). These !ndings led us to expect that demonstrators paired with naïve 
witnesses show less distress than those paired with experienced witnesses, 
because of the di"erential social bu"ering by their paired witness group. 

Next, we set out to explore the contribution of various components of the 
auditory channel in triggering the vicarious freezing in the experienced witness 
rats. It is well documented that rats emit ultrasonic vocalizations (USVs) and 
that the frequency and temporal pattern of such vocalizations are determined 
by speci!c environmental factors (Brudzynski, 2005; Burgdorf et al., 2005; Ehret, 
2005; Brudzynski, 2007). USVs have been thought to play an important role in 
the communication between conspeci!cs but their exact function remains 
unclear. It has been proposed that they can serve to: localize conspeci!cs, transfer 
emotionally valenced information across conspeci!cs and warn other individuals 
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of external dangers to promote escape or dispersion. (see Refs. (Burgdorf et al., 
2005; Ehret, 2005; Brudzynski, 2007) for review). Furthermore it has been previously 
shown that rats emit USVs at a certain frequency (~22 kHz) in aversive conditions 
(e.g. during fear conditioning) and in the presence of cues that predict danger 
(Blanchard et al., 1991; Wohr et al., 2005). Additionally, a recent study showed that 
USVs can modulate social transmission of fear in rats (Kim et al., 2010), however 
not many studies in the literature examined the role of USVs in potential empathy 
paradigms. Thus, we set out to test the role of USVs in our potential model of 
empathy. First, we recorded the USVs produced during the social interactions 
in Experiment 1 in order to establish the degree of communication between 
witness and demonstrator pairs. Second, in Experiment 2, we used these recorded 
vocalizations and played them back to separate groups of naïve and experienced 
animals while monitoring their behavior, freezing in particular. We produced two 
kinds of auditory stimuli from the recordings of Experiment 1: i) 22 kHz ultrasonic 
vocalizations (all other recorded sound were !ltered out) ii) 2-4 kHZ control sound 
that share same temporal characteristics with USVs. 

METHODS

Subjects. Female Long-Evans rats (250-300 g) from Harlan US Davis were kept in 
a temperature controlled (22 ºC) room and maintained on a reversed 12-h light: 
12-h dark cycle (07:00 lights o" - 19:00 lights on). Rats were socially housed as 
2-4 rats per cage and had ad libitum access to food and water. All experiments 
are conducted during the dark cycle between 09:00 and 13:00 h. All experiments 
were conducted in strict accordance with the European Community’s Council 
Directive (86/609/EEC) and all experimental procedures were approved by The 
Institutional Animal Care and Use Committee of the University of Groningen 
(IACUC-RuG, approval number: 4669). 

Experiment 1
Groups. Adult female rats were randomly assigned to one of the witness or one of the 
demonstrator groups, each witness and demonstrator pair is composed of cage-
mates and therefore housed together from arrival till the end of the experiment. 
Witnesses and demonstrators were divided into the following subgroups: Witness 
groups - Naïve Control Witness, Naïve Shock Witness, Experienced Control Witness 
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and Experienced Shock Witness; Demonstrator groups - Demonstrator paired 
with Naïve Control Witness, Demonstrator Paired with Naive Shock Witness, 
Demonstrator paired with Experienced Control Witness, Demonstrator paired with 
Experienced Shock Witness (see table 1 for the explanation and abbreviations of 
the experimental groups and pairs). Rats were handled and habituated 3 minutes 
to the experimenter everyday for 10 days preceding the experiment. All rats were 
habituated to the transportation and experimental room for 20 minutes/day for 3 
days prior to the experiment. 

Apparatus. To ensure that experienced witnesses could be familiarized with 
footshocks prior to the Empathy Test without generating conditioned fear for 
the context of the Empathy Test, two di"erent chambers (context A and B) were 
used for the Pre-Exposure and Empathy Test in a counterbalanced fashion. Each 
chamber consisted of two adjacent animal compartments - witness compartment 
and demonstrator compartment (each D24cm x W25cm x H34cm) divided by a 
perforated transparent Plexiglas divider.  The dimensions of the two chambers 
were identical but the two contexts (A and B) were modi!ed to maximize their 
discriminability by the animals. Context A had metal-coated sides, a transparent 
front door and lid, and was illuminated using a dim red light. Context B had side 
panels coated with a striped pattern using latex-based colors, a patterned solid 
front door and lid, and was illuminated using a bright white light. In both contexts 
(A and B), the demonstrator area had a stainless steel rod $oor to deliver shocks 
while a solid Plexiglas sheet covered the witness area’s $oor. The demonstrator 

Table 1: Conditions and Groups in Experiment 1 

 Each row indicates the Witness group and its paired Demonstrator group. 
 

Condition Witness Demonstrator 

Control 

NcW 

         Naive control Witness 
D(NcW) 

EcW 

   Experienced control 

Witness 

D(EcW) 

Shock 

NsW 

           Naive shock Witness 
D(NsW) 

EsW 

    Experienced shock 

Witness 

D(EsW) 
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Figure 1. Illustration of experimental design of Experiment 1. Pairs of rats were exposed to the 
Empathy Test context for 15 minutes (Habituation). Twenty-four hours later, witnesses were placed 
in the other context, and either received or not a number of footshocks (Pre-Exposure Training). 
Twenty four hours later, the witnesses were tested for long-term retention of this experience by 
replacing them in the pre-exposure context and measuring freezing (Pre-Exposure Test). Twenty-
four hours later, demonstrator - witness pairs were placed again in the 2 compartments of the 
Empathy context. This time, the demonstrator (right) receives shocks through the $oor grid while 
the witness (left) can hear, see and smell the demonstrator through a perforated Plexiglas dividing 
screen. The lowest panel schematizes the time course of the Empathy Test session.
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area of each chamber (context A or B) was used for the Pre-Exposure training of 
the experienced witnesses. Experienced witnesses that received the footshock in 
context A, were then tested in context B in the Empathy Test or vice-versa. Between 
animals, chambers were wiped twice with di"erent substances to ensure the 
contexts di"ered in odor: context A- 7 0% alcohol and then 3% mint soap solution 
and context B- 3% vinegar and then antibacterial soap solution. 

Pre-Exposure. All witnesses were placed in the Pre-Exposure environment 
individually and after 15 minutes of exploration, only experienced witness groups 
received 4 footshocks (1 second each, 0.8 mA) separated by random intervals 
ranging between 240 and 360 seconds (Fig. 1). The pre-exposed rats were housed 
individually for 1h after pre-exposure before being returned to their home cages. 
Twenty-four hours later, both naïve and experienced witness rats were individually 
tested in the same Pre-Exposure context for 5 minutes (this session will be referred 
as Pre-Exposure test) and freezing behavior was scored during the last 3 minutes. 
As this test session could lead to extinction of the acquired fear, at the end of 
the 5 minutes of Pre-Exposure test, experienced witnesses received one reminder 
footshock (1 second, 0.8 mA) before they were taken out of the chamber. Again, 
the rats were then housed individually for 1h before returning to their home cage. 
Empathy Test. All witness-demonstrator pairs were habituated to the Empathy 
Test environment a day prior to the Pre-Exposure training of witnesses. In the 
Empathy Test, the witness and demonstrator constituting a pair were placed in 
the two adjacent areas of the Empathy Test chamber for a total time of 40 minutes 
(Fig. 1). After 10 minutes of baseline, in the shock condition, !ve footshocks (each 
footshock 5 seconds, 0.8 mA) separated by random intervals of either 2 or 3 m, 
were delivered to the demonstrator rat only (Fig. 1). In the control condition, 
the exact same procedure was used, except that a Plexiglas $oor separated the 
demonstrator rat from the metal grid through which the shocks were delivered. 
This ensured that any sounds or vibrations generated by the shock device would 
be identical between the shock and control conditions, but the actual footshocks 
would only reach the experimental but not the control demonstrators. Any 
di"erences in freezing rate between the two conditions therefore cannot be due 
to classical conditioning to the sound of the shock device. After the last shock 
delivery, rats were left in the box for an additional 20 minutes. 
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Behavioral Scoring and Analysis. The entire test sessions were videotaped with a 
CCD black and white camera (Model SSC-M370 CE, Sony, Japan) mounted on the 
chamber and connected to an MPEG-encoder PC. Movies were stored in MPEG-
2 digital format for later behavioral scoring. Live image from the same camera 
was transferred to a PC running a video-tracking system (Ethovision 3.1; Noldus 
information technology, Wageningen, Netherlands) for quanti!cation of general 
movement and locomotor activity of the witness groups. Locomotor activity 
of witnesses is sampled as 5 minute time-bins and the percentage change in 
locomotion was calculated by subtracting the locomotor activity measured in 
the !rst 5 minutes (taken as a baseline) from the locomotor activity sampled in 
the subsequent 5 minute time-bins (in total 8 time-bins were used: 1st and 2nd 
-before shock, 3rd and 4th -shock period, 5th and 6th -after shock and 7th and 8 th 
recovery period, Fig. 2b illustrates only the !rst 6 time-bins). Additional video-
tracking analysis was run to quantify the amount of time spent by witnesses in 
close distance to the demonstrator. For this analysis, the observer’s compartment 
was divided in a far and a close half, relative to the screen dividing the two rats 
(each zone is 12.5 cm wide) and time spent in the zone close to the demonstrator’s 
compartment (window zone) is calculated in three 10 minute time periods, each 
corresponding to before shock, shock and after shock periods, respectively. 

Freezing behavior was scored in the Pre-Exposure training, Pre-Exposure test 
and in the Empathy Test sessions. A trained researcher that was blind to the 
experimental condition, performed the behavioral scoring from the digital movies 
using Observer XT (Noldus information technology, Wageningen, Netherlands) 
and Jwatcher (http://www.jwatcher.ucla.edu/). A rat was considered to be freezing 
if it was (i) in the stereotypical crouching posture and (ii) not moving except for 
respiration related movements. In the Empathy Test, total time of freezing scoring 
consisted of 14 minutes divided in 6 time-bins per rat. The !rst time bin lasted 
from -2 minute to 0 relative to the onset of the !rst shock. The other !ve time-bins 
corresponded to the time following each of the 5 shock trials (since the inter-
shock interval was either 3 or 2 minutes, the time-bins used corresponded to 3 
time-bins of 2 minutes and 2 time-bins 3 minutes). For control groups, the same 
scoring schedule was used. Freezing scores were calculated as the percentage of 
time during each bin that the rats spent freezing. Average percentage freezing 
in shock period was calculated by averaging the freezing scores in 5 time bins 
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following the footshock trials. 

Ultrasonic Vocalization Recordings and Analysis. Sounds were recorded with a 
high-frequency omnidirectional microphone (Earthworks M30, frequency range 
5-30kHz, Earthworks Inc., Milford NH) mounted on the chamber, and ampli!ed 
(Edirol FA-66, Roland Corporation, Los Angeles, CA).  Sounds were digitized at 
96 kHz, 16 bits and stored in wav format using Adobe Soundbooth CS3 (Adobe 
Inc.) on a Macintosh computer. In order to count the number of USVs emitted by 
witness-demonstrator pairs, wav !les were processed in Matlab (Mathworks Inc.) 
to create sound spectrograms using short-time fast Fourier transform (sFFT) with 
a window of 256 time points and an overlap of 75%, resulting in a !nal frequency 
resolution of 1.5 kHz and time resolution of 0.6 ms. Frequencies outside 15-30 
kHz were truncated. Time points containing USVs were separated from those 
containing only environmental noise by considering the standard deviation of 
the (!ltered) power spectrum of each time point. 

Time points containing USVs were clearly identi!able as having a higher standard 
deviation in the power spectrum with respect to time points containing only 
environmental noise. We therefore set the time points containing only noise to 0 
dB, and summed the power of each time point across frequencies. The resulting 
vector was smoothed with a moving average of 100 time points (corresponding 
to approximately 66.67 ms) to increase the signal-to-noise ratio. The nonzero time 
points of this vector were used to calculate the number of calls, and to compute 
the distribution of the estimated number of calls for di"erent durations. Only 
the number of emitted USV in the time frame of freezing scores (6 time bins, see 
behavioral scoring and analysis for details) was taken into consideration. In order 
to check the accuracy of the algorithm, the number of USVs in the recording of 5 
di"erent demonstrator-witness pairs was quanti!ed both by the algorithm and 
manually. The number of calls detected by algorithm matched the number of 
manually counted calls during the same interval.

Experiment 2
Groups, Chambers and Experimental Design. Rats were handled and habituated 
3 minutes to the experimenter everyday for 10 days preceding the experiment. 
All rats were accustomed to the transportation and experimental room for 20 
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minutes/day for 3 days prior to the experiment. On the !rst day of the experiment, 
all rats were habituated to the Sound Test chamber (D25xW40xH40) for 15 minutes. 
Then, rats were divided into two groups: Experienced and Naïve. Experienced 
animals were trained with footshocks according to the Pre-Exposure training 
schedule described in Experiment 1, whereas the other animals were kept naïve to 
footshock. On the following day, animals were placed in the Sound Test chamber 
and Control sounds or USV sounds were played back from a high frequency 
loudspeaker (Precision 8D Studio Monitor, Tannoy Ltd., Scotland, UK) through 
the holes in the Plexiglas divider also used in Experiment 1. In pilot experiments, 
playback loudness was adjusted to lead to the same sound intensities in the 
chamber of the witness rats as in Experiment 1. Since the distance between the 
speaker and the animal depends on the place preference of the animal, we set 
the distance of the speaker such that the maximal distance (45 cm) or minimal 
distance (5 cm) between rat and speaker corresponded to the maximum or 
minimum distance between the witness and demonstrator pairs in the Empathy 
Test. The total duration of the Sound test was 40 minutes, however only the time 
window of interest is analyzed (see below for detailed explanation). 

Auditory Stimulus and Playback. In this experiment two di"erent sounds (USV 
and Control sounds) were played back to naïve and experienced rats. In order to 
prepare the USV stimuli for playback, the sound tracks recorded from the EsW-
D(EsW) pairs during Experiment 1 were band-pass !ltered in the range between 
17 and 25 kHz in Adobe Soundbooth CS3 (Adobe, San Jose, CA).  No USVs outside 
this frequency range were observed. Control sounds were generated from the 
same sound track recorded in Experiment 1 by using the SOX software (http://sox.
sourceforge.net/). USVs in each recorded !le were pitched down 35 semitones to 
a range of 2.6 - 4 kHz, while intensity and temporal characteristics were preserved. 
This range for the control sound was selected on the basis of the previous !ndings 
in the literature that rat e"ectively discriminates 4 kHz sounds from USVs (Bang 
et al., 2008). Sound presentation started after 10 minutes of baseline at the point 
in which the !rst electroshock was given in the recording session (Experiment 1), 
so as to lead to a similar timing as in the Empathy Test in Experiment 1 (footshock 
exposure of demonstrator started after 10 minutes of baseline). In addition to this 
main auditory experiment (Experiment 2) we also conducted a pilot experiment 
to explore the contribution of other auditory signals contained in the sound track 
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recorded in Experiment 1. In this pilot experiment, the same rats that had only 
been exposed to the control sound in Experiment 2 were place in the test chamber 
once more and exposed to a playback of the un!ltered recording (USV and 
audible sounds) of the Empathy Test. In Experiment 2 and in the pilot experiment, 
freezing behavior was scored and analyzed using the same time window as in 
Experiment 1 but only in 2 time-bins corresponding to 2 minutes before the onset 
of the playback and 12 minutes during sound playback, respectively.

Behavioral Scoring and Analysis. Behavioral scoring was performed live with 
Ethovision 3.1. (Noldus information technology, Wageningen, Netherlands). 20% 
of the animals were also scored blindly and the correlation coe#cient between 
blind and live scoring was found to be nearly perfect (pearson correlation, rp=0.96, 
p<0.05).

Statistical Analysis. A separate analysis was performed on witnesses’ and 
demonstrators’ freezing levels. In both cases, we analyzed between and within 
group changes in freezing behavior using a two-way mixed e"ect analysis of 
variance (ANOVA) with time (before and after shock) as a within factor and group 
(either witness or demonstrator groups) as a between factor. In the analysis of 
the dynamics of interaction between demonstrator and witness, we analyzed 
the freezing behavior of demonstrators and witnesses separately.  In both cases, 
we analyzed changes in freezing behavior using a two-way ANOVA with time (6 
time bins) as within factor and group (2 shock groups) as between factor. Planned 
comparisons were conducted using unpaired t-tests to compare the di"erences 
between groups, while planned comparisons using paired t-tests were performed 
to compare the di"erences between time bins. A two-way mixed e"ect ANOVA 
model was used, with factors for time bins (within) and group (between) for the 
analysis of locomotor activity of witnesses. Further post hoc tests were performed 
for more detailed comparisons between witness groups and time bins. Similarly, 
di"erences in the time spent in the window zone were tested with a two-way 
mixed e"ect ANOVA with time bins as within and group as between factors, 
followed by post hoc tests. The p values resulting from the latter two analyses 
were corrected for multiple comparisons with the Bonferroni method. Pearson’s 
correlation was used to calculate the relationship between freezing of EsW and 
freezing of D(EsW), and between USV and average freezing of demonstrators and 
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Figure 2. Behavior of 4 witness groups in Empathy Test. Naïve control witness (NcW), experienced 
control witness (EcW), naïve shock witness (NsW), experienced shock witness (EsW). (A) % Average 
freezing before shock and during shock period by witnesses. ***p<0.001 EsW compared to all the 
other witness groups. (B) % Change in locomotor activity before shock, shock and after shock 
periods. % Change in locomotion is relative to the !rst time bin that served as baseline and thus 
has a value of zero by de!nition. $p<0.05, $$p<0.01 EsW compared to EcW; ##p<0.01, ###p<0.01 
EsW compared to NcW ; ***p<0.001 EsW compared to NsW. (C) % Time spent in window zone by 
witnesses. $p<0.05, $$p<0.01 EsW compared to EcW ;  ##p<0.01 EsW compared to NcW; *p<0.05,  
**p<0.01 EsW compared to NsW. All data is presented as mean ± S.E.M (n = 11-15 per group).
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as well as between USV and average freezing of witnesses. In the analysis of USV, 
the percentage of pairs that emitted USV was calculated and compared between 
NsW-D(NsW) and EsW-D(EsW) pairs with t-test. 

Figure 3. Social modulation of freezing in witnesses and demonstrators. (A) % Average freezing 
before shock and during shock period by demonstrators paired with naive (D(NsW) and experienced 
(D(EsW) witnesses. (B) Correlation between freezing levels of experienced shock witness (EsW) 
and their paired demonstrator (D(EsW)). (C) % Freezing levels of naïve (NsW) and experienced 
shock witness (EsW) before shock (BS) and during footshock trials (1st to 5th). (D) % Freezing of 
demonstrator group paired with naïve (D(NsW) and experienced (D(EsW)) witnesses before shock 
(BS) and during footshock trials (1st to 5th). **p<0.01, ***p<0.001 compared to respective groups . All 
data is presented as mean ± S.E.M (n = 11-15 per group).
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RESULTS

As we were interested in the e"ect of prior experience with footshock on 
vicarious fear, we !rst veri!ed whether Pre-Exposure training with footshock led 
to the formation of a long-term memory for the aversive event in experienced 
witnesses. To this end, we compared the freezing behavior of experienced and 
naïve witnesses in the Pre-Exposure test. We found that experienced witness rats, 
that received footshocks on the Pre-Exposure training, froze signi!cantly more 
than naïve witnesses (36.6  5.2 %, vs. 1.2 ± 0.7 % (mean±SEM)) in the Pre-Exposure 
test (t (20) = -3.276, p<0.001). This !nding con!rmed that a long-term memory of 
the Pre-Exposure event was formed in the experienced witnesses.    

Vicarious fear
To investigate whether rats display vicarious fear when observing a conspeci!c 
receiving footshocks, freezing behavior was compared across witness groups 
(Fig. 2a). A 4 Groups (NsW, EsW, NcW, EcW) x 2 time period (before shock vs. 
shock period) mixed e"ect ANOVA for freezing levels revealed a signi!cant main 
e"ect of group (F3,96=12.519, p<0.0001), time period (F1,96=45.201, p<0.0001) and 
interaction of group by time period (F3,96=14.939, p<0.0001). Following planned 
comparisons showed that EsW displayed higher freezing levels in the shock 
period compared to all other witness groups (p<0.0001 compared to NsW, NcW, 
EcW). These results indicate that in our experiment, rats express vicarious freezing 
behavior when observing a conspeci!c being shocked but only when they have 
had prior experience with footshock.

We also analyzed the locomotor activity of the four witness groups using video-
tracking. This data provides an overall measure of the witnesses’ locomotor 
activity throughout the whole Empathy test period (Fig. 2b).  A 4 Groups (NsW, 
EsW, NcW, EcW) x 7 time bins (each consists of 5 minutes) mixed e"ect ANOVA 
for locomotor activity, indicated a signi!cant main e"ect of group (F3,48=7.84, 
p<0.0001) and e"ect of time bins (F6,288=19.748, p<0.0001), and a signi!cant 
e"ect of interaction between group and time bins (F18,288=2.983, p<0.0001). 
Further post-hoc analyses pointed out that EsW exhibited a signi!cantly larger 
reduction of locomotor activity in time bins corresponding to shock period and 
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to after shock period (see Fig. 2b for the signi!cant di"erences relative to other 
groups). This con!rmed the results derived from the analysis of freezing behavior. 
Locomotion of the four witness groups reconverged during the last 10 minutes 
of the Empathy Test when all groups showed a similar level of activity (Data not 
shown). Additionally, by using the video-tracking system, we could also assess 
whether the witness rats preferred to be close to the demonstrator during the 
Empathy test session (Fig. 2c). To this end, we divided the witnesses’ compartment 

Figure 4. (A) Example sound spectrograms illustrating (1) a 40 min sound track containing USVs 
recorded in Experiment 1, (2) USVs in a 10 second time window detail, (3) the result of the automated 
detection of USVs in Matlab, with epochs containing a single 22 kHz-USV shown in yellow. (B) % of 
naïve shock witness (NsW)-demonstrator (D(NsW) pairs and % experienced shock witness (EsW) 
and Demonstrator (D(EsW) pairs that emitted USVs. (C) Correlation between the number of emitted 
USVs and % average freezing response in shock period by both demonstrator groups (paired with 
naïve shock witness D(NsW) and paired with experienced shock witness D(EsW) together). (D) 
Correlation between the number of USVs and % average freezing behavior in shock period by naïve 
shock witness (NsW) and experienced shock witness (EsW) groups.
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in 2 equal zones: a window zone close to demonstrator and a wall zone far from the 
demonstrator. A 4 Groups (NsW, EsW, NcW, EcW) x 3 time periods (before shock, 
shock, after shock) mixed e"ect ANOVA comparing the proportion of time spent 
in the window zone revealed a signi!cant e"ect of group (F3, 48=3.063, p<0.05) 
and e"ect of time period (F2, 96=26.394, p<0.0001) and as well as signi!cant e"ect 
of interaction between group and time period (F6, 96=5.846, p<0.0001). Following 
post hoc comparisons showed that the EsW group spent signi!cantly more time 
in the window zone close to their demonstrator than all the other witness groups 
during shock period and after shock period (see Fig. 2c for signi!cant di"erences 
relative to other groups).

E!ect of social interaction on freezing behavior of demonstrators 
A two by two mixed e"ects ANOVA, demonstrator groups ((D(NsW) vs D(EsW)) 
and two time periods (before shock and shock period), for freezing levels 
showed a signi!cant main e"ect of group (F1,24=35.619, p<0.0001), of time period 
(F1,24=227.615, p<0.0001) and a signi!cant interaction between group and time 
period (F1,24=29.890, p<0.0001). Planned comparisons show that before shock 
trials both groups displayed low levels of freezing that did not signi!cantly di"er 
from each other (p = 0.658, Fig. 3a), and that footshock delivery led to signi!cantly 
higher levels of freezing in all demonstrators exposed to footshock (comparison 
of freezing before shock period vs during shock trials, p<0.0001 for D(NsW), 
p<0.0001 for D(EsW)). However, D(EsW) expressed signi!cantly more freezing 
behavior than D(NsW) (p<0.0001, Fig. 3a) during the shock period. To further 
explore the relationship between freezing displayed by the demonstrator and 
the witness rats, we examined the correlation between freezing levels displayed 
by D(EsW) and EsW rats (the group of witness rats which displayed vicarious 
freezing). We found no signi!cant correlation (Pearson r=0.247 p=0.394, Fig. 3b), 
suggesting that prior experience, rather than di"erences in freezing displayed 
by demonstrators (D(EsW) vs. D(NsW)), underlies the di"erences observed in the 
behavior of the two shock witness groups.  

To further investigate the dynamics of the demonstrator – witness interaction, 
we conducted analyses to look at the e"ect of time on the di"erence of freezing 
between the demonstrator and witness groups separately (Fig 3c, 3d). A 2 
shock witness groups (NsW, EsW) x 6 time bins (before shock, 1st to 5th shock 
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trials) mixed e"ect ANOVA for freezing behavior indicated a signi!cant e"ect 
of group (F1,24=11.259, p<0.01) and e"ect of time (F5,120=3.594, p<0.01). Planned 
comparisons further unveiled that a signi!cant increase in freezing behavior of EsW 
relative to the baseline emerged after the 1st footshock trial (p=0.041 compared 
to baseline) and that after this initial increase, freezing levels remained stable in 
the following footshock trials (no di"erence between 1st shock trial compared to 
2nd – 5th, p>0.05). Freezing levels of EsW signi!cantly di"ered from NsW in some 
of the footshock trials, but the di"erence was not signi!cant in all cases (Fig. 3c). 

A 2 shock demonstrator groups (D(NsW), D(EsW)) x 6 time bins (before shock, 
1st to 5th shock trials) mixed e"ect ANOVA for freezing behavior revealed a 
signi!cant e"ect of group (F1,24=34.585, p<0.00001), e"ect of time (F5,120=36.406, 
p<0.00001) and as well as signi!cant interaction of group and time (F5,120=4.052, 
p<0.01). Planned comparisons showed that freezing displayed by both groups 
of demonstrators (D(NsW) and D(EsW)) increased gradually over footshock trials: 
Freezing levels of the D(EsW) showed a signi!cant increase on the 1st shock 
trial relative to baseline (p=0.004), and increased again after the 2nd shock trial 
(p=0.001 relative to the 1st). Importantly, the signi!cant di"erence in freezing 
levels between D(EsW) and D(NsW) only emerged after the 2nd shock trial and 
remained signi!cant in the all subsequent shock trials (Fig. 3d). Collectively, these 
!ndings show that the di"erences in freezing between NsW-D(NsW) and EsW-
D(EsW) have a di"erent time course for the demonstrators and witnesses. This 

Figure 5. % Freezing behavior of Naïve (Naïve-Control, Naïve-USV) and Experienced groups 
(Experienced-Control and Experienced-USV) before and during control and USV sound stimulus in 
Experiment 2. All data is presented as mean ± S.E.M (n = 10-11 per group).
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di"erence peaked around the 1st shock trial for EsW, but after the 2nd in both 
demonstrator groups (D(NsW) and D(EsW)). 

Alarm calls during the Empathy Test
Analyses of the USVs revealed that not all pairs of rats submitted to shocks emitted 
USV, and that a larger proportion of EsW-D(EsW) than NsW-D(NsW) pairs emitted 
USVs (86% versus 45%, p<0.05, Fig. 4b). Separate correlation analysis between 
the number of USVs emitted and proportion of freezing displayed by witness 
groups (EsW and NsW) and demonstrator groups (D(EsW) and D(NsW)) show 
a signi!cant correlation between emitted USVs and mean percentage freezing 
for the demonstrator groups (r=0.602, p=0.001, Fig. 4c), but not for the witness 
groups (r=0.254, p=0.210, Fig. 4d). This shows that di"erences in the number 
of USVs emitted by each pair is mainly explained by di"erences in the freezing 
behavior of the demonstrators, suggesting that they might be the prime source 
of USVs. 

Next, we examined whether these alarm calls induced freezing in naïve or 
experienced rats, to which end we performed Experiment 2, a sound playback 
experiment. Analysing Experiment 2 using a mixed e"ects ANOVA with freezing as 
the dependent variable and a 4 groups (Naïve-Control, Naïve-USV, Experienced-
Control, Experienced-USV) x 2 time periods (before sound stimulus and during 
sound stimulus) design revealed a signi!cant e"ect of time period (F1,37=18.480, 
p<0.0001), but no signi!cant e"ect of group (F3,37=1.006, p=0.401) and no 
signi!cant interaction of group and time period (F3,37=1.361, p=0.270). Although 
there was a signi!cant increase in freezing levels in both experienced and naïve 
rats during the presentation of any sounds (USV and control sound stimuli), the 
playback of USVs did not increase the freezing levels above and beyond that of 
the control sounds in experienced or naïve listeners (Fig. 5). 

Finally, to examine if auditory information other than USVs could have triggered 
freezing in our experiment, we performed a pilot experiment in which we played 
back the un!ltered recording of Empathy test (USV together with other audible 
sounds) and we found that the listening rats did displayed freezing behaviour 
when faced with the combination of USVs and environmental sounds, and that 
this freezing was stronger in experienced than naïve listeners (t (17) = 2.177, 
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p<0.05, Fig. S1). Importantly, although these rats were not experimentally naïve, 
we did not observe any di"erence in freezing behavior before the onset of the 
sound stimulus (Fig. S1). 

DISCUSSION 

In this study, we describe a paradigm to potentially study empathy in rats and, 
in particular, the role of prior experience in modulating the empathic response: 
a demonstrator rat was exposed to footshocks while a cage mate witnesses its 
distress. We found that demonstrator rats receiving footshocks displayed typical 
fear responses to this distressing experience, including freezing and emission of 
USVs and that witness rats that had previously experienced shocks themselves 
(EsW) displayed similar, albeit less intense, fear responses, including augmented 
freezing and reduced locomotion. Thus, our experiments con!rm that rats can 
express vicarious fear responses even though not experiencing !rsthand pain 
or distress. This vicarious response was signi!cantly reduced (and no longer 
signi!cant) in witness rats that had not experienced electroshocks in the past. We 
further found that the di"erence in vicarious behavior of the witnesses fed back 
onto the behavior of the demonstrators that had triggered it in the !rst place: 
D(EsW) that were shocked in the company of experienced witnesses progressively 
froze more than D(NsW) that were exposed to footshocks of the same intensity 
in the company of naïve witnesses. Finally, the playback of USVs alone did not 
trigger such vicarious freezing more than control sounds. 

Prior Experience modulates vicarious freezing in rats
Recent studies put forward that mice can display empathic behaviors. In one study, 
the writhing behavior of a mouse in response to abdominal pain was enhanced if 
witnessing another mice writhe (Langford et al., 2006). The second study showed 
that mice express freezing when observing a conspeci!c being shocked (Jeon et 
al., 2010). The fact that we found a signi!cant elevation of freezing in EsW rats 
while observing demonstrator rat receive shocks con!rms that a similar form of 
vicarious distress behavior can be observed in another species of social rodents, 
the rat. Moreover, that vicarious freezing was lower in NsW compared to EsW 
adds to our understanding of this phenomenon by showing that having prior 
experience with footshock can modulate this vicarious reaction. Our !ndings are 
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in line with the study indicating that conditioned fear responses elicit signi!cant 
freezing in rats that previously experienced an aversive event but not in naïve rats 
(Kim et al., 2010).   

The fact that vicarious freezing in NsW was not only lower but also failed to di"er 
signi!cantly from baseline apparently contrasts with the study reporting strong 
vicarious freezing behavior displayed by naïve mice (Jeon et al., 2010). Many 
di"erences between the two experiments could account for this discrepancy. For 
example, the intensity and the frequency of the aversive stimulus (footshock) that 
the witnesses observe seem to play a very important role in modulating empathic 
responses ((Jeon et al., 2010)supplementary material). Therefore it is reasonable 
to think that NsW in our experiment might have shown more vicarious freezing if 
demonstrators had been exposed to more intense or frequent footshocks. Future 
experiments will be required to determine the adequate intensity and frequency 
of the footshock to elicit empathic response in naïve witnesses and examine how 
much prior experience can further augment this response. Moreover, because 
most other developed empathy models in rodents used male mice (Langford, 
2006; Chen et al., 2009a; Jeon et al., 2010) whereas in our study we used female rats, 
it is plausible that there might be species and/or gender di"erences in vicarious 
fear behaviors. Species di"erences have been suggested by studies reported 
con$icting !ndings in social modulation of learning between mice and rats. For 
example, one study indicated that brief social interaction with a recently fear-
conditioned conspeci!c improves the subsequent fear learning in rats (Knapska 
et al., 2010), whereas similar social interaction impairs fear learning in mice (Bredy 
and Barad, 2009). Gender di"erences, on the other hand, would dove-tail with 
gender di"erences in social support (Westenbroek et al., 2003) in rats and in social 
interest in human infant (Connellan et al., 2000) and chimpanzees (Alexander and 
Hines, 2002). Additionally, gender di"erences in self reported human empathy and 
in functional activity associated with the human mirror neuron system have been 
also reported (Cheng et al., 2008; Cheng et al., 2009). Nonetheless, it was recently 
found, with a paradigm somewhat di"erent form the one used in our study, that 
prior experience plays a crucial role in social transmission of fear between male 
rats as well (Kim et al., 2010). Future experiments testing rats and mice of both 
sexes in the same paradigms will be necessary to examine the presence of gender 
and species di"erences in vicarious freezing. 
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In our study, we did not examine the e"ects of the estrous cycle on the vicarious 
freezing behavior, therefore variance in our data could in part be due to di"erences 
in estrous cycle. There is evidence that estrous cycle could a"ect anxiety and fear 
responses and therefore a"ect freezing behavior in female rats (Frye et al., 2000; 
Marcondes et al., 2001; Chen et al., 2009b), however other studies reported no 
in$uence of estrous cycle on anxiety levels, fear responses or social interaction in 
female rats (Hiroi and Neumaier, 2006; Stack et al., 2010).  

Other animal studies reported that past experience play a role in reinforcing 
social transmission of fear and avoidance behavior in rats and empathy in 
pigeons (Church, 1959; Watanabe and Ono, 1986; Masuda et al., 2009; Kim et al., 
2010). Moreover, there is evidence of prior experience dependent modulation of 
empathic behavior in humans (see Ref. (Preston and de Waal, 2003) for a review). 
In particular, functional magnetic resonance imaging studies reported that in 
humans, hearing piano does not activate the premotor cortex, if one has never 
played the piano. Five lessons of piano playing, however, are su#cient for the 
sound of piano to activate areas of the premotor cortex involved in playing the 
piano (Lahav et al., 2007). These results have been interpreted as evidence for 
Hebbian learning: a particular set of sounds (piano notes) becomes associated 
with a particular inner state (premotor activity required to play the piano) because 
each time the premotor neurons !re, the participant can hear the consequences 
of this action, namely the piano notes (Keysers and Perrett, 2004; Keysers and 
Gazzola, 2009).

Our results are compatible with a Hebbian learning account for the modulation 
of empathic behaviors by prior experience. When experiencing footshocks, 
rats will experience their own pain together with the sound and smell of their 
own reactions (emission of vocalizations, release of pheromones, and sound of 
running during the shocks alternated with the silence associated with freezing). 
The sensory consequences of these pain responses could become associated with 
the experience of pain during footshocks. Once this association is established, 
perceiving similar sounds and smells while a demonstrator is shocked and reacts 
accordingly, would trigger, by association, a vicarious form of the !rst-hand 
experience of being shocked, including vicarious freezing. Rats that have not 
experienced this particular type of distress would be expected to have some, albeit 
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weaker associations between the sensory consequences of the demonstrators 
distress and their own distress. Such weaker associations would originate from 
the naïve rats experience with other forms of stressors ($ying in from the US, 
grabbing from their home cage, handling by unknown humans etc). These other 
stressors have probably led to somewhat similar/overlapping behaviors (e.g. 
squeaking, trying to run away, USVs), that could have been Hebbianly associated 
with the similar states of distress in these rats. Indeed, in our experiment, there is 
a trend for NsW to demonstrate more freezing than the NcW. In addition, because 
sensing the distress of others is such a valuable source of information about 
dangers, one might suspect that certain expressions of distress may be inborn 
triggers of vicarious emotions and behavior, and thereby cause some vicarious 
freezing without any need for Hebbian learning.  
 
There might however be other, less speci!c routes for prior experience to 
in$uence vicarious freezing. The prior experience of stress in experienced witness 
groups might have altered their emotional and cognitive state. For instance, the 
distress during Pre-Exposure could have generated a state of heightened anxiety 
that would prime these animals to be more sensitive to distress signals in the 
empathy test or to express their own distress-behavior more readily upon sensing 
the distress of others (Li et al., 2008; Masuda et al., 2009). Or, the prior experience 
might modulate the attentional and motivational states of the witnesses towards 
the behavior of their conspeci!cs, including their demonstrators. More attention 
to the demonstrators would then increase vicarious freezing. In support of that 
possibility, EsW spent more time close to the demonstrator during and after the 
shock trials. 
One of the core bene!ts of developing a potential rodent model of experience-
dependent empathy is that it will a"ord us the possibility to disentangle these 
alternative accounts. For instance, repeating Experiment 1 with the addition of 
a group that would have experienced a di"erent, but similarly intense, stressor 
during Pre-Exposure (e.g. immersion in ice water) would be highly instructive: a 
Hebbian account would predict this new group to freeze less, anxiety or attention 
accounts, as much, as the electroshock-pre-exposed group.

Prior experience of witnesses in"uence the demonstrator’s response
We also found that during the shock exposure, D(EsW) expressed more freezing 
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than D(NsW). Given that demonstrator rats were randomly assigned to these two 
groups and received the exact same treatment throughout the experiment, the 
only systematic di"erence between these groups has to originate from systematic 
di"erences in the treatment received by their witnesses.  The possible explanation 
for the di"erence in freezing behaviors of two demonstrator groups might be due 
to di"erential social bu"ering e"ects by their paired witness groups. Kiyokawa 
et al showed that the stress status of a partner could in$uence the social 
bu"ering e"ect in rats. In particular, rats paired with a naïve partner expressed 
less fear responses in a conditioning context than animals paired with previously 
shock-exposed partners (Kiyokawa et al., 2004). Our !nding is in line with this 
observation: demonstrators paired with naïve witnesses showed signi!cantly less 
freezing responses compared with demonstrators paired with shock pre-exposed 
witnesses. Issues requiring further study include the channel that is responsible 
for the in$uence exerted by the witnesses on the demonstrators and whether the 
di"erence in freezing between the demonstrators represents (i) a di"erences in 
their distress (Keysers and Perrett, 2004; Wohr et al., 2005; Brudzynski, 2007) or (ii) 
a di"erence in the propensity to display signs of distress. An analogy to human 
behavior might clarify these latter alternatives. Would we be genuinely more 
distressed by a shock if the people around us showed more signs of concern or 
would we simply be more encouraged to show our distress? Disentangling these 
possibilities will be an interesting challenge for future research. Importantly, this 
!nding begs us to remember that social interactions are not one-way streets: 
the demonstrators in$uenced the witnesses, but the witnesses also in$uenced 
the demonstrators. While this conclusion may seem trivial, it actually brakes new 
grounds in the context of empathy research: most current models of empathy 
for pain or distress in human neuroscience used prerecorded stimuli (Wicker et 
al., 2003; Morrison et al., 2004; Jackson et al., 2005; Avenanti et al., 2006; Decety 
and Lamm, 2006; Gazzola et al., 2006; Jabbi et al., 2007; Jabbi and Keysers, 2008) 
or used live interactions but prevented participants from viewing the reactions 
of their partner (Singer, 2004; Singer et al., 2006). Accordingly, these experiments 
were unable, by design, to study how the observer’s response in$uences the 
experience of the demonstrator. Our !nding begs us to design experiments 
in which this feedback-loop and its neural mechanisms can be studied more 
explicitly in humans as well as in rodents. 
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The social nature of our experiment is also evidenced by video-tracking data that 
shows the EsW opted to spend more time in the vicinity of their demontrators 
than any other witness groups, and by audio recordings that show, the EsW-
D(EsW) pairs communicated through more USVs than the NsW-D(NsW) pairs. The 
fact that the di"erence in freezing between the demonstrators peaked later than 
that in the witnesses further suggests that the behaviour of the witnesses could 
have contributed to that of the demonstrators. 

USV playback alone does not trigger signi#cant vicarious freezing 
In the second part of our study (Experiment 2), we examined the contribution of 
various components of the auditory channel in triggering the vicarious freezing. 
In both naïve and experienced rats, USVs only produced modest freezing rates 
(~5%) that did not exceed the freezing response to control sounds. Therefore, 
USVs alone cannot account for the bulk of the vicarious stress response in our 
experiment, where freezing rates reached over 20% in EsW in Experiment 1. 
Although, the primary function of the rodent USVs remains poorly understood, 22 
kHz USV have often been associated with negative and 50 kHz USVs, with positive 
states (Blanchard et al., 1991; Brudzynski and Chiu, 1995; Panksepp and Burgdorf, 
2000; Burgdorf et al., 2005). However, it remains unclear whether and when 22kHz 
USV can trigger defensive behavior ($eeing or freezing) (Blanchard et al., 1991; 
Brudzynski and Chiu, 1995; Mongeau et al., 2003; Allen et al., 2007). At least in 
our experiment, and with the quality of playback achieved by our equipment, we 
concluded that USVs playback alone did not produce very robust freezing in naïve 
or experienced animals. In other situations, USVs might play a more important 
role (Kim et al., 2010). 

Additionally, in a pilot experiment, by playing back the recorded ultrasounds 
together with additional audible sounds associated with the behavior of the 
demonstrator’s distress, we observed an experience dependent increase in 
freezing (Fig. S1). This preliminary !nding suggests that audible sounds derived 
from the fear response of the demonstrator rat might convey distress signals to 
the witness. In particular the sound of the actions of the demonstrator rat (loud 
metallic sounds of running intermixed with conspicuous silence) might play an 
important role in this communication. In monkeys and humans, the sound of the 
actions of one individual triggers activity in premotor and somatosensory cortices 



43

Ch
ap

te
r 1

Experience modulates vicarious freezing in rats: a model for empathy

of the listener that mirrors the activity in those of the !rst individual (Kohler et al., 
2002; Keysers et al., 2003; Gazzola et al., 2006; Etzel et al., 2008). Whether similar 
mirror mechanisms are at work in the rat remains to be explored.  

Given that previous studies have shown that visual (Kohn and Dennis, 1972; 
Langford et al., 2006) and olfactory cues (Brechbühl et al., 2008) can also play 
a role in social communication in rodents, our pilot data suggests that social 
modulation and empathy seem to be a multimodal phenomenon, with the 
dominant modality likely to vary from paradigm to paradigm. 

CONCLUSIONS

In conclusion, placing two rats in adjacent compartments and exposing one of 
the two to footshocks is a simple and viable paradigm to study the way in which 
distress reactions of a rat in$uences the behavior of the other rat. Additionally, prior 
experience of footshocks increases the propensity of a rat to freeze in response to 
the distress of another. Our paradigm also evidences that the vicarious freezing 
of the witnessing rat can in turn in$uence the behavior of the demonstrating rat, 
closing the social loop.

As mentioned in the introduction, emotional contagion refers to cases in which 
an emotion in one individual triggers a similar emotion in another, while empathy 
proper requires that the other is aware of the fact that the triggered emotion is 
not his/her, but that of another person. Because it is impossible to assess whether 
rats have any form of awareness of their own emotions (i.e. have feelings), and 
of the source that triggered the emotion, it is di#cult to equate our results with 
emotional contagion or empathy (Singer et al., 2006). Even the degree to which 
the witnesses in our experiment only showed similar behaviour to that of the 
demonstrator or felt the same emotion remains veiled. All we can state is that the 
witnesses reacted with a typical distress behavior to the distress of another rat, 
and that this represents a potential model for human empathy. 



44

Ch
ap

te
r 1

Experience modulates vicarious freezing in rats: a model for empathy

SUPPORTING INFORMATION

ACKNOWLEDGEMENTS 
Authors would like to thank Angelika Jurdzinski for her technical help in the !rst 

experiment, Gert ter Horst for providing experimental space and equipment, Christel 

Westenbroek for useful discussions over the early version of the experimental design.

Figure S1. % Freezing behavior of Naïve (N) and Experienced (E) groups before and during the 
playback of the un!ltered recording (22 kHz USVs and the audible sounds < 20 kHz) from the EsW-
D(EsW) pairs in Empathy Test. All data is presented as mean ± S.E.M (n = 9-10 per group). *p<0.05, 
Experienced group compared to Naive. Figure S1. % Freezing behavior of Naïve (N) and Experienced 
(E) groups before and during the playback of the un!ltered recording (22 kHz USVs and the audible 
sounds < 20 kHz) from the EsW-D(EsW) pairs in Empathy Test. All data is presented as mean ± S.E.M 
(n = 9-10 per group). *p<0.05, Experienced group compared to Naive. Figure S1. % Freezing behavior 
of Naïve (N) and Experienced (E) groups before and during the playback of the un!ltered recording 
(22 kHz USVs and the audible sounds < 20 kHz) from the EsW-D(EsW) pairs in Empathy Test. All data 
is presented as mean ± S.E.M (n = 9-10 per group). *p<0.05, Experienced group compared to Naive.
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1. Stress and Stress Mediators

1.1. Stress 
Stress is typically de!ned as any stimulus that represents a perceived or actual 
threat to the psychological and physiological equilibrium or homeostatic 
functioning of an organism (Selye, 1976). As a response to stress, the organism 
strives to reinstate the disturbed homeostasis by activating neuromodulatory 
systems. Released hormones promote the organism’s ability to cope with stress 
by acting on target systems in the periphery but also inducing a myriad of e"ects 
on the brain. In addition to preparing an individual for the acute consequences of 
dangerous or threatening situations and the return to homeostasis, an important 
function of the stress response is to induce long-term adaptive changes (McEwen, 
1998; McEwen, 2001). An inability to appropriately adapt to repeated stress can 
produce a vulnerable phenotype that is associated with a high risk for a wide array 
of mental disease states, including depression and post-traumatic stress disorder 
(Sapolsky, 2000; McEwen, 2001; Kim and Diamond, 2002).

1.2. The neuroendocrine stress response
Stress leads to an activation of the autonomic nervous system and hypothalamus–
pituitary–adrenal (HPA) axis (Box 1). Activation of the autonomic nervous system 
results in the release of the catecholamines epinephrine and norepinephrine from 
the adrenal medulla and presynaptic nerve terminals (Miller and O’Callaghan, 
2002; Smith and Vale, 2006; Ulrich-Lai and Herman, 2009). These catecholamines 
trigger an elevation in heart rate and respiration, increase blood pressure and 
promote energy mobilization to contribute directly to the !ght-$ight response 
with an acute preservative impact on survival systems. In the central nervous 
system, exposure to a stressful event rapidly activates the locus coeruleus (LC), 
which is the main source of norepinephrine in the brain. These LC neurons 
project to other brain areas, such as the prefrontal cortex, cerebellum, amygdala, 
and hippocampus and innervate these areas with noradrenergic signals via 

- and -adrenoceptors. Peripherally released adrenaline can also stimulate 
ascending vagal a"erents that innervate the nucleus of solitary tract, from which 
noradrenergic neurons project to the basolateral complex of the amygdala (BLA) 
and LC. Therefore the brain is a major target for catecholamines that are released 
upon exposure to stressful events and arousing experiences. On the other hand, 
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activation of the HPA-axis triggers a cascade of events that eventually culminates 
in the release of glucocorticoids (cortisol in human, corticosterone in rats) from 
the adrenal glands (Miller and O’Callaghan, 2002). First, corticotropin-releasing 
factor (CRF) is secreted in response to a stressor by the medial parvocellular 
region of the paraventricular nucleus of the hypothalamus (PVN). This leads to the 
release of adrenocorticotropin hormone (ACTH) from the adrenal pituitary gland 
into circulation, which subsequently stimulates the release of glucocorticoids 
from the adrenal cortex. Blood concentrations of glucocorticoids then rise to 
peak 15-30 minutes after stress, and decline slowly to pre-stress levels. In the 
periphery, glucocorticoids exert immunosuppressive actions and increase blood 
glucose levels by a"ecting diverse metabolic processes. Glucocorticoids are 
highly lipophylic and, thus, directly enter the brain and bind to mineralocorticoid 
receptors (MRs) and glucocorticoid receptors (GRs) (McEwen et al., 1968). MRs 
have a high a#nity for the natural steroids corticosterone and aldosterone 
and are almost saturated during basal corticosterone levels whereas GRs 
become occupied by higher levels of corticosterone (de Kloet et al., 2005). The 
catecholamine component of the stress response can be thought as representing 



57

Ch
ap

te
r 2

General Introduction

the !rst wave, and the glucocorticoid component as being the second wave. 
Catecholamines are secreted and trigger second messenger cascades in 
postsynaptic target tissues within seconds, whereas glucocorticoids are secreted 
following a latency of minutes to hours. The hormone can exert nongenomic 
actions (actions not involving transcriptional events) in a rapid fashion or slow 
genomic actions resulting from transcriptional events that take hours to emerge. 
Despite the di"erential time course of actions of these hormones, there appears 
to be an overlapping presence of noradrenaline and corticosteroids in time and 
space that allows the stage for interactions, provided that signals transduced by 
receptors of these ligands act in the same time frame (Joels et al., 2011).

2. Endocannabinoid System
The endocannabinoid system is a relatively unique system, exerting modulatory 
actions in both central tissue and in the periphery. Cannabinoid receptors 
type 1 (CB1) and type 2 (CB2) are activated by three major classes of ligands: 
Endocannabinoids (endogenously produced), plant cannabinoids (such as 
tetrahydrocannabinol (THC), produced by the cannabis plant) and synthetic 
cannabinoids (such as WIN55,212-2). The most well-de!ned endogenous 
cannabinoid ligands N-arachidonylethanolamine (anandamide; AEA) and 
2-arachidonoylglycerol (2-AG) are neuroactive lipids that are produced within the 
brain by neurons and glia cells and function primarily as interneuronal signaling 
molecules (Freund et al., 2003; Kano et al., 2009) (Box 2). Endocannabinoids are 
released on demand in response to altered neuronal activity. The synthesis of AEA 
and 2-AG occurs via separate enzymatic cascades and are evoked by neuronal 
depolarization, elevations in intracellular calcium, and activation of several 
metabotropic and excitatory ionotropic neurotransmitter receptors (Freund et 
al., 2003; Di Marzo et al., 2005; Kano et al., 2009). Both CB1 and CB2 receptors 
are G protein-coupled and the CB1 receptor is expressed almost ubiquitously 
throughout the brain, including the olfactory bulb, neocortex, pyriform cortex, 
hippocampus, amygdala, basal ganglia, thalamic and hypothalamic nuclei, 
cerebellar cortex, and brainstem nuclei (Katona et al., 1999; Katona et al., 2001; 
Freund et al., 2003) whereas CB2 receptors are generally present peripherally in 
immunological tissues, but they have also been found within the central nervous 
system on neurons and glia cells with their expression mainly related to conditions 
of in$ammation, in brain regions like the hippocampus and cerebellum (Begg 
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et al., 2005). The termination of endocannabinoid signaling is determined by 
metabolic enzymes: Fatty acid amide hydrolase (FAAH) is the primary catabolic 
enzyme for AEA, and hydrolyzes it into ethanolamine and arachidonic acid and 
2-AG is primarily metabolized by monoacylglyceride lipase (MAG lipase) to form 
glycerol and arachidonic acid (Freund et al., 2003; Di Marzo, 2008). Recent studies 
indicated an involvement of the endocannabinoid system in many di"erent brain 
functions, including synaptic plasticity, stress response, locomotion, appetite, 
anxiety, reward, pain and learning and memory(Kano et al., 2009).

2.1. Role as a retrograde messenger in synaptic plasticity
It is now widely accepted that postsynaptic depolarization induces an 
elevation of intracellular Ca2+ concentrations which trigger the biosynthesis 
of endocannabinoids. Endocannabinoids are then released from postsynaptic 
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neurons into the synapse, act as a retrograde messenger at various synapses in 
the brain and contribute to several forms of short-term and long-term synaptic 
plasticity. The released endocannabinoids activate presynaptic CB1 receptors and 
suppress transmitter release either transiently or persistently. Endocannabinoids 
are known to mediate the transient suppression of inhibition or excitation 
by inhibiting the release of glutamate (short-term: depolarization induced 
suppression of excitation - DSE or long-term depression at excitatory synapses 
– LTDe) or GABA (short-term: depolarization induced inhibition - DSI, long-term 
depression at inhibitory synapses - LTDi), respectively (Hashimotodani et al., 2007; 
Kano et al., 2009). The molecular identity of the retrograde endocannabinoid 
ligand that mediates DSI/ DSE or LTD has not been proven conclusively. The 
available evidence suggests that 2-AG is a more likely candidate than AEA to 
mediate DSI/DSE whereas the contribution of AEA and 2-AG to LTD seems to 
depend on the brain region investigated. For instance, AEA is reported to mediate 
LTDi in the amygdala (Azad et al., 2004) whereas 2-AG is assumed to contribute 
to hippocampal LTDi (Chevaleyre and Castillo, 2003). In addition to this, there 
are number of studies demonstrating that CB1 receptor activation inhibits 
neurotransmitter release. The neurotransmitters that are reported to be a"ected 
by the CB1 receptor include glycine acetylcholine, norepinephrine, dopamine, 
serotonin, and cholecystokinin (Kano et al., 2009). 

2.2. Role of endocannabinoids in mediating the e!ects of stress and glucocorticoids
Besides these functions, endocannabinoids also play important role in the stress 
response, in particular in the return to homeostasis after stress. Since an excessive 
and prolonged stress or glucocorticoid response can result in deleterious e"ects 
on cardiovascular, immune, metabolic, and neural systems (Chrousos, 2009), 
an appropriate inhibition of the stress response is essential once the perceived 
stressor has subsided. This inhibition is triggered by slow as well as rapid feedback 
mechanisms. Classically, slow feedback inhibition represents a mechanism by 
which glucocorticoids shut down the HPA-axis via transcriptional regulation of 
gene expression. In addition to this slow feedback, glucocorticoids also mediate 
a rapid negative feedback regulation of the HPA axis (Dallman, 2005). Recent 
!ndings revealed that the mechanism of rapid glucocorticoid feedback inhibition 
of hypothalamic hormone secretion involves endocannabinoid release in the PVN. 
This provided a link between the actions of glucocorticoids and cannabinoids 
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in the hypothalamus (Di et al., 2003). In addition to an inhibition of the stress 
response by negative feedback mechanisms, behavioral and hormonal responses 
to repeated and predictable exposure to the same type of stressor exhibit stress 
habituation. Stress habituation is a progressive decrease in the expression of 
glucocorticoid secretion after repeated applications of the same stressor and 
represents a protective mechanism to avoid needless hormone secretion while 
maintaining the ability to mount a hormonal response. Much of the !ndings 
regarding the mechanisms of stress habituation have focused on the role of 
glucocorticoids (Jaferi et al., 2003; Jaferi and Bhatnagar, 2006). However, recent 
studies have also implicated endocannabinoid signaling system in this process 
(Patel et al., 2005; Patel and Hillard, 2008).

2.3. Role of endocannabinoid system in learning and memory
It has long been recognized that THC intake causes memory impairment in humans. 
In laboratory animals, e"ects of exogenously applied cannabinoid agonists on 
learning and memory have been investigated intensively using various behavioral 
paradigms (Kano et al., 2009; Akirav, 2011; Zanettini et al., 2011). These studies 
have revealed that in cannabinoid-treated animals, certain aspects of memory 
are largely a"ected, while other aspects remain intact. Since memory is assessed 
through behavior in animals and endocannabinoid signaling can a"ect many 
behavioral and physiological processes, it is essential to control for side e"ects of 
the cannabinoid modulation on the behavior in order to con!dently attribute the 
e"ects to learning and memory processes per se. 

Although there is no consensus regarding the direction of endocannbainoid 
e"ects on memory, disruptive e"ects of cannabinoid agonists and antagonists 
have been reported in many di"erent behavioral paradigms and on di"erent 
memory processes. Systemic administration of CB1 receptor agonists such as THC 
or WIN55212-2 shortly before a learning experience has been shown to impair 
the acquisition of water maze, contextual fear memory and object recognition 
training in rodents, whereas the CB1 receptor antagonist/inverse agonist 
SR141716 (rimonabant) blocks these impairing e"ects and even enhances the 
acquisition per se (Lichtman et al., 1995; Da and Takahashi, 2002; Pamplona et 
al., 2006). Extensive evidence also indicates that systemic CB1 receptor agonists 
exert impairing e"ects on working memory whereas the e"ect on retrieval is 
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more controversial (Lichtman et al., 1995; Nava et al., 2001; Egashira et al., 2002; 
Wise et al., 2009). Pharmacological enhancement of endocannabinoid tone or 
the activation of CB1 receptors facilitates extinction learning whereas genetic 
and pharmacological blockade of CB1 receptors impairs extinction learning 
(Suzuki et al., 2004; Chhatwal et al., 2005; Kamprath et al., 2006; Pamplona et 
al., 2008). Consistently, training on a fear conditioning extinction task increases 
endocannabinoid levels within the BLA, suggesting that this brain region 
mediates the e"ects of endocannabinoids on fear extinction learning (Marsicano 
et al., 2002). Accordingly, recent !ndings indicate that microinjections of the CB1 
receptor antagonist AM251 into the BLA or hippocampus block the extinction 
of inhibitory avoidance training (Ganon-Elazar and Akirav, 2009; Abush and 
Akirav, 2010), whereas CB1 receptor antagonism in the insular cortex impairs the 
extinction of conditioned taste aversion (Kobilo et al., 2007). Pharmacological 
manipulation of the endocannabinoid system by local infusions into the brain 
also a"ects other memory processes such as memory consolidation, recall and 
working memory. For instance, infusions of the CB receptor agonist WIN55,212-
2 into the BLA immediately after inhibitory avoidance training enhance 48-h 
retention performance, suggesting an enhancing e"ect of endocannabinoids on 
memory consolidation (Campolongo et al., 2009). Moreover, a blockade of CB1 
receptors in the hippocampus by AM251 is known to impair the consolidation of 
inhibitory avoidance training (de Oliveira Alvares et al., 2006; de Oliveira Alvares et 
al., 2008). Studies using intrahippocampal infusions of the agonists CP55940, THC 
or WIN 55,212-2 in rats also showed a disrupted performance on radial-arm maze, 
T-maze delayed alternation, inhibitory avoidance, spatial learning as well as place 
recognition tasks and were thus interpreted as suggesting that the impairing 
e"ects of endocannabinoids on learning and recall are mediated through the 
activation of CB1 receptors in the hippocampus (Akirav et al., 2011).  Infusions 
of a CB1 receptor agonist into prefrontal cortex is known to impair working 
memory (Lichtman et al., 1995; Egashira et al., 2002; Wegener et al., 2008; Abush 
and Akirav, 2010; Akirav, 2011). Collectively, although most reported e"ects of 
endocannabinoids are controversial and there is no consensus in the direction of 
the e"ects on memory, endocannabinoids appear to be involved in the modulation 
of di"erent memory processes by in$uencing multiple brain regions (Kano et al., 
2009; Zanettini et al., 2011). The opposite behavioral e"ects of cannabinoid drugs 
seem to derive from di"erences in drug dose, route of administration and timing of 
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exposure; however, variations in the stressfulness of the experimental conditions 
employed in the di"erent studies are implicated as well. In particular, the neural 
processes underlying emotional memory formation and non-emotional memories 
(more neutral memory) seem to be di"erentially sensitive to cannabinoid receptor 
activation (Chhatwal and Ressler, 2007). It is suggested that endocannabinoids 
exert e"ects on mood and cognition via in$uences on noradrenergic activity and 
thus the origin of the altered sensitivity to endocannabinoids might result from 
di"erent level of arousal that will cause a di"erent activation of the noradrenergic 
system (Carvalho and Van Bockstaele, 2011). The !nding that cannabinoid drugs 
such as WIN55,212-2 can induce opposite e"ects on short- and long-term object 
recognition memory depending on the level of emotional arousal at encoding 
and thus the level of noradrenergic activity supports this view (Campolongo et 
al., unpublished observation). Moreover, the administration of cannabinoid-like 
agents has been shown to increase Fos expression in LC noradrenergic neurons 
(Patel and Hillard, 2003; Oropeza et al., 2005) and dose-dependently increases 
norepinephrine levels in limbic and cortical regions (Oropeza et al., 2005; Page et 
al., 2007).

3. Stress & Memory
New information needs to be encoded and stored in order to enable the organism to 
retrieve the accurate information and express the appropriate behavior or modify 
it accordingly. Memory is not a single entity but composed of several separate 
systems and accordingly di"erent brain systems orchestrate various tasks to form 
new memories. Long–term memory can be broadly divided in at least two types: 
Declarative (explicit) and non-declarative (implicit) memory. Declarative memory 
refers to conscious knowledge of facts and events, while non-declarative memory 
refers to a collection of non-conscious knowledge systems that provide for the 
capacity of learning skills, habit formation, priming. Declarative memory is further 
divided in subcategories as episodic (remembering speci!c events from the past) 
and semantic memory (general knowledge). Declarative memory processes 
rely upon the hippocampus and related structures in the medial temporal lobe 
including the perirhinal, entorhinal and parahippocampal cortices. 

Memories are not all created equally strong: Some experiences are well 
remembered, while others are remembered poorly, if at all. Why is there a di"erence 
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in the strength of our memories? Extensive evidence indicates that emotions can 
have lasting e"ects on memory. Accordingly, enhanced memory for stressful or 
emotionally arousing events has given the !rst evidence regarding an in$uence 
of stress on memory. Evolutionarily this is a highly adaptive phenomenon that 
helps us to remember important information. Findings from experimental studies 
indicate that people have good recollection of where they were and what they 
were doing when they experienced an earthquake or witnessed an accident 
(Bohannon, 1988; Neisser et al., 1996). Similarly, rats remember the place in the 
apparatus where they received a mild footshock or the location of an escape 
platform in a tank !lled with water (Morris et al., 1986; Vazdarjanova and McGaugh, 
1998). Extensive evidence from both animal and human studies demonstrates 
that stress strengthens the consolidation of memory for emotionally arousing 
experiences (Roozendaal and McGaugh, 2011). In contrast, acute stress can cause 
a temporary impairment of the recall of memory such as the blockade of memory 
during a job interview or an important exam. Experiments that investigated 
this phenomenon employed paradigms in which human subjects or rats are 
given a session of stress shortly before assessing their ability to recall previously 
learned information. The !ndings of these experiments indicate that in both rats 
and humans, stress-induced impairment was linked to high levels of circulating 
glucocorticoids (de Quervain et al., 1998; de Quervain et al., 2000). Similar to 
the e"ects of stress on memory consolidation, stress induces memory retrieval 
impairment selectively under arousing conditions via interactions with the 
noradrenergic system (de Quervain et al., 1998; Kuhlmann et al., 2005). 

3.1. Stress hormones as mediators of stress e!ects on memory
Decades of research show that hormones of the adrenal medulla (epinephrine) 
and adrenal cortex (glucocorticoids), released during and immediately after 
emotionally arousing experience, mediate the multifaceted e"ects of stress on 
memory (McGaugh and Roozendaal, 2002; Joels and Baram, 2009; Roozendaal 
et al., 2009; Joels et al., 2011). In adrenally intact rats, systemic injections of the 
adrenomedullary hormone epinephrine enhance memory consolidation of 
inhibitory avoidance when administered shortly after training (Gold and Van 
Buskirk, 1975; Gold et al., 1977). Comparable e"ects were obtained in subsequent 
experiments using many di"erent types of training tasks commonly used in 
experiments with rats and mice (Introini-Collison et al., 1991; Costa-Miserachs 
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et al., 1994). Since epinephrine does not readily cross the blood-brain barrier, 
its e"ects on memory seem to be initiated by an activation of  -adrenoceptors 
located on vagal a"erents that project to the nucleus of the solitary tract that 
sends direct or indirect noradrenergic projections to the forebrain, including 
the BLA (Roozendaal and McGaugh, 2011). Unlike epinephrine, glucocorticoids 
are highly lipophylic and, thus, readily enter the brain and exert their e"ects by 
modi!cation of gene transcription through binding to intracellular or intranuclear 
receptors and as a result, binding of receptor homodimers to DNA (de Kloet, 2000). 
Glucocorticoids may also act rapidly by interacting with membrane receptors and 
potentiating the e#cacy of other signaling cascades (Dallman, 2005; de Kloet et 
al., 2005; Tasker et al., 2006).    

Eventually, stress e"ects on cognitive functions have been attributed to extensive 
release of glucocorticoids that occurs as a result of chronic stress or some 
pathological conditions such as a"ective disorders (Sapolsky, 2000; McEwen, 2001; 
de Quervain et al., 2009; Lupien et al., 2009). Early reports found both enhancing 
and impairing properties of glucocorticoids on memory (Bohus and Lissak, 1968; 
Flood et al., 1978; Beckwith et al., 1986; Luine et al., 1993; Arbel et al., 1994). 
However, most of these studies only used repeated or chronic treatments that 
do not allow disassociating the e"ects of glucocorticoids on memory from the 
e"ects on other cognitive functions or directly on behavior. More recent studies 
investigating glucocorticoid e"ects on memory by focused drug manipulations 
targeting a time frame of a particular memory phase revealed di"erential e"ects of 
these hormones on di"erent memory processes. There is now extensive evidence 
from animal studies that glucocorticoids are critically involved in regulating 
the consolidation of memory processes (Flood et al., 1978; de Kloet, 2000; 
Roozendaal, 2000; McGaugh and Roozendaal, 2002; Roozendaal, 2002). Acute 
systemic administration of corticosterone or synthetic glucocorticoid ligands 
typically enhances long-term memory consolidation when given either before or 
immediately after a training experience in rats (Flood et al., 1978; Sandi and Rose, 
1994; Roozendaal and McGaugh, 1996; Roozendaal et al., 1996; Pugh et al., 1997; 
Roozendaal et al., 1999; Cordero et al., 2002) and human subjects (Buchanan and 
Lovallo, 2001; Abercrombie et al., 2003; Kuhlmann and Wolf, 2006; de Quervain 
et al., 2009). Glucocorticoid e"ects on memory consolidation follow an inverted 
U-shape dose–response relationship: Moderate doses enhance memory, while 
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higher doses are typically less e"ective or may even impair memory consolidation 
(Roozendaal et al., 1999). A series of studies in animals showed that glucocorticoids 
do not enhance memory consolidation for all kind of training experience but 
particularly for emotionally arousing events (Okuda et al., 2004; Roozendaal et al., 
2006a; Roozendaal et al., 2006b). For example, Okuda et al. (2004) investigated the 
importance of emotional arousal in mediating glucocorticoid e"ects on memory 
consolidation by manipulating the level of training-induced arousal in rats. They 
reported that systemic corticosterone does not enhance memory consolidation 
for training experience if the rat’s arousal level is decreased by extensive prior 
habituation to the training context. These !ndings indicate that glucocorticoids 
enhance memory consolidation for emotionally arousing training experiences 
but do not a"ect memory consolidation of emotionally neutral information. 
Consistent with these !ndings in rats, human studies reported similar results with 
respect to learning-associated arousal as a prerequisite for the enhancing e"ects 
of glucocorticoids and stress on memory consolidation (Buchanan and Lovallo, 
2001; Abercrombie et al., 2003; Kuhlmann and Wolf, 2006; Van Stegeren et al., 
2007; Wolf, 2008; de Quervain et al., 2009; Marin et al., 2010). 

Besides the e"ects of glucocorticoids on memory consolidation, many 
studies demonstrated di"erential e"ects of glucocorticoids on other memory 
processes such as memory retrieval and working memory (Kirschbaum et 
al., 1996; de Quervain et al., 1998; Roozendaal et al., 2004a; Roozendaal et al., 
2004b; Roozendaal et al., 2004c; Cai et al., 2006; Barsegyan et al., 2010). The 
elevation of glucocorticoids either naturally (i.e. by stress exposure) or induced 
by pharmacological manipulations shortly before retention testing induces 
impairing e"ects on the retrieval of spatial/contextual memory in rats (de 
Quervain et al., 1998). Interestingly, this is a temporary e"ect that only occurs 
during high circulating glucocorticoid levels and fades away once the hormone 
levels return to baseline (de Quervain et al., 1998). Human studies consistently 
reported similar !ndings with respect to glucocorticoid e"ects on memory recall 
impairment (Kirschbaum et al., 1996; de Quervain et al., 2000; de Quervain et al., 
2003; Buss et al., 2004; Het et al., 2005; Wolf, 2008). Moreover, pharmacological 
activation of hippocampal GRs by a speci!c GR agonist resulted in comparable 
memory retrieval impairment, indicating that these e"ects involve GRs and not 
MRs (Roozendaal et al., 2004b). 
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Extensive evidence from cognitive and neurobiological research indicates that 
the hippocampus is an important brain region involved in memory retrieval of 
contextual, spatial or declarative information and is also a primary target for 
stress hormones. Studies investigating glucocorticoid e"ects on memory retrieval 
mostly employed hippocampus-dependent learning tasks like spatial water-maze 
or inhibitory avoidance training in rats and declarative memory tasks in humans.  
Therefore, the impairing e"ects of glucocorticoids on memory retrieval are 
largely based on the e"ects found in these tasks. The few studies that investigated 
whether glucocorticoids also impair retrieval of hippocampus-independent 
memory (e.g. auditory fear memory) in rats reported only small or absent e"ects 
(Schutsky et al., 2011). 

4. Outline of part II
Although not many can properly de!ne stress, everybody knows what it means 
to have stress. The brain is the organ that interprets and determines whether 
an experience is stressful or not, and accordingly produces the behavioral and 
physiological responses thereof. A hallmark of stress response is the activation 
of the autonomic nervous system, resulting in the release of catecholamines 
from the adrenal medulla, and of the HPA-axis that culminates in the release of 
glucocorticoid hormones from the adrenal cortex. These stress response systems 
enable the organism to cope with the situation and survive acute challenges. The 
stress response also induces acute changes in behavior and cognition as well as 
long-term adaptive responses. 

Glucocorticoids, released from the adrenal cortex, have potent modulatory 
e"ects on emotional memory. Speci!cally, glucocorticoids have been shown 
to enhance memory consolidation of emotionally arousing experiences, but to 
impair memory retrieval and working memory during emotionally arousing test 
situations. Glucocorticoids are known to interact with arousal-induced activation 
of the noradrenergic system to selectively a"ect memory of emotionally arousing 
experiences. Glucocorticoids modulate cellular function, including learning 
and memory, through both genomic (slow) and nongenomic (rapid) pathways 
(de Kloet, 2000; Dallman, 2005). Genomic glucocorticoid actions are mediated 
by classical steroid mechanisms involving transcriptional regulation. Although 
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many glucocorticoid actions !t the time frame for a genomic mechanism, some 
behavioral and physiological e"ects of glucocorticoids have a rapid onset, 
occurring in seconds to minutes, that is not readily compatible with transcriptional 
regulation. The emerging view suggests that glucocorticoids, by in$uences on 
fast inducible signaling systems such as endocannabinoids, exert their rapid and 
nongenomic e"ects on adaptive responses to stress, behavior and memory. The 
endocannabinoid system is a rapidly activated retrograde messenger system in 
the brain that exerts diverse e"ects on synaptic transmission, neuronal !ring, 
mood and memory. Chapter 3 provides an overview of the existing literature 
regarding the fast actions of glucocorticoid on the noradrenergic system in 
in$uencing memory functions. This chapter !nalizes with a model that suggests 
endocannabinoids as a well-suited candidate system to mediate at least some 
of the rapid actions of glucocorticoids. The other chapters of this part deal with 
experiments aimed at validating this model. 

Prior studies indicated that glucocorticoids only enhance memory consolidation 
of emotionally arousing, and not neutral, experiences. It is now well established 
that this selectivity originates from glucocorticoid-mediated facilitation of 
arousal-induced noradrenergic activation within the BLA. However, the neural 
mechanism of how glucocorticoids can rapidly in$uence noradrenergic function 
in the context of memory consolidation remains elusive. Chapter 4 investigates 
whether the endocannabinoid system is essentially involved in regulating 
glucocorticoid e"ects, via a GR on the cell surface, on the noradrenergic arousal 
system within the BLA in enhancing memory consolidation. 

As mentioned before, extensive evidence indicates that glucocorticoid hormones 
not only enhance the consolidation of memory but also impair the retrieval of 
memory of emotionally arousing experiences. Such glucocorticoid e"ects on 
memory retrieval impairment are known to depend also on rapid interactions 
with arousal-induced noradrenergic activity. Chapter 5 investigates whether the 
endocannabinoid system is involved in mediating glucocorticoid e"ects on the 
noradrenergic system in impairing the retrieval of contextual fear memory. 

Considerable evidence indicates that glucocorticoids do not impair the retrieval of 
all kinds of memory. Most studies investigating glucocorticoid e"ects on memory 
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retrieval examined their e"ects on retrieval of spatial/contextual memory in rats 
or of declarative memory in humans. The few studies that also investigated the 
e"ects of glucocorticoids on retrieval of recognition memory reported small and 
mostly nonsigni!cant e"ects. As animal studies have not explicitly examined 
glucocorticoid e"ects on retrieval of recognition memory, Chapter 6 investigates 
whether glucocorticoids impair the retrieval of two components of information 
acquired during a single object recognition training session, i.e., memory of the 
training object per se and memory of the location of the object during the training 
session. Further, the role of the endocannabinoid system in mediating the e"ects 
of glucocorticoids on retrieval of these di"erent aspects of recognition memory 
is determined. 

Chapter 7 summarizes and discusses the !ndings of the second part of this thesis 
and provides conclusions and future perspectives.
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ABSTRACT

Glucocorticoids - stress hormones released from the adrenal cortex - have 
potent modulatory e"ects on emotional memory. Whereas early studies focused 
mostly on the detrimental e"ects of chronic stress and glucocorticoid exposure 
on cognitive performance and the classical genomic pathways that mediate 
these e"ects, recent !ndings indicate that glucocorticoids exert complex and 
often rapid in$uences on distinct memory phases. Speci!cally, glucocorticoids 
have been shown to enhance memory consolidation of emotionally arousing 
experiences, but to impair memory retrieval and working memory during 
emotionally arousing test situations. Furthermore, growing evidence indicates 
that these di"erent glucocorticoid e"ects all depend on a nongenomically 
mediated interaction with emotional arousal-induced noradrenergic activation 
within the basolateral complex of the amygdala. In this paper, we present a model 
suggesting that the endocannabinoid system, a lipid-based retrograde signaling 
system, might play an important role in mediating such rapid glucocorticoid 
in$uences on the noradrenergic system in modulating memory of emotionally 
arousing experiences. 
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INTRODUCTION

Stress activates the hypothalamus–pituitary–adrenal (HPA)-axis, which results 
in the release of glucocorticoid hormones (cortisol in human, corticosterone in 
rodents) from the adrenal cortex. These hormones are known to in$uence the 
organism’s ability to cope with stress, in$uencing target systems in the periphery, 
but also inducing a myriad of e"ects on the brain. In addition to preparing an 
individual for the acute consequences of threatening situations and the return 
to homeostasis, an important function of stress is to induce long-term adaptive 
responses (McEwen 1998; McEwen 2001). It has long been recognized that 
glucocorticoids readily enter the brain and a"ect cognition. Early reports on both 
enhancing and impairing properties of glucocorticoids on memory (Bohus and 
Lissak 1968; Flood et al., 1978; Beckwith et al., 1986; Luine et al., 1993; Arbel et al., 
1994) have indicated that these hormones have complex e"ects on cognition. 
More recent studies investigating glucocorticoid e"ects on distinct memory 
phases and studies examining their interaction with emotional arousal helped 
to disentangle the multifaceted actions of these stress hormones. For example, 
there is now extensive evidence that glucocorticoids enhance the consolidation 
of long-term memory of emotionally arousing experiences (Roozendaal et al., 
2006a). In contrast, elevated glucocorticoid levels are known to impair memory 
retrieval and working memory during emotionally arousing situations (de 
Quervain et al., 2009). Yet, these hormones have little e"ect on memory of more 
mundane experiences. Findings of experiments in both animals and humans 
investigating the neurobiological basis underlying this selectivity indicate that 
glucocorticoid modulation of these di"erent memory phases all require arousal-
induced noradrenergic activation within the basolateral complex of the amygdala 
(BLA) (Roozendaal et al., 2006a). Importantly, as many of these glucocorticoid 
in$uences on the noradrenergic system have an onset that appears too rapid 
to be mediated by their classic genomic actions, such !ndings, as well as other 
recent reports of rapid glucocorticoid e"ects, have rekindled the interest in this 
fascinating !eld and led to the discovery of novel nongenomically mediated 
mechanisms of glucocorticoid action on cellular function, neural plasticity and 
memory (de Kloet et al., 2008).

The endocannabinoid system is one emerging candidate system thought to 
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mediate nongenomic glucocorticoid actions in the brain (Hill and McEwen 2009). 
Endocannabinoids, i.e., anandamide and 2-arachidonoylglycerol (2-AG), are 
synthesized on demand through cleavage of membrane precursors and serve 
as retrograde messengers at central synapses (Hashimotodani et al., 2007). They 
regulate ion channel activity and neurotransmitter release (Freund et al., 2003). 
CB1 and CB2 cannabinoid receptors are G-protein-coupled receptors (Matsuda et 
al., 1990; Gerard et al., 1991). Whereas the CB1 receptor is mainly expressed in the 
brain, but also in the lungs, liver and kidneys, the CB2 receptor is predominantly 
found in glia and peripheral tissues (Morgan et al., 2009; Pacher and Mechoulam 
2011). Cannabinoid receptors are activated by three major classes of ligands: 
Endocannabinoids (produced by the mammalian body), plant cannabinoids (such 
as tetrahydrocannabinol (THC), produced by the cannabis plant) and synthetic 
cannabinoids (such as WIN55,212-2). In the last decade, it became clear that the 
endocannabinoid system modulates a wide range of physiological processes 
and is also essential for an adaptive regulation of the stress response (Patel and 
Hillard 2008; Kano et al., 2009; Marsicano and Lafenetre 2009; Hill et al., 2010b). 
Bidirectional and functional relationships between glucocorticoids and the 
endocannabinoid system have been demonstrated. For example, stress is known 
to produce rapid changes in endocannabinoid signaling in stress-responsive 
brain regions. In turn, the endocannabinoid system plays an important role in 
the down-regulation and habituation of HPA-axis activity in response to repeated 
stress (Patel and Hillard 2008; Hill et al., 2010a; Hill et al., 2010c). Glucocorticoids 
also recruit the endocannabinoid system to exert rapid negative feedback control 
of the HPA-axis during stress (Di et al., 2003; Patel et al., 2005; Tasker et al., 2006; 
Evanson et al., 2010). It became increasingly clear, however, that CB1 receptors 
are also abundantly expressed in the BLA and other limbic regions where they 
modulate emotional arousal e"ects on synaptic transmission (Katona et al., 2001; 
Tan et al., 2011), neuronal !ring (Pistis et al., 2004) and memory (Campolongo et 
al., 2009b; Ganon-Elazar and Akirav 2009; Marsicano and Lafenetre 2009; Tan et 
al., 2011).

 In the present paper, we will !rst summarize the opposing e"ects of 
glucocorticoids on memory consolidation, memory retrieval and working 
memory. Then, we will describe how glucocorticoids a"ect noradrenergic 
activity of the BLA (and other brain regions) to selectively modulate memory of 
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emotionally arousing experiences. Finally, we will present a model suggesting that 
endocannabinoid signaling might play an essential role in mediating such rapid 
e"ects of glucocorticoids on the noradrenergic system in regulating memory of 
emotionally arousing experiences. 

Glucocorticoid e!ects on di!erent memory phases: dependence on arousal 
status
In this section, we describe the e"ects of glucocorticoids on di"erent memory 
phases and their interaction with emotional arousal. There is compelling evidence 
from studies in both animals and humans that glucocorticoids are involved in 
regulating the consolidation of memory processes (Flood et al., 1978; de Kloet 
2000; Roozendaal 2000; McGaugh and Roozendaal 2002; Roozendaal 2002; Het 
et al., 2005; Sandi and Pinelo-Nava 2007; de Quervain et al., 2009; Roozendaal et 
al., 2009). Memory consolidation is the process by which a fragile memory trace 
is transferred into stable long-term memory. However, not all information is 
equally well transferred into long-term memory. In fact, it is well recognized that 
especially emotionally arousing experiences are well retained (McGaugh 2004). 
There is extensive evidence that glucocorticoids, along with other components 
of the stress response, are critically involved in regulating memory consolidation 
of emotionally arousing experiences (McGaugh and Roozendaal 2002). A 
blockade of glucocorticoid production with the synthesis inhibitor metyrapone 
impairs memory consolidation (Roozendaal et al., 1996a; Maheu et al., 2004) and 
prevents epinephrine- and stress-induced memory enhancement (Roozendaal 
et al., 1996b; Liu et al., 1999). In contrast, acute systemic administration of 
corticosterone or synthetic glucocorticoid ligands typically enhances long-term 
memory consolidation when given either before or immediately after a training 
experience (Flood et al., 1978; Sandi and Rose 1994; Pugh et al., 1997; Roozendaal 
2000; Cordero et al., 2002). Such glucocorticoid e"ects on memory consolidation 
follow an inverted U-shaped dose–response relationship: Moderate doses enhance 
memory, whereas lower or higher doses are typically less e"ective and may 
even impair memory consolidation (Roozendaal 2000). Optimal glucocorticoid-
induced memory enhancement depends on a variety of experimental factors, 
including the intrinsic aversive properties of the training procedure, but is usually 
achieved with a dose of corticosterone ranging between 1 and 3 mg/kg (see Fig. 
1A).
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Glucocorticoids are highly lipophilic and, thus, readily enter the brain and 
bind to mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) 
(McEwen et al., 1968; de Kloet 2000). MRs have a high a#nity for the natural 
steroids corticosterone and aldosterone. GRs have an approximately 10-times 
lower a#nity for corticosterone, but show a high a#nity for the synthetic 
ligands dexamethasone and RU 28362 (Reul et al., 1987; Sutanto and de Kloet 
1987). The memory-enhancing e"ects of glucocorticoids appear to involve the 
selective activation of the low-a#nity GR (Oitzl and de Kloet 1992; Roozendaal 
and McGaugh 1997). Such enhancing e"ects of glucocorticoids or GR agonists 
on memory consolidation have been observed in many di"erent brain regions 
and with many di"erent kinds of learning tasks, including inhibitory avoidance, 
contextual and cued fear conditioning, water-maze spatial and cued training, 
object recognition and conditioned taste aversion (Roozendaal et al., 2006a). 
These !ndings indicate that, in rodents, glucocorticoids not only enhance 

Figure 1. Glucocorticoid e"ects on memory consolidation for object recognition training require 
arousal-induced noradrenergic activation. Rats were either habituated to the training context for 
7 days (prior habituation) or not habituated (no prior habituation). On day 8, they were given a 3 
min training trial during which they could freely explore 2 identical objects, training was followed 
by systemic drug administration. Retention was tested 24 h later by placing the rats back into the 
apparatus for 3 min; in this trial, one object was similar to the training objects whereas the other was 
novel. Data represent discrimination index (%) on a 24-h retention trial, expressed as mean ± SEM. 
The discrimination index was calculated as the di"erence in the time spent exploring the novel and 
the familiar object, expressed as the ratio of the total time spent exploring both objects. (A) E"ects 
of immediate posttraining administration of the -adrenoceptor antagonist propranolol (3.0 mg/kg, 
s.c.) on corticosterone-induced enhancement of object recognition memory in naïve (emotionally 
aroused) rats. (B) E"ect of coadministration of the 2-adrenoceptor antagonist yohimbine (0.3 mg/
kg, s.c.) with corticosterone on object recognition memory in habituated (emotionally non-aroused) 
rats. **, P < 0.0001 vs. vehicle. Adapted from Roozendaal et al., Proc. Natl Acad Sci USA, 2006.
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memory of training on hippocampus-dependent tasks that have a strong spatial/
contextual component, but also memory of recognition- and procedural training 
that depends on other brain regions (Miranda et al., 2008; Quirarte et al., 2009). 
In humans, glucocorticoid e"ects on memory consolidation have mostly been 
investigated with respect to declarative memory (Het et al., 2005).  
However, glucocorticoids do not enhance memory of all experiences. Recent 
!ndings indicate that glucocorticoids enhance memory consolidation of 
emotionally arousing training experiences, but do not a"ect memory consolidation 
of emotionally neutral information (de Quervain et al., 2009). We investigated the 
importance of emotional arousal in mediating glucocorticoid e"ects on memory 
consolidation by manipulating the level of arousal during object recognition 
training in rats. Although no rewarding or aversive stimulation is used during 
object recognition training, such training induces modest novelty-induced stress 
or arousal (de Boer et al., 1990). However, extensive habituation of rats to the 
experimental context (in the absence of any objects) reduces the arousal level 
during the training. We found that systemic corticosterone administration does 
not enhance memory consolidation when the arousal level is decreased by 
extensive prior habituation to the training context (Okuda et al., 2004). Human 
studies support the !ndings of animal experiments that learning-associated 
arousal is a prerequisite for enabling the e"ects of glucocorticoids on memory 
consolidation (Abercrombie et al., 2006; Wolf 2008; de Quervain et al., 2009). 

Many studies  indicate  that  stress and glucocorticoids not only modulate the 
strength of newly formed memories, but also in$uence the remembrance 
of previously acquired information. In contrast to the enhancing e"ects of 
glucocorticoids on memory consolidation, these hormones typically impair 
memory retrieval. In the !rst study investigating the e"ects of stress and 
glucocorticoids on retrieval processes (de Quervain et al., 1998), we reported 
that 30 min after exposure to footshock stress, rats had impaired retrieval of 
spatial memory of a water-maze task they had acquired 24 h earlier. Interestingly, 
memory performance was not impaired when rats were tested either 2 min or 4 
h after the stress exposure. These time-dependent e"ects on retrieval processes 
corresponded to the circulating glucocorticoid levels at the time of testing, which 
suggested that the retrieval impairment was directly related to stress-induced 
increases in adrenocortical function. In a next step, we have translated these 
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!ndings to healthy humans and found that a single administration of cortisone 
shortly before retention testing impaired the free recall of words learned 24 h 
earlier (de Quervain et al., 2000). Several further studies from di"erent laboratories 
have indicated that stress exposure, glucocorticoids or the selective GR agonists 
dexamethasone and RU 28362 impair the retrieval of spatial or contextual memory 
in rats and declarative (mostly episodic) memory in humans (Wolf et al., 2001; 
Roozendaal et al., 2003; Buss et al., 2004; Rashidy-Pour et al., 2004; Roozendaal et 
al., 2004b; Het et al., 2005; Kuhlmann et al., 2005a; Kuhlmann et al., 2005b; Sajadi 
et al., 2007; Coluccia et al., 2008; Wolf 2008). Highly comparable to the above-
described e"ects of glucocorticoids on memory consolidation, glucocorticoids 
only impair memory retrieval of emotionally arousing information or during 
emotionally arousing test situations (Kuhlmann et al., 2005a; Kuhlmann et al., 
2005b; de Quervain et al., 2007; Smeets et al., 2008).

Glucocorticoids also impair working memory. Working memory is a dynamic 
process in which information is updated continuously, providing a temporary 
storage of information (Baddeley 1992). Evidence from lesion, pharmacological, 
imaging and clinical studies indicates that working memory depends on the 
integrity of the prefrontal cortex (Brito et al., 1982; Fuster 1991). Stress exposure 
is known to impair performance of rats on a delayed alternation task, a task 
commonly used to assess working memory in rodents (Arnsten 1998). Although 
basal levels of endogenous glucocorticoids are required to maintain prefrontal 
cortical function (Mizoguchi et al., 2004), systemic administration of stress 
doses of corticosterone (1-3 mg/kg) impairs delayed alternation performance 
in rats (Roozendaal et al., 2004c). Stress or stress-level cortisol administration is 
also known to impair working memory performance in human subjects during 
demanding tasks that require a high level of arousal (Baddeley 1992; Lupien et al., 
1999; Young et al., 1999; Wolf et al., 2001; Schoofs et al., 2008). 

Glucocorticoid interactions with arousal-induced noradrenergic activation 
in the basolateral amygdala 
Why do glucocorticoids only modulate memory of emotionally arousing 
experiences? Our !ndings suggest that interactions between stress hormones 
and noradrenergic activity within the amygdala may be key in determining this 
selectivity. It is well established that emotional experiences that induce the release 
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of adrenal stress hormones also increase amygdala neuronal activity (Pelletier et 
al., 2005). Extensive evidence from our as well as other laboratories indicates that 
the enhancing e"ects of stress hormone administration on the consolidation 
of memory of emotionally arousing experiences involve noradrenergic activity 
within the amygdala. A β-adrenoceptor antagonist infused into the BLA, but not 
the neighboring central amygdala, blocks memory enhancement induced by a 
glucocorticoid administered either systemically or directly into the BLA (Quirarte 
et al., 1997; Roozendaal et al., 2002). It is well known that norepinephrine is 
released into the amygdala during emotionally arousing conditions (McIntyre et 
al., 2002) and considerable evidence indicates that glucocorticoids interact with 
training-associated noradrenergic activation within the amygdala to enhance 
the consolidation of memory of emotionally arousing training experiences. For 
example, an in vivo microdialysis study reported that the administration of a 
memory-enhancing dose of corticosterone after inhibitory avoidance training 
rapidly increases norepinephrine levels within the amygdala (McReynolds et al., 
2010). In contrast, administration of the same dose of corticosterone to non-trained 
control rats does not increase norepinephrine levels in the amygdala, indicating an 
important role for emotional arousal in mediating such a glucocorticoid-induced 
facilitation of norepinephrine levels. Importantly, norepinephrine levels shortly 
after training were positively correlated with retention performance assessed 24 h 
later. Moreover, as the corticosterone-induced release of norepinephrine occurred 
in a rather rapid fashion (~15 min), it is likely that this e"ect is mediated by a 
nongenomic mechanism. Human studies have also provided evidence that stress 
hormone e"ects on memory enhancement for emotionally arousing experiences 
require concurrent amygdala and noradrenergic activity (Cahill et al., 1995; Cahill 
et al., 1996; Adolphs et al., 1997; Hamann et al., 1999; Canli et al., 2000). Such 
interactions between glucocorticoids and the amygdala noradrenergic arousal 
system are known to guide neural plasticity and memory in its many target 
regions such as the hippocampus, caudate nucleus and di"erent cortical regions 
(McGaugh 2000; Roozendaal 2000; Vouimba et al., 2007; McReynolds et al., 2010). 

Based on the evidence summarized above, it may be hypothesized that emotional 
arousal-induced increases in noradrenergic activity within the BLA are essential 
in enabling glucocorticoid e"ects on memory consolidation. Such a mechanism 
may then provide a direct explanation of the !nding that glucocorticoids 
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selectively enhance memory consolidation of emotionally arousing experiences. 
We investigated this issue in rats trained on an object recognition task. As 
is discussed above, corticosterone enhances memory of object recognition 
training when administered to naïve rats, but is ine"ective in rats that have 
reduced training-associated emotional arousal because of prior habituation to 
the experimental context (Okuda et al., 2004). As is shown in Fig. 1A, we found 
that, in non-habituated (i.e., emotionally aroused) rats, the β-adrenoceptor 
antagonist propranolol administered systemically blocks the corticosterone-
induced memory enhancement (Roozendaal et al., 2006b). Propranolol infused 
directly into the BLA also blocks the enhancing e"ects of corticosterone on 
object recognition memory. To determine whether the failure of corticosterone 
to enhance memory consolidation under low-arousing conditions is due to 
insu#cient training-induced noradrenergic activation, low doses of the α2-
adrenoceptor antagonist yohimbine, which increases norepinephrine levels in 
the brain, were co-administered with the corticosterone to well-habituated rats 
immediately after object recognition training (Fig. 1B) (Roozendaal et al., 2006b). 
The critical !nding of this study was that such an augmented noradrenergic tone 
was su#cient to mimic the e"ects of emotional arousal in that simultaneously 
administered corticosterone enhanced memory consolidation (Roozendaal et 
al., 2006b). Further, in habituated rats, corticosterone activated BLA neurons, as 
assessed by phosphorylated cAMP response-element binding (pCREB) protein 
immunoreactivity levels, only in animals also given yohimbine (Roozendaal et al., 
2006b). Such observations strongly suggest that because glucocorticoid e"ects 
on memory consolidation require noradrenergic activation within the BLA, they 
only modulate memory under emotionally arousing conditions that induce the 
release of norepinephrine. 

Findings of studies investigating the neurobiological mechanism of 
glucocorticoid interactions with the noradrenergic system suggest that, in 
addition to glucocorticoid-induced release of norepinephrine from presynaptic 
sites, an activation of postsynaptic GRs in pyramidal neurons of the BLA may 
facilitate memory consolidation by potentiating the norepinephrine signaling 
cascade through an interaction with G-protein-mediated events (Roozendaal 
et al., 2002). Posttraining intra-BLA infusions of the β-adrenoceptor agonist 
clenbuterol or the cAMP analog 8-bromo-cAMP enhance memory consolidation 
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in a dose-dependent fashion (Introini-Collison et al., 1991; Liang et al., 1995; 
Ferry and McGaugh 1999). The GR antagonist RU 38486 infused into the BLA 
shortly before training shifts the dose–response e"ects of clenbuterol such that 
a much higher dose of clenbuterol is required to induce comparable memory 
enhancement (Roozendaal et al., 2002). In contrast, the GR antagonist does 
not modify the dose–response e"ects of 8-bromo-cAMP, indicating that cAMP 
acts in the BLA downstream from the locus of interaction of glucocorticoids 
with the β-adrenoceptor-AMP/protein kinase A (PKA) pathway. These !ndings 
strongly suggest that glucocorticoids enhance memory consolidation, in a 
permissive fashion, by potentiating β-adrenoceptor-cAMP/PKA e#cacy in the 
BLA (Roozendaal et al., 2002). Findings of electrophysiological experiments in 
brain slices also indicate that glucocorticoids interact with the noradrenergic 
system in in$uencing neural plasticity in BLA neurons. It should be noted that 
these studies indicate that glucocorticoids a"ect noradrenergic function in a 
time-dependent manner (Joels et al., 2011). For example, when corticosterone 
was applied simultaneously with a -adrenoceptor agonist, AMPA receptor-
mediated responses in BLA neurons were rapidly facilitated, consistent with the 
idea that corticosterone requires concurrent noradrenergic activity to enhance 
memory consolidation of emotionally arousing information. However, when 
the corticosterone was applied several hours in advance to the -adrenoceptor 
agonist, possibly genomic GR actions kick in, resulting in a potent suppression 
of the -adrenoceptor agonist e"ect on AMPA receptor-mediated responses 
(Liebmann et al., 2009).

Recent !ndings indicate that the BLA is not the only brain region mediating 
glucocorticoid e"ects on the noradrenergic system in regulating memory 
consolidation. Highly comparable to the e"ects found in the BLA, infusions of a 
β-adrenoceptor antagonist or PKA inhibitor into the medial prefrontal cortex after 
inhibitory avoidance training prevent the memory enhancement of a GR agonist 
administered concurrently (Barsegyan et al., 2010). Moreover, corticosterone 
administered systemically immediately after inhibitory avoidance training 
increases PKA activity in the medial prefrontal cortex within 30 min, further 
supporting the view that glucocorticoid e"ects on facilitating noradrenergic 
signaling are mediated via rapid, nongenomic actions. Glucocorticoids also 
interact with the noradrenergic system in the insular cortex in regulating memory 
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consolidation. In one study (Roozendaal et al., 2010), corticosterone conjugated 
to a bovine serum albumin molecule (i.e., cort:BSA) was infused into the insular 
cortex immediately after object recognition training in non-habituated rats. 
This conjugate does not cross the cell membrane and thus selectively activates 
adrenal steroid receptors on the cell surface (Chiyo et al., 2003). This corticosterone 
conjugate enhanced memory consolidation of the training, and the e"ect was 
blocked by co-administration of a GR, but not MR, antagonist, thus, providing 
support for the view that GRs on or near the cell surface are implicated in mediating 
glucocorticoid e"ects on memory consolidation. Moreover, consistent with the 
view that glucocorticoids interact with the norepinephrine signaling pathway, a 
selective PKA inhibitor also blocked the cort:BSA-induced memory enhancement 
(Roozendaal et al., 2010). Immunocytochemistry revealed that cort:BSA infused 
after object recognition training increases pCREB levels in insular cortex neurons 
(Roozendaal et al., 2010).
There is now compelling evidence that the impairing e"ects of glucocorticoids 
on memory retrieval and working memory under emotionally arousing test 
conditions also depend on concurrent noradrenergic activity within the BLA (and 
other brain regions). For example, systemic administration of the β-adrenoceptor 

Figure 2. E"ects of stress and glucocorticoids on memory functions. Glucocorticoids enhance 
memory consolidation, whereas they impair memory retrieval and working memory. All of 
these glucocorticoid e"ects depend on emotional arousal-induced noradrenergic activity. NE, 
Norepinephrine. Adapted from de Quervain et al. Front Neuroendocrinol, 2009, with permission.
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antagonist propranolol, 30 min before retention testing, blocks the memory 
retrieval impairment of spatial/contextual information induced by a concurrent 
injection of corticosterone (Roozendaal et al., 2004a). A β-adrenoceptor 
antagonist infused into the BLA or hippocampus also prevents the retrieval-
impairing e"ect of a GR agonist administered concurrently (Roozendaal et al., 
2004b). Moreover, stimulation of β1-adrenoceptors with systemic injections of the 
selective agonist xamoterol induces memory retrieval impairment comparable 
to that seen after corticosterone administration (Roozendaal et al., 2004b). 
Collectively, these !ndings suggest that the impairing e"ects of glucocorticoids 
on memory retrieval involve a facilitation of noradrenergic mechanisms. Given 
that norepinephrine is activated by emotional arousal, this could explain why 
emotionally arousing information or an emotionally arousing test situation is a 
prerequisite for enabling glucocorticoid e"ects on memory retrieval. In line with 
this view, we recently reported that the β-adrenoceptor antagonist propranolol 
blocks the impairing e"ect of cortisone on the retrieval of emotionally arousing 
verbal material in healthy humans (de Quervain et al., 2007). Glucocorticoid 
e"ects on working memory also depend on interactions with noradrenergic 
mechanisms. A β-adrenoceptor antagonist administered systemically blocks 
the impairing e"ect of corticosterone on working memory in rats (Roozendaal 
et al., 2004c). Furthermore, a β-adrenoceptor antagonist or PKA inhibitor infused 
into the mPFC blocks working memory impairment induced by a GR agonist 
administered concurrently (Barsegyan et al., 2010). 

Thus, the !ndings summarized above indicate that glucocorticoids, via 
a nongenomically mediated mechanism, interact with arousal-induced 
noradrenergic activation to selectively in$uence memory consolidation, retrieval 
and working memory during emotionally arousing test situations (Fig. 2). 
However, they do not provide an explanation of how glucocorticoids might be 
able to rapidly in$uence noradrenergic transmission. In the next section, we will 
provide a brief overview of nongenomic glucocorticoid mechanisms. 

Rapid nongenomic glucocorticoid e!ects: involvement of the 
endocannabinoid system
Glucocorticoids are known to modulate cellular function, including learning and 
memory, through both genomic (slow) and nongenomic (rapid) pathways (de Kloet 
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2000; Dallman 2005). Genomic glucocorticoid e"ects are mediated by classical 
steroid mechanisms involving transcriptional regulation. Glucocorticoids can 
in$uence transcription through both DNA binding-dependent and DNA binding–
independent mechanisms (de Kloet 2000). Although many glucocorticoid actions 
suit the timeframe for a genomic mechanism, some behavioral and physiological 
e"ects of glucocorticoids, for example the above-described e"ects on the 
noradrenergic system, have a rapid onset, occurring in seconds to minutes, that 
is not readily compatible with transcriptional regulation. Rapid glucocorticoid 
actions have been reported in di"erent limbic and brainstem structures, where 
they control functions ranging from learning and memory to neuroendocrine 
functions (Dallman 2005; Tasker et al., 2006; Haller et al., 2008; Riedemann et al., 
2010). It is important to note that glucocorticoid e"ects on the consolidation 
of long-term memory might depend on an interplay between genomic and 
nongenomic actions (Falkenstein et al., 2000), whereas glucocorticoids’ ability 
to temporarily impair memory retrieval and working memory might depend 
solely on nongenomic glucocorticoid actions. In support of this view, it has been 
reported that protein synthesis inhibitors fail to prevent glucocorticoid e"ects on 
memory retrieval (Sajadi et al., 2006).

Nongenomic glucocorticoid actions likely involve the activation of a membrane-
associated variant(s) of the steroid receptor (Losel et al., 2003; Dallman 2005; 
Tasker et al., 2006; Riedemann et al., 2010). Orchinik and colleagues (Orchinik et 
al., 1991; Rose et al., 1993) were the !rst to provide evidence that glucocorticoids 
exert behavioral e"ects through the activation of a corticosteroid receptor on 
the neuronal membrane. In this series of experiments, glucocorticoids rapidly 
suppressed mating behavior in the amphibian Taricha granulosa (rough-
skinned newt) by binding to a receptor on neuronal membranes. As mentioned, 
recent !ndings indicate that the administration of a membrane-impermeable 
glucocorticoid ligand, cort:BSA, into a variety of brain regions of the rat is 
su#cient to enhance the consolidation of long-term memory of emotionally 
arousing training experiences (Roozendaal et al., 2010; Lee et al., 2011) or to impair 
working memory (Barsegyan et al., 2010). As these cort:BSA e"ects are blocked 
by co-administration of a GR, but not MR, antagonist (Barsegyan et al., 2010; 
Roozendaal et al., 2010), these !ndings suggest a role for a membrane-associated 
GR in mediating rapid glucocorticoid e"ects on memory. Studies employing GR 
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immunoreactivity, at both the light- and electronmicroscopic level, provided 
anatomical evidence for the existence of membrane-associated GRs in neurons of 
the hippocampus and hypothalamus (Liposits and Bohn 1993) and postsynaptic 
membranes of lateral amygdala neurons (Johnson et al., 2005). 

Current evidence indicates a variety of nongenomic glucocorticoid actions on 
neuroplasticity and memory, ranging from a rapid increase in glutamate-release 
probability from presynaptic sites (Karst et al., 2005) to a rapid insertion of AMPA 
receptor subunits in postsynaptic membranes (Groc et al., 2008). Recent evidence 
indicates that the endocannabinoid system also mediates some of the rapid 
e"ects of glucocorticoids. The !rst evidence originated from an elegant series of 
in vitro studies that examined glucocorticoid e"ects in hypothalamic nuclei on 
HPA-axis activity. In these experiments, Tasker and colleagues demonstrated that 
endocannabinoids mediate glucocorticoid-induced suppression of glutamate 
release in hypothalamic neurons of the paraventricular nucleus, which, in turn, 
results in a rapid inhibition of hormone secretion (Di et al., 2003; Di et al., 2005a). 
Biochemical analysis of hypothalamic slices treated with dexamethasone revealed 
a rapid increase in the endocannabinoids anandamide and 2-AG (Di et al., 2005a; Di 
et al., 2005b). According to their model, corticosterone !rst binds to a membrane-
bound steroid receptor and this leads to an activation of divergent G-protein-
mediated signaling pathways that culminates in the release of endocannabinoids 
(Di et al., 2003; Di et al., 2005a; Malcher-Lopes et al., 2006; Tasker et al., 2006; Di 
et al., 2009). Endocannabinoid release from the postsynaptic membrane then 
suppresses the release of glutamate and this may represent a mechanism by 
which endocannabinoids regulate HPA-axis activity. A more recent in vivo study 
by Hill et al. (2010a), examining the e"ect of corticosterone on tissue content of 
endocannabinoids in limbic brain regions, indicated surprisingly similar results. 
A single injection of corticosterone rapidly (within 10 min) elevated anandamide 
levels in both the amygdala and hippocampus. 

As reviewed above, glucocorticoids are able to rapidly in$uence noradrenergic 
function to a"ect di"erent memory functions. Given the now well-described role 
of endocannabinoids in regulating glucocorticoid e"ects on HPA-axis activity and 
the ability of glucocorticoids to rapidly recruit endocannabinoids in limbic brain 
regions, it is plausible that the endocannabinoid system is involved in mediating 
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the rapid e"ects of glucocorticoids on learning and memory functions. In the 
next section, we will !rst review !ndings indicating that endocannabinoids are 
involved in regulating learning and memory processes, and then we will present 
a model that implicates endocannabinoid signaling in regulating glucocorticoid 
e"ects on memory of emotionally arousing experiences.

Role of endocannabinoids in regulating glucocorticoid e!ects on memory: 
the model
Endocannabinoid signaling is crucial for certain forms of short- and long-term 
synaptic plasticity at excitatory and inhibitory synapses, and thereby contributes 
to various aspects of brain function, including learning and memory (Kano et al., 
2009). It has long been recognized, in animals and humans, that endocannabinoids 
in$uence di"erent memory phases. Behavioral studies in humans indicate that 
cannabis consumption as well as synthetic CB1 receptor agonists impair cognitive 
processes that subserve executive function. Executive function comprises 
cognitive processes such as attention, behavioral $exibility, decision-making, 
inhibitory control, planning, time estimation and working memory, and is crucially 
involved in top-down control of behavior (Egerton et al., 2006; Solowij and Michie 
2007). Although the neurobiological mechanisms underlying the deleterious 
e"ects of cannabinoids on executive function are, as yet, largely unknown, 
accumulating preclinical !ndings emphasize the importance of modulatory 
actions on prefrontal cortical and striatal noradrenergic, dopaminergic and 
glutamatergic transmission (Pattij et al., 2008). Neuroimaging studies support this 
hypothesis and showed that changes in the activity of prefrontal, orbitofrontal and 
anterior cingulate cortices (among other regions) correlate with altered inhibitory 
processing in cannabis users (Solowij and Michie 2007). However, CB1 receptors 
are also highly expressed in the human limbic system, including the amygdala 
(Killgore and Yurgelun-Todd 2004). Animal studies con!rmed the presence of CB1 
receptors on GABAergic interneurons in the BLA, where they modulate synaptic 
transmission (Katona et al., 2001) and neuronal !ring (Pistis et al., 2004). Preclinical 
research demonstrated a functional interaction between cannabinoids and stress 
in the activation of the amygdala, which may provide a context for understanding 
the interplay between these two systems in the regulation of memory formation 
for emotionally arousing events (Patel et al., 2005).
We recently investigated whether the endocannabinoid system in the BLA 
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in$uences memory consolidation of an emotionally arousing inhibitory 
avoidance training experience (Campolongo et al., 2009b). As is shown in Fig. 3A 
and 3B, intra-BLA infusion of the CB1 receptor agonist WIN55,212-2 administered 
immediately after the inhibitory avoidance training trial dose-dependently 
enhances memory consolidation, whereas that of the CB1 receptor antagonist 
AM251 impairs memory consolidation. These !ndings indicate that a manipulation 
of cannabinoid transmission in the BLA in$uences memory consolidation 
for emotionally arousing experiences; however, whether they also modulate 
memory of low-arousing training experiences has never been investigated. 
Consistent with these !ndings, others have reported that infusion of the CB1 
receptor antagonist AM251 into the amygdala (Bucherelli 2006) or hippocampus 
(de Oliveira Alvares et al., 2005) disrupts the consolidation of long-term memory, 
possibly by inhibiting long-term potentiation (de Oliveira Alvares et al., 2006). 
Several other studies indicated an involvement of the endocannabinoid system 
in the extinction of fear memories (Marsicano et al., 2002; Suzuki et al., 2004; 
Chhatwal et al., 2005). We recently found that, similar to glucocorticoid e"ects 
on memory consolidation, endocannabinoid e"ects on memory for inhibitory 

Figure 3. Endocannabinoids mediate glucocorticoid e"ects on memory consolidation for inhibitory 
avoidance training. Data represent step-through latencies (mean + SEM) on a 48-h retention test. 
(A) Immediate posttraining intra-BLA infusions of the CB1 receptor agonist WIN55,212-2 (WIN; 5, 10, 
50 ng per 0.2 l) enhanced memory consolidation. *, P < 0.05 vs. vehicle. (B) Immediate posttraining 
intra-BLA infusions of the CB1 receptor antagonist AM251 (0.07, 0.14, 0.28 ng per 0.2 l) impaired 
memory consolidation. *, P < 0.05 vs. vehicle. (C) Immediate posttraining infusions of AM251 (0.14 
ng per 0.2 l) into the BLA blocked the memory enhancement induced by a subcutaneous injection 
of corticosterone (CORT; 3.0 mg/kg; *, P < 0.05 compared with the corresponding vehicle group; #, 
P < 0.05 compared with the corresponding CORT group. Adapted from Campolongo et al., Proc Natl 
Acad Sci USA, 2009.
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avoidance training follow an inverted-U shaped dose-response relationship 
(D. Hauer, P. Atsak, E. Eggens-Meijer, P. Campolongo, G. Schelling, R. Fornari, B. 
Roozendaal, unpublished observation). Accordingly, impairing e"ects with 
endocannabinoids have been described as well. For example, !ndings indicate 
that systemic administration of a much higher dose of the CB1 receptor agonist 
WIN55,212-2 impairs the acquisition of contextual fear conditioning (Pamplona 
and Takahashi 2006) and that pretraining intrahippocampal administration of 

Figure 4. Model on the role of the endocannabinoid system in the BLA in mediating glucocorticoid 
e"ects on norepinephrine release in regulating memory consolidation. Corticosterone (CORT) 
is released during training in emotionally arousing tasks and binds to a membrane-bound 
glucocorticoid receptor (GR) (1), that activates a pathway to induce endocannabinoid (eCB) synthesis 
(2). Endocannabinoids are then released into the synapse where they bind to CB1 receptors on 
GABAergic terminals (3), and thereby inhibit the release of GABA (4). This suppression of GABA 
release subsequently disinhibits norepinephrine (NE) release (5), and this results in an activation 
of the postsynaptic β-adrenoceptor and the downstream cAMP/PKA/pCREB intracellular signaling 
pathway (6). These stress hormone e"ects on noradrenergic activation in the BLA are required for 
enhancing memory consolidation. Adapted from Hill and McEwen, Proc. Natl Acad Sci USA, 2009.
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anandamide impairs memory consolidation of inhibitory avoidance training 
(Barros et al., 2004). Moreover, it has been reported that infusion of a CB1 receptor 
antagonist into the hippocampus during water-maze spatial training enhances 
the acquisition of this task (Robinson et al., 2008). In addition to di"erences in 
drug dosage, administration route and regimen, these opposite !ndings might 
be attributed to binding of endocannabinoids to di"erent receptor systems, 
e.g., anandamide-induced activation of the transient receptor potential vanilloid 
type 1 receptor (TRPV1) has been reported to produce opposite e"ects to that of 
binding to the CB1 receptor (Rubino et al., 2008). Collectively, the !ndings appear 
comparable to those described for glucocorticoids in that endocannabinoids 
consistently impair working memory and memory retrieval, while having dose-
dependent favorable e"ects on memory consolidation.  

Given the close interaction between the endocannabinoid and glucocorticoid 
systems, we investigated whether endocannabinoid transmission might play 
a role in mediating glucocorticoid e"ects on memory consolidation. For this 
experiment, rats were trained on an inhibitory avoidance task and received 
immediate posttraining infusions of the CB1 receptor antagonist AM251 into 
the BLA together with a systemic administration of corticosterone. As is shown 
in Fig. 3C, intra-BLA administration of the CB1 receptor antagonist blocked the 
ability of corticosterone to facilitate memory consolidation of the inhibitory 
avoidance training (Campolongo et al., 2009b). Similarly, other researchers found 
that a CB1 receptor antagonist infused into the hippocampus blocked memory 
enhancement induced by the synthetic glucocorticoid dexamethasone (de 
Oliveira Alvares et al., 2010) To investigate whether this glucocorticoid e"ect on the 
endocannabinoid system is mediated by a GR on the cell surface, we performed 
an additional experiment. The !ndings of this experiment indicate that the CB1 
receptor antagonist AM251 infused into the BLA blocked the memory-enhancing 
e"ects induced by concurrent infusions of either a speci!c GR agonist or the 
membrane-impermeable ligand cort:BSA (D. Hauer, P. Atsak, E. Eggens-Meijer, P. 
Campolongo, G. Schelling, R. Fornari, B. Roozendaal, unpublished observation). 
Therefore, these !ndings indicate that endocannabinoid transmission is required 
for mediating glucocorticoid e"ects on memory consolidation, presumably 
involving the activation of a GR on the cell surface.
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Does the endocannabinoid system mediate the rapid e"ects of glucocorticoids 
on the noradrenergic system in selectively regulating memory of emotionally 
arousing experiences? Although direct evidence is lacking, it is well established 
that endocannabinoid e"ects on memory as well as on other behaviors are 
highly dependent on the emotional state of the animal (Patel et al., 2005; Hill 
et al., 2010c). We investigated whether endocannabinoid e"ects on memory 
consolidation might depend on concurrent noradrenergic activity within the BLA. 
Highly comparable to the above-described e"ects of glucocorticoids on memory 
consolidation, the -adrenoceptor antagonist propranolol administered into the 
BLA prevented the memory enhancement induced by concurrent administration 
of the CB1 receptor agonist WIN55,212-2 (D. Hauer, P. Atsak, E. Eggens-Meijer, P. 
Campolongo, G. Schelling, R. Fornari, B. Roozendaal, unpublished observation). 
In an earlier paper, we already reported that systemic administration of the 
endocannabinoid oleoylethanolamide enhances memory consolidation of 
inhibitory avoidance training. As the -adrenoceptor antagonist propranolol 
infused into the BLA blocks this memory enhancement (Campolongo et al., 
2009a), these !ndings indicate that also oleoylethanolamide enhances memory 
consolidation via a norepinephrine-dependent mechanism in the BLA. Moreover, 
there is evidence that systemic or local administration of a CB1 receptor agonist 
increases norepinephrine levels in cortical and limbic brain regions (Oropeza et 
al., 2005; Page et al., 2007). 

Endocannabinoids might in$uence noradrenergic function via a modulation 
of GABAergic activity. In the BLA, CB1 receptors are abundantly expressed in 
GABAergic interneurons (Katona et al., 2001) and activation of CB1 receptors 
has consistently been shown to suppress the release of GABA (Katona et al., 
1999; Katona et al., 2001; Ohno-Shosaku et al., 2001) via a rapid inhibition of 
calcium entry into the terminals (Ho"man and Lupica 2000; Wilson et al., 2001). 
It is well established that the amygdala GABAergic system is involved in memory 
modulation. Posttraining infusions of GABA receptor antagonists into the BLA 
are known to enhance memory consolidation, whereas posttraining infusions of 
GABA receptor agonists impair memory consolidation (McGaugh and Roozendaal 
2002). Importantly, the modulatory e"ects of GABAergic transmission on 
memory crucially depend on an interaction with the noradrenergic system. A 
β-adrenoceptor antagonist administered systemically or directly into the BLA 
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prevents the modulatory e"ects of GABAergic drugs on memory consolidation 
(McGaugh, 2004). Moreover, an in vivo microdialysis study indicated that the 
administration of a GABA receptor antagonist increases norepinephrine levels in 
the amygdala, whereas that of a GABA receptor agonist decreases norepinephrine 
levels (Hat!eld et al., 1999). Thus, endocannabinoids might increase BLA neuronal 
activity by decreasing GABAergic neurotransmission, leading to increased 
noradrenergic activity within the BLA. Interestingly, a recent study indicated that 
glucocorticoids also increase the excitability of BLA neurons by decreasing the 
impact of GABAergic in$uences (Duvarci and Paré 2007).

In summary, we propose the following model of how glucocorticoids might 
recruit the endocannabinoid system to in$uence the release of norepinephrine 
in the BLA in regulating memory consolidation (Fig. 4): Glucocorticoids !rst bind 
to a membrane-bound receptor that activates a G-protein-coupled signaling 
cascade to induce endocannabinoid release. The endocannabinoids then bind 
to presynaptic CB1 receptors on GABAergic terminals which rapidly suppress the 
release of GABA. This suppression of GABAergic transmission leads to elevated 
norepinephrine levels, which increase noradrenergic signaling in BLA pyramidal 
neurons and result in a facilitation of memory consolidation of emotionally 
arousing experiences. 

CONCLUSIONS AND FUTURE DIRECTIONS

The !ndings summarized above indicate that glucocorticoids enhance memory 
consolidation for emotionally arousing experiences and impair memory 
retrieval and working memory during emotionally arousing test situations 
via rapid interactions with arousal-induced noradrenergic mechanisms. The 
endocannabinoid system might play a crucial role in mediating such rapid 
glucocorticoid e"ects on the noradrenergic system. However, there are many 
fascinating, unanswered questions. First, our model suggests that glucocorticoids 
interact with the noradrenergic system via endocannabinoid signaling. 
Although several !ndings have demonstrated that endocannabinoids modulate 
noradrenergic transmission, it is unclear whether this is actually achieved by 
a suppression of GABAergic transmission, thereby increasing noradrenergic 
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transmission, or by a direct in$uence on the noradrenergic system. 
Second, glucocorticoids are known to in$uence noradrenergic function both at 
presynaptic sites, enhancing the release of norepinephrine, and postsynaptically, 
facilitating norepinephrine e"ects on the cAMP/PKA signaling pathway. It is not 
known whether endocannabinoids mediate glucocorticoid e"ects on both of 
these mechanisms. 

Third, another important unanswered question is the role of emotional arousal in 
regulating glucocorticoid-endocannabinoid e"ects on the noradrenergic system. 
We presented evidence that glucocorticoid administration can increase the release 
of norepinephrine in the BLA, but only so under emotionally arousing conditions. 
Where does this switch come from? Is it possible that the endocannabinoid system 
might represent such a switch mechanism for glucocorticoids? To explore this 
possibility, it would be necessary to investigate whether glucocorticoids recruit 
the endocannabinoid system under low-arousing experimental conditions. 

Fourth, a role for the endocannabinoid system in regulating glucocorticoid e"ects 
on memory has only been investigated with respect to memory consolidation. 
It would be important to investigate whether the endocannabinoid system is 
also involved in mediating glucocorticoid e"ects on the impairment of memory 
retrieval and working memory.

Finally, glucocorticoids have been reported to increase levels of both anandamide 
and 2-AG (Hill et al., 2010a). The exact role of these endogenous ligands in 
regulating glucocorticoid e"ects on the formation and retrieval of emotionally 
in$uenced memory requires more extensive analysis. Further, endocannabinoid 
e"ects on memory have only been studied with respect to CB1 receptor-mediated 
events. But, recent evidence indicates that the CB2 receptor is also present in the 
brain.
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ABSTRACT 

Glucocorticoid hormones are known to enhance the consolidation of long-term 
memory of emotionally arousing experiences but not that of low-arousing or 
neutral information. Prior studies indicated that nongenomically mediated actions 
of glucocorticoids on endogenous noradrenergic activation of the basolateral 
complex of the amygdala (BLA) induced by emotional arousal underlie this 
selectivity. However, the neural mechanism of how glucocorticoids might rapidly 
in$uence noradrenergic function in the context of memory consolidation remains 
elusive. Here, we show that the endocannabinoid system, a rapidly activated 
retrograde messenger system, is essentially involved in regulating glucocorticoid 
e"ects, via a glucocorticoid receptor on the cell surface, on the amygdala 
noradrenergic arousal system in enhancing memory consolidation. Further, 
glucocorticoids require endocannabinoid signaling in facilitating norepinephrine 
e"ects on neural plasticity within the BLA, as assessed by phosphorylated cAMP 
response element-binding immunoreactivity levels. The !ndings have important 
implications for understanding local network functions within the BLA in 
regulating stress hormone e"ects on neural plasticity and memory consolidation. 
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INTRODUCTION

Emotional enhancement of memory is a highly adaptive phenomenon 
(Christianson, 1992), but it also contributes to the development of stress-related 
pathologies such as anxiety and post-traumatic stress disorder (de Quervain et al., 
2009). Extensive evidence indicates that glucocorticoid hormones (corticosterone 
in rodents, cortisol in humans) that are released from the adrenal cortex during 
stressful events enhance the consolidation of long-term memory of emotionally 
arousing experiences in animals (de Kloet et al., 1999; McGaugh and Roozendaal, 
2002; Okuda et al., 2004; Sandi and Pinelo-Nava, 2007; Roozendaal et al., 2008a; 
Roozendaal and McGaugh, 2011) and humans (Buchanan and Lovallo, 2001; 
Abercrombie et al., 2006; Kuhlmann and Wolf, 2006). Yet, these hormones 
have little e"ect on memory of more mundane experiences (de Quervain et 
al., 2000; Buchanan and Lovallo, 2001; Okuda et al., 2004; Kuhlmann and Wolf, 
2006). Findings of experiments investigating the basis underlying this selectivity 
indicate that glucocorticoid e"ects on memory consolidation depend crucially 
on nongenomically mediated actions, via a putative membrane-associated 
glucocorticoid receptor (GR), on endogenous noradrenergic activation within 
the basolateral complex of the amygdala (BLA) induced by emotional arousal 
(Quirarte et al., 1997; Roozendaal, 2000; Roozendaal, 2002; Roozendaal et al., 
2006a; Hurlemann et al., 2007; Van Stegeren et al., 2007). In earlier studies, we 
described that glucocorticoids administered after an emotionally arousing, but 
not low-arousing, training experience rapidly elevate norepinephrine levels in 
the BLA (McReynolds et al., 2010) and facilitate norepinephrine e"ects on the 
cAMP-dependent protein kinase pathway to induce the phosphorylation of cAMP 
response element-binding (pCREB) protein (Roozendaal, 2002; Roozendaal et al., 
2006b), whereas a blockade of -adrenoceptors or cAMP signaling in the BLA 
prevents glucocorticoid-induced memory enhancement (Quirarte et al., 1997; 
Roozendaal et al., 2002b). However, the neural mechanism of how glucocorticoids 
might rapidly alter noradrenergic signaling in promoting memory consolidation 
received little attention so far.  

The endocannabinoid system is one emerging candidate system thought to 
mediate some of the rapid actions of glucocorticoids in the brain (Hill and 
McEwen, 2009). Endocannabinoids, i.e., anandamide and 2-arachidonoylglycerol 



116

Ch
ap

te
r 4

Critical Role of Endocannabinoid Signaling in Mediating Rapid Glucocorticoid E!ects

(2-AG), are short-lived retrograde messengers that are synthesized on demand 
through cleavage of membrane precursors (Hashimotodani et al., 2007). They 
bind to the cannabinoid receptor subtype 1 (CB1 receptor) on presynaptic sites 
to regulate ion channel activity and neurotransmitter release (Freund et al., 2003). 
Although glucocorticoid e"ects on the endocannabinoid system have been 
studied almost exclusively with respect to nongenomically mediated actions of 
glucocorticoids on hypothalamic-pituitary-adrenal axis activity (Weidenfeld et al., 
1994; Di et al., 2003; Barna et al., 2004; Patel, 2004; Tasker et al., 2006; Hill et al., 
2010b; Tasker and Herman, 2011), it became increasingly clear that CB1 receptors 
are also abundantly expressed in the BLA (and other brain regions) where they 
modulate emotional arousal e"ects on synaptic transmission, neuronal !ring and 
memory (Katona et al., 2001; Pistis et al., 2004; Ganon-Elazar and Akirav, 2009; 
Karst et al., 2010; Tan et al., 2011). The recent !ndings that systemic administration 
of corticosterone rapidly elevates endocannabinoid levels in the amygdala (Hill 
et al., 2010a), whereas a blockade of CB1 receptor activity in the BLA prevents 
corticosterone-induced memory enhancement (Campolongo et al., 2009) 
provided the !rst in vivo evidence in mammalian species in support of a functional 
interaction between these two stress systems in regulating memory processes. The 
current study was aimed at investigating whether such glucocorticoid-induced 
recruitment of the endocannabinoid system is an essential step in mediating the 
rapid e"ects of glucocorticoids on the noradrenergic arousal system in enhancing 
the consolidation of memory of emotionally arousing training experiences. 

METHODS

Subjects.  Male adult Sprague-Dawley rats (280-320 g at time of surgery) from 
Charles River Breeding Laboratories (Kisslegg, Germany) were kept individually in 
a temperature-controlled (22oC) colony room and maintained on a standard 12-h 
light: 12-h dark cycle (07:00-19:00 h lights on) with ad libitum access to food and 
water. Training and testing were performed during the light phase of the cycle 
between 10:00 and 15:00 h. All procedures were performed in compliance with 
the European Communities Council Directive of 24 November 1986 (86/609/EEC) 
and were approved by the Institutional Animal Care and Use Committee of the 
University of Groningen, The Netherlands.
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Surgery.  Animals, adapted to the vivarium for at least 1 week, were anesthetized 
with a subcutaneous injection of ketamine (37.5 mg/kg of body weight; Alfasan) 
and dexmedetomidine (0.25 mg/kg; Orion), and received the non-steroidal 
analgesic carprofen (4 mg/kg, sc; P!zer). Oxygen (30-35%) mixed with ambient air 
was administered during surgery such that blood oxygenation levels would not 
drop below 90%. Surgery was performed according to a standardized protocol 
(Fornari et al., 2012). Brie$y, the skull was positioned in a stereotaxic frame (Kopf 
Instruments), and two stainless-steel guide cannulae (15 mm; 23 gauge; Small 
Parts, Inc) were implanted bilaterally with the cannula tips 2.0 mm above the 
BLA. The coordinates were based on the atlas of Paxinos and Watson (Paxinos and 
Watson, 2005): anteroposterior, -2.8 mm from Bregma; mediolateral, +5.0 mm 
from the midline; dorsoventral, -6.5 mm from skull surface; incisor bar –3.3 mm 
from interaural. The cannulae were a#xed to the skull with two anchoring screws 
and dental cement. Stylets (15-mm long 00-insect dissection pins), inserted into 
each cannula to maintain patency, were removed only for the infusion of drugs. 
After surgery, the rats were administered atipamezole hydrochloride (0.25 mg/kg 
sc; Orion) to reverse anesthesia and were subsequently injected with 3 ml of saline 
to facilitate clearance of drugs and prevent dehydration. They were returned to 
their home cages for further recovery from anesthesia. The rats were allowed to 
recover for a minimum of 7 days before initiation of training and were handled 3 
times for 1 min each during this recovery period to accustom them to the infusion 
procedure. 
Inhibitory avoidance apparatus and procedure. Rats were trained and tested in an 
inhibitory avoidance apparatus consisting of a trough-shaped alley (91 cm long, 
15 cm deep, 20 cm wide at the top, and 6.4 cm wide at the bottom) divided into 

two compartments, separated by a sliding door that opened by retracting into 
the $oor (McGaugh et al., 1988). The starting compartment (30 cm) was made of 
opaque white plastic and well lit; the shock compartment (60 cm) was made of 
two electri!able metal plates and was not illuminated. Training and testing were 
conducted in a sound- and light-attenuated room.

For training, the rats were placed in the starting compartment of the apparatus, 
facing away from the door, and were allowed to enter the dark (shock) compartment. 
After the rat stepped completely into the dark compartment, the sliding door 
was closed and a single inescapable footshock (0.60 mA, 1 s) was delivered. For 
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the experiment with systemic drug administration a lower footshock intensity of 
0.35 mA was used. The rats were removed from the shock compartment 15 s after 
termination of the footshock and, after drug treatment, returned to their home 
cages. On the 48-h retention test, as on the training session, the latency to re-
enter the shock compartment with all four paws (maximum latency of 600 s) was 
recorded and used as a measure of retention. Longer latencies were interpreted 
as indicating better retention. Shock was not administered on the retention test 
trial.

Drug and infusion procedures.  The speci!c GR agonist RU 28362 (11b,17b-
dihydroxy-6,21-dimethyl-17a-pregna-4,6-trien-20yn-3-one; 1, 3 or 10 ng; 
kindly provided by Aventis, Frankfurt, Germany), the membrane-impermeable 
glucocorticoid Cort:BSA (1, 3 or 10 ng; Sigma-Aldrich), the CRF-BP ligand inhibitor 
human/rat CRF6-33 (0.01, 0.1 or 1 mg; Bachem, La Jolla, CA) and the -adrenoceptor 
agonist clenbuterol (1, 10 or 100 ng; Sigma-Aldrich) were infused into the BLA 
immediately after inhibitory avoidance training either alone or together with 
the selective CB1 receptor antagonist AM251 (N-1-(2,4-dichlorophenyl)-5-(4-
iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide; 0.14 ng; 
Sigma-Aldrich). The GR agonist-AM251 and clenbuterol-AM251 mixtures were 
!rst dissolved in 100% DMSO and subsequently diluted in phosphate bu"er to 
reach a !nal DMSO concentration of 5%. The Cort:BSA-AM251 drug solutions 
were made in a vehicle containing 5% DMSO and 0.1% BSA in phosphate bu"er, 
whereas the CRF-BP ligand inhibitor-AM251 solutions were prepared in a vehicle 
containing 5% DMSO in saline.  

The CB receptor agonist WIN55,212-2 (R-(+)-(2,3-dihydro-5-methyl-3-
[(morpholinyl)methyl] pyrol[1,2,3-de]-1,4-benzoxazin-6-yl)(1-naphthalenyl) 
methanone monomethanesulfonate; 10, 30 or 100 ng; Sigma-Aldrich) was 
dissolved in a vehicle containing 2% DMSO and 0.2% Triton X-100 in phosphate 
bu"er and infused into the BLA either alone or together with the speci!c GR 
antagonist RU 38486 (17b-hydroxy-11b-(4-dimethylaminophenyl)-17a-(1-
propynyl)-oestra-4,9-dien-3-one; 1 ng; kindly provided by Aventis, Frankfurt, 
Germany), the nonselective CRF receptor antagonist -helical CRF9-41 (1 mg; 
Bachem) or the -adrenoceptor antagonist propranolol (0.5 mg; Sigma-Aldrich). 
Drug doses were selected on the basis of previous experiments (Roozendaal et 
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al., 2002a; Roozendaal et al., 2002b; Roozendaal et al., 2008b; Campolongo et al., 
2009; Roozendaal et al., 2010).

Bilateral infusions of drug, or an equivalent volume of vehicle, into the BLA 
were given immediately after inhibitory avoidance training by using 30-gauge 
injection needles connected to 10- l Hamilton microsyringes by polyethylene 
(PE-20) tubing. The injection needles protruded 2.0 mm beyond the cannula tips 
and a 0.2- l injection volume per hemisphere was infused over a period of 30 
s by an automated syringe pump (Stoelting Co., Dublin, Ireland). The injection 
needles were retained within the cannulae for an additional 20 s following drug 
infusion to maximize di"usion and to prevent back$ow of drug into the cannulae.  
The infusion volume was based on !ndings that drug infusions of this volume 
into the BLA, but not into the adjacent central nucleus of the amygdala, modulate 
memory consolidation (Roozendaal and McGaugh, 1997; Roozendaal et al., 2007; 
Campolongo et al., 2009).

Systemic drug administration: Corticosterone (3 mg/kg; Sigma-Aldrich) either 
alone or together with the inverse CB1 receptor agonist SR141716 (rimonabant, 
5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-
pyrazole-3-carboxamide; 1 mg/kg; Kemprotec Ltd, Middlesbrough, UK) was 
given subcutaneously, in a volume of 2 ml/kg, immediately after the training 
trial. Corticosterone and SR141716 were dissolved in a vehicle containing 5% 
polyethylene glycol, 5% tween-80 and 5% ethanol in saline.

Histology. Rats were anesthetized with an overdose of sodium pentobarbital and 
perfused transcardially with a 0.9% saline solution followed by 4% formaldehyde 
dissolved in water. Following decapitation, the brains were removed and 
immersed in fresh 4% formaldehyde. At least 24 h before sectioning, the brains 
were submerged in a 25% sucrose (wt/vol) solution in water for cryoprotection. 
Coronal sections of 50 mm were cut on a cryostat, mounted on gelatin-coated 
slides, and stained with cresylviolet. The sections were examined under a light 
microscope and determination of the location of injection needle tips in the 
BLA was made according to the standardized atlas plates of Paxinos and Watson 
(Paxinos and Watson, 2005) by an observer blind to drug treatment condition. 
Only rats with needle tips within the boundaries of the BLA were included in the 



120

Ch
ap

te
r 4

Critical Role of Endocannabinoid Signaling in Mediating Rapid Glucocorticoid E!ects

data analysis. Rats with extensive tissue damage at the injection needle tip were 
also excluded from analysis.

Immunohistochemitry: Sixty minutes after training and systemic drug treatment, 
rats were perfused transcardially with ice-cold 0.01 M phosphate-bu"ered saline 
(PBS), pH 7.4, followed by ice-cold 4% paraformaldehyde in 0.1 M phosphate 
bu"er (PB), pH 7.4. The brains were removed, post!xed overnight at 4°C, and then 
transferred to a 25% sucrose solution in 0.1 M PB for 3-6 days at 4°C. Frozen coronal 
sections at the level of the BLA were cut at a thickness of 20 μm on a cryostat and 
collected in Tris-bu"ered saline (TBS) with 0.1% sodium azide and phosphatase 
inhibitors (20 mM sodium $uoride and 2 mM sodium orthovanadate). Every 
eighth section was used for quanti!cation. Free-$oating sections were pretreated 
with 1% H2O2 for 1 h to block endogenous peroxidase and with 5% normal donkey 
serum (nds, Jackson ImmunoResearch) to block nonspeci!c binding and 0.3% 
Triton X-100 to increase antibody penetration. These substances were diluted in 
TBS with phosphatase inhibitors. Subsequently, sections were incubated with 
a monoclonal rabbit anti-pCREB (Ser133) antibody (Cell Signaling Technology, 
#9198, 1:30) in TBS containing phosphatase inhibitors, 0.3% Triton X-100 and 1% 
nds at 4°C for 48 h. After rinsing thorough, sections were subsequently incubated 
with biotinylated donkey anti-rabbit IgG secondary antibody (2 µg/ml, Jackson 
ImmunoResearch) for 1 h followed by incubation with avidin-biotin complex-
peroxidase (1:500, ABC kit, Vector laboratories) for 1 h at room temperature. 
Finally, sections were stained with 0.025% diaminobenzidine, 0.2% nickel 
ammonium sulphate adding 0.3% H2O2. Sections were mounted, dehydrated 
and coverslipped. Omission of the primary antibody resulted in complete loss of 
pCREB immunoreactivity. pCREB-positive cells were blindly quanti!ed in the BLA 
(2.3-3.1 mm posterior to Bregma) using an automated imaging analysis system. 
The selected areas were digitized by using a Sony charge-coupled device digital 
camera mounted on a LEICA Leitz DMRB microscope (Leica, Wetzlar, Germany) at 
100x magni!cation. Regions of interest were outlined and pCREB-positive nuclei 
were counted using a computer-based image analysis system (Leica Imaging 
System Ltd., Cambridge, UK). Data are reported as number of positive cells/0.1 
mm. The number of positive cells for the experimental groups is shown relative 
to vehicle. As no left–right asymmetry in pCREB immunoreactivity was found, the 
mean of both sides was calculated.
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Figure 1. Glucocorticoid interactions with the endocannabinoid system of the BLA in enhancing 
memory consolidation of inhibitory avoidance training. (A) Step-through latencies (mean + SEM) 
in seconds on the 48-h inhibitory avoidance retention test of rats given immediate posttraining 
infusions into the BLA of the CB1 receptor antagonist AM251 (0.14 ng in 0.2 l) together with the 
GR agonist RU 28362 (1, 3 or 10 ng). , P < 0.01 compared with the corresponding vehicle group; 

, P < 0.01 compared with the corresponding RU 28362 alone group (n = 9-12 per group). (B) 
Representative photomicrograph illustrating placement of a cannula and needle tip in the BLA. 
Arrow points to needle tip. L, lateral nucleus; B, basal nucleus; AB accessory basal nucleus; CEA, 
central nucleus of the amygdala. (C) Step-through latencies (mean + SEM) in seconds on the 48-h 
inhibitory avoidance retention test of rats given immediate posttraining infusions into the BLA of 
the CB1 receptor antagonist AM251 (0.14 ng in 0.2 l) together with the membrane-impermeable 
glucocorticoid Cort:BSA (1, 3 or 10 ng). , P < 0.05; , P < 0.01 compared with the corresponding 
vehicle group; , P < 0.05 compared with the corresponding Cort:BSA alone group (n = 11-14 
per group). (D) Step-through latencies (mean + SEM) in seconds on the 48-h inhibitory avoidance 
retention test of rats given immediate posttraining infusions into the basolateral amygdala of the 
CB receptor agonist WIN55,212-2 (10, 30 or 100 ng in 0.2 l) either alone or together with the GR 
antagonist RU 38486 (1 ng) , P < 0.01 compared with the corresponding vehicle group; (n = 
10-14 per group).
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Statistics. Data are presented as mean + SEM. Training and retention test latencies 
were analyzed using two-way ANOVAs with immediate posttraining infusions of 
di"erent doses of the agonist and antagonist as between-subject variables. Further 
analysis used Fisher’s post-hoc tests to determine the source of the detected 
signi!cances, when appropriate. To determine whether learning had occurred, 
paired t-tests were used to compare the training and retention latencies. For all 
comparisons, a probability level of < 0.05 was accepted as statistical signi!cance. 
The number of rats per group is indicated in the !gure legends. 

RESULTS

Involvement of the endocannabinoid system of the BLA in mediating 
glucocorticoid receptor agonist e!ects on memory consolidation. 
In view of the evidence that the low-a#nity GR, and not the mineralocorticoid 
receptor, mediates the e"ects of glucocorticoids on both noradrenergic 
activity and memory consolidation (Oitzl and de Kloet, 1992; Roozendaal, 2002; 
Barsegyan et al., 2010), the !rst experiment was aimed at delineating whether the 
GR is also implicated in mediating the crosstalk between glucocorticoids and the 
endocannabinoid system of the BLA. Therefore, rats were trained on a one-trial 
inhibitory avoidance task and immediately afterwards administered the speci!c 
GR agonist RU 28362 (1, 3 or 10 ng) into the BLA either alone or together with the 
CB1 receptor antagonist AM251 (0.14 ng). Retention of the training was tested 48 
h later.
Average step-through latencies for all groups during training, i.e., before footshock 
or drug treatment, were 13.4 + 0.7 s (mean + SEM). Two-way ANOVA for training 
latencies showed no signi!cant di"erences between groups (for all comparisons: 
P > 0.14; data not shown). Forty-eight-hour retention test latencies of rats 
administered vehicle into the BLA immediately after training were signi!cantly 
longer than their response latencies on the training trial (52.7 + 13.5 s; paired 
t-test: P = 0.01), indicating that the rats retained signi!cant memory of the shock 
experience. As is shown in Fig. 1A, AM251 blocked the retention enhancement 
induced by the GR agonist RU 28362. Two-way ANOVA for 48-h retention latencies 
revealed a signi!cant RU 28362 e"ect (F3,80 = 2.98; P = 0.04), a signi!cant AM251 
e"ect (F1,80 = 4.26; P = 0.04), as well as a signi!cant interaction between both 
factors (F3,80 = 4.07; P = 0.04). RU 28362 infused alone into the BLA induced dose-
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dependent enhancement of retention performance (1 ng: P < 0.01). The low dose 
of the CB1 receptor antagonist AM251 alone did not impair retention latencies, 
but blocked the retention enhancement induced by concurrently administered 
RU 28362. Retention latencies of rats treated with AM251 together with the 
1 ng dose of RU 28362 were signi!cantly shorter than those of rats given the 
corresponding dose of RU 28362 alone (P < 0.01). Thus, these !ndings indicate 
that the low-a#nity GR mediates glucocorticoid e"ects on the endocannabinoid 
system in enhancing the consolidation of inhibitory avoidance memory.

Histological analysis revealed the majority of needle placements to be localized 
within the boundaries of the BLA as de!ned by Paxinos and Watson (Paxinos and 
Watson, 2005). Rats found to have needle tip placements outside the boundaries 
of the BLA were excluded from data analysis. A representative photomicrograph 
of a needle track terminating within the BLA is shown in Fig. 1B. 
 
Involvement of the endocannabinoid system of the BLA in regulating memory 
enhancement induced by a membrane-impermeable glucocorticoid. 
Next, we investigated whether glucocorticoid e"ects on the endocannabinoid 
system of the BLA in regulating the consolidation of inhibitory avoidance 
memory involve the activation of a corticosteroid receptor on the cell surface. 
Emerging evidence indicates that rapid actions of glucocorticoids, including 
those on the noradrenergic system, are mediated via an activation of putative 
G-protein-coupled receptors or membrane-associated cytosolic steroid receptors 
(Orchinik et al., 1991; Johnson et al., 2005; Karst et al., 2005; Hill and McEwen, 
2009; Barsegyan et al., 2010).
As is shown in Fig. 1C, the CB1 receptor antagonist AM251 (0.14 ng) administered 
into the BLA after inhibitory avoidance training blocked retention enhancement 
induced by concurrent infusions of the membrane-impermeable conjugate of 
corticosterone and bovine serum albumin (Cort:BSA; 1, 3 or 10 ng). Two-way 
ANOVA for step-through latencies on the training trial showed no signi!cant 
di"erences between groups (for all comparisons: P > 0.09; data not shown). In 
contrast, two-way ANOVA for 48-h retention latencies revealed a signi!cant 
Cort:BSA e"ect (F3,92 = 2.85; P = 0.04), a signi!cant AM251 e"ect (F1,92 = 7.33; P = 
0.008), as well as a signi!cant interaction between both factors (F3,92 = 2.76; P = 
0.046).  Cort:BSA infused alone into the BLA immediately after the training induced 
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a dose-dependent enhancement of retention performance (1 ng: P < 0.05; 3 ng: P 
< 0.01). The CB1 receptor antagonist AM251 blocked the retention enhancement 
produced by concurrently administered Cort:BSA. Retention latencies of rats 
treated with AM251 together with the intermediate dose of Cort:BSA (3 ng) were 
signi!cantly shorter than those of rats given that dose of Cort:BSA alone (P < 0.05). 

Blockade of glucocorticoid receptors in the BLA does not prevent memory 
enhancement induced by a CB receptor agonist. 
These !ndings indicating that CB1 receptor activity within the BLA is essentially 
involved in mediating glucocorticoid e"ects on memory enhancement, lend 
support for the view that glucocorticoids, via a membrane-associated GR, in$uence 
downstream endocannabinoid activity (Hill and McEwen, 2010). However, they 
do not reveal whether the endocannabinoid pathway is the principle route by 
which glucocorticoids enhance the consolidation of memory. Glucocorticoids 
might in$uence memory consolidation by concurrently activating GRs at several 
functional levels within the cell or local network, some that are independent of 

Figure 2. Interactions between CRF and the endocannabinoid system of the BLA in enhancing 
memory consolidation of inhibitory avoidance training. (A) Step-through latencies (mean + SEM) 
in seconds on the 48-h inhibitory avoidance retention test of rats given immediate posttraining 
infusions into the BLA of the CB1 receptor antagonist AM251 (0.14 ng in 0.2 l) together with the 
CRF-BP inhibitor CRF6-33 (0.01, 0.1 or 1 mg). , P < 0.01 compared with the vehicle group; , 
P < 0.01 compared with the corresponding CRF6-33 alone group (n = 10-13 per group). (B) Step-
through latencies (mean + SEM) in seconds on the 48-h inhibitory avoidance retention test of rats 
given immediate posttraining infusions into the basolateral amygdala of the CB receptor agonist 
WIN55,212-2 (10, 30 or 100 ng in 0.2 l) either alone or together with the CRF receptor antagonist 

-helical CRF9-41 (1 g). , P < 0.01 compared with the vehicle group; , P < 0.05; , P < 0.01 
compared with the corresponding WIN55,212-2 alone group (n = 10-14 per group).
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endocannabinoid activity (e.g. via a translocation of the ligand-receptor complex 
to in$uence gene transcription in the nucleus) (Oitzl et al., 2001). To investigate 
the signi!cance of the endocannabinoid pathway in contributing to the memory-
modulatory e"ects of glucocorticoids, we examined whether an activation 
of endocannabinoid signaling with the full CB receptor agonist WIN55,212-2 
enhances the consolidation of inhibitory avoidance memory under a condition 
when other GR-mediated actions are pharmacologically blocked. 

As is shown in Fig. 1D, the GR antagonist RU 38486 (1 ng) infused into the BLA 
immediately after inhibitory avoidance training did not preclude the retention 
enhancement induced by concurrently administered WIN55,212-2 (10, 30 or 100 
ng). Two-way ANOVA for training latencies showed no signi!cant di"erences 
between groups (for all comparisons: P > 0.56; data not shown). In contrast, two-
way ANOVA for 48-h retention latencies revealed a signi!cant WIN55,212-2 e"ect 
(F3,91 = 13.65; P < 0.0001), but no signi!cant GR antagonist e"ect (F1,91 = 0.33; P 
= 0.57) or interaction between both factors (F3,91 = 0.04; P = 0.99).  WIN55,212-2 
infused alone induced dose-dependent enhancement of retention performance. 
The 10 ng dose of WIN55,212-2 signi!cantly enhanced retention (P < 0.01), 
whereas retention latencies of animals given the higher (30 or 100 ng) doses 
failed to reach signi!cance.  As with WIN55,212-2 administered alone, the 10 ng 
dose of WIN55,212-2 infused together with the GR antagonist induced signi!cant 
enhancement of retention latencies (P < 0.01). Thus, these !ndings indicate that 
a GR-mediated activation of downstream endocannabinoid signaling appears to 
be a major route of how glucocorticoids a"ect memory consolidation.

Is the endocannabinoid system uniquely involved in mediating glucocorticoid 
e!ects on memory consolidation? 
Glucocorticoids are certainly not the only hormones known to enhance memory 
consolidation of emotionally arousing experiences. Other stress-activated 
response systems such as peripheral catecholamines and central corticotropin-
releasing factor (CRF) are also potent modulators of memory consolidation 
(Roozendaal and McGaugh, 2011). Moreover, it is known that the memory-
enhancing e"ects of both catecholamines and CRF depend on noradrenergic 
activity within the BLA (Roozendaal and McGaugh, 2011). To investigate whether 
the stress-activated CRF system enhances memory consolidation also via an 
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interaction with the endocannabinoid system, the next experiment examined 
whether the CB1 receptor antagonist AM251 (0.14 ng) administered into the 
BLA after inhibitory avoidance training blocks the memory-enhancing e"ect of 
concurrently administered CRF6-33 (0.01, 0.1 or 1 mg). We previously reported that 
CRF6-33, which has a high a#nity for the CRF-binding protein (CRF-BP) and is devoid 
of any intrinsic activity at the CRF receptor (Sutton et al., 1995), enhances memory 
consolidation by displacing CRF from the CRF-BP complex and increasing the ‘free’ 
concentration of endogenous CRF (Behan et al., 1995; Roozendaal et al., 2008b). 

As is shown in Fig. 2A, intra-BLA infusions of AM251 blocked CRF6-33-induced 
retention enhancement. Two-way ANOVA for training latencies showed no 
signi!cant di"erences between groups (for all comparisons: P > 0.32; data not 
shown). In contrast, two-way ANOVA for 48-h retention latencies revealed a 
signi!cant CRF6-33 e"ect (F3,86 = 3.42; P = 0.02), a signi!cant AM251 e"ect (F1,86 = 
4.50; P = 0.04), as well as a signi!cant interaction between both factors (F3,86 = 
3.69; P = 0.02). CRF6-33 infusions alone induced a dose-dependent enhancement 

Figure 3. Interactions between the endocannabinoid and noradrenergic systems of the BLA in 
enhancing memory consolidation of inhibitory avoidance training. (A) Step-through latencies 
(mean + SEM) in seconds on the 48-h inhibitory avoidance retention test of rats given immediate 
posttraining infusions into the BLA of the -adrenoceptor antagonist propranolol (0.5 mg in 0.2 

l) together with the CB1 agonist WIN55,212-2 (10, 30 or 100 ng). , P < 0.01 compared with 
the corresponding vehicle group; , P < 0.01 compared with the corresponding WIN55,212-2 
alone group (n = 9-12 per group). (B) Step-through latencies (mean + SEM) in seconds on the 48-h 
inhibitory avoidance retention test of rats given immediate posttraining infusions into the BLA of 
the CB1 receptor antagonist AM251 (0.14 ng in 0.2 l) together with the -adrenoceptor agonist 
clenbuterol (1, 10 or 100 ng). , P < 0.05; , P < 0.01 compared with the corresponding vehicle 
group; , P < 0.05 compared with the corresponding clenbuterol alone group (n = 9-12 per group).
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of retention performance (0.1 mg: P < 0.01). The CB1 receptor antagonist AM251 
infused alone into the BLA immediately after the training trial did not impair 
retention, but blocked the retention enhancement induced by concurrently 
administered CRF6-33. Retention latencies of rats treated with AM251 together with 
the intermediate dose of CRF6-33 (0.1 mg) were signi!cantly shorter than those of 
rats given the corresponding dose of CRF6-33 alone (P < 0.01).

To determine whether the endocannabinoid system is located downstream from 
the CRF receptor, in the second part of the experiment, we investigated whether 
the nonselective CRF receptor antagonist -helical CRF9-41 (1 g) administered into 
the BLA after inhibitory avoidance training altered the memory-enhancing e"ect 
of concurrently administered WIN55,212-2 (10, 30 or 100 ng) (Fig. 2B).  Two-way 
ANOVA for training latencies showed no signi!cant di"erences between groups 
(for all comparisons: P > 0.08; data not shown). In contrast, two-way ANOVA for 
48-h retention latencies showed a non-signi!cant -helical CRF9-41 e"ect (F1,87 = 
0.37; P = 0.54), but a signi!cant WIN55,212-2 e"ect (F3,87 = 4.31; P = 0.007) and 
interaction between conditions (F3,87 = 8.13; P < 0.0001). WIN55,212-2 infused 
alone induced dose-dependent enhancement of retention performance. The 

Figure 4. Endocannabinoids enable the glucocorticoid-induced enhancement of BLA neuronal 
activity and IA memory. (A) Number of pCREB immunopositive cells in BLA of rats given vehicle (5 
% ethanol) or CORT (3mg/kg) alone or together with SR141716 (1 mg/kg). , P < 0.01 compared 
with the corresponding vehicle group; , P < 0.01 compared with the corresponding CORT 
alone group (n = 5 - 6 per group). (B) Step-through latencies (mean + SEM) in seconds on the 
48-h inhibitory avoidance retention test of rats given immediate posttraining systemic treatment 
of either vehicle (5% ethanol) or CORT (3 mg/kg) alone or together with SR141716 (1 mg/kg). 

, P < 0.01 compared with the corresponding vehicle group; , P < 0.01 compared with the 
corresponding CORT alone group (n = 10 per group).
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10 ng dose of WIN55,212-2 signi!cantly enhanced retention (P < 0.01), whereas 
retention latencies of animals given the higher (30 or 100 ng) doses failed to reach 
signi!cance.  In rats also given -helical CRF9-41, the lowest dose of WIN55,212-2 
(10 ng) failed to enhance retention, and a 10-times higher dose of WIN55,212-2 
(100 ng) was necessary to induce signi!cant retention enhancement (P < 0.01). 
Thus, these !ndings indicating that CRF receptor blockade, unlike GR blockade, 
shifted the dose-response e"ects of WIN55,212-2 on retention enhancement 
demonstrate that the endocannabinoid system is not just located downstream 
from the CRF receptor. These !ndings provide further evidence for a selective 
and speci!c role of endocannabinoid transmission as a rapid mediator of 
glucocorticoid actions.

Interactions between the endocannabinoid and noradrenergic systems of 
the BLA on memory enhancement of inhibitory avoidance. 
The !ndings described so far clearly show that endocannabinoid signaling is 
critically involved in regulating the memory-modulatory e"ects of glucocorticoids. 
However, we have not yet explored whether such endocannabinoid activity is 
an intermediary step in mediating glucocorticoid e"ects on the noradrenergic 
arousal system. To address this issue, we !rst investigated whether the 
endocannabinoid and noradrenergic systems of the BLA interact in regulating 
memory consolidation. 

The !rst experiment examined whether the -adrenoceptor antagonist 
propranolol (0.5 mg) infused into the BLA immediately after inhibitory avoidance 
training blocked the memory enhancement induced by concurrent infusions of 
the CB receptor agonist WIN55,212-2 (10, 30 or 100 ng). As is shown in Fig. 3A, 
two-way ANOVA for 48-h retention latencies revealed signi!cant WIN55,212-2 
(F3,75 = 4.33; P = 0.007) and propranolol e"ects (F1,75 = 4.64; P = 0.03) as well as a 
signi!cant interaction between conditions (F3,75 = 3.15; P = 0.03). In agreement 
with the above-mentioned !ndings, WIN55,212-2 administered posttraining into 
the BLA induced dose-dependent enhancement of retention performance (10 ng: 
P < 0.01). Propranolol infused alone into the BLA immediately after the training trial 
did not impair retention performance, but blocked the retention enhancement 
induced by concurrently administered WIN55,212-2. Retention latencies of rats 
treated with propranolol together with the 10 ng dose of WIN55,212-2 were 
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signi!cantly shorter than those of rats given the corresponding dose of WIN55,212-
2 alone (P < 0.01). Thus, these !ndings indicate that, as with glucocorticoids, 
endocannabinoid e"ects on memory consolidation enhancement depend on 
concurrent noradrenergic activity within the BLA.

Previously, we reported that a blockade of GRs in the BLA with its antagonist 
RU 38486 shifted the dose-response e"ects of the -adrenoceptor agonist 
clenbuterol such that a much higher dose of clenbuterol was required to induce 
comparable memory enhancement (Roozendaal et al., 2002). The second part of 
the experiment investigated whether blockade of CB1 receptors in the BLA with 
posttraining infusions of AM251 (0.14 ng in 0.2 l) induced a similar shift in the 
dose-response e"ects of clenbuterol (1, 10 or 100 ng). As is shown in Fig. 3B, relative 
to vehicle controls, immediate posttraining infusions of clenbuterol into the BLA 
induced dose-dependent enhancement of retention performance. The lowest 
dose (1 ng) enhanced retention (P < 0.05), whereas higher doses of clenbuterol 
(10 or 100 ng) were ine"ective. Two-way ANOVA for retention latencies showed 
non-signi!cant clenbuterol (F3,75 = 1.55; P = 0.21) or AM251 e"ects (F1,75 = 0.32; P 
= 0.57), but a signi!cant interaction between conditions (F3,75 = 6.13; P = 0.0009). 
AM251 administered alone did not a"ect retention latencies, but shifted the dose-
response e"ects of clenbuterol. When AM251 was co-infused with clenbuterol, 
the lowest dose of clenbuterol (1 ng) failed to enhance retention performance, 
and a 100-times higher dose of clenbuterol was necessary to induce signi!cant 
retention enhancement (P < 0.01). These !ndings indicating that a blockade of 
endocannabinoid activity decreases the sensitivity of the BLA to the memory-
enhancing e"ects of noradrenergic stimulation are thus highly comparable to the 
e"ects of GR blockade within the BLA (Roozendaal et al., 2002b).

Endocannabinoid activity is necessary for enabling glucocorticoid-
norepinehrine interactions on BLA neuronal activity. 
Our  !ndings  indicating  that a blockade of either glucocorticoid or 
endocannabinoid signaling reduces the sensitivity of the BLA to the memory-
enhancing e"ect of noradrenergic stimulation suggest that corticosterone, via 
an endocannabinoid mechanism, interacts with training-induced noradrenergic 
activation at a postsynaptic level in increasing BLA neuronal activity (Roozendaal 
et al., 2006b). To assess postsynaptic BLA neuronal activity, in the next experiment 
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we determined immunoreactivity for the phosphorylated form of the transcription 
factor CREB (pCREB) protein. Noradrenergic stimulation induces pCREB activation 
(Roseboom and Klein, 1995; Davies et al., 2004) and several !ndings have 
implicated CREB phosphorylation in the amygdala in the modulation of memory 
consolidation (Silva et al., 1998; Kida et al., 2002; Bozon et al., 2003; Josselyn et 
al., 2004; Han et al., 2007). In a previous study we reported that corticosterone 
administration increased the number of pCREB-positive neurons within the 
BLA, but only when there was su#cient noradrenergic activity (Roozendaal 
et al., 2006b). To determine whether endocannabinoid activity is required for 
mediating the facilitating e"ect of corticosterone on norepinephrine-induced 
pCREB immunoreactivity, in the present study the inverse CB1 receptor agonist 
SR141716 (rimonabant; 1 mg/kg) was administered subcutaneously together with 
corticosterone (3 mg/kg) immediately after inhibitory avoidance training, and the 
number of neurons expressing immunoreactivity for pCREB within the BLA was 
assessed 1 h later. Other rats were administered SR141716 and corticosterone 
after inhibitory avoidance training and their retention latencies were tested 48 h 
later. 

As is shown in Fig. 4A, two-way ANOVA for the number of pCREB-positive cells 
in the BLA 1 h after inhibitory avoidance training and drug administration 
revealed a signi!cant corticosterone e"ect (F1,18 = 6.21, P = 0.02), a signi!cant 
SR141716 e"ect (F1,18 = 8.50, P = 0.001) and as well as a signi!cant interaction 
e"ect between these two factors (F1,18 = 6.53, P = 0.02). Post-hoc comparison tests 
indicated that corticosterone induced a signi!cant increase in the number of 
pCREB-positive cells in the BLA (P < 0.01, relative to vehicle), whereas SR141716 
completely blocked this corticosterone-induced increase in pCREB expression. 
SR141716 administration alone did not induce any changes in pCREB expression 
within the BLA. As is shown in Fig. 4B SR141716 also blocked the enhancing 
e"ect of corticosterone on 48-h inhibitory avoidance retention performance. 
Two-way ANOVA for retention latencies indicated a signi!cant corticosterone 
(F1,36 = 9.09, P = 0.004) and SR141716 e"ects (F1,36 = 27.16, P = 0.0001) as well as a 
signi!cant interaction between these two parameters (F1,36 = 10.97, P = 0.0021). 
Collectively, these !ndings indicate that endocannabinoids mediate the e"ects 
of corticosterone on pCREB expression within the BLA and memory enhancement 
via a modulatory in$uence on postsynaptic noradrenergic signaling mechanisms. 
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DISCUSSION

The present study was undertaken to investigate whether the endocannabinoid 
system of the BLA mediates the rapid e"ects of glucocorticoid hormones onto the 
noradrenergic system in regulating the consolidation of memory of emotionally 
arousing experiences. The interest of this question stems from previous 
work, in animals and humans, indicating that glucocorticoid administration 
selectively enhances the consolidation of memory of emotionally salient training 
experiences (Buchanan and Lovallo, 2001; Okuda et al., 2004; Abercrombie et al., 
2006; Kuhlmann and Wolf, 2006) because of a critical interaction with arousal-
induced noradrenergic activation within the BLA (Roozendaal et al., 2006a; Van 
Stegeren et al., 2007). However, as these e"ects are too rapid to be mediated via 
genomic glucocorticoid actions, the neurobiological processes underlying the 
glucocorticoid in$uence on noradrenergic activity remained to be determined.

Although it has long been recognized that steroid hormones primarily exert their 
e"ects on neuronal function through their ability to modulate gene transcription 
in the nucleus (de Kloet et al., 1999), an array of physiological and behavioral 
e"ects of glucocorticoids have been documented to occur in a fashion that cannot 
be explained by genomic regulation (Dallman, 2005; Atsak et al., 2012). These 
!ndings have prompted the hypothesis that glucocorticoids possess membrane-
associated receptors through which nongenomic signaling may evoke rapid 
e"ects on physiology and behavior. The present !nding that the CB1 receptor 
antagonist AM251 administered into the BLA after inhibitory avoidance training 
blocked the memory–enhancing e"ect of the GR agonist RU 28362 or of the 
membrane-impermeable ligand Cort:BSA indicates that endocannabinoid activity 
within the BLA is essentially involved in regulating the memory-enhancing e"ects 
of glucocorticoids. This glucocorticoid action most likely involves the activation 
of a GR on the cell surface, launching a G-protein-dependent signaling cascade 
that induces the synthesis of endocannabinoid ligands (Di et al., 2003; Johnson 
et al., 2005; Barsegyan et al., 2010; Hill and McEwen, 2010). Multiple lines of 
research indicate that the endocannabinoid system of the BLA, with anandamide 
possibly as its central component (Busquets-Garcia et al., 2011), is importantly 
involved in neural plasticity mechanisms related to emotionally salient learning 
and memory (Marsicano et al., 2002; Ganon-Elazar and Akirav, 2009; Karst et al., 
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2010). Previously, we reported that pharmacological activation of CB1 receptors 
in the BLA with WIN55,212-2 induces dose-dependent enhancement of inhibitory 
avoidance memory (Campolongo et al., 2009). The present !nding that a 
pharmacological blockade of GRs in the BLA with its antagonist RU 38486 did 
not inhibit this WIN55,212-2 e"ect indicates that the endocannabinoid system, 
at least from a functional perspective, is located downstream from the GR site 
of action. Prior evidence indicating that systemic injection of corticosterone 
induces a rapid, i.e., within 10 min, elevation in endocannabinoid levels in the 
amygdala (Hill et al., 2010) supports this conclusion and further reinforces the 
nongenomic nature of this e"ect. On a broader level, these !ndings reiterate the 
growing notion of the endocannabinoid system as a rapid mediator of responses 
to stress and stress hormones (Tasker et al., 2006; Ganon-Elazar and Akirav, 2009) 
and are also consistent with !ndings of in vitro electrophysiological recording 
studies demonstrating that glucocorticoids rapidly suppress glutamate release 
onto parvocellular neurons in hypothalamic regions, in controlling hypothalamic-
pituitary-adrenal-axis activity, through a mechanism that involves postsynaptic 
activation of a membrane-bound GR and the synthesis of endocannabinoid 
ligands (Di et al., 2003). 

To investigate whether endocannabinoid signaling is uniquely involved in 
regulating glucocorticoid e"ects on memory consolidation, we also examined 
possible interactions between CRF and the endocannabinoid system. Our 
!ndings indicate that a blockade of endocannabinoid signaling within the BLA 
also prevented the enhancing e"ects of the CRF-BP ligand inhibitor CRF6-33 on 
inhibitory avoidance memory. Although it is possible that an activation of CRF 
receptors, as with GRs, directly evokes endocannabinoid signaling in the BLA, 
evidence for this view is lacking. Moreover, as CRF receptor blockade altered the 
memory-enhancing e"ect of WIN55,212-2 administration, these !ndings indicate 
that, unlike with GRs, the endocannabinoid system is not located downstream 
from the CRF receptor. More likely, glucocorticoids interact with the memory-
enhancing e"ects of CRF via an endocannabinoid mechanism. Consistent with 
other evidence that the glucocorticoid and CRF systems are intimately linked 
(Sawchenko, 1987; Pavcovich and Valentino, 1997; Ma and Aguilera, 1999; 
Helmreich et al., 2001), we previously reported that the GR antagonist RU 38486 
infused into the BLA blocked the enhancing e"ect of CRF6-33 administration on 
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the consolidation of inhibitory avoidance memory (Roozendaal et al., 2008b). Also 
the present !nding that the CRF receptor antagonist -helical CRF9-41 infused into 
the BLA shifted the dose-response e"ects of the CB receptor agonist WIN55,212-
2 such that a 10-times higher dose of WIN55,212-2 was required to induce 
memory enhancement is highly comparable to our prior !nding indicating that 
the CRF receptor antagonist induces a near identical shift in the dose-response 
relationship of the GR agonist RU 28362 (Roozendaal et al., 2008b). Such !ndings 
that manipulation of either GR or CB1 receptor has a common impact on the 
memory-enhancing e"ects of CRF provide further evidence for a close functional 
relationship between glucocorticoids and the endocannabinoid system in the 
BLA in regulating memory enhancement. 

Our !nding that immediate posttraining infusions of the -adrenoceptor 
antagonist propranolol blocked the enhancing e"ect of the CB receptor agonist 
WIN55,212-2 on inhibitory avoidance memory indicates that endocannabinoids 
enhance the consolidation of memory via an interaction with the noradrenergic 
system. These !ndings, together with the evidence that synthetic cannabinoids, as 
with corticosterone (McReynolds et al., 2010), alter the release of norepinephrine 
in the BLA and other brain regions (Oropeza et al., 2005; Page et al., 2007), indicate 
that the endocannabinoid system is a likely candidate for mediating the rapid 
e"ects of glucocorticoids onto stimulating the release of norepinephrine from 
presynaptic sites. However, our !nding that the CB1 receptor antagonist AM251 
infused into the BLA shifted the dose-response e"ects of the -adrenoceptor 
agonist clenbuterol such that a 100-times higher dose of clenbuterol was required 
to induce memory enhancement suggests that these two neuromodulatory 
systems also interact at the postsynaptic level. This !nding, which is highly 
comparable to prior evidence that GR antagonism in the BLA induces a near 
identical shift in the dose-response e"ects of clenbuterol (Roozendaal et al., 
2002b), suggests that glucocorticoids, through an endocannabinoid mechanism, 
might increase the excitability of BLA pyramidal neurons (Duvarci and Paré, 2007), 
rendering them more sensitive to the memory-enhancing e"ects of postsynaptic 
noradrenergic stimulation (Roozendaal et al., 2002b; Roozendaal et al., 2006b). 

To address this issue, we investigated whether the enhancing e"ects of 
glucocorticoids on neural plasticity mechanisms within the BLA, as assessed by 
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the number of pCREB-positive neurons, after inhibitory avoidance training require 
concurrent endocannabinoid signaling. It is now well established that CREB 
phosphorylation in the BLA depends on arousal-induced noradrenergic activity 
(Roseboom and Klein, 1995; Davies et al., 2004) and is critically involved in the 
modulation of memory consolidation (Silva et al., 1998; Kida et al., 2002; Bozon et 
al., 2003; Josselyn et al., 2004). In a previous study we reported that corticosterone 
administered systemically immediately after an emotionally arousing training 
experience increased the number of pCREB-positive neurons within the BLA, but 
that corticosterone did not alter the number of pCREB-positive neurons when 
administered after a low-arousing training experience (Roozendaal et al., 2006b). 
However, the combined administration of corticosterone and the noradrenergic 
stimulant yohimbine signi!cantly increased pCREB immunoreactivity in BLA 
pyramidal neurons under low-arousing conditions (Roozendaal et al., 2006b), 
indicating that corticosterone interacts with the noradrenergic system in 
increasing pCREB activity. Our current !nding that blocking CB1 receptors with 
its inverse agonist SR141716 prevented the corticosterone-induced pCREB 
activation in the BLA after inhibitory avoidance training, as well as blocked the 
memory-enhancing e"ects of corticosterone, provides further evidence for 
the view that the endocannabinoid system is essentially involved in mediating 
rapid glucocorticoid e"ects on the facilitation of norepinephrine-induced neural 
plasticity mechanisms within the BLA in regulating memory consolidation. 
Findings of electrophysiological experiments in brain slices are consistent with the 
view that glucocorticoids interact with the noradrenergic system in in$uencing 
neural plasticity in BLA neurons. However, these studies further indicate that 
glucocorticoids a"ect noradrenergic function in a highly time-dependent 
fashion (Joels et al., 2011). Whereas corticosterone applied simultaneously with a 

-adrenoceptor agonist induced a rapid facilitation of AMPA receptor-mediated 
responses, corticosterone given several hours in advance to the -adrenoceptor 
agonist, possibly because of genomic GR actions, resulted in a potent suppression 
of the -adrenoceptor agonist e"ect (Liebmann et al., 2009). An involvement of 
the endocannabinoid system in regulating these rapid and/or slow glucocorticoid 
e"ects on noradrenergic function has not been investigated. 

A possible scenario is that the ensuing release of endocannabinoids in$uences 
noradrenergic function via an inhibition of GABAergic transmission (Campolongo 
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et al., 2009; Hill and McEwen, 2009; Atsak et al., 2012). Within the BLA, CB1 receptors 
are found predominantly on local inhibitory GABAergic interneurons (Katona et al., 
2001; McDonald and Mascagni, 2001). A recent study indicated that CB1 receptors 
are particularly enriched in axon terminals of cholecystokinin (CCK)-positive 
interneurons and form invaginating perisomatic synapses with pyramidal neurons 
in the BLA (Yoshida et al., 2011). CCK-positive interneurons have been proposed to 
function as !ne-tuning devices for the cooperation of pyramidal neurons, which 
are sensitive to the emotional and motivational state of the animal (Freund et al., 
2003). Various studies have reported that activation of CB1 receptors regulates 
long-term depression at inhibitory synapses and decreases GABAergic synaptic 
transmission (Katona et al., 1999; Ohno-Shosaku et al., 2001; Hajos and Freund, 
2002). Such a suppression of GABAergic transmission can account for changes 
in noradrenergic signaling at both pre- and postsynaptic sites. On the one hand, 
extensive evidence indicates that inhibition of local GABAergic circuits in the 
BLA enhances memory consolidation (Brioni et al., 1989; Castellano et al., 1989; 
McGaugh, 2004) by increasing the release of norepinephrine from presynaptic 
sites (Hat!eld et al., 1999). On the other hand, GABAergic antagonists are known 
to act postsynaptically to increase the excitability of BLA pyramidal neurons (Azad 
et al., 2004; Pistis et al., 2004; Zhu and Lovinger, 2005; Yoshida et al., 2011). These 
!ndings, together with the evidence that glucocorticoids and CRF enhance the 
excitability of BLA pyramidal neurons by decreasing the impact of inhibitory 
GABAergic in$uences (Rainnie et al., 1992; Duvarci and Paré, 2007), support the 
hypothesis that the nongenomically mediated actions of glucocorticoids on the 
noradrenergic system require a rapid increase in endocannabinoid signaling 
within the BLA to e"ectively shut o" local inhibitory GABAergic interneurons. Such 
a suppression of GABAergic activity might then result in increased noradrenergic 
signaling in BLA pyramidal neurons and an enhanced consolidation of long-term 
memory of emotionally arousing experiences. 
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ABSTRACT

There is extensive evidence that glucocorticoid hormones impair the retrieval 
of memory of emotionally arousing experiences. Although it is known that 
glucocorticoid e"ects on memory retrieval impairment depend on rapid 
interactions with arousal-induced noradrenergic activity, the exact mechanism 
underlying this presumably non-genomically mediated glucocorticoid action 
remains to be elucidated. Here, we show that the hippocampal endocannabinoid 
system, a rapidly activated retrograde messenger system, is involved in 
mediating glucocorticoid e"ects on retrieval of contextual fear memory. Systemic 
administration of corticosterone (0.3–3 mg/kg) to male Sprague-Dawley rats 
1 h before retention testing impaired the retrieval of contextual fear memory, 
without impairing the retrieval of auditory fear memory or directly a"ecting the 
expression of freezing behavior. Importantly, a blockade of hippocampal CB1 
receptors with AM251 prevented the impairing e"ect of corticosterone on retrieval 
of contextual fear memory, whereas the same impairing dose of corticosterone 
increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. 
We further found that antagonism of hippocampal ß-adrenoceptor activity with 
local infusions of propranolol blocked the memory retrieval impairment induced 
by the CB receptor agonist WIN55,212-2. Thus, these !ndings strongly suggest 
that the endocannabinoid system plays an intermediary role in regulating rapid 
glucocorticoid e"ects on noradrenergic activity in impairing memory retrieval of 
emotionally arousing experiences.
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INTRODUCTION

It is well established that glucocorticoid (GC) hormones, released from the adrenal 
cortex during stressful episodes, can modulate di"erent memory processes (de 
Kloet et al., 1999; McGaugh and Roozendaal, 2002; Sandi and Pinelo-Nava, 2007; 
Roozendaal et al., 2009). Although most studies focused on GC e"ects on the 
acquisition and consolidation of memory, extensive evidence also indicates that 
acutely elevated GC levels at the time of retention testing impair the retrieval of 
memory of spatial and contextual training (de Quervain et al., 1998; de Quervain 
et al., 2000; Het et al., 2005; Kuhlmann et al., 2005a; Schwabe et al., 2011). As a 
glucocorticoid receptor (GR) agonist infused into the hippocampus prior to 
retention induces comparable memory retrieval impairment (Roozendaal et al., 
2003; Roozendaal et al., 2004b), such !ndings suggest that GC e"ects on memory 
retrieval depend, at least in part, on activation of GRs in the hippocampus. Findings 
of studies of human subjects are consistent with those of animal studies and 
indicate that exogenous GC administration or exposure to a psychosocial stressor 
shortly before retention testing impairs retrieval of declarative (mostly episodic) 
information (Kirschbaum et al., 1996; de Quervain et al., 2000; Kuhlmann et al., 
2005b) and reduces hippocampal activity (de Quervain et al., 2003). Moreover, 
previous !ndings indicate that emotionally arousing information is especially 
sensitive to the retrieval-impairing e"ects of GCs (Kuhlmann et al., 2005a) and 
that emotional arousal during the test situation enables GC e"ects on memory 
retrieval (Kuhlmann and Wolf, 2006). Findings of recent clinical studies suggest 
that the administration of stress doses of GCs may have therapeutic value by 
attenuating the re-experiencing of highly traumatic memories in patients who 
have post-traumatic stress disorder (PTSD) and other anxiety disorders (Aerni et 
al., 2004; Schelling et al., 2004; Schelling et al., 2006; de Quervain et al., 2009).

Our previous !nding that GCs interact with arousal-induced noradrenergic activity 
in impairing the retrieval of hippocampus-dependent memory (Roozendaal et al., 
2003; Roozendaal et al., 2004a; Roozendaal et al., 2004b; Roozendaal et al., 2006) 
might explain why GCs selectively impair memory retrieval of emotionally arousing 
or traumatic experiences (Kuhlmann et al., 2005a). However, it is not understood 
how GCs interact with the noradrenergic system in in$uencing memory retrieval, 
as these e"ects appear to be too rapid to act via the classical genomic mode of 
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action of GCs (de Quervain et al., 1998; Roozendaal et al., 2003; Roozendaal et 
al., 2004a; Roozendaal et al., 2004b; Roozendaal et al., 2006; McReynolds et al., 
2010; Schutsky et al., 2011). Findings of recent studies investigating the cellular 
mechanism underlying the rapid e"ects of GCs suggest a possible involvement of 
the endocannabinoid system (Tasker et al., 2006; Hill and McEwen, 2009; Evanson 
et al., 2010; Hill et al., 2010b). Endogenous ligands for cannabinoid CB1 receptors, 
i.e., anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are synthesized on 
demand through cleavage of membrane precursors and serve as retrograde 
messengers at central synapses (Kano et al., 2009). They bind to G-protein-
coupled CB1 receptors at presynaptic sites to regulate ion channel activity and 
neurotransmitter release (Freund et al., 2003). It is now well established that 
stress and GCs can induce rapid changes in endocannabinoid signaling in stress-
responsive brain regions (Patel and Hillard, 2008; Hill and McEwen, 2010). Although 
these e"ects have been mostly studied with respect to non-genomically mediated 
e"ects of GCs on hypothalamic-pituitary-adrenocortical (HPA) axis activity (Tasker 
et al., 2006; Evanson et al., 2010; Hill and McEwen, 2010), CB1 receptors are also 
abundantly expressed in the hippocampus, basolateral amygdala and other brain 
regions where they modulate synaptic transmission, neuronal !ring and memory 
(Freund et al., 2003; Campolongo et al., 2009; Marsicano and Lafenetre, 2009; 
Akirav, 2011). 

We previously reported evidence that GCs interact with the endocannabinoid 
system within the basolateral amygdala in enhancing the consolidation of 
memory of emotionally arousing training experiences (Campolongo et al., 
2009; Atsak et al., 2012).  In the present study, we investigated whether the 
endocannabinoid system is involved in mediating GC-induced memory retrieval 
impairment. We focus here on retrieval of contextual fear memory, as we !rst 
found that a systemic injection of corticosterone (CORT) administered shortly 
before retention testing impairs the retrieval of contextual, but not auditory, fear 
memory. Further, in view of the extensive evidence indicating that GC e"ects 
on memory retrieval depend on arousal-induced noradrenergic activity, we also 
examined whether endocannabinoids interact with the noradrenergic system 
within the hippocampus in impairing retrieval of contextual fear memory. 
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METHODS

Subjects.  Male adult Sprague-Dawley rats (280-330 g at time of surgery) from 
Charles River Breeding Laboratories (Kisslegg, Germany) were kept individually 
in a temperature-controlled (22 oC) colony room and maintained on a standard 
12-h light: 12-h dark cycle (07:00-19:00 h lights on) with ad libitum access to food 
and water.  All behavioral procedures were performed during the light cycle 
between 10:00 and 15:00 h.  All procedures were in compliance with the European 
Community’s Council Directive on the use of laboratory animals of November 24, 
1986 (86/609/EEC) and were approved by the Institutional Animal Care and Use 
Committee of the University of Groningen, The Netherlands.

Surgery.  Animals, adapted to the vivarium for at least 1 week, were anesthetized with 
a mixture of ketamine (37.5 mg/kg of body weight; Alfasan) and dexmedetomidine 
(0.25 mg/kg; Orion) and surgery was performed according to a standardized 
protocol (Fornari et al., 2012). Brie$y, the skull was positioned in a stereotaxic 
frame (Kopf Instruments, Tujunga, CA) and two stainless-steel guide cannulae 
(11 mm; 23 gauge; Small Parts, Inc, Miami Lakes, FL) were implanted bilaterally 
with the cannula tips 1.5 mm above the dorsal hippocampus (anteroposterior, 
-3.4 mm from Bregma; mediolateral, +1.8 mm from the midline; dorsoventral, 
2.7 mm below skull surface; incisor bar –3.3 mm from interaural) (Paxinos and 
Watson, 2005). The cannulae were a#xed to the skull with two anchoring screws 
and dental cement.  Stylets (11-mm long 00-insect dissection pins), inserted into 
each cannula to maintain patency, were removed only for the infusion of drugs. 
After surgery, the rats were administered atipamezole hydrochloride (2.5 mg/kg; 
Orion) to reverse anesthesia and were subsequently injected with 3 ml of saline 
to facilitate clearance of drugs and prevent dehydration. The rats were allowed to 
recover for 10 days before initiation of training and were handled 3 times for 1 min 
each during this recovery period to accustom them to the infusion procedure. 

Fear Conditioning. After handling days were completed, all rats were habituated 
to the training context for 5 min, without shock exposure. On the next day, 
animals were trained on either the contextual or auditory fear conditioning task. 
For contextual fear conditioning, each rat was placed in the fear conditioning 
apparatus (in cm: 24 width x 25 depth x 34 height) and exposed to 5 footshocks (1.4 
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mA, 1 s, 1 min inter-trial interval) after 2 min of baseline. Twenty-four hours later, 
rats were re-exposed to the fear conditioning context for 5 min. For auditory fear 
conditioning, animals were exposed to 5 tones (80 dB, 4 kHz, 10 s) co-terminating 
with footshock (1.4 mA, 1 s). Twenty-four hours later, animals were tested in a 
di"erent context with tone trials only (5 trials, each 10 s) after 3 min of baseline. 
Control groups were habituated to the training apparatus and, 24 h later, trained 
on the contextual fear conditioning task; however, on the retention test day, they 
were tested for 5 min in a di"erent but previously habituated context. Freezing 
behavior was analyzed with Behafreeze software (http://www.pmbogusz.net/
software/) and some of the groups were also analyzed manually blind to drug 
treatment as a quality control. 

Endocannabinoid Quanti"cation. After rapid decapitation, the hippocampus was 
dissected and lipid extraction was performed according to a standardized protocol 
as explained in the SI Methods (Vogeser et al., 2006). For endocannabinoid 
measurements, automated on-line solid phase extraction using column switching 
with subsequent direct transfer to high-performance liquid chromatography 
and a tandem mass spectrometry system was applied. Pure solutions were used 
for calibration. The method is linear within the calibration ranges. All liquid 
chromatography mass spectrometry (LC-MS) analyses were carried out using an 
1100 LC system (binary pump and autosampler, Agilent, CA, USA) coupled to an 
API 4000 mass spectrometer (Applied Biosystems, CA, USA) and equipped with a 
Turbo-Ion-Spray (ESI) source. Because in biological matrices, 2-AG (including its 
deuterated analog) rapidly isomerizes to 1-AG (Vogeser and Schelling, 2007), we 
quanti!ed 2-AG as the sum of both isomers. 

Drug and infusion procedures. All systemic and local drug manipulations were 
made 1 h before retention testing. For the !rst experiment, di"erent doses of 
CORT (0.3, 1, 3 mg/kg; Sigma-Aldrich), dissolved in 5% ethanol, were administered 
subcutaneously. CORT doses were based on previous !ndings (de Quervain et 
al., 1998; Cai et al., 2006). For the second experiment, the selective CB1 receptor 
antagonist AM251 (0.35 ng in 0.5 µl per side; Sigma-Aldrich) was infused into the 
dorsal hippocampus together with a subcutaneous injection of either an impairing 
dose of CORT (3 mg/kg) or vehicle. AM251 was !rst dissolved in 100% DMSO and 
subsequently diluted in phosphate bu"er to reach a !nal DMSO concentration of 
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2%. For the third experiment, the CB receptor agonist WIN55,212-2 (10 or 30 ng in 
0.5 µl per side; Sigma-Aldrich) either alone or together with the ß-adrenoceptor 
antagonist propranolol (1.25 mg; Sigma-Aldrich) was dissolved in a vehicle 
containing 2% DMSO and 0.2% Triton X-100 in phosphate bu"er and infused into 
the dorsal hippocampus. For the last experiment, norepinephrine (1 or 3 µg in 0.5 
µl per side: Sigma-Aldrich) either alone or together with AM251 (0.35 ng; Sigma-
Aldrich), dissolved in 2% DMSO in phosphate bu"er, was infused into the dorsal 
hippocampus. 

Bilateral infusions of drug, or vehicle into the dorsal hippocampus were given by 
using 30-gauge injection needles connected to 10-µl Hamilton microsyringes by 
polyethylene (PE-20) tubing. The injection needles protruded 1.7 mm beyond 
the cannula tips and a 0.5 µl injection volume per hemisphere was infused over 
a period of 50 s by an automated syringe pump (Stoelting Co., Dublin, Ireland). 
The injection needles were retained within the cannulae for an additional 20 s to 
prevent back$ow of drug into the cannulae. 

Histology. Rats were anesthetized with an overdose of sodium pentobarbital (100 
mg/kg, i.p.; Sigma-Aldrich) and perfused transcardially with a 0.9% saline (wt/
vol) solution followed by 4% formaldehyde (wt/vol) dissolved in water. Brains 
were removed and after cryoprotection in 25% sucrose, coronal sections of 50 
mm were cut on a cryostat, mounted on gelatin-coated slides, and stained with 
cresyl violet. The location of the injection needle tips in the dorsal hippocampus 
was examined under a light microscope according to the standardized atlas 
plates of Paxinos and Watson (Paxinos and Watson, 2005) by an observer blind 
to drug treatment condition.  Rats with injection needle placements outside the 
hippocampus or with extensive tissue damage at the injection needle tips were 
excluded from analysis.

Statistics. Data are expressed as mean ± SEM.  Overall freezing scores on the 
retention test trials of the contextual and auditory fear conditioning tasks were 
analyzed with one-way or two-way ANOVAs, when appropriate. Endocannabinoid 
levels were analyzed with one-way ANOVA. To investigate the e"ect of time (for 
contextual fear conditioning) or tone trial (for auditory fear conditioning) on 
the freezing response, freezing retention scores were analyzed with repeated-
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measures ANOVA with time bin (1 min each) or tone trial as within-subject factor. 
Freezing scores during the training session of the contextual and auditory fear 
conditioning tasks were always analyzed with repeated-measures ANOVA with 
shock trial as within-subject factor. The analyses were followed by Fisher’s LSD 
multiple-comparison tests, when appropriate. P values of less than 0.05 were 

Figure 1. E"ect of systemic corticosterone administration on retrieval of fear memory. (A) Systemic 
CORT (0.3, 1, 3 mg/kg) treatment administered 1 h before retention testing dose-dependently 
impairs retrieval of contextual fear memory. Results represent mean ± SEM, **p < 0.01 vs. vehicle 
(n = 11-13/group). (B) E"ect of systemic CORT (3mg/kg) treatment on freezing during retrieval of 
contextual fear memory analyzed in 1-min time bins. Results represent mean ± SEM, *p < 0.05; **p 
< 0.01 vs. vehicle (n = 11-13/group). (C) Systemic CORT (0.3, 1, 3 mg/kg) treatment given 1 h before 
retention testing does not impair retrieval of auditory fear memory. Results represent mean ± SEM 
(n = 8/group). (D) E"ect of systemic CORT (0.3, 1, 3 mg/kg) administration on basal freezing levels in 
a non-training context. Results represent mean ± SEM (n = 10 - 15/group).
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considered statistically significant. The number of rats per group is indicated in 
the !gure legends. 
RESULTS

Systemic corticosterone administration dose-dependently impairs retrieval 
of contextual, but not auditory, fear memory
This experiment investigated whether CORT administered systemically 1 h before 
retention testing impaired retrieval of contextual and auditory fear memory. 
During training, di"erent groups of animals acquired the contextual (F7,301 = 81.62; 
p < 0.0001) and auditory (F7,196 = 61.56; p < 0.0001) fear conditioning tasks, as 
indicated by progressively increasing freezing scores during shock trials. Further, 
the groups that were assigned to receive control or drug treatments subsequently 
did not di"er in acquisition performance (contextual fear conditioning: F3,43 = 1.60; 
p = 0.20; auditory fear conditioning: F3,28 = 0.82; p = 0.96; Table S1). Twenty-four 
hours later, rats received a systemic injection of either vehicle or di"erent doses of 
CORT (0.3, 1, 3 mg/kg) 1 h before retention testing on the contextual and auditory 
fear conditioning tasks. As is shown in Fig. 1A, one-way ANOVA indicated that 
CORT treatment induced a dose-dependent reduction in overall percent freezing 
during retention testing on the contextual fear conditioning task (F3,43 = 2.98; p = 
0.04). Fisher’s post-hoc analysis revealed that the 3 mg/kg dose of CORT, but not 
lower doses, signi!cantly decreased freezing levels (p < 0.01 compared to vehicle). 
We further analyzed whether freezing levels of rats administered the 3 mg/kg dose 
of CORT were lower throughout the retention test or whether CORT facilitated the 
extinction of fear during the retention test session. Repeated-measures ANOVA 
for freezing levels in !ve consecutive 1-min time bins (CORT 3 mg/kg and vehicle 
groups only) demonstrated a signi!cant e"ect of CORT treatment (F1,23 = 12.22; 
p = 0.001), but not of time  (F4,92 = 1.69; p = 0.15) or interaction between CORT 
treatment and time (F4,92 = 0.65; p = 0.62), suggesting that freezing levels did not 
change over the course of the retention test and, thus, that freezing of the CORT 
3 mg/kg group was lower than that of the vehicle group throughout the test (Fig. 
1B). In contrast to contextual fear memory, systemic CORT treatment did not alter 
freezing levels during retention on the auditory fear conditioning task (F3,28 = 0.20; 
p = 0.89; Fig. 1C). 

To further exclude the possibility that CORT treatment might directly in$uence the 
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expression of freezing, separate groups of animals were trained on the contextual 
fear conditioning task and, 24 h later, administered di"erent doses of CORT (0.3, 
1, 3 mg/kg) 1 h before placing them in a context that was distinctly di"erent 
from the training context. CORT treatment did not a"ect basal freezing levels 
in this non-training context (F3, 47 = 1.24; p = 0.31; Fig. 1D). Thus, these !ndings 
indicate that CORT selectively impaired conditioned freezing during retention 
of contextual fear memory and did not a"ect freezing during retention of the 
auditory fear conditioning task or induced any direct de!cits in the expression of 
freezing behavior. 

Endocannabinoid signaling in the hippocampus mediates the impairing 
e!ect of corticosterone on retrieval of contextual fear memory
To investigate whether the endocannabinoid system of the hippocampus plays a 
role in mediating the impairing e"ect of CORT treatment on retrieval of contextual 
fear memory, bilateral infusions of the CB1 receptor antagonist AM251 (0.35 ng in 
0.5 µl) were administered into the dorsal hippocampus 1 h before retention testing 
together with systemic injections of either vehicle or CORT (3 mg/kg). Repeated-
measures ANOVA for freezing scores during training showed that all groups 
acquired the contextual fear conditioning task as indicated by progressively 
increasing freezing scores during shock trials (F7,203 = 63.66, p < 0.0001), without a 
di"erence in the acquisition rate between later drug groups (F3,29 = 0.79; p = 0.50; 
Table S2). As is shown in Fig. 2A, two-way ANOVA for percent freezing during 24-h 
retention testing revealed no signi!cant main e"ects of CORT (F1,29 = 1.93, p = 
0.17) or AM251 (F1,29 = 1.76, p = 0.19), but a signi!cant interaction e"ect between 
these two treatments (F1,29 = 4.61, p = 0.04). Fisher’s post-hoc comparison tests 
demonstrated that systemic CORT administration signi!cantly reduced freezing 
in control rats administered vehicle into the hippocampus (p < 0.05). However, 
this e"ect of CORT on freezing behavior was blocked in animals administered 
AM251 into the hippocampus (p < 0.05 compared to CORT alone). 

Next, we investigated whether CORT administration a"ected endocannabinoid 
tissue levels in the hippocampus.  For this, rats were trained on the contextual 
fear conditioning task and, 24 h later, given a systemic injection of CORT (0.3, 1 
or 3 mg/kg) 1 h before placing them in a non-training but previously habituated 
context for 5 min. Immediately afterwards, the hippocampus was dissected 
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for endocannabinoid measurements. As is shown in Fig. 2C and 2D, one-way 
ANOVA revealed that CORT treatment dose-dependently elevated hippocampal 
levels of the endocannabinoid 2-AG (F3,47 = 3.15; p = 0.03), without a"ecting 
levels of AEA (F3,47 = 0.23; p = 0.87) or other measured endocannabinoids such 
as oleoylethanolamide and palmitoylethanolamide (Tabl e S3). Fisher’s post-hoc 
analyses indicated that the highest dose of CORT (3 mg/kg), but not any of the 
lower and non-impairing doses, increased 2-AG levels compared to vehicle (p 
< 0.05). Thus, these !ndings indicating that CORT administration elevates 2-AG 
levels in the hippocampus whereas a blockade of hippocampal CB1 receptors 
prevents CORT e"ects on memory retrieval impairment suggest that hippocampal 
endocannabinioid signaling is critically involved in mediating the impairing 
e"ects of CORT on retrieval of contextual fear memory.

Intra-hippocampal infusion of a CB receptor agonist WIN55,212-2 impairs 
retrieval of contextual fear memory via an interaction with the noradrenergic 
system
As described above, we previously reported that GC e"ects on memory retrieval 
of emotionally arousing experiences involve an essential interaction with arousal-
induced noradrenergic activity (Roozendaal et al., 2004b; de Quervain et al., 
2007). Hence, in this experiment we investigated whether cannabinoid e"ects on 
memory retrieval also depend on interactions with the noradrenergic system. To 
address this issue, we !rst investigated whether bilateral microinfusions of the 
CB receptor agonist WIN55,212-2 (10 or 30 ng in 0.5 μl) administered into the 
dorsal hippocampus 1 h before the retention test impaired retrieval of contextual 
fear memory, and whether concurrent administration of the ß-adrenoceptor 
antagonist propranolol (1.25 μg) blocked the impairment. All animals acquired 
the contextual fear conditioning task as indicated by progressively increasing 
freezing scores during shock trials (F7,420 = 108.00; p < 0.0001) without a signi!cant 
di"erence in freezing scores between later drug groups (F2,63 = 2.18; p = 0.12; Table 
S4). As is shown in Fig. 3A, two-way ANOVA for percent freezing on the retention 
test showed a signi!cant WIN55,212-2 e"ect (F2,63 = 3.26; p = 0.04), a signi!cant 
propranolol e"ect (F1,63 = 15.65; p = 0.0001) as well as a signi!cant interaction e"ect 
between these two treatments (F2,63 = 3.63; p = 0.03). Post-hoc analysis showed 
that both doses of WIN55,212-2 signi!cantly impaired freezing levels (10 ng; p < 
0.001, 30 ng: p < 0.05 compared to vehicle). However, WIN55,212-2 did not reduce 
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freezing levels in rats also administered propranolol. Thus, these !ndings indicate 
that, as with GCs, endocannabinoid e"ects on memory retrieval impairment 
depend on concurrent noradrenergic activity within the hippocampus.
The second part of this experiment investigated whether blockade of 
hippocampal CB1 receptors with AM251 (0.35 ng in 0.5 µl) would a"ect memory 
retrieval impairment induced by local infusions of norepinephrine (1 or 3 µg). 
During training, animals increased their freezing as shock trials progressed (F7,490 = 
137.59, p < 0.0001) and there were no di"erences in the acquisition rate between 
later drug groups (F2,72 = 0.59, p = 0.56; Table S5). As is shown in Fig. 3B, two-way 
ANOVA for percent freezing during 24-h retention testing revealed a signi!cant 
norepinephrine e"ect (F2,72 = 8.28; p = 0.0005), but no signi!cant AM251 e"ect  
(F1,72= 0.33; p = 0.86) or interaction between norepinephrine and AM251 (F2,72= 
0.37; p = 0.70). Microinjection of either dose of norepinephrine into the dorsal 
hippocampus 1 h before retention testing signi!cantly reduced conditioned 
freezing levels (1 μg; p < 0.01, 3 μg: p < 0.01 compared to vehicle). As with 
norepinephrine administered alone, the 3 µg dose of norepinephrine infused 
together with the CB1 receptor antagonist induced a signi!cant reduction in 
freezing (p < 0.05) whereas the 1 µg dose of norepinephrine just failed to reach 
signi!cance (p = 0.08). Infusion of this low dose of AM251 alone did not alter 
freezing levels (p = 0.68).  These !ndings indicate that the e"ect of noradrenergic 
activation is downstream of CB1 receptor activation.

To exclude the possibility that WIN55,212-2 or norepinephrine infusions into 
the hippocampus might have decreased freezing during the retention test by 
directly a"ecting the expression of freezing behavior, we investigated, in separate 
groups of animals, the e"ect of intra-hippocampal infusions of the same doses 
of WIN55,212-2 (10 or 30 ng in 0.5 μl) or norepinephrine (1 or 3 μg in 0.5 μl) on 
freezing behavior during retention of auditory fear conditioning. Repeated-
measures ANOVA comparing freezing levels in the WIN55,212-2-treated groups 
showed a signi!cant e"ect of tone trial (F4,108 = 126.63; p < 0.0001), but no 
signi!cant e"ect of WIN55,212-2 (F2,27 = 0.41; p = 0.66) or interaction between 
tone trial and WIN55,212-2 treatment (F8,108 = 0.84; p = 0.56; Fig. S1A). Highly 
comparable, repeated-measures ANOVA comparing retention freezing scores of 
norepinephrine-treated groups showed a signi!cant e"ect of tone trial (F4,108 = 
90.82; p < 0.0001), but no signi!cant e"ect of norepinephrine (F2,27 = 0.25; p = 0.77) 
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or interaction between tone trial and norepinephrine treatment (F8,108= 0.86; p = 
0.55; Fig. S1B). Thus, these !ndings indicate that WIN55,212-2 or norepinephrine 
e"ects on contextual fear memory were not mediated by a general, non-speci!c 
change in the expression of freezing behavior. 

DISCUSSION

The present study investigated a putative involvement of the hippocampal 
endocannabinoid system in regulating GC e"ects on the retrieval of fear memory. 
The interest of this question stems from previous work indicating, in both rats and 
healthy human participants, that GCs interact with arousal-induced noradrenergic 
mechanisms in impairing memory retrieval of emotionally arousing information 
(de Quervain et al., 1998; de Quervain et al., 2000; Het et al., 2005; Kuhlmann et 
al., 2005a). However, as these e"ects are too rapid to be mediated via genomic 
GC actions, the neurobiological processes underlying the GC in$uence on 
noradrenergic activity remained to be determined (Joels et al., 2011). The present 
!ndings indicate that a blockade of hippocampal CB1 receptors prevents the 
impairing e"ects of GCs on retrieval of contextual fear memory, whereas the 
administration of an impairing dose of CORT increases hippocampal levels of 
the endocannabinoid 2-AG. We further found that antagonism of hippocampal 
ß-adrenoceptor activity blocks the memory retrieval impairment induced by the 
CB receptor agonist WIN55,212-2, whereas CB1 receptor blockade fails to alter 
memory retrieval impairment induced by concurrent hippocampal infusions 
of norepinephrine. These !ndings suggest that the endocannabinoid system 
is involved in mediating GC e"ects on the noradrenergic system in impairing 
memory retrieval. 

Our !nding that CORT administration shortly before retention testing impaired 
retrieval of contextual fear memory, without a"ecting retrieval of auditory fear 
memory or baseline freezing, is consistent with previous reports indicating that 
GCs impair memory retrieval of hippocampus-dependent contextual fear memory 
and that this stress hormone e"ect is not directly attributable to acute fear relief 
or to de!cits in the expression of freezing behavior (Cai et al., 2006; Schutsky 
et al., 2011). Moreover, our !nding that CORT did not facilitate the extinction 
of freezing within the course of the retention test is in line with other evidence 
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indicating that CORT facilitates the consolidation, but not the acquisition, of fear 
extinction memory (Cai et al., 2006; Yang et al., 2006). Findings of several other 
studies investigating the e"ects of stress, GCs or speci!c GR agonists on memory 
retrieval of other training tasks in rats, requiring the expression of other behavioral 
responses, as well as those of verbal reports in healthy human subjects, support the 
view that GCs impair immediate and delayed recall of hippocampus-dependent 
memory (de Quervain et al., 1998; de Quervain et al., 2000; Roozendaal et al., 2003; 
Roozendaal et al., 2004b). There is extensive evidence that the hippocampus is 
involved in the retrieval of contextual, spatial or declarative memory and is also 
a primary target for stress hormones (de Kloet et al., 1999; Riedel et al., 1999; 
Corcoran and Maren, 2001). Moreover, prior !ndings indicate that direct infusions 
of GCs into the hippocampus impair the retrieval of spatial memory (Roozendaal 
et al., 2003; Roozendaal et al., 2004b) and that a single GC administration to 
human subjects decreases hippocampal activity during declarative memory 
retrieval (Oei et al., 2007). The !ndings of studies investigating whether GCs 
might also impair memory retrieval of hippocampus-independent learning tasks 
are consistent with our current observation that GCs appear to have little or no 
e"ect on retrieval of auditory fear memory or other hippocampus-independent 
memories (Kirschbaum et al., 1996; Schutsky et al., 2011). However, we cannot 
exclude the possibility that CORT might have impaired the retrieval of memory 
of some speci!c features of the conditioning tone (e.g., frequency, intensity, 
duration, et cetera) used in the present study. 

Our !nding that pre-test blockade of hippocampal CB1 receptors with local 
infusions of AM251 prevented the GC-induced impairment of contextual fear 
memory retrieval indicates that endocannabinoid signaling plays an important 
role in regulating GC e"ects on memory retrieval. Moreover, comparable to the 
e"ect of systemic CORT administration, intrahippocampal infusions of the full 
CB agonist WIN55,212-2 impaired the retrieval of contextual, but not auditory, 
fear memory. This selective impairment of retrieval of contextual fear memory 
indicates that the WIN55,212-2 administration did not non-speci!cally a"ect 
the expression of freezing behavior, a !nding that is in accordance with other 
reported evidence that intrahippocampal administration of WIN55,212-2 or other 
cannabinoid agonists (delta-9-tetrahydrocannabinol or CP 55,940) impairs spatial 
memory without directly a"ecting the expression of behaviors that were assessed 
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as an index of memory (Lichtman et al., 1995; Egashira et al., 2002; Wegener et 
al., 2008). Moreover, we found that CORT administration, in a dose that impairs 
memory retrieval, increased hippocampal levels of 2-AG, but not AEA or other 
measured endocannabinoids, in the same time course of the retention test. 
These !ndings are consistent with previous evidence that stress and GCs rapidly 
alter endocannabinoid signaling in a variety of stress-responsive brain regions, 
including the hippocampus (Hill et al., 2010a; Hill and McEwen, 2010). Although 
some controversy exists in the literature, stress has been shown to mobilize 2-AG 

Figure 2. Role of the endocannabinoid system in regulating glucocorticoid e"ects on retrieval of 
contextual fear memory. (A) Hippocampal infusion of the CB1 receptor antagonist AM251 (0.35 ng in 
0.5 µl) administered 1 h before retention testing blocks the impairment of retrieval of contextual fear 
memory induced by concurrent systemic CORT (3 mg/kg) treatment. Results represent mean ± SEM, 
*p < 0.05 vs. vehicle (n = 7-11/group). (B) Representative photomicrograph illustrating placement of 
cannula and needle tip in the dorsal hippocampus with sub!elds dentate gyrus (DG), CA1 and CA3. 
(C, D) Systemic CORT (0.3, 1, 3 mg/kg) treatment dose-dependently increases hippocampal 2-AG, 
but not AEA, in the same time window of the retention test. All results represent mean ± SEM, *p < 
0.05 vs. vehicle (n = 10-15/group).
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while concurrently decreasing AEA levels in the hippocampus (Patel and Hillard, 
2008; Hill and McEwen, 2010). Interestingly, GR antagonists block this stress-
induced increase in hippocampal 2-AG levels (Wang et al., 2012). Although it is 
currently unknown how GCs might increase 2-AG levels (i.e. changes in synthesis, 
release, uptake or degradation), the e"ect appears to depend on activation of 
a G-protein-coupled receptor and intracellular cAMP-dependent protein kinase 
signaling (Di et al., 2009). 

Extensive evidence indicates that stress and GC e"ects on memory retrieval of 
emotionally arousing experiences depend crucially on an interaction with arousal-
induced noradrenergic activity (Roozendaal et al., 2003; Roozendaal et al., 2004b; 
de Quervain et al., 2007; Schutsky et al., 2011). A ß-adrenoceptor antagonist 
administered systemically or directly into the hippocampus or basolateral 
amygdala in rats blocks GC e"ects on memory retrieval. Moreover, GCs have been 
shown to rapidly increase the release of norepinephrine in the amygdala after an 
emotionally arousing experience (McReynolds et al., 2010) in a time frame that 
appears incompatible with that of the classical genomic e"ects of GCs. The present 

Figure 3. Endocannabinoid and norepinephrine interactions in the dorsal hippocampus on 
retrieval of contextual fear memory. (A) The CB receptor agonist WIN55,212-2 (WIN: 10 or 30 ng in 
0.5 µl) infused into the hippocampus 1 h before the retention test impairs retrieval of contextual 
fear memory. Concurrent infusion of the ß-adrenoceptor antagonist propranolol (1.25 µg) blocks 
this WIN55,212-2-induced memory retrieval impairment. Results represent mean ± SEM, *p < 0.05; 
**p < 0.001 vs. vehicle (n = 10-14/group). (B) Intrahippocampal infusions of norepinephrine (1 or 3 
µg in 0.5 µl) administered 1 h before the retention test, impair retrieval of contextual fear memory.  
Concurrent infusion of the CB1 receptor antagonist AM251 (0.35 ng) does not block this impairment. 
Results represent mean ± SEM, *p < 0.05; **p < 0.01 vs. vehicle (n = 11-15/group).
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!ndings indicate that GC-induced impairment of memory retrieval is mediated, 
at least in part, via rapid in$uences on the endocannabinoid system. Moreover, 
our !nding that the ß-adrenoceptor antagonist propranolol blocks the impairing 
e"ect of the CB receptor agonist WIN55,212-2, whereas a blockade of CB1 
receptors with AM251 fails to prevent norepinephrine-induced memory retrieval 
impairment, indicates that norepinephrine is functionally located downstream 
from the endocannabinoid system. Collectively, these !ndings strongly suggest 
that endocannabinoids play an intermediary role in regulating GC e"ects on the 
norepinephrine system in impairing memory retrieval. In support of this view, 
previous !ndings indicate that the administration of a synthetic cannabinoid 
agonist dose-dependently increased norepinephrine levels in limbic and cortical 
regions (Oropeza et al., 2005; Page et al., 2007). 

A possible scenario is that endocannabinoids might in$uence noradrenergic 
function via an inhibition of GABAergic transmission (Campolongo et al., 2009; 
Hill and McEwen, 2009; Atsak et al., 2012). Although this possibility was originally 
proposed for GC-induced enhancement of memory consolidation involving 
the basolateral amygdala (Campolongo et al., 2009), CB1 receptors are also 
abundantly expressed on hippocampal GABAergic terminals and to a minor 
extent on glutamatergic terminals (Katona et al., 1999). An activation of CB1 
receptors has consistently been shown to suppress the release of GABA in the 
hippocampus through a Ca2+-dependent depolarization-induced suppression of 
inhibition (DSI) (Kano et al., 2009). In support of our !nding that CORT might a"ect 
memory retrieval via increased 2-AG endocannabinoid signaling, recent !ndings 
suggest that particularly 2-AG is involved in the modulation of DSI, and thus in the 
suppression of GABA release, in the hippocampus (Hashimotodani et al., 2008; 
Wang et al., 2009; Tanimura et al., 2010). Additionally, substantial evidence from 
pharmacological studies on memory consolidation has indicated that a blockade 
of GABAergic transmission with speci!c antagonists increases norepinephrine 
release from presynaptic sites (McGaugh, 2004). Based on these !ndings, a similar 
working model for GC-induced impairment of memory retrieval can be proposed: 
GCs !rst boost the release of 2-AG in the hippocampus. This endocannabinoid 
then binds to CB1 receptors on GABAergic interneurons to suppress the release 
of GABA, resulting indirectly in elevated norepinephrine levels, which, as we have 
shown in this study, impairs memory retrieval of salient information (Fig. S2). 



162

Ch
ap

te
r 5

Glucocorticoids interact with the hippocampal endocannabinoid system in impairing

As noted above, there is currently growing interest in GC in$uences on retrieval 
of memory of emotionally arousing experiences because of clinical !ndings 
indicating that GC administration to PTSD patients signi!cantly reduces re-
experiencing of highly traumatic memories and other chronic stress symptoms 
(Aerni et al., 2004, de Quervain et al., 2009). However, in a clinical setting the 
sustained use of GCs is undesirable because of the pleiotropic nature of these 
hormones to a"ect a wide array of physiological functions (e.g., immune and 
metabolic functions). The present !nding that the hippocampal endocannabinoid 
system is involved in mediating GC e"ects on memory retrieval impairment could 
aid in the development of non-GC-based therapies for PTSD. Although clinical 
studies have not as yet investigated interactions between these two stress 
systems, recent !ndings indicate that administration of the synthetic cannabinoid 
nabilone to PTSD patients resulted in a highly comparable reduction of treatment-
resistant daytime $ashbacks and nightmares (Fraser, 2009). Moreover, PTSD is 
often associated with high levels of cannabis consumption (Calhoun et al., 2000), 
which might be related, in part, to an inadequate activation of the endogenous 
GC and endocannabinoid systems in these patients (Yehuda, 2009). Furthermore, 
based on our !nding that systemic CORT administration impaired the retrieval of 
hippocampus-dependent contextual fear memory, without a"ecting the retrieval 
of hippocampus-independent auditory fear memory, it would seem important 
to also investigate whether GC or cannabinoid administration might selectively 
reduce the retrieval of hippocampus-dependent traumatic memories in PTSD 
patients.

Supporting Information

Tissue processing and lipid extraction for endocannabinoid measurement
After rapid decapitation, the hippocampus was dissected and placed in pre-
cooled tubes and frozen in liquid nitrogen within 3 min of decapitation. Tissue 
samples were stored at -80 °C until extraction. For detection of endocannabinoids, 
the collected hippocampal tissue was weighed and homogenized in 2 ml 
polypropylene tubes (Sarstedt, Numbrecht, Germany). For lipid extraction, internal 
standards consisting of the stable isotope labeled endocannabinoids arachidonyl 
ehanolamide-d4, 2-arachidonoyl glycerol-d5, palmitoyl ethanolamide-d4, 
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Drug  groups    
(mg/kg)  

Shock  trials  
1   2   3   4   5  

Vehicle   8  ±  5   27  ±  7   38  ±  5   51  ±  9   63  ±  8  

CORT  0.3   7  ±  2   32  ±  8   43  ±  8   43  ±  8   51  ±  8  

CORT  1   6  ±  3   20  ±  7   29  ±  7   54  ±  9   51  ±  11  

CORT  3   2  ±  1   17  ±  7   37  ±  11   44  ±  10   59  ±  10  

  

Table S1. Percentage freezing during training of contextual fear conditioning

There was no di"erence in the acquisition rate between later drug groups. Data are 
expressed as mean ± SEM (n = 10 –15/group).

  

Drug  groups      Shock  trials  
1   2   3   4   5  

Vehicle   Vehicle   29  ±  9   52  ±10   54  ±  9   62  ±  8   66  ±  9  

CORT  (3  mg/kg)   27  ±  15   40  ±  13   44  ±  15   44  ±  13   60  ±  13  

AM251   Vehicle   31  ±  8   47  ±  12   67  ±  9   58  ±  8   67  ±  6  

CORT  (3  mg/kg)   28  ±  5   44  ±  5   53  ±  5   67  ±11   81  ±  3  

  

Table S2. Percentage freezing during training of contextual fear conditioning.

There was no di"erence in the acquisition rate between later drug groups. Values are 
expressed as mean ± SEM (n = 11–15/group).

N-arachidonoyl dopamine-d8 and arachidonoyl glycine-d8 synthesized by Roche 
Diagnostics, Mannheim, Germany and Cayman Europe, Tallinn, Estonia was added 
to the tubes. The purity of these materials was >97.2%. Then 1 ml of methyl tertiary 
butyl ether (Sigma-Aldrich, Germany) was added and the mixture was vortexed 
for 30 s and centrifuged at 12,000 × g for 6 min. The clear supernatant was 
transferred into clean 2 mL polypropylene tubes (Sarstedt, Numbrecht, Germany) 
and evaporated under N2 at 37 °C. Dried organic phases were then reconstituted 
in 100 μL of acetonitrile, vortexed for 30 s, centrifugated at 12,000×g for 6 min and 
then endocannabinoid levels were determined with the high-performance liquid 
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Table S3. The e"ects of corticosterone administration before the non-training context exposure on 
the hippocampal tissue content of palmitoylethanolamine and oleoylethanolamine.

  

  

   PEA  (pmol/g  tissue)   OEA  (pmol/g  tissue)  

Vehicle    

CORT  0.3  

CORT  1  

CORT  3  

542  ±  54    

539  ±  33  

521  ±  52  

528  ±  43  

96  ±  10  

93  ±  10  

94  ±  8.2  

90  ±  7.1  

        

There was no e"ect of CORT (0.3, 1, 3 mg/kg) administration on the hippocampal tissue 
content of either palmitoylethanolamide (PEA) or oleoylethanolamine (OEA). Values are 
expressed as mean ± SEM (n = 10–15/group).

 
Drug groups  Shock trials 

1 2 3 4 5 

Vehicle 
Vehicle 25 ± 6 48 ±7 52 ± 9 57 ± 8 52 ± 8 

WIN (10ng) 11 ± 8 21 ± 10 24 ± 12 24 ± 11 42 ± 11 
WIN (30ng) 30 ± 6 51 ± 7 59 ± 8 64 ± 7 63 ± 8 

Propranolol 
Vehicle 14 ± 7 33 ± 8 42 ± 9 44 ± 8 40 ± 9 

WIN (10ng) 17 ± 6 24 ±7 43 ± 8 53 ±7 65 ± 8 

WIN (30ng) 34 ± 6 43 ± 7 60 ± 8 54 ± 7 56 ± 7 
 

Table S4. Percentage freezing during training of contextual fear conditioning.

There was no di"erence in the acquisition rate between later drug groups. Values are 
expressed as mean ± SEM (n = 10 – 14/group).

 
Drug groups  Shock trials 

1 2 3 4 5 

Vehicle 
Vehicle 26 ± 7 37 ± 8 50 ± 9 57 ± 7 66 ± 6 

NE (1 µg) 19 ± 8 32 ± 9 43 ± 12 53 ± 9 61 ± 9 
NE (3 µg) 20 ± 6 32 ± 9 44 ± 10 59 ± 7 66 ± 9 

AM251 
Vehicle 29 ± 8 45 ± 8 60 ± 9 63 ± 7 54 ± 9 

NE (1 µg) 32 ± 7 48 ±7 53 ± 6 58 ± 6 52 ± 8 

NE (3 µg) 19 ± 5 31 ± 8 38 ± 9 50 ± 10 49 ± 10 
 

Table S5. Percentage freezing during training of contextual fear conditioning

There was no di"erence in the acquisition rate between later drug groups. Values are 
expressed as mean ± SEM (n = 11–15/group).
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!

Figure S1. The e"ect of intrahippocampal WIN55,212-2 (WIN) or norepinephrine (NE) on freezing 
behavior during retention of auditory fear conditioning. (A) E"ect of NE (1 or 3 μg in 0.5 μl) infused 
into the dorsal hippocampus one hour before the auditory fear conditioning retention during 
baseline (B) and tone trials (T1-T4). Results represent mean ± SEM (n = 7 – 12) (B) E"ect of WIN (10 or 
30 ng in 0.5 μl) infused into the dorsal hippocampus one hour before the auditory fear conditioning 
retention during baseline and tone trials (T1-T4). Results represent mean ± SEM (n = 9–11/group).

Fig. S2. Model on the role of the 
endocannabinoid system in 
the hippocampus in mediating 
glucocorticoid e"ects on the 
noradrenergic system in inducing
memory retrieval impairment. 
Corticosterone (CORT) binds to a 
membrane-bound glucocorticoid 
receptor (GR) that activates a 
pathway to induce endocannabinoid 
(eCB) synthesis. Endocannabinoids 
are then released into the synapse, 
where they bind to CB1 receptors on 
GABAergic interneurons and thereby,
inhibit the release of GABA. 
This suppression of GABA 
release subsequently disinhibits 
norepinephrine (NE) release, resulting 
in an activation of the postsynaptic 
β-adrenoceptor and downstream 
signaling pathways.
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chromatography and a tandem mass spectrometry. 
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ABSTRACT

Considerable evidence indicates that stress exposure or glucocorticoid 
administration shortly before retention testing impairs the retrieval of spatial/
contextual memory in rats and of declarative memory in humans. However, 
other !ndings of human studies suggest that glucocorticoids are less e"ective 
in impairing the retrieval of recognition memory. Here we investigated in 
male Sprague-Dawley rats the e"ect of corticosterone (0.3 or 1 mg/kg. sc) 
administration, 1 h before retention testing, on the retrieval of two di"erent 
components of information acquired during an object recognition task. We found 
that corticosterone impaired recognition of both the training object per se and of 
the location of the objects during the training session, without in$uencing total 
exploration of the objects or experimental apparatus. In view of recent !ndings 
suggesting that glucocorticoid e"ects on memory retrieval impairment depend 
on rapid, nongenomically mediated interactions with the endocannabinoid 
system, we also investigated the involvement of endocannabinoid signaling in 
the e"ects of glucocorticoids on retrieval of these two components of object 
recognition memory. We found that the inverse CB1 agonist SR141716 (1 mg/kg) 
administered systemically before retention testing blocked the corticosterone-
induced impairment of retrieval of both components of object recognition 
memory. Thus, these !ndings indicate that glucocorticoids impair the retrieval of 
recognition memory and that these e"ects require concurrent endocannabinoid 
signaling.     
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INTRODUCTION

Glucocorticoid hormones (corticosterone in rodents, cortisol in humans), released 
from the adrenal cortex during emotionally arousing stimulation, are known to 
in$uence di"erent memory functions (Roozendaal, 2002; de Quervain et al., 2009; 
Roozendaal and McGaugh, 2011; Schwabe et al., 2011). Considerable evidence 
indicates that corticosterone or glucocorticoid receptor (GR) agonists administered 
to rats or mice shortly before retention testing impair the retrieval of previously 
acquired spatial and contextual memory (de Quervain et al., 1998; Rashidy-Pour 
et al., 2004; Roozendaal et al., 2004b; Cai et al., 2006; Schutsky et al., 2011; Atsak 
et al., 2012a). Likewise, human subjects treated with cortisol or cortisone before 
a retention test exhibit impaired free or cued recall on declarative memory 
paradigms (de Quervain et al., 2000; de Quervain et al., 2003; Buss et al., 2004; Het 
et al., 2005; Kuhlmann et al., 2005; Tollenaar et al., 2009). Few human studies also 
investigated the e"ect of glucocorticoids on retrieval of recognition memory (de 
Quervain et al., 2000; de Quervain et al., 2003; Tops et al., 2003; Domes et al., 2004; 
Buchanan et al., 2006). Findings of these studies indicate that glucocorticoids 
induce small and mostly nonsigni!cant recognition impairment. As free and cued 
recall of declarative information, as retrieval of spatial and contextual memory 
in rats, depend heavily on the hippocampus (Squire, 1992; Moser and Moser, 
1998; Tulving and Markowitsch, 1998; Holt and Maren, 1999) whereas recognition 
memory might rely more on cortical regions (Baxter and Murray, 2001; Winters 
et al., 2008), the relative sparing of recognition memory could be interpreted 
as suggesting that glucocorticoids preferably impair the retrieval of memory of 
hippocampus-dependent information. The present study investigated, in rats, 
the e"ects of systemic corticosterone administration, 1 h before retention testing, 
on the recognition of two di"erent components of information acquired during 
a single object recognition task, namely memory of the training object per se 
(object recognition memory) and memory of the location of the object during 
the training trial (object location memory). Studies on memory consolidation 
indicate that these two components of object recognition memory are processed 
by dissociable memory systems such that the representation of the object itself 
requires information processing within cortical regions, particularly the perirhinal 
and insular cortices, whereas memory regarding the location of the object within 
its context depends primarily on the hippocampus (Murray and Richmond, 2001; 
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Bermudez-Rattoni et al., 2005; Roozendaal et al., 2010) .   

A second aim of this study was to investigate whether glucocorticoid e"ects on 
the retrieval of these two components of object recognition memory depend 
on interactions with the endocannabinoid system. As glucocorticoid e"ects on 
memory retrieval are known to have a rapid onset, but also dissipate shortly 
after hormone levels return to baseline (de Quervain et al., 1998; Cai et al., 2006; 
Schutsky et al., 2011), the temporal dynamics of this glucocorticoid e"ect do not 
appear to be compatible with their classical genomic mode of action. Many recent 
investigations are aimed at determining the neural mechanisms underlying 
such presumably nongenomically mediated actions of glucocorticoids on 
physiology and behavior. Several studies have now indicated that stress exposure 
or glucocorticoid administration can launch a G-protein-dependent signaling 
cascade that induces the synthesis of endocannabinoid ligands (Di et al., 2003; 
Di et al., 2005). Endocannabinoids are small lipid-based molecules that are 
rapidly produced in response to increased neuronal activity. Once released, they 
act as retrograde neurotransmitter and bind to G protein-coupled cannabinoid 
type 1 (CB1) and cannabinoid type 2 (CB2) receptors on presynaptic sites to 
in$uence di"erent brain functions, including neural plasticity, learning and 
memory, and mood (Kano 2009, Freud 2003; Campolongo et al., 2009; Atsak et 
al., 2012a). In a recent study, we demonstrated that the endocannabinoid system 
within the hippocampus is essentially involved in mediating the rapid e"ects 
of glucocorticoids on retrieval of contextual fear memory (Atsak et al., 2012b). 
Systemic corticosterone administration elevated hippocampal levels of the 
endocannabinoid 2-arachidonoylglycerol, whereas a blockade of hippocampal 
CB1 receptors prevented the impairing e"ect of glucocorticoid administration 
on retrieval of contextual fear memory. The present study investigated whether 
antagonism of CB1 receptors with a systemic injection of its inverse agonist 
SR141716 1 h before retention testing blocks also the impairing e"ects of 
corticosterone on retrieval of these two components of object recognition 
memory. 
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METHODS

Animals. Male adult Sprague–Dawley rats (350–430 g at time of training) from 
Charles River Breeding Laboratories (Kisslegg, Germany) were kept individually in 
a temperature-controlled (22oC) colony room and maintained on a standard 12-h 
light: 12-h dark cycle (07:00-19:00 h lights on) with ad libitum access to food and 
water. Training and testing were conducted during the light phase of the cycle 
between 10:00 and 16:00 h. All procedures were performed in compliance with 
the European Communities Council Directive of November 24, 1986 (86/609/EEC) 
and were approved by the Institutional Animal Care and Use Committee of the 
University of Groningen, The Netherlands.

Drug treatment. The adrenocortical hormone corticosterone (0.3 or 1 mg/kg; 
Sigma-Aldrich) was dissolved either alone or together with the inverse CB1 
receptor agonist SR141716 (rimonabant, 5 - (4 - chlorophenyl) - 1 - (2,4 - dichloro-
phenyl) – 4 - methyl – N - (piperidin – 1 - yl) - 1H - pyrazole – 3 -carboxamide; 1 mg/
kg; Kemprotec Ltd, Middlesbrough, UK) in a vehicle containing 5% polyethylene 
glycol, 5% Tween-80 and 5% ethanol in saline and administered subcutaneously, 
in a volume of 2 ml/kg, 1 h before the retention test. Doses of corticosterone and 
SR141716 were selected on the basis of prior studies (de Quervain et al., 1998; 
Hauer et al., 2011; Atsak et al., 2012a).

Object recognition and object location retrieval tasks. The experimental apparatus 
was a gray open-!eld box (40 cm × 40 cm × 40 cm) with a sawdust-covered $oor, 
placed in a dimly illuminated room. The objects to be discriminated were white 
glass light bulbs (6 cm diameter and 11 cm length) and transparent glass vials 
(5.5 cm diameter and 5 cm height). All rats were handled for 5 days for 1 min each 
immediately preceding the training day. On the training trial, the rat was placed in 
the experimental apparatus and allowed to explore two identical objects (A1 and 
A2) placed 5 cm away from the corners of the apparatus for 10 min. To avoid the 
presence of olfactory trails, sawdust was stirred and the objects were thoroughly 
cleaned with 70% ethanol between rats. Rat’s behavior was recorded by using 
a video camera positioned above the experimental apparatus. The time spent 
exploring the two objects was taken as a measure of object exploration. Retention 
was tested 24 h after the training trial. Independent groups of rats were tested for 
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memory of the training object per se (i.e., object recognition memory) and for 
memory of the location of the objects during the training (i.e., object location 
memory). For object recognition memory testing, one copy of the familiar object 
(A3) and a new object (B) were placed at the same location as stimuli during the 
training trial. For object location memory testing, one copy of the familiar object 
(A3) was placed in the middle of the box and the other copy of the familiar object 
(A4) was placed in the same location as during the training trial. All combinations 
and locations of objects were used in a balanced order to reduce potential biases 
due to preference for particular locations or objects. The rat was placed in the 
experimental apparatus for 3 min and the time spent exploring each object and 
the total time spent exploring both objects were scored. Exploration of an object 
was de!ned as pointing the nose to the object at a distance of <1 cm and/or 
touching it with the nose. Turning around, climbing or sitting on an object was 
not considered as exploration. A discrimination index was calculated as the 
di"erence in time exploring the novel and familiar object (or location), expressed 
as the ratio of the total time spent exploring both objects. Rats showing a total 
exploration time < 5 s on either training or testing were excluded. To assess the 
rats’ exploratory behavior of the experimental apparatus on the retention test, 
the $oor of the apparatus was divided into four imaginary squares and the total 
number of crossings between quadrants was determined.

Plasma corticosterone levels. Corticosterone levels were determined in parallel 
groups of rats that were injected with corticosterone (0.3 or 1 mg/kg) and/or 
SR141716 (1 mg/kg) and sacri!ced 1 h later under pentobarbital (100 mg/kg) 
anesthesia. Trunk blood was collected in tubes containing 0.5 M EDTA and samples 
were centrifuged at 1,900×g at 4°C for 10 min. Plasma was stored at -20°C and 
analyzed for corticosterone using a radioimmunoassay, according to a previously 
described protocol (Lin et al., 2008).

Statistics. All data are expressed as mean ± SEM. Data were analyzed by two-
way analysis of variance (ANOVA) with corticosterone (3 levels) and SR141716 (2 
levels) as between-subject variables. Further analyses used Fisher post-hoc tests 
to determine the source of the signi!cance, when appropriate. One-sample t tests 
were used to determine whether the discrimination index was di"erent from zero. 
A probability level of < 0.05 was accepted as statistically signi!cant. The number 
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of rats per group is indicated in the !gure legends. 

RESULTS 

Systemic SR141716 treatment blocks corticosterone-induced retrieval 
impairment of object recognition memory 
This experiment investigated whether corticosterone (0.3 or 1 mg/kg) administered 
systemically 1 h before retention testing, 24 h after training, impairs retrieval of 
object recognition memory and whether concurrent blockade of CB1 receptors 
with SR141716 (1 mg/kg) prevents the corticosterone e"ect.  
Training trial: The average time spent exploring the two identical objects on the 
10-min training trial was 29.5 ±1.4 s.  Two-way ANOVA indicated no di"erences 
between groups that were subsequently assigned to receive corticosterone and/
or SR141716 (corticosterone: F1,55 = 0.05, P = 0.94; SR141716: F1,55 = 0.01, P = 0.93; 
corticosterone x SR141716: F1,55 = 2.61, P = 0.08). 
Retention trial: As is shown in Fig. 1A, one-sample t test revealed that the 
discrimination index of vehicle-treated rats was signi!cantly di"erent from 
zero (t10 = 7.20, P < 0.0001), indicating that control rats readily discriminated 
the novel object on the 24-h retention test. Two-way ANOVA for discrimination 
index showed no main e"ect of corticosterone treatment (F1,55 = 0.14, P = 0.86), 
but a signi!cant e"ect of SR141716 (F1,55 = 8.18, P = 0.005) as well as a signi!cant 

Figure 1. Corticosterone impairs retrieval of object recognition memory and SR141716 blocks this 
e"ect. (A) Discrimination index  (%) of rats that were administered either CORT (0.3 or 1 mg/kg) alone 
or together with SR141716 (1 mg/kg) 1 hr before the object recognition retention test. (B) Total 
time spent (s) exploring both objects during the object recognition retention test. (C) The quadrant 
crossings in the experimental apparatus during object recognition retention test. , p < 0.05; 
, p < 0.001 SR141716 groups compared to the corresponding vehicle, *, p <0.05 corticosterone 
compared to vehicle. All data is presented as mean ± SEM (n = 9 -12/group).
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interaction e"ect between these two treatments (F1,55 = 3.31, P = 0.04). Fisher 
post-hoc comparison tests indicated that corticosterone in a dose of 0.3 mg/
kg, but not 1 mg/kg, signi!cantly impaired the discrimination index (P < 0.05 
compared to vehicle). Further, one sample t test indicated that rats administered 
this lower dose of corticosterone did not show a preference for the novel object 
(t8 = 0.75, P = 0.47). Corticosterone treatment did not impair the discrimination 
index of rats that were also administered SR141716. The discrimination index of 
rats administered SR141716 alone or together with either dose of corticosterone 
did not di"er signi!cantly from that of the vehicle group (P > 0.41).

As is shown in Fig. 1B, two-way ANOVA for total exploration of the two objects 
on the retention test revealed a signi!cant SR141716 e"ect (F1,55 = 16.71, P < 
0.0001), but no corticosterone e"ect (F1,55 = 2.61, P = 0.09) or interaction between 
both factors (F1,55 = 0.24, P = 0.78). Corticosterone treatment did not a"ect total 
object exploration times, but rats treated with SR141716, irrespective of whether 
they had received corticosterone or not, exhibited less total exploration of the 
objects than rats not administered SR141716 (P < 0.001). Comparably, two-way 
ANOVA for drug e"ects on exploration of the experimental apparatus, assessed 
by the number of quadrant crossings on the retention test, revealed a signi!cant 
SR141716 e"ect (F1,55 = 6.11, P = 0.01), but no corticosterone e"ect (F1,55 = 0.56, P 

Figure 2. Cortciosterone impairs retrieval of object location memory and SR141716 blocks this 
e"ect. (A) Discrimination index (%) of rats that were administered either CORT (0.3 or 1 mg/kg) alone 
or together with SR141716 (1 mg/kg) 1 hr before the object location memory retrieval. (B) Total 
time spent (s) exploring both objects during the object location retention test. (C) The quadrant 
crossings in the experimental apparatus during object location retention test. All data is presented 
as mean ± SEM. , p < 0.001 SR141716 compared to the corresponding vehicle, ***, p <0.0001 
corticosterone groups compared to vehicle. All data is presented as mean  SEM (n = 9 - 14/group).
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= 0.57) or interaction between both treatments (F1,55 = 0.01, P = 0.98), indicating 
that SR141716 treatment also reduced general exploration of the experimental 
apparatus (Fig. 1C). 

Systemic SR141716 treatments blocks corticosterone-induced retrieval 
impairment of object location memory
This experiment investigated, in di"erent groups of rats, whether corticosterone 
(0.3 or 1 mg/kg) administered systemically 1 h before retention testing impairs 
retrieval of object location memory and whether concurrent blockade of CB1 
receptors with SR141716 (1 mg/kg) prevents this corticosterone e"ect.  
Training trial: The average total exploration time of the two identical objects on 
the 10-min training trial was 33.7 + 1.6 s. Two-way ANOVA indicated no e"ect of 
later corticosterone treatment (F2,61 = 2.47, P = 0.09), later SR141716 treatment 
(F1,61 = 0.12, P = 0.72) or interaction between these two treatments (F1,61 = 1.89, P 
= 0.16). 
Retention trial: As is shown in Fig. 2A, one-sample t test revealed that the 
discrimination index of rats administered vehicle 1 h before the retention test 
was signi!cantly di"erent from zero (t9 = 4.90, P < 0.001), indicating that these 
rats discriminated the object placed in the novel location on the 24-h retention 
test. Two-way ANOVA for discrimination index revealed signi!cant main e"ects 
of corticosterone (F2,61 = 4.20, P = 0.02) and SR141716 (F1,61 = 17.47, P < 0.0001) 

Figure 3. Plasma corticosterone levels of the rats 1 hr after the administration of CORT (0.3 or 1 mg/
kg) alone or together with SR141716 (1mg/kg). All data is presented as mean ± SEM. , p < 0.05 
compared to corresponding vehicle, ***, p <0.0001 corticosterone groups compared to vehicle. All 
data is presented as mean ± SEM (n = 9 -15/group).
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as well as a signi!cant interaction between these two treatments (F1,61 = 6.18, P 
= 0.004). Fisher post-hoc tests indicated that both doses of corticosterone (0.3 
and 1 mg/kg) signi!cantly impaired the discrimination index (for both doses: P 
< 0.0001 compared to vehicle). In addition, one-sample t tests indicated that the 
discrimination index of rats treated with corticosterone did not di"er signi!cantly 
from zero (0.3 mg/kg: t13 = - 0.70, P = 0.49, 1 mg/kg:  t12 = - 0.66, P = 0.51). Highly 
comparable to the !ndings of the !rst experiment, SR141716 treatment blocked 
the impairing e"ect of corticosterone on retrieval of object location memory. The 
discrimination index of rats administered SR141716 together with either dose 
of corticosterone was signi!cantly higher than those of rats administered the 
corresponding dose of corticosterone alone (for both doses: P < 0.001) and did 
not di"er signi!cantly from that of vehicle control rats (P > 0.62). 

As is shown in Fig. 2B, two-way ANOVA for the total time spent exploring the two 
objects on the retention test revealed a signi!cant SR141716 e"ect (F1,61 = 5.26, P 
= 0.02), but no corticosterone e"ect (F2,61 = 2.72, P = 0.08) or interaction e"ect (F2,61 
= 1.15, P = 0.32). Further, as is shown in Fig. 2C, two-way ANOVA for exploration 
of the experimental apparatus, as assessed by the number of quadrant crossings 
during the test session, indicated a signi!cant SR141716 e"ect (F1,61 = 4.20, P = 
0.04), but no corticosterone e"ect (F2,61 = 1.07, P = 0.38) or interaction between 
these two treatments (F2,61 = 1.17, P = 0.83) (Fig. 1D). Thus, consistent with the 
!ndings of the !rst experiment, whereas corticosterone did not a"ect exploration, 
SR141716 treatment induced a general reduction in the exploration of both 
objects and experimental apparatus. 

E"ects of corticosterone and SR141716 treatment on plasma corticosterone levels
Fig. 3 shows plasma corticosterone levels assessed 1 h after corticosterone (0.3 
or 1 mg/kg) and SR141716 (1 mg/kg) administration. Two-way ANOVA indicated 
signi!cant e"ects of corticosterone (F2,54 = 28.00, P < 0.0001) and SR141716 
treatments (F1,54 = 8.99, P = 0.004), but no interaction e"ect (F2,54 = 0.20, P = 0.81). 
Post-hoc analyses revealed that corticosterone administration dose-dependently 
elevated plasma corticosterone levels. Plasma levels induced by the higher dose 
of corticosterone (1 mg/kg) were signi!cantly higher than those of vehicle-treated 
rats (P < 0.0001), whereas plasma corticosterone levels induced by the 0.3 mg/
kg dose of corticosterone just failed to di"er signi!cantly from those of vehicle 
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controls (P = 0.06). SR141716 per se signi!cantly elevated plasma corticosterone 
levels (P < 0.05 vs. vehicle) and corticosterone treatment further increased these 
levels. Plasma corticosterone levels of rats administered SR141716 together 
with the 1 mg/kg dose of corticosterone were signi!cantly higher than those of 
rats treated with SR141716 only (P < 0.05) and did not di"er from those of rats 
administered corticosterone (1 mg/kg) alone (P = 0.24). 

DISCUSSION

The present study investigated the e"ects of glucocorticoid administration 
on the retrieval of two di"erent components of object recognition memory in 
rats. We found that corticosterone administered 1 h before retention testing 
impaired the retrieval of both object recognition and object location memory, 
without in$uencing total exploration time of the objects or general exploration 
of the experimental apparatus. Furthermore, a blockade of CB1 receptors with co-
administration of SR141716 prevented the impairing e"ects of corticosterone on 
retrieval of both components of object recognition memory. 

Prior studies investigating stress and glucocorticoid e"ects on memory retrieval 
indicated that high circulating levels of glucocorticoids at the time of retention 
testing impaired the recall of hippocampus-dependent spatial/contextual 
information in animals and of declarative information in humans (Roozendaal, 
2002; de Quervain et al., 2009). An essential involvement of the hippocampus, 
which expresses high levels of adrenal steroid receptors (McEwen, 2001), in 
regulating glucocorticoid e"ects on memory retrieval of spatial and contextual 
information was further demonstrated by !ndings of pharmacological studies in 
rats indicating that the administration of corticosterone or selective GR agonists 
directly into the dorsal hippocampus shortly before retention testing induced 
comparable memory retrieval impairment (Roozendaal et al., 2003; Roozendaal 
et al., 2004a; Schutsky et al., 2011). Furthermore, human neuroimaging studies 
indicated that cortisone administered shortly before recall testing reduced activity 
of the parahippocampal gyrus, an e"ect that was associated with impaired cued 
recall of words (de Quervain et al., 2003; Oei et al., 2007). In contrast, the few human 
studies that investigated the e"ect of cortisol on recall of recognition memory 
reported !nding only modest and nonsigni!cant impairment (de Quervain et al., 
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2000; de Quervain et al., 2003; Buchanan et al., 2006). Collectively, these !ndings 
led to the suggestion that glucocorticoids might preferably impair the retrieval of 
hippocampus-dependent memories. 

Our current !ndings indicating that corticosterone administration impaired not 
only the retrieval of object location memory but also of object recognition memory 
suggest that glucocorticoids might have a more general inhibitory in$uence on 
memory retrieval. As the corticosterone did not a"ect either total exploration of 
the objects or of the experimental apparatus, the impaired discrimination index is 
thus not caused by any general in$uence of corticosterone on exploratory behavior 
or a reduced interest of the rats in the objects. Rather, the !ndings are consistent 
with the view that corticosterone impaired neural processes underlying the 
retrieval of recognition memory. The corticosterone-induced retrieval impairment 
of object location memory is likely mediated by the hippocampus. On the other 
hand, cortical regions, particularly the perihinal and insular cortices, are broadly 
implicated in both the consolidation and recall of object recognition memory 
(Baxter and Murray, 2001; Winters et al., 2008). Recently, we reported a double 
dissociation between the e"ects of pharmacological activation of the insular 
cortex and hippocampus and the enhanced consolidation of object recognition 
and object location memory, respectively (Roozendaal et al., 2010). Findings of 
other studies indicated that posttraining administration of corticosterone or GR 
agonists in the insular cortex also enhance the consolidation of object recognition 
memory (Roozendaal et al., 2010) as well as that of memory of other training  
(Miranda et al., 2008; Roozendaal et al., 2010). Although prior studies have not 
examined the e"ects of glucocorticoid infusions into these cortical regions on 
memory retrieval, it seems likely that the systemically administered corticosterone 
might have acted directly upon the insular and/or perirhinal cortex in inducing 
retrieval impairment of object recognition memory (Winters et al., 2008). However, 
some lesion studies suggested also an involvement of the hippocampus in 
object recognition memory (Broadbent et al., 2004). Although very large lesions, 
destroying 75-100 % of the hippocampal volume, were necessary to induce 
impairment on an object recognition task, we cannot completely exclude the 
possibility that the hippocampus has a role in regulating glucocorticoid e"ects 
on the retrieval of both components of recognition memory. Nevertheless, our 
!ndings indicating glucocorticoid-induced recognition impairment appear to 
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di"er with the small and nonsigni!cant recognition de!cits observed in human 
studies. As recognition memory paradigms in humans are typically rather simple 
compared to free or cued recall tasks and glucocorticoids are known to induce 
impairment of recall performance only when the task is su#ciently demanding 
(Diamond et al., 1999; de Quervain et al., 2000; de Quervain et al., 2003; Buchanan 
et al., 2006), the discrepancy between the relative absence of a glucocorticoid 
e"ect on recognition memory in humans and our !ndings is possibly explained 
by a di"erence in the demand of the tasks employed. 

Our !ndings further indicate that the endocannabinoid system is essentially 
involved in mediating the impairing e"ects of glucocorticoids on retrieval of 
these two components of recognition memory. We found that the administration 
of the inverse CB1 receptor agonist SR161714 blocked the impairing e"ect of 
corticosterone on retrieval of both object recognition and object location memory. 
The !nding that SR141716 also reduced total exploration of the objects and 
experimental apparatus, without directly a"ecting the preference for the novel 
object or location, is in line with previous reports indicating that CB1 blockade 
in$uences habituation and explorative behaviors (Kamprath et al., 2006). Our 
!ndings add to the increasing evidence indicating the existence of bidirectional 
and functional interactions between glucocorticoids and the endocannabinoid 
system (Patel, 2004; Hill and McEwen, 2009; Evanson et al., 2010; Hill and McEwen, 
2010; Hill et al., 2010b). Prior !ndings show that glucocorticoids, possibly by 
activating a GR on the cell membrane, rapidly elevate endocannabinoid levels in 
speci!c brain regions (Hill et al., 2010a; Atsak et al., 2012b; Wang et al., 2012). The 
released endocannabinoids then activate CB1 receptors on presynaptic sites to 
a"ect neuronal function (Freund et al., 2003; Kano et al., 2009). CB1 receptors are 
abundantly present in memory-related brain regions such as the hippocampus, 
amygdala and cortex (Katona et al., 1999; Katona et al., 2000; Katona et al., 2001). In 
a previous study (Atsak et al., 2012a), we reported that endocannabinoid signaling 
within the hippocampus is essentially involved in mediating the impairing e"ects 
of glucocorticoids on retrieval of highly arousing contextual fear memory. Here, 
we extend these !ndings and show that endocannabinoid signaling is also 
involved in mediating glucocorticoid e"ects on retrieval of non-aversive object 
recognition memory. 
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As the endocannabinoid system is also implicated in regulating the stress 
response; particularly, a suppression of endocannabinid signaling is known to 
alter hypothalamic-pituitary-adrenal (HPA) axis activity (Patel, 2004; Steiner et 
al., 2008; Hill and McEwen, 2010; Hill et al., 2011), we determined plasma levels 
of corticosterone in parallel groups of animals 1 h following drug treatment. 
Our !nding that SR141716 treatment alone elevated plasma corticosterone 
levels is consistent with previous evidence indicating that a genetic disruption 
or pharmacological blockade of CB1 receptor signaling also increases HPA-axis 
activity (Hill and McEwen, 2010). However, as SR141716-treated rats, despite 
having higher corticosterone levels, did not show impairment of memory 
retrieval on either the object recognition or object location tasks, these !ndings 
demonstrate that SR141716 did not rescue the glucocorticoid-induced memory 
retrieval impairment by altering HPA-axis activity and resultant circulating 
corticosterone levels. Thus, consistent with our previous !ndings indicating that 
local infusion of CB1 antagonist into the hippocampus blocked corticosterone 
e"ects on memory, in the present study systemic SR141716 administration likely 
prevented the glucocorticoid-induced memory retrieval impairment by directly 
blocking endocannabinoid signaling in memory-related brain regions. 

In summary, the present !ndings that corticosterone administration impairs 
the retrieval of both object recognition and object location memory show that 
glucocorticoids might in$uence memory retrieval processes more generally 
than previously thought. Our !ndings also provide strong support for the view 
that endocannabinoid signaling is a common mediator of rapid, nongenomic 
glucocorticoids e"ects on adaptive responses to stress, behavior and memory 
(Hill et al., 2010a; Tasker and Herman, 2011; Atsak et al., 2012a; Atsak et al., 2012b). 
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1. Summary

1.1. Endocannabinoids mediate nongenomic glucocorticoid e"ects on memory 
consolidation
Substantial evidence indicates that glucocorticoids, along with other components 
of the stress response, are critically involved in regulating the consolidation of 
memory of emotionally arousing experiences (Flood et al., 1978; de Kloet, 2000; 
Roozendaal, 2000; McGaugh and Roozendaal, 2002; Roozendaal, 2002; Het et 
al., 2005; Sandi and Pinelo-Nava, 2007; de Quervain et al., 2009; Roozendaal et 
al., 2009). Such glucocorticoid-induced enhancement of memory consolidation 
seems to entail the selective activation of the low-a#nity glucocorticoid receptor 
(GR) (Oitzl and de Kloet, 1992; Roozendaal and McGaugh, 1997). Accordingly, 
the activation of GRs by agonists administered into many di"erent brain regions 
has been reported to enhance memory consolidation of many di"erent kinds of 
emotionally arousing learning experiences, including inhibitory avoidance (IA), 
contextual and cued fear conditioning, water-maze spatial and cued training, 
object recognition and conditioned taste aversion (Roozendaal et al., 2006a). 
Glucocorticoids are thought to modulate neurophysiology and behavior through 
both genomic and nongenomic pathways (de Kloet, 2000; Dallman, 2005) and 
recently the endocannabinoid system emerged as a potential candidate to 
regulate some of the nongenomic actions of glucocorticoids. A single injection 
of a stress dose of glucocorticoids is known to rapidly boost up endocannabinoid 
signaling within limbic brain regions. Previous !ndings indicate that elevated 
endocannabinoid levels within hypothalamic regions are important in mediating 
glucocorticoid-induced fast inhibition of the hypothalamic–pituitary–adrenal 
(HPA) axis (Tasker and Herman, 2011). In chapter 4, we showed that the CB1 
receptor antagonist AM251 administered into the basolateral amygdala (BLA) 
after IA training blocked the memory–enhancing e"ect of the GR agonist RU 
28362. These !ndings extend previous evidence indicating that CB1 receptor 
blockade in the BLA prevents the memory-enhancing e"ects of systemically 
administered corticosterone (Campolongo et al., 2009). Thus these results 
indicate that endocannabinoid signaling within the BLA is essentially involved 
in regulating the memory-enhancing e"ects of glucocorticoids. Furthermore, we 
found that a blockade of CB1 receptors in the BLA immediately after IA training 
also prevented the memory-enhancing e"ects of a coadministration of the 
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membrane-impermeable ligand Cort:BSA. Based on these !ndings, it appears 
that the memory-enhancing e"ects of glucocorticoids most likely involve the 
activation of a GR on the cell surface. Consistent with these !ndings, Tasker and 
colleagues reported that the activation of a membrane GR launches a G-protein-
dependent signaling cascade that induces the synthesis of endocannabinoid 
ligands (Di et al., 2003; Evanson et al., 2010). Collectively, these data suggest 
that the activation of the endocannabinoid system by post-training GR agonist 
infusions within the BLA might have mediated the memory-enhancing e"ects of 
glucocorticoids. 

Other stress-activated response systems such as central corticotropin-releasing 
factor (CRF) are also potent modulators of memory consolidation (Roozendaal 
and McGaugh, 2011). In chapter 4, we also demonstrated that the CB1 receptor 
antagonist AM251 administered into the BLA after IA training blocked the 
memory-enhancing e"ect of concurrently administered CRF6-33, indicating that 
the endocannabinoid system is also required for enabling the enhancing e"ects 
of other stress-related systems on memory consolidation. However, as we discuss 
in that chapter, it is possible that glucocorticoids interact with the memory-
enhancing e"ects of CRF receptor activation via an endocannabinoid-dependent 
mechanism.

Since arousal-induced noradrenergic activity is crucially required for enabling 
glucocorticoid e"ects on memory consolidation (Roozendaal and McGaugh, 
2011), we set out to explore interactions between the endocannabinoid and 
noradrenergic systems to examine whether endocannabinoids mediate the 
rapid actions of glucocorticoids on the noradrenergic system in enhancing 
memory consolidation. We found that the CB agonist WIN55,212-2 infused 
into the BLA immediately after an IA learning experience enhanced memory 
consolidation; however, immediate posttraining infusions of the -adrenoceptor 
antagonist propranolol blocked the enhancing e"ect of WIN55,212-2 on 
memory consolidation. Conversely, the CB1 receptor antagonist AM251 infused 
into the BLA, as with a GR antagonist shifted the dose-response e"ects of the 
β-adrenoceptor agonist clenbuterol such that a much higher dose of clenbuterol 
was required to induce memory enhancement. These !ndings strongly suggest 
that glucocorticoids, via an endocannabinoid-dependent mechanism, render 
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the BLA more sensitive to the memory-enhancing e"ects of noradrenergic 
stimulation. 

Moreover, arousal-induced noradrenergic activity is tightly linked to an 
activation of the intracellular protein kinase A pathway and thereby leads to the 
phosphorylation of cAMP response binding element (pCREB) protein. Previous 
!ndings indicated that glucocorticoids increase pCREB activation in the BLA via an 
interaction with the noradrenergic system (Roozendaal et al., 2006b). Many !ndings 
support the view that an activation of the transcription factor CREB initiates gene 
expression important for memory formation. For example, interference with CREB 
activation through genetic or pharmacological manipulations leads to memory 
impairment, whereas an activation of CREB is associated with an enhanced 
memory formation (Silva et al., 1998; Bozon et al., 2003; Josselyn et al., 2004). As 
glucocorticoids are known to increase pCREB activation via an interaction with 
arousal-induced norepinephrine, we tested whether CB1 receptor antagonism 
would block the corticosterone-induced increase in pCREB expression within the 
BLA. We found that CB1 receptor blockade with a systemic injection of SR141716 
prevented the increase in pCREB expression in the BLA as well as blocked the 
memory-enhancing e"ects of corticosterone. These !ndings clearly indicate that 
endocannabinoids enhance the consolidation of memory via an interaction with 
the noradrenergic system. 

Endocannabinoids have been suggested to in$uence noradrenergic function via 
an inhibition of GABAergic transmission (Campolongo et al., 2009; Hill and McEwen, 
2009; Atsak et al., 2012b). CB1 receptors are abundantly present on local inhibitory 
GABAergic interneurons in the BLA (Katona et al., 2001; McDonald and Mascagni, 
2001). A recent study indicated that CB1 receptors are particularly enriched in axon 
terminals of cholecystokinin (CCK)-positive interneurons and form invaginating 
perisomatic synapses with pyramidal neurons in the BLA (Yoshida et al., 2011). 
CCK-positive interneurons have been proposed to function as !ne-tuning devices 
for the cooperation of pyramidal neurons, which are sensitive to the emotional 
and motivational state of the animal (Freund et al., 2003). Various studies have 
reported that an activation of CB1 receptors regulates long-term depression at 
inhibitory synapses and decreases GABAergic synaptic transmission (Katona et al., 
1999; Ohno-Shosaku et al., 2001; Freund and Hajos, 2003). Substantial evidence 
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demonstrates that an inhibition of local GABAergic circuits in the BLA enhances 
memory consolidation (Brioni et al., 1989; Castellano et al., 1989; McGaugh, 2004) 
by increasing the release of norepinephrine from presynaptic sites (Hat!eld 
et al., 1999). Additionally, GABAergic receptor antagonists are known to act 
postsynaptically to increase the excitability of BLA pyramidal neurons (Azad et al., 
2004; Pistis et al., 2004; Zhu and Lovinger, 2005; Yoshida et al., 2011). These !ndings, 
together with the evidence that glucocorticoids and CRF enhance the excitability 
of BLA pyramidal neurons by decreasing the impact of inhibitory GABAergic 
in$uences (Rainnie et al., 1992; Duvarci and Paré, 2007), support the hypothesis 
that nongenomically mediated actions of glucocorticoids on the noradrenergic 
system require a rapid increase in endocannabinoid signaling within the BLA to 
e"ectively shut o" local inhibitory GABAergic interneurons. Such a suppression 
of GABAergic activity might then result in augmented noradrenergic signaling in 
BLA pyramidal neurons and an enhanced consolidation of long-term memory of 
emotionally arousing experiences. 

1.2. Endocannabinoids mediate nongenomic glucocorticoid e"ects on memory 
retrieval
Opposite to the enhancing e"ects of glucocorticoids on the consolidation 
of memory, stress or pharmacologically induced increases in glucocorticoid 
levels exert temporary impairment of retrieval of memory of contextual/spatial 
information in rats and declarative information in human subjects (de Quervain 
et al., 1998; de Quervain et al., 2000b; Roozendaal et al., 2003; Roozendaal et al., 
2004a; Roozendaal et al., 2004b; de Quervain et al., 2009). Since the hippocampus 
has long been implicated in the retrieval of contextual/spatial and declarative 
memory (Holt and Maren, 1999; Corcoran and Maren, 2001) and expresses high 
levels of adrenal steroid receptors (McEwen, 2001), these !ndings have been taken 
to suggest that hippocampus-dependent memories are particularly sensitive to 
the disruptive e"ects of glucocorticoids. An involvement of the hippocampus in 
regulating glucocorticoid e"ects on memory retrieval of spatial and contextual 
information was further shown by !ndings of pharmacological studies in rats 
indicating that corticosterone or selective GR agonists administered directly into 
the dorsal hippocampus shortly before retention testing induces comparable 
memory retrieval impairment (Roozendaal et al., 2003; Roozendaal et al., 2004a; 
Schutsky et al., 2011). In Chapter 5, we reported that systemic corticosterone 



199

Ch
ap

te
r 7

General Discussion 

induces dose-dependent retrieval impairment of contextual fear memory without 
in$uencing the retrieval of hippocampus-independent auditory fear memory. 
The !ndings of other studies investigating whether glucocorticoids might impair 
memory retrieval on hippocampus-independent learning tasks are consistent with 
our current observation that glucocorticoids seem to have little or no e"ect on 
retrieval of auditory fear memory or other hippocampus-independent memories 
(Kirschbaum et al., 1996; Schutsky et al., 2011). Since both tasks employed the 
same behavior (freezing) as an index of memory, these results further strengthen 
the view that the glucocorticoid administration speci!cally impaired the retrieval 
of memory, rather than nonselectively altering the expression of the behavior. 

Evidence  indicates  that glucocorticoids selectively impair the retrieval of 
emotionally arousing, but not neutral, information because of an essential 
interaction with arousal-induced noradrenergic activation. For instance, 

-adrenoceptor antagonist administered systemically or directly into the 
hippocampus blocks the impairing e"ects of glucocorticoids on memory 
retrieval (Roozendaal et al., 2004a; Roozendaal et al., 2004b). Similarly, human 
studies indicated that the β-adrenoceptor antagonist propranolol blocked the 
impairing e"ect of cortisone on retrieval of emotionally arousing words (de 
Quervain et al., 2007). Overall these studies indicate an essential interaction 
between the noradrenergic and glucocorticoid systems in mediating stress 
e"ects on memory retrieval. However the induction of noradrenergic activity 
by glucocorticoids occurs too rapid to be mediated by the classical genomic 
mechanism of glucocorticoids (McReynolds et al., 2010). Recently, there has been 
a growing interest in endocannabinoids as a potential candidate to mediate 
these rapid glucocorticoid e"ects on noradrenergic activity (Atsak et al., 2012b). 
In chapter 5, we provide novel and convincing evidence for a critical involvement 
of hippocampal endocannabinoid signaling in mediating glucocorticoid-induced 
impairment of memory retrieval. We showed that a blockade of hippocampal 
CB1 receptors by local infusions of AM251 prevented the impairing e"ects of 
systemically administered glucocorticoids on retrieval of contextual fear memory, 
whereas the corticosterone induced a signi!cant elevation in hippocampal 
2-arachidonoylglycerol (2-AG), but not anandamide (AEA), levels in the same time 
course of retention test. In order to determine whether endocannabinoids mediate 
the e"ects of glucocorticoids on the noradrenergic system, we further examined 
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possible interactions between the endocannabinoid and noradrenergic systems 
on retrieval of contextual fear memory. We showed that the CB receptor agonist 
WIN55,212-2 infused into the hippocampus 1 h before retention testing impaired 
the retrieval of contextual fear memory; however, co-infusion of the -adrenoceptor 
antagonist propranolol blocked the impairing e"ects of    WIN55,212-2. Conversely, 
the CB1 receptor antagonist AM251 infused into hippocampus together with 
an impairing dose of norepinephrine failed to abolish the impairing e"ect of 
norepinephrine on memory retrieval. Collectively, these data indicate that 
endocannabinoids interact with the noradrenergic system in in$uencing memory 
retrieval and that the noradrenergic system appears to be located downstream, at 
least functionally, from the endocannabinoid system. Several other studies have 
reported that systemic or local administration of cannabinoid analogs increases 
the release of norepinephrine in speci!c brain regions (Oropeza et al., 2005; Page 
et al., 2007; Carvalho and Van Bockstaele, 2012). Although the mechanism of 
how cannabinoids boost up the release of norepinephrine is not entirely clear, 
one possibility is a direct e"ect of cannabinoid analogs on the locus coeruleus 
(LC) (Mendiguren and Pineda, 2004; Mendiguren and Pineda, 2006; Muntoni et 
al., 2006). It has been shown that the administration of the CB1 reverse agonist 
SR141716A causes a signi!cant reduction of spontaneous !ring of LC neurons, 
suggesting that the LC might be under control of an endogenous cannabinoid 
tone. 

Endocannabinoids also in$uence other neurotransmitter systems, for instance, 
the e"ects on glutamate and GABA are well described (Hashimotodani et al., 
2007; Kano et al., 2009). Thus, another possibility is that endocannabinoids exert 
their in$uence on the noradrenergic system indirectly by !rst a"ecting other 
neurotransmitter systems. For instance, within the BLA and hippocampus, CB1 
receptors are predominantly located on GABAergic terminals and activation of 
these receptors decreases GABA release (Ohno-Shosaku et al., 2001; Freund et 
al., 2003; Kano et al., 2009) via a rapid inhibition of Ca2+ in$ux into the terminals 
(Ho"man and Lupica, 2000; Wilson et al., 2001). Furthermore, as described above, 
it has been reported that the amygdalar GABAergic system modulates memory 
consolidation (McGaugh and Roozendaal, 2002) and that an inhibition of 
GABAergic activity within the BLA enhances memory consolidation by increasing 
the release of norepinephrine (Hat!eld et al., 1999). In view of this evidence, it is 



201

Ch
ap

te
r 7

General Discussion 

suggested that endocannabinoids can stimulate the release of norepinephrine 
by binding to presynaptically located CB1 receptors on GABAergic terminals, 
thereby inhibiting the release of GABA (Campolongo et al., 2009; Hill and McEwen, 
2009; Atsak et al., 2012b). Collectively, these !ndings strongly suggest that the 
endocannabinoid system might mediate glucocorticoid e"ects on memory 
retrieval via an in$uence on the noradrenergic system.

Very few studies investigated the e"ect of glucocorticoids on recall of recognition 
memory.  In contrast to the e"ects seen on retrieval of declarative and contextual 
memory, these studies reported small and nonsigni!cant e"ects of glucocorticoids 
on the retrieval of this kind of memory (de Quervain et al., 2000a; de Quervain 
et al., 2003; Buchanan et al., 2006). Therefore, in chapter 6, we investigated the 
e"ects of systemic corticosterone administration on the recognition of two 
di"erent components of information acquired during object recognition training, 
i.e., memory of the object per se and memory of the location of the object. We 
found that corticosterone, administered 1 h before retention testing, impaired 
the retrieval of both aspects of object recognition memory. Studies on memory 
consolidation indicate that these two components of object recognition memory 
are processed by dissociable memory systems such that the representation 
of the object itself requires information processing within cortical regions, 
particularly the perirhinal and insular cortices, whereas memory regarding the 
location of the object within its context depends primarily on the hippocampus 
(Murray and Richmond, 2001; Bermudez-Rattoni et al., 2005; Roozendaal et al., 
2010). Thus, it is possible that glucocoticoids might have impaired the retrieval 
of these two components of object recognition memory by acting onto di"erent 
brain regions. However, as some lesion studies suggested also an involvement 
of the hippocampus in object recognition memory (Broadbent et al., 2004), the 
possibility that the hippocampus takes a role in regulating glucocorticoid e"ects 
on the retrieval of both components of recognition memory cannot be excluded 
at the present time. Importantly, we also demonstrated that systemic blockade of 
CB1 receptors with SR141716 prevented the impairing e"ects of glucocorticoids 
on retrieval of both aspects of recognition memory. These results suggest that 
the endocannabinoid system is essentially involved in regulating the impairment 
of retrieval of recognition memory, possibly by in$uencing di"erent memory-
related brain regions. 
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1.3. Comparison of the two models
The !ndings discussed thus far demonstrate that the endocannabinoid system 
is crucially involved in regulating glucocorticoid e"ects on both memory 
consolidation and memory retrieval. Glucocorticoids rapidly launches the 
activation of the endocannabinoid system in di"erent brain regions including the 
hippocampus and amygdala (Hill et al., 2010), possibly through a nongenomic 
mechanism involving a Gs-coupled membrane-bound receptor (Di et al., 2003; 
Di et al., 2005a; Di et al., 2005b; Malcher-Lopes et al., 2006; Di et al., 2009). This 
increased endocannabinoid signaling might mediate the modulatory e"ects on 
both memory consolidation and memory retrieval via rapid interactions with the 
noradrenergic system. Thus, the described models for endocannabinoid regulation 
of glucocorticoid e"ects seem to be highly similar for memory consolidation 
and retrieval. However, although not explored in this thesis, there might be 
subtle but important di"erences. For example, depending on the brain region 
investigated endocannabinoids can a"ect neurotransmitter systems other than 
GABA. Both in the hippocampus and BLA, CB1 receptors are abundantly present 
in GABAergic and into a minor extent glutamatergic cells and the activation of 
CB1 receptors can modify the release of both neurotransmitters (Katona et al., 
1999; Katona et al., 2001; Azad et al., 2003; Kawamura et al., 2006; Kano et al., 
2009). The glucocorticoid-induced fast inhibition of the HPA axis is mediated by an 
endocannabinoid-dependent inhibition of glutamatergic inputs to CRF-releasing 
cells within the paraventricular nucleus (Tasker and Herman, 2011). Since we did 
not investigate the neurotransmitter systems mediating the endocannabinoid 
e"ects on memory consolidation and memory retrieval, it remains unknown 
whether glucocorticoid-induced changes in endocannabinoid signaling 
underlying memory consolidation and memory retrieval rely predominantly on 
GABAergic, glutamatergic or yet another neurotransmitter systems.  

Additionally, some studies suggested that di"erent endocannabinoid ligands 
might mediate di"erent physiological processes. Thus another possible unexplored 
distinction between the two mechanisms can be the exact endocannabinoid 
ligand mediating the glucocorticoid e"ects on memory consolidation and 
memory retrieval. This suggestion originated particularly from studies indicating 
that endogenous AEA and 2-AG ligands are di"erently modulated by emotional 
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stimuli (Marsicano et al., 2002; Busquets-Garcia et al., 2011). Some evidence 
indicated that stress and glucocorticoids might induce di"erent e"ects on AEA 
and 2-AG levels in brain regions like the amygdala, hippocampus and prefrontal 
cortex. For instance, a single episode of stress was reported to decrease AEA levels 
in the amygdala without changing 2-AG levels. Taking into account the anxiolytic 
e"ects of inhibitors of the AEA-catalyzing enzyme fatty acid amide hydrolase 
(Kathuria et al., 2003), the decline in AEA signaling that occurs in response to 
stress is taken to contribute to increased emotional and anxiety-like behaviors 
that accompany stress exposure (Hill and McEwen, 2010). However, a single 
glucocorticoid injection induces a di"erent response pattern and rapidly elevates 
AEA levels without altering the 2-AG levels. These results are taken to suggest that 
glucocorticoids might be functioning to reinstate homeostasis after stress (Hill 
and McEwen, 2010). 

Some studies also reported that AEA, rather than 2-AG, is implicated in the 
e"ects of cannabinoids on memory consolidation. For example, systemic 
pharmacological manipulation of AEA tone has been implicated in regulating 
the modulatory e"ects of endocannabinoids on memory consolidation (Costanzi 
et al., 2004; Busquets-Garcia et al., 2011). Moreover, rats trained on an IA task 
had higher levels of AEA in the BLA than rats that were only exposed to the IA 
context. Post-training infusions of the AEA-hydrolysis inhibitor URB597 into the 
BLA, increasing AEA levels, resulted in an enhanced memory consolidation of 
IA training (Morena et al, unpublished observation). Taken together, it is thus 
possible that AEA might be the major endocannabinoid mediating the memory-
enhancing e"ects of post-training infusions of GR agonist (chapter 4). In contrast, 
in chapter 5 we reported that the administration of an retrieval impairing dose 
of corticosterone shortly before memory retrieval testing selectively increased 
hippocampal levels of 2-AG without a"ecting those of AEA. Thus, such !ndings 
suggest the intriguing possibility that AEA might be predominantly involved in 
regulating the enhancing e"ects of glucocorticoids on memory consolidation, 
whereas 2-AG might be more involved in regulating glucocorticoid e"ects on 
memory retrieval impairment. Further, it cannot be excluded that an involvement 
of AEA relative to 2-AG in regulating glucocorticoid e"ects on di"erent memory 
functions is also highly dependent on the brain region investigated. 



204

Ch
ap

te
r 7

General Discussion 

2. Other Mediators of Nongenomic Glucocorticoid Actions 

The !ndings presented in this thesis show that endocannabinoids, released 
upon activation of a membrane GR, are an important regulator of nongenomic 
glucocorticoid actions on di"erent memory processes. However, there are also 
other known mediators of nongenomic actions of glucocorticoids. A recent study 
reported that activation of membrane GRs evokes the release of nitric oxide, another 
retrograde messenger, from pyramidal cells in the hippocampus (Hu et al., 2010). 
This released nitric oxide di"uses back to the presynaptic membrane and rapidly 
induces the release of GABA from hippocampal interneurons and hypothalamic 
magnocellular neurons (Di et al., 2009; Hu et al., 2010). Glucocortiocoids also 
enhance glutamate transmission in hippocampal CA1 pyramidal neurons in the rat 
(Karst et al. 2005). Since this rapid steroid e"ect is eliminated by pharmacological 
blockade of mineralocorticoid receptors (MRs) and furthermore is lost in mice 
with a  conditional knockout of the MR in the forebrain, but not of the GR (Karst et 
al., 2005; Olijslagers et al., 2008), this rapid corticosteroid e"ect is likely mediated 
by a direct activation of a presynaptic membrane-associated MR. This membrane-
associated MR has a 10-fold lower a#nity than the regular MR which means its 
occupation, like of the GR, is more prevalent during stress compared to basal 
conditions (Kloet 2000). Di"erent from nongenomic membrane GR e"ects, this 
fast MR-mediated e"ect on glutamatergic transmission has been shown to be 
endocannabinoid independent (Karst et al., 2010). 

Evidence is accumulating in support of a postsynaptically located MR mediating 
fast glucocorticoids e"ects on various aspects of AMPA receptor tra#cking (Groc 
et al., 2008). AMPAs are ionotropic glutamate receptors that mediate the majority 
of fast excitatory transmission in the brain. They are heterotetramers, comprised 
of a combinatorial assembly of four subunits, GluR1–GluR4, in which GluA1 and 
GluA2 are essentially linked to the formation of emotional memories (Wisden 
and Seeburg, 1993; Hollmann and Heinemann, 1994). Glucocorticoids, via an 
MR-dependent mechanism, have been shown to facilitate AMPA tra#cking, 
in particular, by increasing the membrane expression and synaptic insertion of 
GluA2 subunits (Groc et al., 2008; Krugers et al., 2010; Joels et al., 2011). Moreover, 
norepinephrine also targets AMPA receptors. Considerable evidence indicates 
that norepinephrine facilitates the phosphorylation of the AMPA subunit GluA1 
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by activating protein kinase A and calcium/calmodulin kinase II/ protein kinase 
C (Hu et al., 2007; Joels et al., 2011). It is known that phosphorylation of GluA1 
promotes AMPA-receptor tra#cking to synapses and contributes to the synaptic 
strengthening and the induction of long-term potentiation (Barry and Zi", 2002; 
Song and Huganir, 2002; Bredt and Nicoll, 2003; Malenka and Bear, 2004). These 
e"ects of norepinephrine on AMPA signaling have been proposed to underlie 
the mechanism of how emotions enhance memory (Hu et al., 2007). Since 
glucocorticoids rapidly facilitate arousal-induced norepinephrine release, they 
can also exert indirect e"ects on AMPA signaling through norepinephrine. Future 
experimentation is required to further address these questions. 

3. Convergence of genomic and nongenomic glucocorticoid e!ects

Although the nongenomic e"ects of glucocorticoids recently became in sight 
again (Dallman, 2005), in the classical perspective, glucocorticoids are broadly 
renowned for their genomic (delayed) e"ects. Glucocorticoids regulate gene 
transcription by activating MRs and GRs, functioning either as homodimers 
or heterodimers, interact at a glucocorticoid-response element and recruit 
corepressors or coactivators, whereas GR monomers interact with stress-induced 
transcription factors or other proteins to dampen their transcriptional activity. 
The !rst step that leads to their ultimate e"ect on adaptive behavior involves 
the altered expression of responsive genes. Recently, a study performed with 
large-scale gene-expression-pro!ling methods identi!ed glucocorticoid-
responsive genes in the hippocampus. The activation of MRs or GRs, mimicking 
the physiological conditions, resulted in waves of gene regulation, with both 
transactivation and transrepression of responsive genes (Datson et al., 2008). 
Although GR binds to genomic DNA autonomously, recent data show that the 
binding pro!le of GR is pre-determined by chromatin state and thus depends on 
the accessibility of the chromatin (John et al., 2011). These !ndings indicate that 
glucocorticoids coordinate the expression of high- and medium-abundant genes 
that underlie aspects of cell metabolism, structure and synaptic transmission and 
through these a"ects many processes in di"erent brain regions. 
Through activating GRs and through rapid interactions with arousal-induced 
norepinephrine, glucocorticoids activate the cAMP-dependent protein kinase 
(PKA) pathway and subsequently increase levels of pCREB (Roozendaal et al., 
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2006a). As mentioned before, pCREB is highly linked to memory formation and 
changes the transcription of many genes. Glucocorticoids, via a nongenomic, 
CREB-dependent mechanism increase histone acetylation that leads to 
enhanced synaptic plasticity and long-term memory formation (Vecsey et 
al., 2007; Roozendaal et al., 2010). In chapter 4, we showed that a blockade of 
endocannabinoid signaling by a speci!c receptor antagonist prevents the 
corticosterone-induced pCREB activation in the BLA. These !ndings suggest that 
membrane GR-associated release of endocannabinoids activate pCREB, possibly 
via an interaction with norepinephrine, that might converge with the DNA-binding 
capacity of nuclear GRs, ultimately resulting in genomic e"ects of glucocorticoids. 

Nongenomic and genomic actions can still interact or converge together even 
if they occur in di"erent time frame, this eventually determines glucocorticoid 
e"ects to be highly time dependent. Based on the baseline activity, which means, 
whether there is already a modi!ed state by genomic actions of glucocorticoids, 
the direction of glucocorticoid e"ects on certain cellular processes can be entirely 
opposite. For instance, corticosterone given immediately before the induction 
of long-term potentiation (LTP) stimulates synaptic strengthening (Wiegert et 
al., 2006), whereas corticosterone applied hours earlier inhibits the induction 
of the same type of LTP (Diamond et al., 1992; Pavlides et al., 1993). Thus, 
electrophysiological data suggested that after a stressful event corticosterone 
quickly enhances glutamatergic transmission in the hippocampus through 
nongenomic mechanism and later on reinstates cellular activity through genomic 
GR mechanims (Karst et al., 2010). Similarly, a human imaging study reported 
that hydrocortisone desensitizes amygdala responsivity during the processing of 
fearful facial expression in a rapid fashion, while it normalizes the response slowly 
in a time frame compatible with its genomic e"ects (Henckens et al., 2010).

Some evidence indicates that the outcome of interactions between glucocorticoids 
and norepinephrine can also be highly time dependent. Electrophysiological data 
suggest that if corticosterone is given together with isoproterenol ( -adrenoceptor 
agonist) as similar to the physiological condition during stress, it facilitates LTP 
in the hippocampus (Pu et al., 2007). However if corticosterone is given some 
hours prior to the isoproterenol, as it can occur in certain clinical conditions or 
with sustained glucocorticoid therapy, then it induces a suppression of the 
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adrenoceptor-induced facilitation of LTP, possibly because genomic GR e"ects 
already kick in(Joels et al., 2011). Collectively, the actual rapid signaling might 
help the organism to cope with the situation in a short time frame, subsequently 
the genomic e"ects will kick in to take over and restore the activity of the circuits 
to reach to homeostasis (Groeneweg et al., 2011). 

4. Clinical relevance of the #ndings: Implications for post-traumatic stress 
disorder and phobias

Persistent traumatic memory, characterized by intrusive recollections and re-
experiencing of highly stressful experiences, is a hallmark of stress-related 
disorders such as post-traumatic stress disorder (PTSD) (de Quervain et al., 
2009). Changes in glucocorticoid signaling, like increased sensitivity of the GR 
(Hauer et al., 2011) and enhanced feedback of the HPA axis (Yehuda, 2009), have 
consistently been reported in patients with PTSD. Further, a low cortisol response 
to traumatic events might re$ect a higher risk for the development of PTSD 
(Yehuda;, 1997). In line with these observations, clinical investigations reported 
that the administration of stress levels of glucocorticoids following trauma or in 
patients with established PTSD signi!cantly reduces re-experiencing and other 
chronic stress symptoms (Aerni et al., 2004; Schelling et al., 2004; Schelling et al., 
2006; Surís et al., 2010). Glucocorticoids also reduce retrieval of fear memory in 
patients with phobia and thereby preclude stimulus-induced fear (Soravia et al., 
2006; De Quervain and Margraf, 2008). Collectively, glucocorticoids are suggested 
to exert bene!cial e"ects in diseases related to memory, at least in part, by 
impairing the retrieval of trauma-related memories, but also by facilitating the 
extinction of stress-related memories (Bentz et al., 2010; de Quervain et al., 2011; 
Atsak et al., 2012a). Despite the potential value of glucocorticoids as treatment 
for PTSD and phobias, in a clinical setting, the sustained use of glucocorticoids 
is undesirable because of the pleiotropic nature of these hormones to a"ect a 
wide array of physiological functions (e.g., immune and metabolic functions). 
The !ndings presented in this thesis indicating that the endocannabinoid system 
mediates glucocorticoid e"ects on memory retrieval impairment could aid in the 
development of non-glucocorticoid–based therapies for PTSD. Although clinical 
studies have not yet investigated interactions between these two stress systems, 
recent !ndings indicate that administration of the synthetic cannabinoid nabilone 
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to PTSD patients resulted in a highly comparable reduction of treatment-resistant 
daytime $ashbacks and nightmares (Fraser, 2009). Moreover, the possible positive 
outcome of treatments targeting the endocannabinoid system in PTSD has been 
also suggested by recent data showing altered levels of plasma endocannabinoid 
levels (AEA, 2-AG and Oleoylethanolamide and palmitoylethanolamide) in PTSD 
patients (Hauer et al. unpublished observations). 

5. Conclusions and Future Directions
Glucocorticoids enhance memory consolidation for emotionally arousing 
experiences and impair memory retrieval during emotionally arousing test 
situations via rapid interactions with arousal-induced noradrenergic mechanisms. 
The overall conclusion of the part II of the thesis is that the endocannabinoid 
system is playing a crucial role in mediating such rapid glucocorticoid e"ects on 
the noradrenergic system. However, there remain many unanswered questions. 
First, decades of research substantially reproduced the !ndings of animal 
experiments that glucocorticoids, by means of interactions with arousal-induced 
noradrenergic activity, modulate memory also in humans (Wolf, 2008; de Quervain 
et al., 2009). It is crucial to perform experiments addressing the role of the 
endocannabinoid system in glucocorticoid-induced e"ects on human memory. 
In chapter 6, we showed that systemic injections of a CB1 receptor antagonist 
prevented the impairing e"ects of glucocorticoids on recognition memory in 
rats. Future experiments that employ a similar design and drug treatment will 
be invaluable to compare the role of the endocannabinoid system in regulating 
glucocorticoid e"ects on memory across species. 

Second, although similarities between the mechanisms of how endocannabinoids 
mediate glucocorticoid e"ects on consolidation and retrieval have been 
addressed in chapter 4 and 5, future experiments dissecting the possible 
di"erences between the two models will be needed. For example, there seems 
to be a possible functional distinction in the endocannabinoid ligands mediating 
the modulatory e"ects of glucocorticoids on memory consolidation versus 
memory retrieval. As mentioned before, AEA has been more implicated in 
memory consolidation, whereas we reported in chapter 5 that 2-AG appears to be 
more linked to the e"ects of glucocorticoids on memory retrieval. Future research 
explicitly addressing the involvement of di"erent endocannabinoid ligands in 
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mediating glucocorticoid e"ects on di"erent memory processes will be required. 

Third, although several !ndings have demonstrated that endocannabinoids 
modulate noradrenergic transmission, it is unclear whether this is actually 
achieved indirectly by in$uences on GABAergic or glutamatergic transmission, 
or by a direct in$uence on the noradrenergic transmission. Future experiments 
examining the e"ects of glucocorticoids in conditional mutant mice lacking 
CB1 expression speci!cally in glutamatergic or GABAergic neurons (Marsicano 
and Lutz, 1999) and as well as experiments focusing on the mechanism of 
how manipulation of endocannabinoid signaling relates to direct changes on 
noradrenergic transmission will be essential. 

Another  crucial  question is the role of emotional arousal in regulating 
glucocorticoid-endocannabinoid e"ects on the noradrenergic system. 
Emotional and non-emotional memory seems to be di"erently modulated by 
endocannabinoid system activation (Akirav, 2011) and endocannabinoids exert 
opposite e"ects depending on the baseline arousal level of the organisms 
(Campolongo et al. unpublished observations). Moreover, in our experiments 
we only demonstrated the recruitment of endocannabinoids by glucocorticoids 
to a"ect noradrenergic activity under arousing conditions, hence, it would be 
necessary to investigate whether glucocorticoids also recruit the endocannabinoid 
system under low-arousing experimental conditions. 

Although speculative at this point, considering the alteration of circulating 
endocannabinoid levels in PTSD patients (Hauer et al., unpublished observations), 
it would be interesting to investigate whether the achieved bene!ts of 
glucocorticoid treatment in this patient group are also mediated by changes in 
endocannabinoid signaling. And last but not least, investigating whether the 
known disturbances in glucocorticoid signaling in PTSD patients are actually linked 
to changes in the endocannabinoid system would be valuable to understand the 
dynamics between these two systems as well as to develop alternative treatments 
targeting this interaction in pathological conditions. 



210

Ch
ap

te
r 7

General Discussion 

REFERENCES 

Aerni A, Traber R, Hock C, Roozendaal B, Schelling G, Papassotiropoulos A, Nitsch 

RM, Schnyder U, de Quervain DJ (2004) Low-dose cortisol for symptoms of 

posttraumatic stress disorder. Am J Psychiatry 161: 1488-1490.

Akirav I (2011) The role of cannabinoids in modulating emotional and non-emotional 

memory processes in the hippocampus. Front Behav Neurosci 5: 34.

Atsak P, Hauer D, Campolongo P, Schelling G, McGaugh JL, Roozendaal B (2012a) 

Glucocorticoids interact with the hippocampal endocannabinoid system in 

impairing retrieval of contextual fear memory. Proc Natl Acad Sci USA 109: 3504-

3509.

Atsak P, Roozendaal B, Campolongo P (2012b) Role of the endocannabinoid system 

in regulating glucocorticoid e"ects on memory for emotional experiences. 

Neuroscience 204: 104-116.

Azad SC, Eder M, Marsicano G, Lutz B, Zieglgansberger W, Rammes G (2003) Activation 

of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic 

synaptic transmission in the lateral amygdala of the mouse. Learn Mem 10: 116-

128.

Azad SC, Monory K, Marsicano G, Cravatt BF, Lutz B, Zieglgansberger W, Rammes G (2004) 

Circuitry for associative plasticity in the amygdala involves endocannabinoid 

signaling. J Neurosci 24: 9953-9961.

Barry MF, Zi" EB (2002) Receptor tra#cking and the plasticity of excitatory synapses. Curr 

Opin Neurobiol 12: 279-286.

Bentz D, Michael T, de Quervain DJ, Wilhelm FH (2010) Enhancing exposure therapy for 

anxiety disorders with glucocorticoids: from basic mechanisms of emotional 

learning to clinical applications. J Anxiety Disord 24: 223-230.

Bermudez-Rattoni F, Okuda S, Roozendaal B, McGaugh JL (2005) Insular cortex is involved 

in consolidation of object recognition memory. Learn Mem 12: 447-449.

Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S (2003) MAPK, CREB and zif268 are 

all required for the consolidation of recognition memory. Philos Trans R Soc Lond 

B Biol Sci 358: 805-814.

Bredt DS, Nicoll RA (2003) AMPA receptor tra#cking at excitatory synapses. Neuron 40: 

361-379.

Brioni JD, Nagahara AH, McGaugh JL (1989) Involvement of the amygdala GABAergic 

system in the modulation of memory storage. Brain Res 487: 105-112.



211

Ch
ap

te
r 7

General Discussion 

Broadbent NJ, Squire LR, Clark RE (2004) Spatial memory, recognition memory, and the 

hippocampus. Proc Natl Acad Sci USA 101: 14515-14520.

Buchanan TW, Tranel D, Adolphs R (2006) Impaired memory retrieval correlates with 

individual di"erences in cortisol response but not autonomic response. Learn 

Mem 13: 382-387.

Busquets-Garcia A, Puighermanal E, Pastor A, de la Torre R, Maldonado R, Ozaita A (2011) 

Di"erential role of anandamide and 2-arachidonoylglycerol in memory and 

anxiety-like responses. Biol Psychiatry 70: 479-486.

Campolongo P, Roozendaal B, Trezza V, Hauer D, Schelling G, McGaugh JL, Cuomo V 

(2009) Endocannabinoids in the rat basolateral amygdala enhance memory 

consolidation and enable glucocorticoid modulation of memory. Proc Natl Acad 

Sci USA 106: 4888-4893.

Carvalho AF, Van Bockstaele EJ (2012) Cannabinoid modulation of noradrenergic 

circuits: Implications for psychiatric disorders. Prog Neuropsychopharmacol Biol 

Psychiatry: Epub ahead of print.

Castellano C, Brioni JD, Nagahara AH, McGaugh JL (1989) Post-training systemic and intra-

amygdala administration of the GABA-B agonist baclofen impairs retention. 

Behav Neural Biol 52: 170-179.

Corcoran KA, Maren S (2001) Hippocampal inactivation disrupts contextual retrieval of 

fear memory after extinction. J Neurosci 21: 1720-1726.

Costanzi M, Battaglia M, Rossi-Arnaud C, Cestari V, Castellano C (2004) E"ects of 

anandamide and morphine combinations on memory consolidation in cd1 mice: 

involvement of dopaminergic mechanisms. Neurobiol Learn Mem 81: 144-149.

Dallman M (2005) Fast glucocorticoid actions on brain: back to the future. Front 

Neuroendocrinol 26: 103-108.

Datson NA, Morsink MC, Meijer OC, de Kloet ER (2008) Central corticosteroid actions: 

Search for gene targets. Eur J Pharmacol 583: 272-289.

de Kloet ER (2000) Stress in the brain. Eur J Pharmacol 405: 187-198.

De Quervain D, Margraf J (2008) Glucocorticoids for the treatment of post-traumatic stress 

disorder and phobias: A novel therapeutic approach. Eur J Pharmacol 583: 365-

371.

de Quervain DJ, Aerni A, Roozendaal B (2007) Preventive e"ect of beta-adrenoceptor 

blockade on glucocorticoid-induced memory retrieval de!cits. Am J Psychiatry 

164: 967-969.

de Quervain DJ, Aerni A, Schelling G, Roozendaal B (2009) Glucocorticoids and the 



212

Ch
ap

te
r 7

General Discussion 

regulation of memory in health and disease. Front Neuroendocrinol 30: 358-370.

de Quervain DJ, Bentz D, Michael T, Bolt OC, Wiederhold BK, Margraf J, Wilhelm FH (2011) 

Glucocorticoids enhance extinction-based psychotherapy. Proc Natl Acad Sci 

USA 108: 6621-6625.

de Quervain DJ, Henke K, Aerni A, Treyer V, McGaugh JL, Berthold T, Nitsch RM, Buck A, 

Roozendaal B, Hock C (2003) Glucocorticoid-induced impairment of declarative 

memory retrieval is associated with reduced blood $ow in the medial temporal 

lobe. Eur J Neurosci 17: 1296-1302.

de Quervain DJ, Roozendaal B, McGaugh JL (1998) Stress and glucocorticoids impair 

retrieval of long-term spatial memory. Nature 394: 787-790.

de Quervain DJ, Roozendaal B, Nitsch RM, McGaugh JL, Hock C (2000a) Acute cortisone 

administration impairs retrieval of long-term declarative memory in humans. Nat 

Neurosci 3: 313-314.

de Quervain DJ, Roozendaal B, Nitsch RM, McGaugh JL, Hock C (2000b) Acute cortisone 

administration impairs retrieval of long-term declarative memory in humans. Nat 

Neurosci 3: 313-314.

Di S, Boudaba C, Popescu IR, Weng FJ, Harris C, Marcheselli VL, Bazan NG, Tasker JG 

(2005a) Activity-dependent release and actions of endocannabinoids in the rat 

hypothalamic supraoptic nucleus. J Physiol 569: 751-760.

Di S, Malcher-Lopes R, Halmos KC, Tasker JG (2003) Nongenomic glucocorticoid inhibition 

via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J 

Neurosci 23: 4850-4857.

Di S, Malcher-Lopes R, Marcheselli VL, Bazan NG, Tasker JG (2005b) Rapid glucocorticoid-

mediated endocannabinoid release and opposing regulation of glutamate and 

gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. 

Endocrinology 146: 4292-4301.

Di S, Maxson M, Franco A, Tasker J (2009) Glucocorticoids regulate glutamate and GABA 

synapse-speci!c retrograde transmission via divergent nongenomic signaling 

pathways. J Neurosci 29: 393-401.

Diamond DM, Bennett MC, Fleshner M, Rose GM (1992) Inverted-U relationship between 

the level of peripheral corticosterone and the magnitude of hippocampal primed 

burst potentiation. Hippocampus 2: 421-430.

Duvarci S, Paré D (2007) Glucocorticoids enhance the excitability of principal basolateral 

amygdala neurons. J Neurosci 27: 4482-4491.

Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP (2010) Fast feedback inhibition 

of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. 



213

Ch
ap

te
r 7

General Discussion 

Endocrinology 151: 4811-4819.

Flood JF, Vidal D, Bennett EL, Orme AE, Vasquez S, Jarvik ME (1978) Memory facilitating 

and anti-amnesic e"ects of corticosteroids. Pharmacol Biochem Behav 8: 81-87.

Fraser GA (2009) The use of a synthetic cannabinoid in the management of treatment-

resistant nightmares in posttraumatic stress disorder (PTSD). CNS Neurosci Ther 

15: 84-88.

Freund TF, Hajos N (2003) Excitement reduces inhibition via endocannabinoids. Neuron 

38: 362-365.

Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic 

signaling. Physiol Rev 83: 1017-1066.

Groc L, Choquet D, Chaoulo" F (2008) The stress hormone corticosterone conditions 

AMPAR surface tra#cking and synaptic potentiation. Nat Neurosci 11: 868-870.

Groeneweg FL, Karst H, de Kloet ER, Joels M (2011) Rapid non-genomic e"ects of 

corticosteroids and their role in the central stress response. J Endocrinol 209: 

153-167.

Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic 

function in the CNS. The Neuroscientist 13: 127-137.

Hat!eld T, Spanis C, McGaugh JL (1999) Response of amygdalar norepinephrine to 

footshock and GABAergic drugs using in vivo microdialysis and HPLC. Brain Res 

835: 340-345.

Hauer D, Weis F, Papassotiropoulos A, Schmoeckel M, Beiras-Fernandez A, Lieke J, Kaufmann 

I, Kirchho" F, Vogeser M, Roozendaal B, Briegel J, de Quervain D, Schelling G 

(2011) Relationship of a common polymorphism of the glucocorticoid receptor 

gene to traumatic memories and posttraumatic stress disorder in patients after 

intensive care therapy. Crit Care Med 39: 643-650.

Henckens MJ, van Wingen GA, Joëls M, Fernández G (2010) Time-dependent e"ects of 

corticosteroids on human amygdala processing. J Neurosci 30: 12725-12732.

Het S, Ramlow G, Wolf OT (2005) A meta-analytic review of the e"ects of acute cortisol 

administration on human memory. Psychoneuroendocrino 30: 771-784.

Hill MN, Karatsoreos I, Hillard C, Mcewen B (2010) Rapid elevations in limbic endocannabinoid 

content by glucocorticoid hormones in vivo. Psychoneuroendocrino 35: 1333-

1338.

Hill MN, McEwen B (2009) Endocannabinoids: the silent partner of glucocorticoids in the 

synapse. Proc Natl Acad Sci USA 106: 4579-4580.

Hill MN, McEwen B (2010) Involvement of the endocannabinoid system in the 



214

Ch
ap

te
r 7

General Discussion 

neurobehavioural e"ects of stress and glucocorticoids. Prog Neuro-Psychoph 34: 

791-797.

Ho"man AF, Lupica CR (2000) Mechanisms of cannabinoid inhibition of GABA(A) synaptic 

transmission in the hippocampus. J Neurosci 20: 2470-2479.

Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 

31-108.

Holt W, Maren S (1999) Muscimol inactivation of the dorsal hippocampus impairs 

contextual retrieval of fear memory. J Neurosci 19: 9054-9062.

Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, Malinow R (2007) Emotion 

enhances learning via norepinephrine regulation of AMPA-receptor tra#cking. 

Cell 131: 160-173.

Hu W, Zhang M, Czéh B, Flügge G, Zhang W (2010) Stress impairs GABAergic network 

function in the hippocampus by activating nongenomic glucocorticoid receptors 

and a"ecting the integrity of the parvalbumin-expressing neuronal network. 

Neuropsychopharmacol 35: 1693-1707.

Joels M, Fernandez G, Roozendaal B (2011) Stress and emotional memory: a matter of 

timing. Trends Cogn Sci 15: 280-288.

John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, 

Stamatoyannopoulos JA (2011) Chromatin accessibility pre-determines 

glucocorticoid receptor binding patterns. Nat Genet 43: 264-268.

Josselyn SA, Kida S, Silva AJ (2004) Inducible repression of CREB function disrupts 

amygdala-dependent memory. Neurobiol Learn Mem 82: 159-163.

Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M (2009) 

Endocannabinoid-mediated control of synaptic transmission. Physiol Rev 89: 

309-380.

Karst H, Berger S, Erdmann G, Schutz G, Joels M (2010) Metaplasticity of amygdalar 

responses to the stress hormone corticosterone. Proc Natl Acad Sci USA 107: 

14449-14454.

Karst H, Berger S, Turiault M, Tronche F, Schütz G, Joëls M (2005) Mineralocorticoid receptors 

are indispensable for nongenomic modulation of hippocampal glutamate 

transmission by corticosterone. Proc Natl Acad Sci USA 102: 19204-19207.

Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana 

G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) 

Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9: 

76-81.



215

Ch
ap

te
r 7

General Discussion 

Katona I, Rancz EA, Acsady L, Ledent C, Mackie K, Hajos N, Freund TF (2001) Distribution 

of CB1 cannabinoid receptors in the amygdala and their role in the control of 

GABAergic transmission. J Neurosci 21: 9506-9518.

Katona I, Sperlágh B, Sík A, Käfalvi A, Vizi ES, Mackie K, Freund TF (1999) Presynaptically 

located CB1 cannabinoid receptors regulate GABA release from axon terminals 

of speci!c hippocampal interneurons. J Neurosci 19: 4544-4558.

Kawamura Y, Fukaya M, Maejima T, Yoshida T, Miura E, Watanabe M, Ohno-Shosaku T, Kano 

M (2006) The CB1 cannabinoid receptor is the major cannabinoid receptor at 

excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci 26: 

2991-3001.

Kirschbaum C, Wolf OT, May M, Wippich W, Hellhammer DH (1996) Stress- and treatment-

induced elevations of cortisol levels associated with impaired declarative 

memory in healthy adults. Life Sci 58: 1475-1483.

Krugers HJ, Hoogenraad CC, Groc L (2010) Stress hormones and AMPA receptor tra#cking 

in synaptic plasticity and memory. Nat Rev Neurosci 11: 675-681.

Malcher-Lopes R, Di S, Marcheselli VS, Weng FJ, Stuart CT, Bazan NG, Tasker JG (2006) 

Opposing crosstalk between leptin and glucocorticoids rapidly modulates 

synaptic excitation via endocannabinoid release. J Neurosci 26: 6643-6650.

Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5-21.

Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal 

subpopulations in the adult mouse forebrain. Eur J Neurosci 11: 4213-4225.

Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG, Hermann H, Tang 

J, Hofmann C, Zieglgänsberger W, Di Marzo V, Lutz B (2002) The endogenous 

cannabinoid system controls extinction of aversive memories. Nature 418: 530-

534.

McDonald AJ, Mascagni F (2001) Colocalization of calcium-binding proteins and GABA in 

neurons of the rat basolateral amygdala. Neuroscience 105: 681-693.

McEwen BS (2001) Plasticity of the hippocampus: adaptation to chronic stress and 

allostatic load. Ann N Y Acad Sci 933: 265-277.

McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally 

arousing experiences Annu Rev Neurosci 27: 1-28.

McGaugh JL, Roozendaal B (2002) Role of adrenal stress hormones in forming lasting 

memories in the brain. Curr Opin Neurobiol 12: 205-210.

McReynolds JR, Donowho K, Abdi A, McGaugh JL, Roozendaal B, McIntyre CK 

(2010) Memory-enhancing corticosterone treatment increases amygdala 



216

Ch
ap

te
r 7

General Discussion 

norepinephrine and Arc protein expression in hippocampal synaptic fractions. 

Neurobiol Learn Mem 93: 312-321.

Mendiguren A, Pineda J (2004) Cannabinoids enhance N-methyl-D-aspartate-induced 

excitation of locus coeruleus neurons by CB1 receptors in rat brain slices. Neurosci 

Lett 363: 1-5.

Mendiguren A, Pineda J (2006) Systemic e"ect of cannabinoids on the spontaneous !ring 

rate of locus coeruleus neurons in rats. Eur J Pharmacol 534: 83-88.

Muntoni AL, Pillolla G, Melis M, Perra S, Gessa GL, Pistis M (2006) Cannabinoids modulate 

spontaneous neuronal activity and evoked inhibition of locus coeruleus 

noradrenergic neurons. Eur J Neurosci 23: 2385-2394.

Murray EA, Richmond BJ (2001) Role of perirhinal cortex in object perception, memory, 

and associations. Curr Opin Neurobiol 11: 188-193.

Ohno-Shosaku T, Maejima T, Kano M (2001) Endogenous cannabinoids mediate retrograde 

signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 

29: 729-738.

Oitzl MS, de Kloet ER (1992) Selective corticosteroid antagonists modulate speci!c aspects 

of spatial orientation learning. Behav Neurosci 106: 62-71.

Olijslagers J, De Kloet E, Elgersma Y, Van Woerden G, Joëls M, Karst H (2008) Rapid changes 

in hippocampal CA1 pyramidal cell function via pre- as well as postsynaptic 

membrane mineralocorticoid receptors. Eur J Neurosci 27: 2542-2550.

Oropeza VC, Page ME, Van Bockstaele EJ (2005) Systemic administration of WIN 55,212-2 

increases norepinephrine release in the rat frontal cortex. Brain Res 1046: 45-54.

Page ME, Oropeza VC, Sparks SE, Qian Y, Menko AS, Van Bockstaele EJ (2007) Repeated 

cannabinoid administration increases indices of noradrenergic activity in rats. 

Pharmacol Biochem Behav 86: 162-168.

Pavlides C, Watanabe Y, McEwen BS (1993) E"ects of glucocorticoids on hippocampal 

long-term potentiation. Hippocampus 3: 183-192.

Pistis M, Perra S, Pillolla G, Melis M, Gessa GL, Muntoni AL (2004) Cannabinoids modulate 

neuronal !ring in the rat basolateral amygdala: evidence for CB1- and non-CB1-

mediated actions. Neuropharmacology 46: 115-125.

Pu Z, Krugers HJ, Joels M (2007) Corticosterone time-dependently modulates beta-

adrenergic e"ects on long-term potentiation in the hippocampal dentate gyrus. 

Learn Mem 14: 359-367.

Rainnie DG, Fernhout BJ, Shinnick-Gallagher P (1992) Di"erential actions of corticotropin 

releasing factor on basolateral and central amygdaloid neurones, in vitro. J 



217

Ch
ap

te
r 7

General Discussion 

Pharmacol Exp Ther 263: 846-858.

Roozendaal B (2000) 1999 Curt P. Richter award. Glucocorticoids and the regulation of 

memory consolidation. Psychoneuroendocrino 25: 213-238.

Roozendaal B (2002) Stress and memory: opposing e"ects of glucocorticoids on memory 

consolidation and memory retrieval. Neurobiol Learn Mem 78: 578-595.

Roozendaal B, de Quervain DJ, Schelling G, McGaugh JL (2004a) A systemically administered 

beta-adrenoceptor antagonist blocks corticosterone-induced impairment of 

contextual memory retrieval in rats. Neurobiol Learn Mem 81: 150-154.

Roozendaal B, Gri#th QK, Buranday J, de Quervain DJ, McGaugh JL (2003) The 

hippocampus mediates glucocorticoid-induced impairment of spatial memory 

retrieval: dependence on the basolateral amygdala. Proc Natl Acad Sci USA 100: 

1328-1333.

Roozendaal B, Hahn EL, Nathan SV, de Quervain DJ, McGaugh JL (2004b) Glucocorticoid 

e"ects on memory retrieval require concurrent noradrenergic activity in the 

hippocampus and basolateral amygdala. J Neurosci 24: 8161-8169.

Roozendaal B, Hernandez A, Cabrera SM, Hagewoud R, Malvaez M, Stefanko DP, Haettig 

J, Wood MA (2010) Membrane-associated glucocorticoid activity is necessary 

for modulation of long-term memory via chromatin modi!cation. J Neurosci 30: 

5037-5046.

Roozendaal B, McEwen B, Chattarji S (2009) Stress, memory and the amygdala. Nat Rev 

Neurosci 10: 423-433.

Roozendaal B, McGaugh JL (1997) Glucocorticoid receptor agonist and antagonist 

administration into the basolateral but not central amygdala modulates memory 

storage. Neurobiol Learn Mem 67: 176-179.

Roozendaal B, McGaugh JL (2011) Memory modulation. Behav Neurosci 125: 797-824.

Roozendaal B, Okuda S, de Quervain DJ, McGaugh JL (2006a) Glucocorticoids interact 

with emotion-induced noradrenergic activation in in$uencing di"erent memory 

functions. Neuroscience 138: 901-910.

Roozendaal B, Okuda S, Van der Zee EA, McGaugh JL (2006b) Glucocorticoid enhancement 

of memory requires arousal-induced noradrenergic activation in the basolateral 

amygdala. Proc Natl Acad Sci USA 103: 6741-6746.

Sandi C, Pinelo-Nava M (2007) Stress and Memory: Behavioral E"ects and Neurobiological 

Mechanisms. Neural Plast 2007: 1-20.

Schelling G, Roozendaal B, de Quervain DJ (2004) Can posttraumatic stress disorder be 

prevented with glucocorticoids? Ann N Y Acad Sci 1032: 158-166.



218

Ch
ap

te
r 7

General Discussion 

Schelling G, Roozendaal B, Krauseneck T, Schmoelz M, DE Quervain D, Briegel J (2006) 

E#cacy of hydrocortisone in preventing posttraumatic stress disorder following 

critical illness and major surgery. Ann N Y Acad Sci 1071: 46-53.

Schutsky K, Ouyang M, Castelino CB, Zhang L, Thomas SA (2011) Stress and glucocorticoids 

impair memory retrieval via {beta}2-Adrenergic, Gi/o-coupled suppression of 

cAMP signaling. J Neurosci 31: 14172-14181.

Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21: 

127-148.

Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends 

Neurosci 25: 578-588.

Soravia LM, Heinrichs M, Aerni A, Maroni C, Schelling G, Ehlert U, Roozendaal B, de Quervain 

DJ (2006) Glucocorticoids reduce phobic fear in humans. Proc Natl Acad Sci USA 

103: 5585-5590.

Surís A, North C, Adino" B, Powell CM, Greene R (2010) E"ects of exogenous glucocorticoid 

on combat-related PTSD symptoms. Ann Clin Psychiatry 22: 274-279.

Tasker JG, Herman JP (2011) Mechanisms of rapid glucocorticoid feedback inhibition of 

the hypothalamic-pituitary-adrenal axis. Stress 14: 398-406.

Vecsey CG, Hawk JD, Lattal KM, Stein JM, Fabian SA, Attner MA, Cabrera SM, McDonough 

CB, Brindle PK, Abel T, Wood MA (2007) Histone deacetylase inhibitors enhance 

memory and synaptic plasticity via CREB:CBP-dependent transcriptional 

activation. J Neurosci 27: 6128-6140.

Wiegert O, Joels M, Krugers H (2006) Timing is essential for rapid e"ects of corticosterone 

on synaptic potentiation in the mouse hippocampus. Learn Mem 13: 110-113.

Wilson RI, Kunos G, Nicoll RA (2001) Presynaptic speci!city of endocannabinoid signaling 

in the hippocampus. Neuron 31: 453-462.

Wisden W, Seeburg PH (1993) Mammalian ionotropic glutamate receptors. Curr Opin 

Neurobiol 3: 291-298.

Wolf OT (2008) The in$uence of stress hormones on emotional memory: relevance for 

psychopathology. Acta Psychol 127: 513-531.

Yehuda R (2009) Status of Glucocorticoid Alterations in Post-traumatic Stress Disorder. 

Ann N Y Acad Sci 1179: 56-69.

Yehuda; R (1997) Stress and Glucocorticoid. Science 275: 1662-1663.

Yoshida T, Uchigashima M, Yamasaki M, Katona I, Yamazaki M, Sakimura K, Kano M, 

Yoshioka M, Watanabe M (2011) Unique inhibitory synapse with particularly 

rich endocannabinoid signaling machinery on pyramidal neurons in basal 



219

Ch
ap

te
r 7

General Discussion 

amygdaloid nucleus. Proc Natl Acad Sci USA 108: 3059-3064.

Zhu PJ, Lovinger DM (2005) Retrograde endocannabinoid signaling in a postsynaptic 

neuron/synaptic bouton preparation from basolateral amygdala. J Neurosci 25: 

6199-6207.





Conclusion 



222

Conclusion

CONCLUSION

Stress can exert rapid as well as delayed e"ects at many di"erent levels of 
cognition. This thesis explored the e"ects of stress on social cognition and 
memory in rats. The !rst part investigated the role of social communication 
between conspeci!cs in stress transmission and demonstrated that the display 
of distress behavior by a rat to a stressor (footshock) can induce an immediate 
stress reaction in another, observing rat. In particular, this part pointed out that 
this emphatic response in an observing animal requires prior experience with the 
same stressor. The underlying neuronal mechanism and the sensory modality that 
conveys the information between conspeci!cs and the contribution of various 
factors such as familiarity, similarity, gender of the animals and salience of the 
stimulus remains to be explored in future experiments. The second part examined 
the neurobiological mechanisms underlying the e"ects of stress hormones on 
di"erent memory phases. The experiments of this part demonstrated that the 
lipid-based endocannabinoid system plays a crucial role in mediating the rapid 
actions of glucocorticoids on arousal-induced noradrenergic activity that are 
necessary for enhancing the consolidation of memory as well as impairing the 
retrieval of memory for emotionally arousing experiences. Future experiments 
dissecting the role of particular endocannabinoid ligands in mediating 
glucocorticoid e"ects on memory consolidation and retrieval as well as the role 
of the endocannabinoid system in regulating glucocorticoid e"ects on memory 
across species, in particular, in humans will be needed.
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Summary

Stress kan op velerlei manieren cognitie beïnvloeden. In dit proefschrift heb ik 
deze stresse"ecten binnen twee verschillende cognitiedomeinen onderzocht. 
In hoofdstuk 2 beschreef ik dat sociale communicatie tijdens dreigend gevaar 
een belangrijke rol speelt bij het doorgeven van stresssignalen van de ene op de 
andere rat. Dit gebeurde echter alleen als beide ratten ervaring hadden met de 
stressor en niet als de observerende rat naief was met betrekking tot de stress-
stimulus. De resultaten van dit onderzoek kunnen dienen als voorbeeld voor 
het concept van stress op sociale cognitie en empathie bij ratten. In het tweede 
gedeelte van dit proefschrift onderzocht ik hoe stress verschillende aspecten 
van het geheugen kan beïnvloeden. Het is algemeen bekend dat stressvolle 
en emotionele gebeurtenissen beter onthouden worden dan alledaagse 
gebeurtenissen, terwijl acute milde stress juist het oproepen van eerder 
aangeleerde emotioneel-gekleurde informatie uit het geheugen vermindert. 
Uitgebreid onderzoek heeft aangetoond dat beide e"ecten het gevolg zijn 
van de werking van hormonen die vrijkomen uit de bijnieren tijdens stress. In 
hoofdstuk 3 heb ik een overzicht gegeven van de complexe manier waarop een 
van de belangrijkste stresshormonen, glucocorticoïden (cortisol bij de mens), het 
geheugen beïnvloeden. Glucocorticoïden komen vrij uit de bijnierschors tijdens 
stress en verbeteren de consolidatie en opslag van nieuwe informatie in het 
geheugen terwijl ze tegelijkertijd het oproepen van eerder opgedane ervaringen 
uit het geheugen verminderen. Glucocorticoïden kunnen op twee manieren 
hersenactiviteit, en dus hersenfuncties, beïnvloeden. Enerzijds is er een langzame 
weg die afhankelijk is van transcriptionele activiteit op genniveau. Het duurt 
daarom enige uren voordat deze e"ecten zichtbaar worden. Anderzijds zijn er 
ook snelle niet-genomische e"ecten (waarbij geen sprake is van transcriptionele 
activiteit) die al na een paar minuten zichtbaar worden. Ondanks het feit dat  
verschillende van deze glucocorticoïd e"ecten op het gedrag en geheugen 
afhankelijk zijn van deze snelle weg, is het mechanisme daarvan niet goed 
begrepen. Wel is bekend dat de snelle e"ecten van glucocorticoïd-hormonen 
afhankelijk zijn van noradrenaline, een ander stresshormoon, dat vrijkomt in 
de hersenen tijdens emotionele gebeurtenissen. Maar hoe glucocorticoïden 
een interactie aangaan met noradrenaline is niet bekend. Uit recent onderzoek 
blijkt dat het endocannabinoïdsysteem, een snelwerkend lipide-systeem in de 
hersenen, medeverantwoordelijk is voor het bewerkstelligen van een aantal 
van deze snelle glucocorticoïd e"ecten. Op dit moment zijn meer dan twaalf 
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verschillende endocannabinoïden beschreven maar speci!eke functies voor elk 
van hen zijn onbekend. De aanmaak van verschillende endocannabinoïd-liganden 
wordt aangewakkerd door neuronale depolarisatie, een toename in intracellulaire 
calciumconcentraties, en activering van verschillende metabotrope en 
excitatoire ionotrope neurotransmitter receptoren. Eenmaal vrijgekomen binden 
endocannabinoïden zich aan CB1 en CB2-receptoren. CB1-receptoren zijn in zeer 
grote dichtheden aanwezig in het centrale zenuwstelsel. Stress en glucocorticoïden 
kunnen de activiteit van verschillende van deze endocannabinoiden beïnvloeden. 
Zo is het bekend dat glucocorticoïden endocannabinoïd concentraties in de 
hypothalamus verhogen en op deze wijze de hypothalamus-hypofyse-bijnier-as 
activiteit afremmen.  Deze resultaten zijn belangrijk omdat ze het eerste bewijs 
leverden voor een rol van het endocannabinoïdsysteem in het mediëren van 
snelle glucocorticoïd e"ecten. 

In dit proefschift heb ik onderzocht of endocannabinoïden ook betrokken zijn bij de 
e"ecten van glucocorticoïden op de consolidatie en oproepen van het geheugen. 
In hoofdstuk 4 toonde ik aan dat endocannabinoïden een belangrijke rol spelen 
bij de e"ecten van glucocorticoïden op het verbeteren van de consolidatie van 
geheugen. De voornaamste conclusie van dit onderzoek is dat glucocorticoïden 
via het endocannabinoid systeem noradrenerge activiteit binnen het basolaterale 
complex van de amygdala (BLA), een belangrijk hersengebied voor de regulatie 
van stress e"ecten op leren en geheugen, beïnvloeden. Verder heb ik kunnen 
aantonen dat activiteit van het endocannabinoidsysteem noodzakelijk is om de 
e"ecten van glucocorticoïden op neurale plasticiteit van het BLA te bewerkstelligen. 
Zoals reeds hierboven beschreven, kan blootstelling aan stress of de toediening 
van glucocorticoid hormonen kort voor een retentietest juist het oproepen van 
herinneringen uit het geheugen verminderen. In hoofdstuk 5 onderzocht ik 
daarom een mogelijke betrokkenheid van het endocannabinoïdsysteem in deze 
glucocorticoïd-geïnduceerde verslechtering van het oproepen van informatie uit 
het geheugen. Ratten werden getraind op een contextuele angsttaak (contextual 
fear conditioning), waarbij ze leerden dat ze een electrische schok konden krijgen 
in een bepaald apparaat (= context). Systemische toediening van corticosteron, 
het belangrijkste glucocorticoïd-hormoon in de rat, een uur voor de retentietest 
verminderde het oproepen van het geheugen voor deze contextuele angsttaak, 
zonder rechtstreeks de expressie van angstgedrag te veranderen. Belangrijk 
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is dat een blokkade van CB1 receptoren in de hippocampus dit corticosteron 
e"ect volledig blokkeerde. Deze resultaten laten dus zien dat activiteit van 
het endocannabinoïdsysteem noodzakelijk is voor het mediëren van deze 
corticosteron e"ecten op het oproepen van emotioneel geheugen. Verder vond ik 
dat de toediening van corticosteron resulteerde in een verhoging van de spiegels 
van 2-arachidonoylglycerol, een van de meest voorkomende endocannabinoiden, 
in de hippocampus. Lokale toediening van WIN55,212-2, een agonist voor CB 
receptoren, in de hippocampus resulteerde, net als bij corticosteron, in een 
vermindering van het oproepen van contextueel geheugen. Ook hier lijkt de 
samenhang tussen glucocorticoïden en endocannabinoïden uiteindelijk uit te 
monden in een verandering van noradrenerge activiteit. Ik heb namelijk kunnen 
vaststellen dat antagonisme van ß-adrenerge activiteit in de hippocampus door 
lokale toediening van propranolol het e"ect van de CB-receptor agonist volledig 
blokkeerde.

Hoewel de e"ecten van glucocorticoïden op een vermindering van het 
oproepen van hippocampus-afhankelijk ruimtelijk en contextueel geheugen 
vaak zijn beschrijven, lijken glucocorticoïden veel minder e"ectief te zijn 
in het beïnvloeden van het oproepen van recognitiegeheugen, een vorm 
van geheugen dat onafhankelijk is van de hippocampus. Daarom heb ik in 
hoofdstuk 6 onderzocht of de toediening van corticosteron het oproepen van 
verschillende soorten informatie met betrekking tot een object-recognitietaak 
kan beïnvloeden. Corticosteron toediening kort voor de retentietest resulteerde 
in een vermindering van de herkenning van zowel het object zelf als de plaats 
waar dit voorwerp zich bevond tijdens de training. Dit experiment laat dus zien 
dat corticosteron mogelijk een veel algemener e"ect heeft op het oproepen 
van informatie uit het geheugen dan tot nu toe werd aangenomen. Aangezien 
de resultaten van  hoofdstuk 5 lieten zien dat het endocannabinoïdsysteem 
betrokken is bij de e"ecten van glucocorticoïden op het oproepen van geheugen, 
heb ik verder onderzoek gedaan naar de betrokkenheid van endocannabinoïden 
in de e"ecten van glucocorticoïden op het ophalen van deze twee componenten 
van objectherkenning en vond dat systemische toediening van de inverse 
CB1-agonist SR141716 1 uur voor aanvang van de retentietest de e"ecten van 
corticosteron volledig blokkeerden. 
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Stress kan dus zowel snelle als langzame e"ecten uitoefenen op veel verschillende 
aspecten van cognitie. Dit proefschrift onderzocht de e"ecten van stress op sociale 
cognitie en geheugen bij ratten. Het eerste deel toonde aan dat uitingen van 
angst tijdens dreigend gevaar kunnen leiden tot een onmiddellijke stressreactie 
in een andere observerende rat, maar alleen als deze ervaring had met diezelfde 
stressor. Het onderliggende neuronale mechanisme, de sensorische modaliteit 
(gehoor, reuk, zicht et cetera) dat betrokken is/zijn bij de sociale transmissie van 
angst alsmede de rol van diverse andere factoren zoals geslacht van de dieren 
en saillantie van de stimulus moeten nog worden onderzocht. Het tweede deel 
toonde aan dat het endocannabinoïdsysteem een cruciale rol speelt bij het 
reguleren van de snelle e"ecten van glucocorticoïden op zowel de verbetering 
van de consolidatie van nieuwe informatie in het geheugen als de vermindering 
van het oproepen van bestaande herinneringen uit het geheugen. Toekomstige 
studies zullen moeten onderzoeken in hoeverre speci!eke endocannabinoïd 
liganden een rol spelen bij deze diverse glucocorticoïd e"ecten. Verder zal moeten 
onderzocht worden of het endocannabinoid net zo’n een voorname rol speelt in 

de regulatie van stress e"ecten op het menselijk geheugen.
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