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Abstract

This paper studies the generalization of linear subspace identification techniques to
nonlinear systems. The basic idea is to combine nonlinear minimal realization techniques
based on the Hankel operator with embedding theory used in time-series modeling. We
show that under the assumption of zero-state observability, a collection of several zero-
input responses can be used to construct a state sequence of the nonlinear system. This
state sequence can then be used to estimate a state-space model via nonlinear regression.
We also discuss how the zero-input responses can be obtained. The proposed method is
illustrated using a pendulum as an example system.

1 Introduction

Identification of state-space systems from measurements of inputs and outputs is closely
related to the state-space realization problem. State-space systems are attractive for dealing
with multivariable systems and are often required for analysis and control. The identification
problem that we consider is to determine from a finite number of measurements of the input
uk ∈ R

m and the output yk ∈ R
` the nonlinear system:

xk+1 = f(xk, uk), (1)

yk = h(xk), (2)

where xk ∈ R
n is the state and f : R

n×R
m → R

n and h : R
n → R

` are smooth functions. We
are in fact interested in deriving an observable state-space realization of a nonlinear system
directly from measured input an output data.

The difficulty in this identification problem lies in the fact that measurements of the state
sequence are not directly available. When f and h are linear functions, subspace identification
techniques can be used to obtain a state-space model from the input and output data. These
methods use the special (linear) structure of the system to construct the state sequence up to a
linear transformation from the data (Verhaegen, 1994; Van Overschee and De Moor, 1996). In
the special case of impulse inputs, subspace identification can be directly related to the well-
known Ho-Kalman minimal realization algorithm (Ho and Kalman, 1966), in which a finite-
dimensional Hankel matrix of the impulse response is decomposed into the observability and
controllability matrices. First attempts to extend ‘subspace-type’ identification algorithms
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to nonlinear systems have been described by Larimore (1997) and Verdult et al. (2000). In
this paper we show that the zero-input response of a system plays a major role in these kind
of algorithms. The basic idea about this stems from the extension of minimal realization
theory for nonlinear systems based on Hankel operators as described by Scherpen and Gray
(2000). For linear systems observability is equivalent to zero-state observability, which on its
turn corresponds to the Hankel operator interpretation where the future output energy (a
measure of observability) generated by a certain state when the future input is turned off, is
of interest. For nonlinear systems these concepts have been generalized, but then a distinction
has to be made between observability and zero-state observability (when the input is turned
of). Coming from the Hankel operator interpretation, from which we can easily recognize the
zero-state observable subspace, it seems appropriate to turn the future input off, and hence
to consider zero-input responses.

This paper is organized as follows: Section 2 shows that the state of a nonlinear system
can be constructed up to a nonlinear transformation from a set of zero-input responses.
In Section 3 we present an identification method that uses special experiments to collect
such a set of zero-input responses. We also discuss a two-step identification approach that
reconstructs the zero-input responses from arbitrary data. Section 4 shows that subspace
identification for linear time-invariant systems is a special case of this two-step procedure.
A simulation example which illustrates the proposed identification method is provided in
Section 5.

2 Zero-input response as state of the system

The delay vectors

ud
k :=











uk

uk+1
...

uk+d−1











, yd
k :=











yk

yk+1
...

yk+d−1











,

allow us to write the system (1)–(2) as

xk+d = fd(xk, u
d
k),

yd
k = hd(xk, u

d
k),

where

f i(xk, u
i
k) := fuk+i−1

◦ fuk+i−2
◦ · · · ◦ fuk+1

◦ fuk
(xk),

hd(xk, u
d
k) :=











h(xk)
h ◦ f1(xk, u

1
k)

...

h ◦ fd−1(xk, u
d−1
k )











,

and where fuk
(xk) is used to denote f(xk, uk) evaluated for a fixed uk.

Without loss of generality we assume the existence of an equilibrium point (x0, u0, y0) =
(0, 0, 0) for the system (1)–(2). We also assume that the system is locally zero-state observable
at the equilibrium point. A system is zero-state observable if for all d ≥ n, yd

k = 0 and ud
k = 0

implies that the corresponding state xk = 0. Local zero-state observability is a stronger
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assumption than local observability; it implies local observability. Zero-state observability
plays a major role in the realization theory for nonlinear systems based on Hankel operators
(Scherpen and Gray, 2000), and since we are interested in zero-input responses this is the
type of observability needed here.

With the observability assumption, an application of the implicit function theorem shows
that there exist open neighborhoods X ⊂ R

n, U ⊂ R
m, Y ⊂ R

` of the origin and a smooth
function Φ : Ud ×Yd → X , for all d ≥ n, such that if yd

k = hd(xk, u
d
k) then xk = Φ(ud

k, y
d
k) for

all xk ∈ X and ud
k ∈ Ud (see for example Sadegh, 2001).

The zero-input response of the system, that can be obtained as

γd
k = hd(xk, 0), (3)

is a state sequence of the system (1)–(2). This statement, is easily proven by showing that
γd

k+1 is a function of γd
k and uk and does not depend on other values of the input. The

observability assumption yields

γd
k = hd(xk, 0) ⇒ xk = Φ(γd

k).

Therefore,

γd
k+1 = hd(xk+1, 0)

= hd
(

f(xk, uk), 0
)

= hd
(

f(Φ(γd
k), uk), 0

)

= F (γd
k, uk).

According to equation (3), the entries of the zero-input response vector γd
k are obtained by

initializing the state of the system (1)–(2) at time instant k and then simulating the system
with a zero input for d time instants. The zero-input response vector for the next time
instant γd

k+1 can be obtained as the zero-input response to the state xk+1 that is obtained as
xk+1 = f(xk, uk) or alternatively, as the derivation above shows, directly from the zero-input
response vector γd

k at the previous time-instant as γd
k+1 = F (γd

k, uk).
Given the zero-input response we can use it together with the input and output data to

estimate the function F of the following state-space system:

γd
k+1 = F (γd

k, uk), (4)

yk =
[

I` 0
]

γd
k. (5)

This system has the same dynamic behavior as the original system (1)–(2). The function
F can be estimated using any standard nonlinear identification technique, like for example
neural networks. Obviously, γd

k is not a minimal state of the system. Therefore, before
estimating the function F we would like to perform a dimension reduction on γd

k to obtain a
reduced order state.

For a single output system (` = 1) a reduced order state can be obtained by applying a
technique called time-series embedding (Sauer et al., 1991; Kantz and Schreiber, 1999) which
is a well-known method for modeling time-series from autonomous nonlinear systems. Note
that the zero-input responses are in fact responses of an autonomous system. In time-series
embedding a delay vector containing a finite number of delayed versions of the output is
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constructed. Under quite general circumstances this delay vector is equivalent to the original
state vector, in the sense that they can be mapped onto each other by a uniquely invertible
smooth map. It is important to choose the appropriate embedding dimension and delay,
that is, the number of delayed outputs and the delay between them. Several techniques
for determining these quantities have been described in the literature. A more elaborate
discussion on time-series embedding is provided by for example Sauer et al. (1991).

Under the (somewhat restrictive) assumption that the linearization of the system is ob-
servable, it is possible to determine the order of the system at forehand by checking the order
of the linearization. Linear subspace identification could be used on data around a working
point to determine this order. If the linearization is not observable, the nonlinear system can
still be zero-state observable. In this case, the order can be obtained by checking the strict
positivity of the zero-observability function (see for example Scherpen and Gray, 2000), that
is, by checking if

Lo(x0) =
∞

∑

k=0

yT
k yk > 0

for all x0, where yk is obtained from (5). Since this may be very hard to check, an intuitive (and
linear) guess to determine the order based on the zero-observability function is by checking
the rank of a matrix containing the vectors γ̄d

k for several different values of k.

3 Identification methods

To use the ideas presented above we need the zero-input response of the system for a number
of different time instances k = 1, 2, . . . , N . Below we present two different ways of obtaining
these zero-input responses. The first method requires dedicated experiments, the second works
with arbitrary data, but requires the estimation of a model that is suitable for generating the
zero-input responses. For both methods, the input sequence applied to the system must be
such that the system can be identified from the corresponding outputs. We call such an input
persistently exciting. For linear time-invariant systems persistency of excitation is related to
the rank of the Hankel matrix containing the inputs. To our knowledge no formal definition
exists for nonlinear systems.

From N dedicated identification experiments, the zero-input responses γd
k for the time

instances k = 1, 2, . . . , N can be obtained. For carrying out these experiments, we must be
able to bring the system back to a known initial state x0. To generate γd

k the system is
brought into initial state x0 and the input uj is applied for 0 ≤ j < k. At time instance k the
input is set to zero and the zero-input response yj is measured for j = k, k + 1, . . . , k + d − 1
and stored in the vector γd

k. This procedure can be repeated to generate the N zero-input
responses that we need.

In practice, it is not always possible to perform the elaborate identification experiments
outlined above. Therefore, we need to be able to derive the zero-input responses from arbi-
trary, but persistently exiting data. The conceptual idea for this second method is that the
future outputs yk+i, i = 0, 1, 2, . . . can be modeled by the state xk and the future inputs uk+i,
i = 0, 1, 2, . . . , and that in addition the state xk can be modeled by the past input and output
data: uk−i and yk−i for i = 1, 2, . . . .

Since xk is unknown we cannot directly use equation (3) to generate the zero-input re-
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sponses γd
k. However, we can express the state xk in terms of past data as follows

xk = fd(xk−d, u
d
k−d).

From the observability assumption it follows that there exist a function Φ : U d ×Yd → X , for
all d ≥ n, such that if xk−d = Φ(ud

k−d, y
d
k−d). This allows us to derive

xk = fd
(

Φ(ud
k−d, y

d
k−d), u

d
k−d

)

.

Therefore, we can write

yd
k = hd(xk, u

d
k)

= hd
(

fd(Φ(ud
k−d, y

d
k−d), u

d
k−d), u

d
k

)

(6)

= G(ud
k−d, y

d
k−d, u

d
k), (7)

with G : R
(2m+`)d → R

`d. The function G can be used to generate the zero-input responses
as follows

γd
k = G(ud

k−d, y
d
k−d, 0).

Since the system is unknown, the function G is not available and has to be estimated using
the available input and output data. We end up with a two-step identification procedure. The
first step is to estimate the function G in equation (7) using the available input and output
data. In the second step this function G is used to generate the zero-input responses γd

k for
k = 1, 2, . . . , N . Subsequently, these generated zero-input responses can be used to estimate
the state-space system (4)–(5).

To be able to determine the function G using data, a suitable parameterization of this
function is needed. In principle any nonlinear function approximator, like neural networks or
radial basis functions can be used. It is of paramount importance that the approximator of the
function G has good generalization capabilities, because it is used to generate the zero-input
responses on which subsequent calculations are based. The errors on the generated zero-input
responses affect the final outcome of the identification method. To ensure good generalization
capabilities for the generation of the zero-input responses, the input data used to estimate G
should be centered around the value zero. In this way the generation of zero-input responses
can be achieved by using the approximation of G for interpolation.

Furthermore, to improve the generalization of the approximator for G, the structure of G
given by equation (6) should be taken into account. This structure is illustrated in Figure 1.
The function G consists of three parts Φ, f d, hd and it has a ‘bottleneck’ structure, that is,
the inner dimension n is smaller than the dimension d(m + `) of the ‘inputs’ to G and also
smaller than the dimension d` of the ‘outputs’ of G. This bottleneck structure can easily be
taken into account, for example by a proper definition of the number of neurons in the layers
of a multi-layer neural network. In fact such bottleneck-layer neural networks are often used,
for example in nonlinear principal component analysis (Haykin, 1999).

Another structural feature of the function G that could be taken into account is the fact
that the part described by Φ and the part described by hd are related to each other: Φ is the
left inverse of the map hd. How to exploit this special structure in the parameterization of G
is an interesting topic for future research.
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PSfrag replacements

Φ fd hd
ud

k−d

yd
k−d

ud
k

yd
k

[dm]
[dm]

[d`]
[d`]

[n] [n]

Figure 1: Structure of the map G given by equations (6) and (7). The symbols between
brackets indicate dimensions.

4 Relation to subspace identification for linear systems

For the linear time-invariant system

xk+1 = Axk + Buk, (8)

yk = Cxk, (9)

we obtain

xk = fd(xk−d, u
d
k−d) = Adxk−d + ∆ud

k−d,

yd
k = hd(xk, u

d
k) = Γxk + Hud

k, (10)

where

∆ :=
[

Ad−1B · · · AB B
]

,

Γ :=











C
CA
...

CAd−1











,

H :=











0 · · · 0 0
CB 0
...

. . .
...

CAd−2B · · · CB 0











.

Note that building a matrix that has yd
k as its columns results in the output Hankel matrix

used in subspace identification. The matrix form of equation (10) that involves the input
and output Hankel matrices equals the so-called data equation on which linear subspace
identification depends.

Equation (6) becomes

yd
k = Γ(∆ − AdΓ†H)ud

k−d + ΓAdΓ†yd
k−d + Hud

k,

where Γ† = (ΓT Γ)−1ΓT is the pseudo-inverse which exists because of the observability as-
sumption. Due to the linearity of this equation it is easy to estimate H given the the data
ud

k−d, yd
k−d, and ud

k. The estimate of H can then be used to obtain γd
k as follows:

γd
k = yd

k − Hud
k.

This results in the zero-input response γd
k = Γxk due to the state xk. One popular implemen-

tation of obtaining the zero-input response in this way is the oblique projection advocated by
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Van Overschee and De Moor (1996). Recently, the interpretation of this oblique projection
in terms of (sequential) zero-input responses has been described by Markovsky et al. (2004).

The next step in subspace identification is to perform a (linear) dimension reduction
on γd

k to obtain a minimal state. This dimension reduction can be done using principle
component analysis as in the MOESP and N4SID methods (Verhaegen, 1994; Van Overschee
and De Moor, 1996) or using canonical correlation analysis as in the Larimore type of methods
(Larimore, 1992; Peternell et al., 1996).

5 Example

In this section we illustrate the presented ideas using a simple nonlinear model of a pendulum.
In continuous-time the dynamic equations of the pendulum are given by:

d

dt
x1(t) = x2(t),

d

dt
x2(t) = −

g

`
sin

(

x1(t)
)

−
K

m
x2(t) +

1

m`2
u(t),

y(t) = x1(t),

where x1(t) is the angle of the pendulum and x2(t) the angular velocity. The values of the
constants are m = 0.5, g = 10, ` = 1 and K = 0.2. The pendulum was simulated using a
4th/5th order Runge-Kutta integration method with a multi-step input signal that is shown
in Figure 2. The corresponding output signal is shown in Figure 3. The used sampling time
is 0.05 s.

The dimension of the delay vectors were taken equal to 20. Using dedicated experiments
as described in Section 3, we generated 980 zero-input responses of length 20 that correspond
to the input and output data shown in Figures 2 and 3. These zero-input responses are
than ‘embedded’ to construct the state sequence. We assume that the order of the system is
known. The embedding delay is determined using a commonly used rule of thumb (Kantz and
Schreiber, 1999, p. 132): we take the value at which the normalized autocorrelation function
of the zero-input responses drops below 1/e. Figure 4 shows that an embedding delay of 9
seems to be appropriate. Thus, using the idea of time-series embedding, the first and ninth
element of each zero-input response together represent the two-dimensional state vector of
the pendulum. Figure 5 compares the true state xk and the reconstructed (embedded) state;
they are equal up to an unknown nonlinear transformation that preserves the time relations.

The reconstructed state trajectories were used to estimate a state-space model of the form
(4)–(5) with a two-dimensional state vector. The mapping F in this model was approximated
using a nonrecurrent sigmoidal neural network with one hidden layer and four hidden neurons.
The reconstructed state trajectories were used as the training targets of the network. To
evaluate the performance of the neural network model it was simulated in free-run, that is,
as a recurrent network with the state as internal variable. The performance was evaluated
on the data set that was used to determine the model and on a validation data set. The
validation data set contained fresh data sequences, that were not used for estimating the
model. Figures 6 and 7 show the corresponding outputs of the neural network model and
the errors between these outputs and the true outputs of the pendulum. We can conclude
that the identified neural network state-space model describes the dynamics of the pendulum
quite accurately.
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Figure 2: Multi-step input signal used to simulate the pendulum.
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Figure 3: Output response of the pendulum due to the input signal of Figure 2.

Instead of generating zero-input responses by dedicated experiments, we could also use
the two-step procedure of Section 3 to generate the zero-input responses from arbitrary data.
In that case we use the input and output data shown in Figures 2 and 3 to estimate the
function G in equation (7). Next the estimated function G is used to generate zero-input
responses from which the final state-space model is determined. On this example we used a
sigmoidal bottleneck neural network to model the function G. Although this network could
represent G quite accurately, the (small) errors introduced by approximating G prevented
the estimation of an accurate state-space model. The reconstructed states could be modeled
quite well by estimating a state-space model, but this state-space model performed very poor
when it was simulated in free-run. This shows that the proposed procedure should be imple-
mented very carefully in order to be of any practical relevance. The use of neural networks to
approximate G might not be the best parameterization. We are currently investigating these
implementation issues.

6 Conclusions

We presented an identification method for nonlinear state-space systems that is based on
reconstructing the state-sequence up to an invertible transformation using only input and
output measurements. The basic idea is to combine nonlinear minimal realization techniques
based on the Hankel operator with embedding theory used in time-series modeling. Under
the assumption of zero-state observability, a collection of several zero-input responses can
be used to construct a nonminimal state sequence of a nonlinear system. This nonminimal
state sequence can be reduced in dimension using time-series embedding. The reduced state
sequence can then be used to estimate a state-space model via nonlinear regression. In
principle, the required collection of zero-input responses can either be obtained by performing
dedicated experiments or calculated from arbitrary data using a two-step procedure. The first
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Figure 4: Normalized autocorrelation function of the zero-input responses.

step in this two-step procedure is to estimate a model that relates past and future delay vectors
of the inputs and outputs. This model is then used in a second step to generate the zero-input
responses. Our experience shows that the implementation of this two-step procedure is very
critical: small errors in the first step can have a major impact on the latter computations.
We are currently investigating this issue.
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Figure 6: Output response of the neural network state-space model (curve with the large
amplitude) for the identification data set and the difference with the true output (curve with
the small amplitude).
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Figure 7: Output response of the neural network state-space model (curve with the large
amplitude) for the fresh validation data set and the difference with the true output (curve
with the small amplitude).
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