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Abstract: Linear time�invariant RLC circuits are said to be �inductive� (�capacitive�)
if the current waveform in sinusoidal steady�state has a negative (resp., positive) phase
shift with respect to the voltage. Furthermore, it is known that the circuit is inductive
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a framework, based on passivity theory, that allows to extend these intuitive notions to
nonlinear RLC circuits. Copyright c©2004 IFAC
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1. INTRODUCTION

A classical, but more actual than ever, problem in
electrical engineering is the optimization, in a suit-
ably defined sense, of the energy transfer from an AC
generator to a load. In a typical scenario it is assumed
that the source consists of a generator with fixed volt-
age 1 in series with a resistor, and the problem is to
design a compensator, to be placed between the source
and the load, to minimize the transmission losses. If
all elements are linear time�invariant (LTI) and the
source voltage is a single sinusoidal, it is well�known
(Desoer and Kuh, 1969; De Carlo and Lin, 2001) that
the optimal compensator is the one that minimizes the
phase shift between the sources voltage and current
waveforms—increasing the so�called sources power
factor. It is clear that in order to select the compen-
sator we should know the phase shift characteristics
(in the frequency range of interest) of the load; these

1 This is justified by the fact that most AC apparatus operate at a
given voltage, with the maximum allowable current being specified
by other, e.g., insulation, considerations.

are classified into two classes, I (inductive) and C
(capacitive)—depending on whether the current lags
the voltage or viceversa. 2

Historically, the loads have been assumed to be linear,
and overwhelmingly inductive. However, we have wit-
nessed in the last ten years an exponential increase of
nonlinear loads, such as adjustable AC drives and all
sort of switching devices, that inject high�frequency
harmonics to the power network establishing a non�
single sinusoidal regime. It is clear that, in these cir-
cumstances, the �power factor compensator� design
paradigm described above—which is based on �sinu-
soidal steady�state� (SSS) considerations—is inade-
quate. In the authors’ opinion, a first step towards the
development of a framework for compensator design,
that encompasses nonlinear loads, is the introduction
of, mathematically tractable and physically sensible,
definitions of Class I and Class C nonlinear RLC
circuits.

2 Although the use of the qualifiers “inductive” and “capacitive” is
widespread, we introduce the classes I and C to avoid confusion
with the case of circuits consisting only of RL or RC elements.
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For LTI circuits the inductive or capacitive nature
of a single�port load is captured by the circuits re-
active power which is a scalar quantity proportional
to the sine of the phase shift between voltage and
current in SSS regime. A voluminous literature has
been reported on the subject of definitions of reactive
power in non�sinusoidal circuits, see e.g. (Lev�Ari
and Stankovic, 2003; La White and Ilic, 1997), for
a modern account. In spite of the intensive research,
and all the heated discussions, there does not seem to
be a consensus as to what is the �right definition�.
Our concern of characterizing Class I and Class C
nonlinear loads is, of course, closely related with this
research but, as explained below, we take a different
approach and (in some sense) our objectives are more
modest.
The main contribution of this paper is a characteriza-
tion of Class I and Class C nonlinear RLC circuits that
enjoys the following features:
— In contrast with the standard (reactive�power
based) characterizations that are given in terms of
the behavior of signals, our definition pertains to the
properties of two suitably defined operators.
— The operators are required to be passive, which
is a property akin to the notion of phase shift in the
nonlinear case. Furthermore, the operators are pas-
sive if an order relationship between stored electric
and magnetic energy is satisfied—hence capturing the
physical essence of the problem.
— For LTI circuits the definition exactly coincides
with the classical, reactive power�based, characteriza-
tion. This suggests an alternative definition for instan-
taneous reactive power for non�SSS regimes.
— Passivity is established with respect to a storage
function that is directly related to the circuit power,
again reflecting the physical pertinence of the pro-
posed definitions.

As indicated above, our characterization of Class I
and Class C loads is downward compatible with the
one universally adopted for LTI circuits. More pre-
cisely, we show that the average behavior of the op-
erators supply rate—where supply rate is used here in
the sense of passivity theory (Willems, 1992; van der
Schaft, 2000)—equals the circuits reactive power.

2. FRAMEWORK AND DEFINITIONS

In this note we consider RLC circuits consisting of
interconnections of (possibly nonlinear) lumped dy-
namic (inductors, capacitors) and static (resistors and
voltage and current sources) elements, whose behav-
ior is described as follows. An nL�port inductor is
defined by a vector function relating flux and current
pL = p̂L(iL), with p̂L : RnL → RnL , and Faraday’s
law vL = ṗL = L(iL)

diL
dt

, where we defined the
inductance matrix L(iL) := ∇p̂L. 3 Analogously,
for nC�port capacitors we have that the charges are

3 We use∇x(·) := ∂

∂x
, when clear from the context the argument

will be omitted.

Fig. 1. RLC network with port variables the regulated
current and voltage sources.

related to the voltages as qC = q̂C(vC), with q̂C :
RnC → RnC , and iC = q̇C = C(vC)

dvC

dt
, where

C(vC) := ∇q̂C . We also have the following rela-
tionships for the energy functions EL(pL), EC(qC),
where EL : RnL → R, EC : RnC → R,

iL = ∇EL, vC = ∇EC . (1)

The circuit has nR resistors, which are 1�ports char-
acterized by the functions vkR = v̂kR(ikR), k =
1, . . . , nR, if they are current�controlled or by the
functions ikR = îkR(vkR) if they are voltage�
controlled, where v̂kR, îkR : R → R, (see Fact 1
below). It is clear that constant voltage and current
sources can be easily added as particular instances of
resistors. The circuit is interconnected with the envi-
ronment through nvS regulated voltage sources (in se-
ries with inductors) and niS regulated current sources
(in parallel with capacitors). We denote their voltages
and currents as vvS , ivS ∈ RnvS , and viS , iiS ∈ RniS ,
respectively. See Fig. 1.

We make the following assumptions:
A.1 The energy functions, EL(pL), EC(qC), are
twice differentiable and strictly convex—which im-
plies that inductors and capacitors are passive and,
furthermore, L(iL) > 0 and C(vC) > 0.
A.2 The characteristic functions of all resistors, vkR =
v̂kR(ikR), ikR = îkR(vkR), live in the first�third
quadrant, which is tantamount to saying that the re-
sistors are passive.
A.3 The circuit is complete, which means that the
currents in the inductors and the voltages in the capac-
itors, via Kirchhoff’s laws and the laws of the resistors
characteristics, determine the voltages and currents in
all the branches.

We make at this point an important observation that
will be instrumental to provide an energy interpre-
tation of the characterization of the circuit given in
Section 4.

Fact 1. (Brayton and Moser, 1964) Complete RLC
circuits can be split into two subnetworksΣL,ΣC that,
respectively, contain all the inductors and capacitors.
According to this partition, we can split the resistors
into two sets,
— nvR voltage�controlled resistors belonging to ΣC ,
whose port variables will be denoted by (iRC

,vRC
),
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and have characteristic functions ikRC
= îkRC

(vkRC
);

— niR current�controlled resistors belonging to ΣL,
with port variables (iRL

,vRL
) and characteristic func-

tions vkRL
= v̂kRL

(ikRL
). /

As shown in (Brayton and Moser, 1964), see also
(Ortega et al., 2003) for an alternative derivation in-
cluding the sources, the dynamics of the circuit is
described by

L(iL)
_̇

iL = −∇iLP +BvSvvS

C(vC)v̇C = ∇vC
P +BiSiiS

(2)

where

P (iL,vC) := i>LΓvC +G(ΓLiL)− F (ΓCvC) (3)

is the mixed potential function,

F (vRC
):=

nvR
∑

k=1

vkRC
∫

0

îkRC
(v′kRC

)dv′kRC
, vRC

:=ΓCvC

G(iRL
):=

niR
∑

k=1

ikRL
∫

0

v̂kRL
(i′kRL

)di′kRL
, iRL

:=ΓLiL (4)

are the co�content and the content of the voltage�
controlled and the current�controlled resistors, respec-
tively, BvS ∈ RnL×nvS , BiS ∈ RnC×niS are in-
put (full rank) matrices, and Γ ∈ RnL×nC , ΓC ∈
RnRC

×nC , ΓL ∈ RnRL
×nL are constant matrices

determined by the circuit topology.
To simplify the notation, we will group all capaci-
tors of the circuit into one nC�port and all induc-
tors into one nL�port with corresponding energies
the sum of the energies of all multi�port capacitors
and inductors, respectively. Also, we will sometimes
group all port variables into vectors denoted by v :=
col(vC ,vL,vR,vS), i := col(iC , iL, iR,−iS), where
we have adopted the standard sign convention for the
sources currents.

We recall the classical definition of passivity (Willems,
1992; van der Schaft, 2000) and a well�known conse-
quence of it.

Definition 1. (Passivity). We say that an m�port sys-
tem with state x = col(x1, . . . , xn) ∈ Rn and port
variables (u,y) ∈ Rm×Rm, is passive if there exists
a non�negative function E : Rn → R+, called the
storage function, such that

E [x(t)]− E [x(0)] ≤

t
∫

0

u>(s)y(s)ds, (5)

along all trajectories of the system. 4 The function
w : Rm × Rm → R, defined as w(u,y) := u>y,
is called the supply rate.

4 In the seminal paper (Willems, 1992) a system satisfying con-
dition (5) is said to be dissipative with respect to the supply rate
w(u,y). The use of the word “dissipative” in this context may
generate some confusion, we therefore prefer to avoid its utilization
here.

Fact 2. In physical systems the port variables, (u,y),
are conjugated—in the sense that their product has
units of power—and the function E(x) is the total
stored energy. On the other hand, since E(x) is non�
negative, the passivity inequality (5) implies

−

t
∫

0

u>(s)y(s)ds ≤ E [x(0)],

where we underscore the negative sign. This inequal-
ity indicates that from a passive system you can only
extract a finite amount of energy, that cannot exceed
the energy initially stored in the system.

Before presenting our working definition for Class I
and Class C circuits we recall the following result
established, via direct application of Tellegen’s theo-
rem, in (Ortega and Shi, 2002), see also (Jeltsema et
al., 2003).

Proposition 1. Consider the RLC circuits described
by (2), (3) and satisfying Assumptions A.1�A.3.

(i) RC circuits with regulated current sources define
passive systems with port variables (v̇iS , iiS)
and storage function the total resistor co�content.

(ii) RL circuits with regulated voltage sources define

passive systems with port variables (vvS ,
_̇

i vS)
and storage function the total resistor content.

To introduce our definitions, and motivated by the
previous proposition, we find convenient to associate
to the circuit of Fig. 1 two multiport circuits depicted

in Fig. 2 whose port variables are (vvS ,
_̇

i vS) and
(v̇iS , iiS), respectively.

Definition 2. (Class I and Class C Circuits). The RLC
circuit described by (2), (3) belongs to Class I if the
multiport system of Fig. 2(a) is passive. It is said to
belong to Class C if the multiport system of Fig. 2(b)
is passive.

As we will show in the next two sections our definition
identifies Class I and Class C circuits via an order
relationship of their stored energy. Furthermore, in the
case of LTI circuits the definitions exactly coincide
with the classical, reactive power�based, characteri-
zations. It is worth underscoring that, according to
Definition 2, a circuit (even LTI) may not belong to
either one of these classes—this issue is discussed in
detail in the next section.

vvs

iis
+

ivs
d

dt

+

-

vis
d

dt

-
I C

a) b)

Fig. 2. Two multiport systems associated to the RLC
network of Fig. 1.
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3. LINEAR TIME�INVARIANT CIRCUITS

In this section we study the LTI case. 5 We give
the characterization, first, in terms of the circuits
impedance, and then, by an order relation between the
stored electric and magnetic energy. For the sake of
clarity, the impedance characterization is given first
for one�port networks, that is, circuits containing ei-
ther an independent voltage source or an independent
current source. The multiport version is deferred to
Remark 3. On the other hand, the energy characteriza-
tion is presented exclusively for single�port circuits.

3.1 Frequency Response Characterization

A moment’s reflection reveals that the classification of
LTI RLC circuits into Class I and Class C has a very
simple solution in terms of the circuits driving�point
impedance Z(s) = VS(s)

IS(s)
. 6 Recalling the following

facts (van der Schaft, 2000):

(i) An LTI system is passive if and only if its transfer
function is positive real.

(ii) A scalar transfer function Z(s) is positive real if
and only if it is (strictly) stable and Re{Z(jω)} ≥
0, ∀ω ∈ R.

(iii) A complex number multiplied by j (resp., 1

j
) is

rotated +π/2 (resp., −π/2).

We have that:

Proposition 2. An LTI single�port RLC circuit satis-
fying assumptions A.1�A.3 belongs to Class I (resp.,
Class C) if and only if the Nyquist locus of its driving�
point impedance,Z(jω), is restricted to the first (resp.,
fourth) quadrant of the complex plane.

Remark 1. The proposed characterization identifies
circuits that provide positive (or negative) phase shift
to sinusoidal waveforms of all frequencies. At the
other extreme we have the classical reactive power,
which characterizes the circuit for each given ω. It
is, of course, possible to define the classes I, C as
the set of circuits satisfying (5) for a given class of
input signals. If we fix this signal to be a sinusoidal
we recover the classical definition using the reactive
power. As discussed in Section 5, the latter (signal�
based) concept can hardly be extended to the nonlinear
case, which motivated us to adopt the—admittedly
more conservative—operator�based approach. For a
discussion on the means to reduce conservatism we
refer the reader to Section 5, see also Example 3.3.B.

Remark 2. Assumptions A.1, A.2 of passivity of the
constitutive elements implies, via Brune’s Theorem,
Chapter 19, Section 4.3.3 of (Desoer and Kuh, 1969),

5 A lot of the material contained in the section may be found in
standard textbooks, e.g., (Desoer and Kuh, 1969; De Carlo and
Lin, 2001).
6 The authors thank Prof J. C. Willems for this insightful observa-
tion.

that Z(s) is positive real and consequently the Nyquist
locus is always on the first�fourth quadrant of the
complex plane. The classification above identifies
those circuits whose frequency response �does not
cross� from one quadrant to the other.

Remark 3. The multivariable version of Point (ii)
above is: A square (strictly) stable multivariable trans-
fer functionZ(s) is positive real if and only ifZ(jω)+
Z>(−jω) ≥ 0, ∀ω ∈ R. Henceforth, for multiport
circuits Proposition 2 reads as follows:

An LTI multiport RLC circuit satisfying Assump-
tions A.1�A.3 belongs to Class I (resp., Class C) if
and only if jω

[

Z(jω)− Z>(−jω)
]

≥ 0, ∀ω ∈

R,, (resp., − j
ω

[

Z(jω) + Z>(−jω)
]

≥ 0, ∀ω ∈
R).

3.2 Characterization in Terms of Stored Energy

To give an energy�based characterization of the circuit
we recall the following two lemmata.

Lemma 1. For an LTI RLC circuit with a single si-
nusoidal current source operating in SSS regime the
average magnetic and electric energies stored in the
circuit, and the average power dissipated in the resis-
tors, are given by 7

ELav
(ω) =

nL
∑

k=1

1

4
Lk|IkL(jω)|

2, (6)

ECav
(ω) =

nC
∑

k=1

1

4

1

ω2Ck

|IkC(jω)|
2, (7)

Sav(ω) =

nR
∑

k=1

1

2
Rk|IkR(jω)|

2 (8)

where Ik(·)(jω) is the Fourier transform of the branch
current ik(·).

Lemma 2. The frequency response of the driving�
point impedance of a single�port LTI RLC circuit
satisfying Assumptions A.1�A.3 can be expressed as

Z(jω) = κ {2Sav(ω) + 4jω [ELav
(ω)− ECav

(ω)]}(9)

where κ is a positive constant. In the case of sinusoidal
current source, κ = 1

|IS |2
, with IS the effective value

of the current source.
We are now in position to present the main result of
this section, whose proof follows immediately from
Lemma 2 and Points (i) and (ii) of Subsection 3.1.

Theorem 1. Consider an LTI RLC one�port circuit
satisfying Assumption A.1�A.3. The circuit belongs
to Class I (resp. Class C) if and only if

ELav
(ω)− ECav

(ω) ≥ 0, ∀ω ∈ R, (10)

(resp., ECav
(ω)− ELav

(ω) ≥ 0, ∀ω ∈ R.)

7 We write the average energies as functions of ω to underscore
that they are parameterized by the source angular frequency.
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Fig. 3. Example of a Class I one�port LTI RLC
network.

Remark 4. A classical definition of reactive power
(derived from phasor representations) can also be ex-
pressed in terms of the average energy functions as

Qω = 2ω[ELav
(ω)− ECav

(ω)],

which, comparing with (10), reveals the obvious con-
nection with our characterization. That is, the circuit
belongs to one of the classes of Definition 2 if and only
if the reactive power is non�positive (or non�negative)
for all ω ∈ R. See Remark 1.

Remark 5. A circuit can satisfy either one of the in-
equalities of Theorem 1, both, or neither one of them.
The latter happens when the difference between the
average magnetic energy and the average electric en-
ergy is not sign definite. Purely resistive networks
clearly satisfy both inequalities. In particular, since
the average energy is always positive, all RL (RC)
networks belong to Class C (resp., Class I) as shown
for the general case in Proposition 1. Also, we point
out that the inequality depends not only on the net-
work topology but also on the numerical values of
the R,L,C elements of the circuit—that obviously
appear in the definitions of ELav

(ω) and ECav
(ω)—

see examples below.

3.3 Examples

Let us illustrate Theorem 1 with two simple examples.

A. A Class I Circuit Consider the RLC circuit de-
picted in Fig. 3. The driving-point impedance of the
circuit is given by

Z(s) =
RL +RC + (RLRCC + L)s+RCLCs

2

1 +RCCs

Making the analysis of this circuit in steady state,
yields the following expressions for the average mag-
netic and electric energies

ELav
(ω)=

LC2ω2(1 +R2

CC
2)

4D(ω)
, ECav

(ω)=
R2

CC
3ω2

4D(ω)

with D(ω) = R2

CL
2C4ω6+(L2C2+R2

LR
2

CC
4)ω4+

+(R2

LC
2+2LC+2RLRCC

2)ω2+1, which we note
satisfies D(ω) > 0.

Evaluating the difference ELav
(ω) − ECav

(ω) we get
that condition (10) of Theorem 1 is fulfilled if and only
if L ≥ R2

CC.

In this case, the circuit belong to Class I. If the
parametric inequality is not satisfied the circuit does
not belong to neither one of the classes.

B. An Indeterminate Circuit Another interesting ex-
ample is the series RLC circuit, where we can deduce
that condition (10) of Theorem 1 becomes LCω2 > 1,
which obviously cannot be fulfilled for all ω. A similar
result is obtained for the parallel RLC circuit. In the
spirit of Remark 1 we can, loosely speaking, say that
the series RLC circuit belongs to Class I (Class C)
for all sinusoidal signals of frequency larger (resp.,
smaller) than 1√

LC
.

4. NONLINEAR CIRCUITS

In this section we give sufficient conditions for a gen-
eral nonlinear RLC circuit to belong to either Class
I or Class C. We assume that the active elements are
leaky, meaning that capacitors (resp. inductors) have a
resistor in parallel (resp., series.) The conditions are,
unfortunately, pointwise and trajectory dependent, but
have a clear interpretation in terms of energy that is
explained as follows.
First, recall from Fact 1, that capacitors have in
parallel (some of) the voltage�controlled resistors,
while inductors have in series (some of) the current�
controlled resistors. Consider now the case where a
voltage�controlled resistor in parallel with the k�th
capacitor is linear, that is vkC = RkCikR, and the
value of the resistance is small. Then, the current will
tend to flow through the resistor and the energy stored
in the capacitor will be small—it will actually tend to
zero as RkC → 0, which is a limiting case with the
capacitor short�circuited. Alternatively, if a current�
controlled resistor in series with the k�th inductor is
linear and small, the magnetic energy stored in the
inductor will be small—with an open circuit in the
limiting case RkL = 0. This discussion provides the
key for the adequate interpretation of Assumptions
A.5 (or A.5’) of the theorem below.

Theorem 2. Consider the RLC circuit of Fig. 1, de-
scribed by (2), (3), and satisfying Assumption A.1�
A.3. It belongs to Class I if furthermore

A.4 The voltage�controlled resistors are linear, that
is, iRC

= R−1

C vRC
.

A.5 All capacitors are leaky and the value of the (par-
allel) leakage resistance is sufficiently small. 8

A.6 The regulated current sources iiS are constant.

Similarly, the circuit belongs to Class C if it satisfies

A.4’ The current�controlled resistors are linear, that
is, vRL

= RLiRL
.

A.5’ All inductors are leaky and the value of the
(series) leakage resistance is sufficiently small.

A.6’ The regulated voltage sources vvS are constant.

8 As discussed above this condition ensures that the electrical
energy stored in the capacitors is smaller than the magnetic energy
stored in the inductors. A similar remark applies to condition A.5’.
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Proof. (Outline). 9 First, notice that under the assump-
tion of leaky capacitors, A5, we have nRC

≥ nC

and, consequently, the matrix Γ>
CR−1

C ΓC is invertible.
Let us denote it R̃−1

C := Γ>
CR−1

C ΓC . Now, under
Assumption A.4, the co�content (4) takes the form
F (ΓCvC) =

1

2
v>
CR̃−1

C vC .

Furthermore, Assumption A.2 implies that RC =
diag{RkC} > 0, and consequently R̃C > 0. Some
lengthy, but straightforward, calculations prove that
the system (2), (3) can be written in the form 10

MC(iL,vC)

[

_̇

iL
v̇C

]

= ∇PC −

[

BvSvvS

0

]

, (11)

where we defined the matrix

MC(iL,vC) :=

[

−L(iL) 2ΓR̃CC(vC)
0 −C(vC)

]

, (12)

and the new mixed potential function PC(iL,vC), is a
nonnegative function, whose time derivative satisfies

ṖC =
[

(
_̇

iL)
> v̇>

C

]

MC(iL,vC)

[

_̇

iL
v̇C

]

+ v>
vS

_̇

ivS ,

which, together with the fact that MC(iL,vC) +
M>

C(iL,vC) ≤ 0 (ensured by Assumption A.1) es-
tablishes the passivity property required for Class C
circuits in Definition 2.

It can be shown that the proof of the second claim
follows exactly the same pattern. /

Remark 6. The storage functions, which are defined
by the mixed potentials PL(iL,vC), PC(iL,vC),
have a clear interpretation in terms of power. See
(Brayton and Moser, 1964; Ortega et al., 2003) for
further discussion on this point.

5. OUTLOOK AND OPEN PROBLEMS

The results reported in this work are part of a long term
research program whose final objective is the devel-
opment of model�based compensator design methods
for electric energy processing systems with nonlinear
loads. It is natural that the first steps in this program
concern modelling aspects, as well as the exploration
of new properties of these models—the results may
be found in (Jeltsema and Scherpen, 2002; Ortega
and Shi, 2002; Ortega et al., 2003; Jeltsema et al.,
2003; Garcia�Canseco and Ortega, 2004), with some
preliminary investigation on stabilization included in
(Ortega et al., 2003).
The present work constitutes the next, modest, step
and its main contribution is the proposition of a
passivity�based framework for characterization of

9 The complete proof is available upon request to the authors
10To get this expression we used Proposition 5 of (Ortega et
al., 2003).

nonlinear RLC circuits.
Many problems and questions remain open, among
them we might cite:
• An energy characterization of Class I and Class C
multiport LTI circuits, in the spirit of Theorem 1, is
still missing.
• The characterization in Theorem 2 assumes leaky
active elements with linear resistors. As the construc-
tion of the new dynamic model heavily relies on these
assumptions, it is not clear how they can be relaxed.
• It has been indicated in Remark 1 that our charac-
terization of the loads is conservative, in the sense that
in practice we are interested in their behavior only in
some specific finite bandwidth. For LTI circuits, we
can invoke the recent Finite Frequency Positive Real
Lemma reported in (Iwasaki et al., 2000) to reduce
the conservatism. Filtered operators or multipliers can,
in principle, be similarly introduced in the nonlinear
case.
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