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México D.F., México, Apdo. Postal 14-805.
Tel. +52-9175-7623, Fax +52-9175-7079. rlopezle@imp.mx
∗∗ Delft Center of Systems and Control, Delft University of

Technology, Mekelweg 2, 2628 CD Delft, The Netherlands. Tel.
+31-15-278 6152, Fax +31-15-278 6679.

J.M.A.Scherpen@dcsc.TUDelft.nl

Abstract: Based on a geometric interpretation of nonlinear balanced reduction some
implications of this approach are analyzed in the case of collocated port-Hamiltonian
systems which have a certain balance in its structure. Furthermore, additional examples
of reduction for this class of systems are presented. Copyright 2004 c©IFAC

Keywords: Nonlinear systems, Hamiltonian systems, model approximation, model
reduction.

1. INTRODUCTION

Given a minimal nonlinear system, the problem of
equilibrated 1 reduction seeks to perform a reduction
of the dimension of the state-space based on a criterion
which characterizes a submanifold over which the re-
duced system can be constructed. Following the ideas
of the dissipativity approach of balanced reduction
(Lopezlena et al., 2003), it can be said that a particular

1 The term ”balanced” applies in this context, but some authors re-
serve such term to the balancing method of (Moore, 1981) only. The
concept of equilibrated reduction includes the balanced reduction as
a particular case.

realization of a dynamic system is equilibrated when
in such realization the square root of the required sup-
ply function and the corresponding square root of the
available storage function have the same value in each
point of the state space. In order to find an equilibrated
representation, a relation between both functions can
be defined in a certain form, for instance, an induced
norm relating both functions within a certain subman-
ifold.
The main idea of this paper is to apply several concepts
of such nonlinear equilibrated reduction procedure to
reduce port-Hamiltonian systems (PHS).
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This paper is organized as follows. In Section 2, using
Legendre Transforms to factorize PHS, it is shown
that a natural representation of Hamiltonian systems
is the collocated form introduced in (Lopezlena et al.,
2003) which is just a particular structure of the Port-
Hamiltonian paradigm. In Section 3 it is shown that the
interconnection of two collocated-PHS (CPHS) yields
newly a CPHS with Hamiltonian equal to the sum of
the Hamiltonians of the component subsystems. The
possibility of interconnection of this structures brings
about the inverse operation of reducing the dimension
of the state space according to its input-output or port
relations. Therefore in Section 4 a factorization is use-
ful to provide a structure preserving reduction method.

2. HAMILTONIAN SYSTEMS AND
FACTORIZATION

A class of dissipative systems are port-Hamiltonian
systems with dissipation (PHSD) (van der Schaft,
2000). In this section we present two representations
of PHSD and their relations as an antecedent of the
collocated representation of PHS presented in Sec. 3.
A PHS is characterized by a Dirac structure, an energy
(Hamiltonian) function and a dissipative structure. The
Dirac structure defines the power conserving inter-
connections in the system. More formally, given two
spaces F , F∗, the Dirac structure D is a subspace
D ⊂ F × F∗ such that D = D⊥ for the symmetric
bilinear form

〈(f1, f
∗
1 ), (f2, f

∗
2 )〉F×F∗ = 〈f∗

1 |f2〉 + 〈f∗
2 |f1〉 (1)

where (f, f∗) ∈ F ×F∗. If we consider the particular
spaces defined as

F = {f | f = −ẋ, x ∈ X , f ∈ TxX} (2)

F∗ = {f∗ | f∗ =
∂H

∂x
(x), x ∈ X , f∗ ∈ T ∗

xX} (3)

where H is a function (the Hamiltonian), then with
structure matrix J(x) (J(x) = −JT (x)) such that
D = {(f, f∗) ∈ TX⊕T ∗X | f(x) = J(x)f∗(x), x ∈

X}, the triad (X ,D,H) is a conservative PHS (van der
Schaft, 1998). Dissipation can be added with a sym-
metric structure R by adding a feedback loop inter-
connection, (van der Schaft, 2000).
In the behavioral approach, a system is conceived as
an exclusion law which discards any outcome outside

a subset of time-trajectories called the behavior of the
dynamical system. Furthermore, there in no particular
distinction in the set of dynamic variables between
state variables, input and output variables. For our
purposes, consider a Hamiltonian system (X̂ , D̂, Ĥ)

where D̂ ⊂ F̂× F̂∗, Ĥ(x,w) ∈ C∞ and the extended
state space (x,w) ∈ X̂ includes those variables w

associated to inputs and outputs. Such system can be
represented by





ẋ(t)

ẇ(t)



 =





M1
1 (x) M2

1 (x)

M1
2 (x) M2

2 (x)









∂xĤ

∂wĤ



 (4)

where the inclusion of dissipation is provided by
defining a symmetric dissipation structure R(x) =

RT (x) > 0 to the system resulting in a matrix
M(x) = J(x) − R(x) with structure matrix J(x) =

−J(x)T . Alternatively the same system can be rep-
resented with a Hamiltonian function H(x) ∈ C∞,
x ∈ X in the form





ẋ(t)

−y(t)



 =





M1
1 (x) M2

1 (x)

M1
2 (x) M2

2 (x)









∂xH

u(t)



 (5)

The triad (X ,D,H), D ⊂ F × F∗, defines a port
-Hamiltonian system. Legendre transforms are used
very frequently to transform functions in a certain
vector space into functions of its dual space. For a
PHS (X ,D,H) and a state space locally partitioned
as x = (x1, x2) the (Legendre) transformation L :

X → X ′ defined by L : (x1, x2) → (x1, z2) with
z2 = ∂H(x1, x2)/∂x2 provides a new Hamiltonian
defined by H ′(x1, z2) = H(x1, x2) − zT

2 x2 that
provides a factorization of the state space X such
that it becomes useful for reduction. In (Lopezlena et
al., 2003) a partial Legendre transform was used for
reduction purposes. In the following result we use such
transform in order to express equivalence conditions
to express such Hamiltonian system in the common
representation of a PHS with explicit collocated inputs
and outputs.

Proposition 2.1. The PHS (4) can be represented
equivalently by the PHS (5) by defining inputs and
outputs as

{

u(t) = ∂Ĥ(x,w)/∂w

y(t) = −ẇ(t)
(6)



furthermore for small variations of u, the Legendre
transform

Ĥ(x, z) = H(x,w) − yT ∂Ĥ

∂w
, (7)

can be used for state transformation from (4) to (5).

Proof.Due to (6) the Hamiltonian functions of systems
(4) and (5) are related by Ĥ(x, z) = H(x,w) −
∫

∂H
∂w

ẇdt. Consider the Hamiltonian function defined
by (7) such that u = ∂Ĥ(x,w)/∂w. Then system (4)
can be transformed to







ẋ(t)

dt

(

−∂uĤ
)






=





M1
1 (x) M2

1 (x)

M1
2 (x) M2

2 (x)









∂xĤ

u





which is equivalent to (5). !

The Legendre transform used provides a partition of
the state space allowing for a factorization of the sys-
tem. In our particular case the system (4) is factorized
in the system (5) and the following (sources) PHS





ẇ(t)

ż(t)



 =





0 −I

I 0









∂wH

∂zH





with Hamiltonian function H(w) =
∫ (

∂H
∂z

)

ż dt.

Proposition 2.2. The resulting structure D̂(x) of the
PHS defined in the extended manifolds F̂ and F̂∗ is
power-conserving.

Proof.Using the bilinear form (1) for the spaces F̂ and
F̂∗ constructed over (3) yields

〈(f̂ , f̂∗), (f̂ , f̂∗)〉F̂×F̂∗ = 2ẋ
∂H

∂x
− 2yT u = 0.

!

Proposition 2.3. The energy balance of the PHS in Eq.
(5) is given by

dH

dt
= yT u −







∂H

∂x

u







T
[

R1
1 R2

1

R1
2 R2

2

]







∂H

∂x

u






. (8)

Proof. Since

dH

dt
=

∂T H

∂x
ẋ =

∂T H

∂x

[

M1
1 (x)

∂H(x)

∂x
+ M2

1 (x)u(t)

]

direct substitution of ∂T H
∂x

J2
1 from yT from (5), since

J1
2 = −J2

1 , and uT J2
2u = 0 the result (8) follows. !

3. SERIES INTERCONNECTION OF
COLLOCATED PHS

By collocated PHS (CPHS) we refer to a structured
representation of PHS where all possible inputs and
outputs are paired at the ports and included in one
composite (structured) matrix, see also (Lopezlena et
al., 2003; Lopezlena and Scherpen, 2004). In partic-
ular, the class of CPHS in the following form are
explicitly written as


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
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(9)

with H(x) the Hamiltonian function and M(x) =

J(x)−R(x) where J(x) = −JT (x), R(x) = RT (x)

and as usual, the system is dissipative for a supply rate
r = yT

1 u1 − yT
2 u2.

The class of CPHS has a particular advantage in terms
of series interconnection. Given two systems of this
class connected by the ports that satisfy some com-
patibility relations, the resulting series interconnected
system belongs to the collocated class. More formally,
consider two CPHS. The first one from Eq. (9) with
Hamiltonian H(x) and with the purpose of series in-
terconnection consider a second system with Hamilto-
nian functionH(w) in the form












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−z1

z2


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













(10)

with H(w) the Hamiltonian function and N(w) =

JN (w) − RN (w), and dissipative for a supply rate
r = zT

1 v1 − zT
2 v2.

Proposition 3.1. Assume that the interconnection is
compatible, i.e. y2 = v1 and u2 = z1, then the
series interconnected system with inputs u1 and v2 and
outputs−y1 and z2 is again a CPHS with Hamiltonian
H(x,w) = H(x) + H(w) and is expressed in Eq.
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Fig. 1. Interconnection of elemental RLC circuits

(11). whenever Ω = (I + M3
3 N2

2 )−1 and ψ = (I +

N2
2 M3

3 )−1 exist.

Proof. Using the compatibility relations y2 = v1 and
u2 = z1, the series interconnection of system (9) and
(10), results straightforwardly in system (11). !

Example 3.1. Consider the electrical circuits presented
in figure 1. The circuit in figure 1 (a) has a CPHS given
by


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
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




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



























∂H1

∂q1

∂H1

∂λ1

V1

V2












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for a Hamiltonian given byH1 = 1
2C1

q2
1 + 1

2L1
λ2

1. The
CPHS of circuit in figure 1 (b) is


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with a Hamiltonian given by H2 = 1
2C2

q2
2 + 1

2L2
λ2

2.
In both representations it can be clearly distinguished
that the interconnection matricesM andN can be fac-
torized into a skew-symmetric part accounting for the
energy conserving interconnections and a symmetric
part for the dissipation. The compatibility conditions
y1 = v1 and u2 = z2 are satisfied allowing then the

series interconnection of this systems. The resulting
interconnected system has the form
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where we denoted R12 = R1 + R2 with Hamiltonian
H = 1

2C1
q2
1 + 1

2L1
λ2

1 + 1
2C1

q2
1 + 1

2L1
λ2

1, which is a
collocated port-Hamiltonian system and whose matrix
again can be factorized into a skew-symmetric and
symmetric part.

In (Lopezlena et al., 2003) a dissipativity approach of
balanced reduction was presented for nonlinear sys-
tems using storage functions. In the case of collocated
port-Hamiltonian systems there is a very natural form
to define such storage functions in terms of port vari-
ables. Define the storage functions through the ports

S"
r (x0, r) = Sr(x0, y

T
1 u1)

= inf
u(·)∈U

x0=x, T≥0

∫ 0

−T

yT
1 u1dt (12)

S"
a(x0, r) = Sa(x0,−yT

2 u2)

=− inf
u(·)∈U

x0=x, T≥0

∫ T

0
yT
2 u2dt (13)

which can be recognized as the physical energy sup-
plied to the system, 〈u1, y1〉L2

, by its input two-port,
and the physical energy deliverable by the system,
〈−u2, y2〉L2

, through its output two-port.



Proposition 3.2. Given the collocated PHS (9), for
vectors partitioned as u = (uT

1 , uT
2 )T and y =

(−yT
1 , yT

2 )T , where the input energy is associated to
〈y1, u1〉L2

and the output energy to 〈y2,−u2〉L2
, then

Sr(x) and Sa(x) can be written as

Sr(x) = H(x) + D(x, t)|0−T (14)
Sa(x) = H(x) − D(x, t)|T0 (15)

where H(x) is the Hamiltonian of the system and

D(x, t) =

∫
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







dt.

Proof. Initially assume that system (9) for u2 = 0 is
excited by the input u∗

1 which satisfies the variational
problem defining Sr in order to reach the initial state
x0. Furthermore, departing from x0 with u1 = 0

assume that the systems is excited with the input
u∗

2 such that the variational problem defining Sa is
satisfied. This sequence of operations can be described
by the decomposition of the PHS as two separate
systems. For u2 = 0
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and for u1 = 0
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By the definition of the storage functions as S"
r (x0, r) =

Sr(x0, yT
1 u1) and S"

a(x0, r) = Sa(x0,−yT
2 u2). The

use of Eq. (8) for the inputs and outputs defined previ-
ously yield Eqs. (14) and (15) respectively. !

4. EQUILIBRATED REDUCTION AND CPHS

In this subsection the reduction of collocated PHS is
discussed under the light of the equilibrated reduction
procedure presented in (Lopezlena et al., 2003; Lope-
zlena, 2004) . The set of points reachable from x0 at
time T , for each T ≥ 0 and each x0 ∈ X is denoted
byA(x0, T ). Since the storage functions (14) and (15)
essentially are composed of the Hamiltonian and a

dissipation function, only differing by a sign, it can
be asserted that both are supported by the same subset
of A(x0, T ) ⊂ X . This type of systems can be con-
sidered equilibrated in their controllablity and observ-
ability properties, as already anticipated in (van der
Schaft, 1982).
The next step on the reduction procedure is to find a
partition of the state space X = Xa ⊕Xb such that the
highest concentration of energy remains in a certain
submanifold Xa. For such partition of the state space
the procedure of equilibrated reduction on manifolds
(Lopezlena, 2004) can be applied.
As it could be seen in this section, the fact that port-
Hamiltonian systems have a certain structural bal-
anced form in terms of its storage functions and in
terms of its controllability and observability proper-
ties, shows that the importance of the nonlinear bal-
anced reduction methods for this class of systems lies
more on the correct partition of the state space in sub-
manifolds with a certain stored energy in the Hamil-
tonians associated to such partition. Unfortunately we
do not have at hand general procedures to decide on
such factorization. In the following result we provide
a factorization of the state space variables once such
partition has been decided in a certain form and a
structure preserving reduction method follows.

Proposition 4.1. Consider the PHS given by
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ẋ1

ẋ2
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with a Hamiltonian given byH(x1, x2), whereM j
i (x) =

Jj
i (x)−Rj

i (x) and assume that ∂2H/∂x2
2 has full rank

and det(M2
2 (x)) += 0. Assume that the variations of

the state vector x2 can be neglected, then the state tra-
jectories of the system lie in the submanifold defined
as

N =

{

(x1, x2, u1, u2) | M1
2 (x)

∂H

∂x1
(x)+

M2
2 (x)

∂H

∂x2
(x) + M3

2 (x)u1 + M4
2 (x)u2 = 0

}

,

and the dynamics of the system can be represented in
a reduced form as follows
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whereW j
i = M j

i −M2
i ΞM j

2 , for a Hamiltonian given
by H" = H(x1, x2) −

∂H
∂x2

x2, where Ξ = [M2
2 ]−1.

Proof. It is a slight variation of (van der Schaft, 2002;
Lopezlena et al., 2003) which now considers collo-
cated PHS and therefore is omitted. !

Example 4.1. (Generalized electromechanical machine).
Define the vector of fluxes as Φ = (φr

d,φ
r
q,φ

s
d,φ

s
q)

T

and the rotational moment as h = J θ̇. Define ∆ =

LsLr −M2. The Hamiltonian for this system is given
by H(Φ, h) = 1

2J
h2 + 1

2ΦT Γ(θ)Φ, where L and
L−1(θ) = Γ(θ), are such that

L(θ) =

[

LrI2 Me−J θ

MeJ θ LsI2

]

; eJ θ =

[

cos θ − sin θ

sin θ cos θ

]

Γ(θ) =
1

∆

[

LsI2 −Me−J θ

−MeJ θ LrI2

]

.

The CPHS representation is given by
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Several degrees of reduction can be of interest in
these type of electromechanical machines (Richards
and Tan, 1981). We consider two cases:
(a) Whole electrical transient dynamics discarded.
Using the reduction procedure presented yields



















ḣ
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with a Hamiltonian given by H(h, θ) = 1
2J

h2 −
1
2ΦT Γ(θ)Φ where Φ = Φ0 is constant in a certain

operating point.
(b) Just stator transient dynamics discarded. This
amounts to ignore the energy stored in stator flux-
linkages φs

d and φs
q but including the electrical tran-

sients in the rotor windings, resulting in
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where H(h, θ) = 1
2J

h2 − 1
2ΦT Γ(θ)Φ.
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