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1. INTRODUCTION The main purpose of this paper is to present a pro-
cedure to reduce the dimension of the state space of

The reduction of the order of physical dynamic models port-Hamiltonian systems (PHS) according to its ca-
has been asubject of discussion and research for a |Ong)acity of Storing energy but preserving its structure
time now in the physics and the engineering literature and moreover, preserving its input-output properties.
as well. Reduction in classical mechanics counts with Furthermore it is argued that when the influence of
a large and rather well known history mainly based on the inputs, outputs and dissipation is small, the re-
symmetries within a differential geometric framework duction procedure is, at least locally, equivalent to a
for Hamiltonian systems (Marsdehal., 1974). These  reduction based on the elimination of the less energy
systems are an important paradigm for modelling, storing elements of the Hamiltonian. Although the
analysis and control. Though, when a reduction proce- aforementioned characteristics for the reduced system
dure is considered for these systems, and the reSUltin%re Conceptua”y independent’ they can be combined
model is intended for control and systems analysis, be- harmonically in one framework. The theory of dis-
sides the mere preservation of the Hamiltonian struc- sipative systems provides a firm groundwork for this
ture, the properties of controllability and observabil- purpose, as will be seen further on.
ity are known to be important for an adequate input- Different approaches to reduce this class of systems
output behavior. Such properties have been studied inhave been presented previous|yl In (Van der Schaft
(Van der Schaft, 1984; Nijmeijeat al., 1990; Van der et al., 1990) for linear Hamiltonian systems, a reduc-
Schaft, 2000). Roughly speaking, Hamiltonian sys- tion procedure is outlined by the use of éssociated
tems have a certain balance regarding Observab”itygradient system, being 0n|y valid for conservative or
and controllability (Van der Schaft, 1982). weakly damped systems. This latter approach was gen-
eralized for the class of nonlinear simple Hamiltonian

1 Supported by Instituto Mexicano del Paio (IMP), Mexico systems (with pOSItIV(? en?rgw in (SCherp?n' 1994_)' A
City, Mexico. http://www.imp.mx procedure for balancing linear systems with the dissi-
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pativity theory has been described in (Weiland, 1993). Using the coordinate transformation = U(z)x
The paper is organized as follows. In Section 2 the aroundz € D, an approximated reduced subsys-
reduction of Hamiltonian systems with ports is per- tem (J,, R,, G, H,) can be found representing the
formed with a symmetries-inspired procedure for au- most energy-storing dynamics and preserving the port-
tonomous systems with the purpose of motivating the Hamiltonian structure.

inclusion of the effect of ports in Section 3 within a

balanced reduction framework based on dissipativity Proof. Define as the new coordinates and define
theory. Additionally some arguments are presented in 7'(z) = U7 (x)x yielding w = UT(z)z or x =
order to clarify the relation of the input-output proce- U (z)(w). Forz € D, % = UT(z). This yields
dure with the autonomous one. Finally in Section 4 Hw) = wTS(@)w ow _ 9T(z) oz _ T '(a)

a singular perturbations method which preserves the T () ow ox * dw ow

. . ; : _ : _ 9T N (w)
port-Hamiltonian structure is presented, to conclude @nd alsow(t) = =7=i(t) andi(t) = =5 =w(t).
with some remarks. SincedH (x)/0x can be written as

oH [0THow]'  o7T(z)0H
2. REDUCTION OF HAMILTONIAN SYSTEMS e | 9w orl T or ow

Consider the following input-affine port-Hamiltonian denoteM(z) = J(z) — R(z) then syst. (1) may be

system, written as the tripIe{M(Ze), G(x), H(w)) where
B Rz OH (x) o -
i(t) = [J(x) 8[13(3:))} ox + Glz)ult) (1) M(z) = ag(xx>]v[(m)8 gx(x) =T, M (x)TF
T
y(t) = G (2)—5 = _ aT ()
where we assume that ¢ X, J(z) = —J(z)7,

R(z) = R”(x) > 0 with a Hamiltonian function After transformation)/ preserves its properties since
H(x) € C* such thatH (0) = 0 and%(o) = 0. By transformation of J(z) results in T,.J(z)T] =

the fundamental theorem of integral calculus, it is pos- T J” (#)T,] = —T,J ()T and skew-symmetry of
sible to express such functidii(z) on a convex neigh-  J(x) is preserved. On the other hand, after transform-
borhood of0 as a quadratic forn#f (z) = z* E(x)z, ing R yields R = T,RT, symmetric. It is possi-

E(z) = E"(x) with functions in each entry. There ble to rewrite the system &s\/(z), G (z), H(w)) =
exist several examples of nonlinear systems that have(U” ()M (2)U (x), U (x)G(x), H (w)) and the Hamil-
such quadratic Hamiltonian structure. tonian takes the formtf (w, z) = w” X (x)w which for

a partition of the statey = (w; w-) may be decom-
posed adf (w) = S(x!)w; + X(22)w,. Furthermore,

the whole system can be written as

DenoteGL(n, C* (X)) the set ofn x n matrices with OH (w)
components inC>(X) and denoteSO(n, C>= (X)), [wl} B {M} Mf} owy n |:Gl(’w17w2):| "

2.1 Reduction based on EFD of the Hamiltonian

the special orthogonal group of unimodular transfor- i My M3 | | 0H(w) Ga(wy, ws)
mations as Ows
SO(n,C*(X)) := {g € GL(n,C>(X)) OH (w)
T _ I detg=1}. —[a G Oun
| 99 g } Y [ 1(wr, wa) 2(w1>w2)} OH (w)
Remark 2.1. Consider a matrix of function&(x) € Ows
GL(n, C*(X)), z € . In the particular case when |f the subsystem associated to the least amount of
E(z) = E7 (z) > 0, it may be expressed as stored energy is truncated, then the reduced sys-

tem (M (w), G1(w), H;(w)) can be inversely trans-
formed aroundr with 77! = UT'(z) (i.e. adapted to
whereS(z) = diag(r(2), -, 7v(2), Ors1, - - ,0,) the reduced coordinates) yielding the reduced model

st.m(z) > m(x) > -+ > 1(z) > 0arethe (M (2'),Gi(zh), Hi(z")) = (M} (z1), G (2!), H.(2))
eigenvalues o/ (z) andU(z) € SO(n,C*(X)). In
the rest of the paper we will refer to it @gyenvalue
function decomposition (EFD), (Scherpen, 1993).

E(2) = U(2)S (@)U () 2)

for eachz. Such model preserves the Hamiltonian
structuremodulo

Proposition 2.1. Consider the EFD of the Hamilto- M} OH (w) + M3 OH (w) + Ga(wy,wa)u = 0.

nian of (1), H(z) = 2 U(2)S(2)U” (2)z , Uz) € Oun Owe

SO(n,C*>(X)) in a neighborhood defined as [ |
oUT (x) Instead of truncation, a singular perturbation method

D={zreXx st 9 0}. can be used as can be seen in Section 4.
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Remark 2.2. Despite the possibility of finding a EFD  unstable nonlinear systems.

of E(z) for any z € X the reduction procedure If r,(u,y) = (1 — =%) || yl[>+ | ul® is used for
in thi ion is vali ly fore D C X. 2

presented in this section is valid only fere D C S, (r,) andrq(u, y) =| y|% + (v;_l) | w2, v > 1

for S, (r,) then this parallels the treatment &f..-

3. DISSIPATIVITY THEORY FRAMEWORK past and H.-future energy functions Q7 and Q7
presented in (Scherpen, 1996) for nonlingds,-

In this section a more general framework for nonlinear alancing.
balancing theory for dissipative systems is presented.

Consider the following continuous-time nonlinear sys- By defining a ratio between the input storage (required

tem supply) and the output storage (available storage), for
i(t) = fz(t),u(t)), two determined supply rates, it is possible to have
ok y(t) = h(z), (3) a measure of thetorage capacity. Thus by using a

) transformation that changes the system accordingly, a

space manifoldY, F" and h are C*°, v € U and

y € V. Assume that" andh are Lipschitz continuous  Definition 3.1. (Input-output storage quotient). For the
in z andu and additionallyz andy are locally square  system (3) being dissipative for the supply ratgand
integrable. From now on it will be assumed that this ;. assuming existence &, (zo,r,) and S, (zq, )
system is dissipative and that there is no source of around a point:(0) = g, (S, (zo,7) # 0), define

energy within the system. From general dissipative theinput-output storage quotient as
systems theory (Willems, 1972) it is known that asso-

ciated to the system (3) are the storage functions called g
required supply, S, : X — R™T, defined as |¥|s = sup {M} . 4)
z(0)ex Sy(zo,77r)

Nl=

Si(zo,r) =  inf / r(u(t), y(8))dt,

u(-)eU -T
xo=x, T>0

Depending onr, andr.., |X|s may not be an induced
norm. The existence of this quotient is restricted to
the existence conditions ¢f, and.S, namely reach-
ability and zero-state observability of system (3). This
. T quotient is an extension of the nonlinear Hankel norm
Sa(zo,7) = — (1.1)1;4 /0 r(u(t),y(t))dt, concept. When restricting this quotient to be com-
LO; >0 prised of quadratic forms irf, and S, around a
T local equilibrium point, it parallels®> the treatment
wherer(u(t), y(t)), r : U x Y — R, is thesupply rate. given in (Scherpen, 1993; Lopezlerh al., 2002)
to the Hankel-type norm defined for nonlinear sys-
tems. By assuming that the energy functions exist
3.1 Theinput-output storage quotient around a critical point, and if the number of distinct
eigenvalues is constant everywhere in a certain neigh-
In dissipative systems theory, a dynamical system is borhood D (Kato, 1966), the existence of nonlinear
conceptualized as a mathematical object which mapstransformations that allow for the balancing of such
inputs into outputs, via the state which summarizes the system on a neighborhood is guaranteed, as it was
influence of past inputs (Willems, 1972). This parallels stated in the original theory of nonlinear balancing
the interpretation of the Hankel operator as a map (Scherpen, 1993). As a trivial property,3f is dissi-
from past inputs into future outputs. In previous works pative withr, = r,, since0 < S, < S < S, then
(Scherpen, 1993; Lopezleeaal ., 2002) this operator  |%|s < 1, see (Willems, 1972).
has been the basic tool for nonlinear balancing as it is

argued in the following. 3.2 Collocated port-Hamiltonian systems
Remark 3.1. By defining as supply rate for the re-

quired supply-(t) = u® (t)u(t) andr(t) = y* (t)y(t)
for the available storagethe controllability and (nat-

and theavailable storage, S, : X — R*, defined as

Within the class of dissipative systems is the sub-
class of nonlinear conservative systems known as port-

Ura]) Obwvab”ny functions Lc($0) and Lév(mO) re- Hamiltonian systems (PHS) (Van der SChaﬁ, 2000),

spectively, can be obtained for continuous (Scherpen, €Presented as in eg. (1). In this section the class of

1993; Grayet al., 1999) and discrete-time systems 'PHS is restricted to haveollocated inputs and out-
(Lopezlenaet al., 2002). puts such that it is always possible to forimput-

output pairs of (power transfering) signals at or from

Remark 3.2. If 7o (u,y) = rr(u,y) =| y|>+ || ul)? the ports, as it is elementary shown in figure 1. The

is used to confornS, and S, then this parallels the
treatment ObaSt and future energy functions K~ al’_ld 2 As known in optimal control, some additional restrictions are
K presented in (Scherpenal., 1994) for balancing  required in order to admit an infinite horizon.
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Fig. 1. A PHS with collocated inputs and outputs
collocated representation will be explicitly written as

o ()0H [Gl(z)GQ(I”{—%zLa
1] ()%

with M (x) J(x) — R(z) and where, as usual,
the system is dissipative for a supply rate= y” u.
Define as energy functions (zo, ) = S, (zo, yT u1)
andS’ (xo,7) = Sa(wo, —yd uz) which can be recog-
nized as thephysical energy supplied to the system,
(u1,91) 2., Dy its input two-port, and the physical en-
ergy deliverable by the systerf-us, y2) 2, through
its output two-port. Thus its associatésput-output
energy storage quotient can be expressed as

1Xls =

sup

1
—Uuz, y2>£2 :| 2
z(0)eXx

sica| = [T

Proposition 3.1. Given the (collocated) PHS (5), for
vectors partitioned as = (uf,—ul)? andy
(v, y3)T, where the input energy is associated to
(y1,u1)z, and the output energy t@-, —us)r,, then
Sy(z) andS, (x) can be written as

0 T

Si(0)=H@) + [ TER@G o+ e,
T aT

Su0) = ()~ [ ER@ G+ (i),

and H(x) is the Hamiltonian function of the system.
Furthermore,S, (z) with us = 0, and S,(z) with
y1 = 0, can be found as the solution of the following
Hamilton-Jacobi-Bellman (HJB) equations

VIS, [M(z) — G*z)G' (2)] V.H + ©)
VTS Gl( )GlT )VeS, =0’
VaSa [M(z) = G*(2)G* ()] V. H + @

VTHG2( )G2T(x)VzH =0

Proof. The system (5) can be decomposed as two z; =0 <~

separate systenid/, G', H) and(M, G%, H). In such
conditions
oTH oTH oOH
T _ 1, _ . viL 2
= mGu = M@) 5y + G
_dH | OTH 0H g
TTat T ox or U
oTH dH OTH O0H
vata = TGl = =T = SRy v

After integration, the result follows. Regarding eq. (6)-
(7), since

Vi Sy ([J(2) = R(@)]VoH + G (z)ur) = y{ wy
Vi Sa ([J(z) = R(@)]VoH + G*(z)us) = yz us
for the following inputsu; = G'*(2)V,.S,(x) and

s = G?T(2)V,H(x), results in egs. (6) (7) respec-
tively. Nevertheless in can be shown thatis not
unique. |

In the remaining of this section, it will be assumed that
Sy (z) is determined fori; = 0, andS, (x) for y; = 0.

3.3 Balanced reduction as a more general paradigm

For our purposes we would like to clarify in this
framework to what extent the reduction procedure
presented in Subsection 2.1 may offer similar results
to the procedure presented in Section 3 and in which
sense the latter can be seen as a generalization of the
former.

Proposition 3.2. Locally, for conservative, strongly
accessible port-Hamiltonian systems, the reduction
based on EFD of the Hamiltonian is equivalent to
input-output energy-storage balancing.

Proof. S,.(r,) andS,(r,) can be found from the so-
lution of the HJE egs. (6) and (7) respectively. A sys-
tem is said to benternally balanced when S,.(r,.) =

S, (re). Consider the cas® = 0 (conservative) then
S, = S, = H, and apply this to eq. (6) and (7) re-
sulting in the same equation for both cases and which
simplifies to the known identityV Z HJV,H = 0. &

3.4 Balanced truncation of PHS

Balancing and the related model reduction method,
which is called balanced truncation, for nonlinear sys-
tems was introduced in (Scherpen, 1993). We can also
directly use the techniques used in the recent results
on balanced truncation (Fujimo#b al., 2001), where
it was proven under certain assumptions that for any
two positive definite scalar functiors.(z) andL,(x)
there exists a coordinate transformation= &(x)
such that
OL.(®(2)) OLo(2(2) _
8
holds. Using this fact, we can prove the following
model reduction procedure which also preserves the
structure of PHS in some cases.

=0 <=

Proposition 3.3. Suppose that the dissipated energy in
S, andS, are equal, that is§,.(z) + S, (x) = 2H(x)
holds. Then the input-output energy storage balanced
truncation in the balanced coordinates in the sense of
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(8) with respect to the two storage functiotig«) and _ OH
S.(x) preserves the structure of PHS. N={(zr,22,u) | Jalz)g ()

OH
+ (Joz(x) — Rzz(fﬂ))aj(l”) + gv(x)u = 0},
Proof. Since the structure of PHS is invariant under 2
any coordinate transformation, the dynamics of the and the dynamics of the system can be represented in

PHS in the balanced coordinate = (z1,23) = a reduced form as follows
®~1(z) can be represented by a PHS
. OH*
9H 21(t) = Myp(21) 75— (21) + Gr(21)u,
21| | Ju— R Jiz2— Rio 0z L9 OH* (12)
. = U. AT
Z2 Jo1 — Ra1 Joo — Rao o0H g2 y(t) G, (r1) o1 x1

92

(9)  with M,(z) andG,(z) given by

Let us perform the balanced truncation by neglecting
the zo dynamics and substituting = 0. Then, due to -
the property (8), we obtain M (x) = Jua () — B (2)
—J12()(Joa () — Raa(x)) ™" Joi (),

)
Gy (z) = g1(z) — Ji2(2)(Joz () — Roo(2)) ' ga(2).

o
fr=[Ju—Ri Jiz—Ri2] | 0 | +q1u
0
OH Proof. Since by assumptiod? H/dz3 has full rank,
= (J11 — Ru)a—z1 +g1u define thepartial Legendre transform of H as follows
which is a PHS indeed. This completes the prodil H*(x1,20) = H(z1,x2) — 23 T2,

For special class of PHS systems, the balanced trun- . .
. . . with zo = 9H(x2,x2)/0x2. IMmediately two rela-
cation technique can preserve its structure and the re-. .
. . tions result from this

lated properties. However, the structure is not always

preserved since the assumption required in this propo-

" . OH* OH* OH
sition does not hold in general. =— : = —(x).
9 2 822 (37 ’ 3x1 (37 81‘1 (33)
4. SINGULAR PERTURBATIONS IN PHS In terms of this Legendre transform the submanifold

N can be reexpressed as
The last step in the reduction procedures previously

presented consists on the elimination of the remaining N ={(z1,22,u) | Jai(x) oH ()
dynamics. This can be performed by truncation or by Oz
singular perturbations as follows. + (Ja2(2) = Roa(2))22 + g2(x)u = 0},

The following Proposition, adapted from (Van der

Schaft, 2002), provides a more general result than in where assuming thaliet (/21 (z) — Raa(2)) # 0, 22 is

the previous sections. given by
. 1 OH*
Proposition 4.1. (Van der Schaft, 2002) Letthe PHS ~ —(J22(z) — Ra2(z)) ™ | J21() e (z) + g2(2)u| .
& S_H ( ) In terms of this Legendre transform and (13), the PHS
1 T g1(T1,T2
=M 10 (11) can be reexpressed as follows
H @ |1 |+ 00
81'2 T OH* g (33 " )
oH _iaH*(w) =M(z) | Ox; | + {gi(m?wi)} u
0y dt Oz 22 ’
y=[g1(z1,22) g2(z1,22)] om | A1) OH*
Do Y= [91(1117332) 92($17l‘2)] 0x1
%)

with a Hamiltonian given byH (x4, z2), where

Thus the reduced dynamics for this system can be
M) = Ji1(z) — Ry (z) Jia(z) expressed as in eq. (12). n
B Jo1 () Joa () — Raz(x)

and assume tha¥ 1/0z3 has full rank andiet (/21 ()~ Remark 4.1. Proposition 4.1 can be interpreted in
Ras(x)) # 0. If the stored energy associated to states teyms of separation dbst andslow dynamics in the
z2 is neglectable, then the state trayectories of the Hamjltonian where the submanifol plays the role
system lie in the submanifold defined as of the state space of the slow dynamics.
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5. CONCLUSIONS

In this paper a procedure of balancing collocated port-
Hamiltonian systems is presented by submersing the

(rjl_onl_inegr_ balr?ncingTE_roceduresrin rt]he frambewodrk of (Edit.) Systems and Networks: Math. Theory and
issipativity theory. This approach shows to be advan- apps. vol 11, Berlin:Akademie Verlag79, 555—

tageous by exposing certain regularities with input- 559. 1994.

output balanced and autonomous reduction. Finally Willems JC (1972). Dissipative Dynamical Systems
both procedures were enhanced with a method of Part I: General TheoryArch Rational Mech. '
singular perturbations-type which preserves the port- Anal 45 321-351

Hamiltonian structure. T '
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