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1. INTRODUCTION

The reduction of the order of physical dynamic models
has been a subject of discussion and research for a long
time now in the physics and the engineering literature
as well. Reduction in classical mechanics counts with
a large and rather well known history mainly based on
symmetries within a differential geometric framework
for Hamiltonian systems (Marsdenet al., 1974). These
systems are an important paradigm for modelling,
analysis and control. Though, when a reduction proce-
dure is considered for these systems, and the resulting
model is intended for control and systems analysis, be-
sides the mere preservation of the Hamiltonian struc-
ture, the properties of controllability and observabil-
ity are known to be important for an adequate input-
output behavior. Such properties have been studied in
(Van der Schaft, 1984; Nijmeijeret al., 1990; Van der
Schaft, 2000). Roughly speaking, Hamiltonian sys-
tems have a certain balance regarding observability
and controllability (Van der Schaft, 1982).

1 Supported by Instituto Mexicano del Petróleo (IMP), Mexico
City, Mexico. http://www.imp.mx

The main purpose of this paper is to present a pro-
cedure to reduce the dimension of the state space of
port-Hamiltonian systems (PHS) according to its ca-
pacity of storing energy but preserving its structure
and moreover, preserving its input-output properties.
Furthermore it is argued that when the influence of
the inputs, outputs and dissipation is small, the re-
duction procedure is, at least locally, equivalent to a
reduction based on the elimination of the less energy
storing elements of the Hamiltonian. Although the
aforementioned characteristics for the reduced system
are conceptually independent, they can be combined
harmonically in one framework. The theory of dis-
sipative systems provides a firm groundwork for this
purpose, as will be seen further on.
Different approaches to reduce this class of systems
have been presented previously. In (Van der Schaft
et al., 1990) for linear Hamiltonian systems, a reduc-
tion procedure is outlined by the use of itsassociated
gradient system, being only valid for conservative or
weakly damped systems. This latter approach was gen-
eralized for the class of nonlinear simple Hamiltonian
systems (with positive energy) in (Scherpen, 1994). A
procedure for balancing linear systems with the dissi-
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pativity theory has been described in (Weiland, 1993).
The paper is organized as follows. In Section 2 the
reduction of Hamiltonian systems with ports is per-
formed with a symmetries-inspired procedure for au-
tonomous systems with the purpose of motivating the
inclusion of the effect of ports in Section 3 within a
balanced reduction framework based on dissipativity
theory. Additionally some arguments are presented in
order to clarify the relation of the input-output proce-
dure with the autonomous one. Finally in Section 4
a singular perturbations method which preserves the
port-Hamiltonian structure is presented, to conclude
with some remarks.

2. REDUCTION OF HAMILTONIAN SYSTEMS

Consider the following input-affine port-Hamiltonian
system,

ẋ(t) = [J(x) −R(x)]
∂H(x)
∂x

+ G(x)u(t)

y(t) = GT (x)
∂H(x)
∂x

,
(1)

where we assume thatx ∈ X , J(x) = −J(x)T ,
R(x) = RT (x) > 0 with a Hamiltonian function
H(x) ∈ C∞ such thatH(0) = 0 and ∂H

∂x (0) = 0. By
the fundamental theorem of integral calculus, it is pos-
sible to express such functionH(x) on a convex neigh-
borhood of0 as a quadratic formH(x) = xTE(x)x,
E(x) = ET (x) with functions in each entry. There
exist several examples of nonlinear systems that have
such quadratic Hamiltonian structure.

2.1 Reduction based on EFD of the Hamiltonian

DenoteGL(n,C∞(X )) the set ofn×n matrices with
components inC∞(X ) and denoteSO(n,C∞(X )),
the special orthogonal group of unimodular transfor-
mations as

SO(n,C∞(X )) := {g ∈ GL(n,C∞(X ))

| ggT = I,det g = 1}.

Remark 2.1. Consider a matrix of functionsE(x) ∈
GL(n,C∞(X )), x ∈ X . In the particular case when
E(x) = ET (x) ≥ 0, it may be expressed as

E(x) = U(x)Σ(x)UT (x) (2)

whereΣ(x) = diag(τ1(x), · · · , τr(x), 0r+1, · · · , 0n)
s.t. τ1(x) ≥ τ2(x) ≥ · · · ≥ τr(x) > 0 are the
eigenvalues ofE(x) andU(x) ∈ SO(n,C∞(X )). In
the rest of the paper we will refer to it aseigenvalue
function decomposition (EFD), (Scherpen, 1993).

Proposition 2.1. Consider the EFD of the Hamilto-
nian of (1),H(x) = xTU(x)Σ(x)UT (x)x , U(x) ∈
SO(n,C∞(X )) in a neighborhood defined as

D = {x ∈ X s.t.
∂UT (x)

∂x
≈ 0}.

Using the coordinate transformationw = U(x)x
aroundx ∈ D, an approximated reduced subsys-
tem (Jr, Rr, Gr,Hr) can be found representing the
most energy-storing dynamics and preserving the port-
Hamiltonian structure.

Proof. Define as the new coordinatesw and define
T (x) = UT (x)x yielding w = UT (x)x or x =
U(x)(w). For x ∈ D, ∂T (x)

∂x = UT (x). This yields

H̄(w) = wT Σ(x)w, ∂w
∂x = ∂T (x)

∂x , ∂x
∂w = ∂T−1(x)

∂w

and alsoẇ(t) = ∂T (x)
∂x ẋ(t) andẋ(t) = ∂T−1(w)

∂w ẇ(t).
Since∂H(x)/∂x can be written as

∂H

∂x
=

[
∂TH

∂w

∂w

∂x

]T

=
∂TT (x)

∂x

∂H

∂w

denoteM(x) = J(x) − R(x) then syst. (1) may be
written as the triple(M̄(x), Ḡ(x),H(w)) where

M̄(x) =
∂T (x)
∂x

M(x)
∂TT (x)

∂x
= TxM(x)TT

x

Ḡ(x) =
∂T (x)
∂x

G(x) = TxG(x)

After transformationM̄ preserves its properties since
transformation ofJ(x) results in TxJ(x)TT

x =
TxJ

T (x)TT
x = −TxJ(x)TT

x and skew-symmetry of
J(x) is preserved. On the other hand, after transform-
ing R yields R̄ = TxRTT

x symmetric. It is possi-
ble to rewrite the system as(M̄(x), Ḡ(x), H̄(w)) =
(UT (x)M(x)U(x), UT (x)G(x), H̄(w)) and the Hamil-
tonian takes the form̄H(w, x) = wT Σ(x)w which for
a partition of the statew = (w1 w2) may be decom-
posed as̄H(w) = Σ(x1)w1 + Σ(x2)w2. Furthermore,
the whole system can be written as

[
ẇ1

ẇ2

]
=

[
M̄1

1 M̄2
1

M̄1
2 M̄2

2

] 


∂H̄(w)
∂w1

∂H̄(w)
∂w2


 +

[
Ḡ1(w1, w2)
Ḡ2(w1, w2)

]
u

y =
[
Ḡ1(w1, w2) Ḡ2(w1, w2)

]



∂H̄(w)
∂w1

∂H̄(w)
∂w2




If the subsystem associated to the least amount of
stored energy is truncated, then the reduced sys-
tem (M̄1

1 (w), Ḡ1(w), H̄1(w)) can be inversely trans-
formed aroundx with T−1

r = UT
r (x) (i.e. adapted to

the reduced coordinates) yielding the reduced model

(M1
1 (x1), G1(x1),H1(x1)) = (M1

r (x1), Gr(x1),Hr(x1))

for eachx. Such model preserves the Hamiltonian
structuremodulo

M̄1
2

∂H̄(w)
∂w1

+ M̄2
2

∂H̄(w)
∂w2

+ Ḡ2(w1, w2)u = 0.

�
Instead of truncation, a singular perturbation method
can be used as can be seen in Section 4.



Remark 2.2. Despite the possibility of finding a EFD
of E(x) for any x ∈ X the reduction procedure
presented in this section is valid only forx ∈ D ⊂ X .

3. DISSIPATIVITY THEORY FRAMEWORK

In this section a more general framework for nonlinear
balancing theory for dissipative systems is presented.
Consider the following continuous-time nonlinear sys-
tem

Σ :
ẋ(t) = f(x(t), u(t)),
y(t) = h(x), (3)

wherex ∈ R
n are local coordinates for aC∞ state

space manifoldX , F and h are C∞, u ∈ U and
y ∈ Y. Assume thatF andh are Lipschitz continuous
in x andu and additionallyx andy are locally square
integrable. From now on it will be assumed that this
system is dissipative and that there is no source of
energy within the system. From general dissipative
systems theory (Willems, 1972) it is known that asso-
ciated to the system (3) are the storage functions called
required supply, Sr : X → R

+, defined as

Sr(x0, r) = inf
u(·)∈U

x0=x, T≥0

∫ 0

−T

r(u(t), y(t))dt,

and theavailable storage, Sa : X → R
+, defined as

Sa(x0, r) = − inf
u(·)∈U

x0=x, T≥0

∫ T

0

r(u(t), y(t))dt,

wherer(u(t), y(t)), r : U×Y → R, is thesupply rate.

3.1 The input-output storage quotient

In dissipative systems theory, a dynamical system is
conceptualized as a mathematical object which maps
inputs into outputs, via the state which summarizes the
influence of past inputs (Willems, 1972). This parallels
the interpretation of the Hankel operator as a map
from past inputs into future outputs. In previous works
(Scherpen, 1993; Lopezlenaet al., 2002) this operator
has been the basic tool for nonlinear balancing as it is
argued in the following.

Remark 3.1. By defining as supply rate for the re-
quired supplyr(t) = uT (t)u(t) andr(t) = yT (t)y(t)
for the available storage,the controllability and (nat-
ural) observability functions Lc(x0) andLN

o (x0) re-
spectively, can be obtained for continuous (Scherpen,
1993; Grayet al., 1999) and discrete-time systems
(Lopezlenaet al., 2002).

Remark 3.2. If ra(u, y) = rr(u, y) =‖ y‖2+ ‖ u‖2

is used to conformSa andSr then this parallels the
treatment ofpast and future energy functions K− and
K+ presented in (Scherpenet al., 1994) for balancing

unstable nonlinear systems.
If rr(u, y) = (1 − 1

γ2 ) ‖ y‖2+ ‖ u‖2 is used for

Sr(rr) andra(u, y) =‖ y‖2 + ( γ2

γ2−1 ) ‖ u‖2, γ > 1
for Sa(ra) then this parallels the treatment ofH∞-
past and H∞-future energy functions Q−

γ and Q+
γ

presented in (Scherpen, 1996) for nonlinearH∞-
balancing.

By defining a ratio between the input storage (required
supply) and the output storage (available storage), for
two determined supply rates, it is possible to have
a measure of thestorage capacity. Thus by using a
transformation that changes the system accordingly, a
balancing procedure shall be proposed.

Definition 3.1. (Input-output storage quotient). For the
system (3) being dissipative for the supply ratesra and
rr, assuming existence ofSa(x0, ra) andSr(x0, rr)
around a pointx(0) = x0, (Sr(x0, rr) �= 0), define
theinput-output storage quotient as

|Σ|S = sup
x(0)∈X

[
Sa(x0, ra)
Sr(x0, rr)

] 1
2

. (4)

Depending onra andrr, |Σ|S may not be an induced
norm. The existence of this quotient is restricted to
the existence conditions ofSa andSr namely reach-
ability and zero-state observability of system (3). This
quotient is an extension of the nonlinear Hankel norm
concept. When restricting this quotient to be com-
prised of quadratic forms inSa and Sr around a
local equilibrium point, it parallels2 the treatment
given in (Scherpen, 1993; Lopezlenaet al., 2002)
to the Hankel-type norm defined for nonlinear sys-
tems. By assuming that the energy functions exist
around a critical point, and if the number of distinct
eigenvalues is constant everywhere in a certain neigh-
borhoodD (Kato, 1966), the existence of nonlinear
transformations that allow for the balancing of such
system on a neighborhood is guaranteed, as it was
stated in the original theory of nonlinear balancing
(Scherpen, 1993). As a trivial property, ifΣ is dissi-
pative withra = rr, since0 ≤ Sa ≤ S ≤ Sr then
|Σ|S ≤ 1, see (Willems, 1972).

3.2 Collocated port-Hamiltonian systems

Within the class of dissipative systems is the sub-
class of nonlinear conservative systems known as port-
Hamiltonian systems (PHS) (Van der Schaft, 2000),
represented as in eq. (1). In this section the class of
PHS is restricted to havecollocated inputs and out-
puts such that it is always possible to forminput-
output pairs of (power transfering) signals at or from
the ports, as it is elementary shown in figure 1. The

2 As known in optimal control, some additional restrictions are
required in order to admit an infinite horizon.



Port-Hamiltonian

System

U1

U2

U2

Y1

Y1

Y2

Fig. 1. A PHS with collocated inputs and outputs

collocated representation will be explicitly written as

ẋ = M(x)
∂H

∂x
+

[
G1(x) G2(x)

] [
u1

−u2

]
[
y1

y2

]
=

[
G1T (x)
G2T (x)

]
∂H

∂x
,

(5)

with M(x) = J(x) − R(x) and where, as usual,
the system is dissipative for a supply rater = yTu.
Define as energy functionsS�

r (x0, r) = Sr(x0, y
T
1 u1)

andS�
a(x0, r) = Sa(x0,−yT

2 u2) which can be recog-
nized as thephysical energy supplied to the system,
〈u1, y1〉L2 , by its input two-port, and the physical en-
ergy deliverable by the system,〈−u2, y2〉L2 , through
its output two-port. Thus its associatedinput-output
energy storage quotient can be expressed as

|Σ|S = sup
x(0)∈X

[
S�

a(x0)
S�

r (x0)

] 1
2

= sup
x(0)∈X

[ 〈−u2, y2〉L2

〈u1, y1〉L2

] 1
2

.

Proposition 3.1. Given the (collocated) PHS (5), for
vectors partitioned asu = (uT

1 ,−uT
2 )T and y =

(yT
1 , yT

2 )T , where the input energy is associated to
〈y1, u1〉L2 and the output energy to〈y2,−u2〉L2 , then
Sr(x) andSa(x) can be written as

Sr(x) = H(x) +
∫ 0

−T

∂TH

∂x
R(x)

∂H

∂x
dt + 〈u2, y2〉L2

Sa(x) = H(x) −
∫ T

0

∂TH

∂x
R(x)

∂H

∂x
dt + 〈u1, y1〉L2

andH(x) is the Hamiltonian function of the system.
Furthermore,Sr(x) with u2 = 0, and Sa(x) with
y1 = 0, can be found as the solution of the following
Hamilton-Jacobi-Bellman (HJB) equations

∇T
x Sr

[
M(x) −G1(x)G1T (x)

]∇xH +
∇T

x SrG
1(x)G1T (x)∇xSr = 0

, (6)

∇T
x Sa

[
M(x) −G2(x)G2T (x)

]∇xH +
∇T

x HG2(x)G2T (x)∇xH = 0
. (7)

Proof. The system (5) can be decomposed as two
separate systems(M,G1,H) and(M,G2,H). In such
conditions

yT
1 u1 =

∂TH

∂x
G1u1 =

∂TH

∂x

[
ẋ−M(x)

∂H

∂x
+ G2u2

]

=
dH

dt
+

∂TH

∂x
R
∂H

∂x
+ yT

2 u2,

yT
2 u2 =

∂TH

∂x
G2u2 = −dH

dt
− ∂TH

∂x
R(x)

∂H

∂x
+ yT

1 u1.

After integration, the result follows. Regarding eq. (6)-
(7), since

∇T
x Sr

(
[J(x) −R(x)]∇xH + G1(x)u1

)
= yT

1 u1,

∇T
x Sa

(
[J(x) −R(x)]∇xH + G2(x)u2

)
= yT

2 u2,

for the following inputsu1 = G1T (x)∇xSr(x) and
u2 = G2T (x)∇xH(x), results in eqs.(6)-(7) respec-
tively. Nevertheless in can be shown thatui is not
unique. �
In the remaining of this section, it will be assumed that
Sr(x) is determined foru2 = 0, andSa(x) for y1 = 0.

3.3 Balanced reduction as a more general paradigm

For our purposes we would like to clarify in this
framework to what extent the reduction procedure
presented in Subsection 2.1 may offer similar results
to the procedure presented in Section 3 and in which
sense the latter can be seen as a generalization of the
former.

Proposition 3.2. Locally, for conservative, strongly
accessible port-Hamiltonian systems, the reduction
based on EFD of the Hamiltonian is equivalent to
input-output energy-storage balancing.

Proof. Sr(rr) andSa(ra) can be found from the so-
lution of the HJE eqs. (6) and (7) respectively. A sys-
tem is said to beinternally balanced whenSr(rr) =
Sa(ra). Consider the caseR = 0 (conservative) then
Sr = Sa = H, and apply this to eq. (6) and (7) re-
sulting in the same equation for both cases and which
simplifies to the known identity∇T

x HJ∇xH = 0. �

3.4 Balanced truncation of PHS

Balancing and the related model reduction method,
which is called balanced truncation, for nonlinear sys-
tems was introduced in (Scherpen, 1993). We can also
directly use the techniques used in the recent results
on balanced truncation (Fujimotoet al., 2001), where
it was proven under certain assumptions that for any
two positive definite scalar functionsLc(x) andLo(x)
there exists a coordinate transformationz = Φ(x)
such that

zi = 0 ⇐⇒ ∂Lc(Φ(z))
∂zi

= 0 ⇐⇒ ∂Lo(Φ(z))
∂zi

= 0

(8)
holds. Using this fact, we can prove the following
model reduction procedure which also preserves the
structure of PHS in some cases.

Proposition 3.3. Suppose that the dissipated energy in
Sr andSa are equal, that is,Sr(x) + Sa(x) = 2H(x)
holds. Then the input-output energy storage balanced
truncation in the balanced coordinates in the sense of



(8) with respect to the two storage functionsSr(x) and
Sa(x) preserves the structure of PHS.

Proof. Since the structure of PHS is invariant under
any coordinate transformation, the dynamics of the
PHS in the balanced coordinatez = (z1, z2) =
Φ−1(x) can be represented by a PHS

[
ż1

ż2

]
=

[
J11 −R11 J12 −R12

J21 −R21 J22 −R22

] 


∂H

∂z1

∂H

∂z2


+

[
g1

g2

]
u.

(9)
Let us perform the balanced truncation by neglecting
thez2 dynamics and substitutingz2 = 0. Then, due to
the property (8), we obtain

ż1 =
[
J11 −R11 J12 −R12

] 
 ∂H

∂z1
0


 + g1 u

= (J11 −R11)
∂H

∂z1
+ g1 u

which is a PHS indeed. This completes the proof.�
For special class of PHS systems, the balanced trun-
cation technique can preserve its structure and the re-
lated properties. However, the structure is not always
preserved since the assumption required in this propo-
sition does not hold in general.

4. SINGULAR PERTURBATIONS IN PHS

The last step in the reduction procedures previously
presented consists on the elimination of the remaining
dynamics. This can be performed by truncation or by
singular perturbations as follows.
The following Proposition, adapted from (Van der
Schaft, 2002), provides a more general result than in
the previous sections.

Proposition 4.1. (Van der Schaft, 2002) Let the PHS

[
ẋ1

ẋ2

]
= M(x)




∂H

∂x1

∂H

∂x2


 +

[
g1(x1, x2)
g2(x1, x2)

]
u (10)

y =
[
g1(x1, x2) g2(x1, x2)

]



∂H

∂x1

∂H

∂x2


 (11)

with a Hamiltonian given byH(x1, x2), where

M(x) =
[
J11(x) −R11(x) J12(x)

J21(x) J22(x) −R22(x)

]

and assume that∂2H/∂x2
2 has full rank anddet(J21(x)−

R22(x)) �= 0. If the stored energy associated to states
x2 is neglectable, then the state trayectories of the
system lie in the submanifold defined as

N = {(x1, x2, u) | J21(x)
∂H

∂x1
(x)

+ (J22(x) −R22(x))
∂H

∂x2
(x) + gb(x)u = 0},

and the dynamics of the system can be represented in
a reduced form as follows

ẋ1(t) = Mr(x1)
∂H�

∂x1
(x1) + Gr(x1)u,

y(t) = GT
r (x1)

∂H�

∂x1
(x1).

(12)

with Mr(x) andGr(x) given by

Mr(x) = J11(x) −R11(x)

−J12(x)(J22(x) −R22(x))−1J21(x),

Gr(x) = g1(x) − J12(x)(J22(x) −R22(x))−1g2(x).

Proof. Since by assumption∂2H/∂x2
2 has full rank,

define thepartial Legendre transform of H as follows

H�(x1, z2) = H(x1, x2) − zT
2 x2,

with z2 = ∂H(x2, x2)/∂x2. Immediately two rela-
tions result from this

x2 = −∂H�

∂z2
(x) ;

∂H�

∂x1
(x) =

∂H

∂x1
(x).

In terms of this Legendre transform the submanifold
N can be reexpressed as

N = {(x1, z2, u) | J21(x)
∂H�

∂x1
(x)

+ (J22(x) −R22(x))z2 + g2(x)u = 0},
where assuming thatdet(J21(x)−R22(x)) �= 0, z2 is
given by

−(J22(x) −R22(x))−1

[
J21(x)

∂H�

∂x1
(x) + g2(x)u

]
.

In terms of this Legendre transform and (13), the PHS
(11) can be reexpressed as follows
 ẋ1

− d

dt

∂H�

∂z2
(x)


 = M(x)


 ∂H�

∂x1
z2


 +

[
g1(x1, x2)
g2(x1, x2)

]
u

y =
[
g1(x1, x2) g2(x1, x2)

] 
 ∂H�

∂x1
z2




Thus the reduced dynamics for this system can be
expressed as in eq. (12). �

Remark 4.1. Proposition 4.1 can be interpreted in
terms of separation offast and slow dynamics in the
Hamiltonian where the submanifoldN plays the role
of the state space of the slow dynamics.



4.1 Example

The series DC (universal) motor has a the following
PHS description

[
ḣ

φ̇

]
=


 −B κ

φ

L

−κ
φ

L
−R







∂H

∂h
∂H

∂φ


 +

[
1 0
0 1

] [−τ
Vt

]

[
ω
I

]
=

[
1 0
0 1

] 


∂H

∂h
∂H

∂φ




with total stored energy of the system given byH =
1
2J h2 + 1

2Lφ2 whereI = q̇, ω = θ̇, L = La + Lf ,
κ = KτKf , φ = Lq̇ andh = Jθ̇. This system is
dissipative forr = yTu = VtI − τω. Let r = VtI
(input power) for the required supply andr = −τω
(output power) for the available storage. Thus one may
state thatSr andSa are given by

Sr =
1

2L
φ2

0 +
1
2J

h2
0 +

∫ 0

−T

(Ri2 + Bω2)dt + 〈τ, ω〉,

Sa =
1

2L
φ2

0 +
1
2J

h2
0 −

∫ T

0

(Ri2 + Bω2)dt + 〈Vt, I〉.

With the purpose of using the method presented in
Section 4, define(x1, x2) = (h, φ) and then by
taking z2 = φ/L, the following Legendre transform

is obtainedH� = H − z2φ = h2

2J − φ2

2L sinceJ22 −
R22 = −R is invertible then the reduced system can
be expressed as

ḣ =−Rd
∂H�

∂h
+ u,

ω =
∂H�

∂h
,

with a dissipative termRd = JB + J
R

(
κφ
L

)2

a new

defined inputu = κφ
RLVt and ∂H�

∂h = h/J = ω,
and such equation remains valid as long as the system
remains around a submanifold defined as

N = {(h, I, Vt) | V t =
φ

L

(
κ
h

J
+ R

)
}.

5. CONCLUSIONS

In this paper a procedure of balancing collocated port-
Hamiltonian systems is presented by submersing the
nonlinear balancing procedures in the framework of
dissipativity theory. This approach shows to be advan-
tageous by exposing certain regularities with input-
output balanced and autonomous reduction. Finally
both procedures were enhanced with a method of
singular perturbations-type which preserves the port-
Hamiltonian structure.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge to Prof. A. J. van
der Schaft, Univ. of Twente, for providing us with the
reference (Van der Schaft, 2002) upon which Proposi-
tion 4.1 and Remark 4.1 were taken and adapted.

REFERENCES

Fujimoto K. , J. M. A. Scherpen (2001). Balancing
and model reduction for nonlinear systems based
on the differential eigenstructure of Hankel oper-
ators. InProc. 40th IEEE Conf. on Decision and
Control, 3252–3257.

Gray W.S.,J.P. Mesko (1999). Controllability and ob-
servability functions in model reduction for lin-
ear and nonlinear systems.Systems & Control
Lett.,38, 1999, 99–113

Kato T. (1966).Perturbation Theory for Linear Oper-
ators. Springer-Verlag, Germany.

Lopezlena R., J. M. A. Scherpen (2002). Energy Func-
tions and balancing for discrete -time nonlinear
systems. InIFAC World Congress, Barcelona.

Marsden J.E., A. Weinstein (1974). Reduction of Sym-
plectic Manifolds with symmetry.Rep. Math.
Phis,5, 121-130.

Nijmeijer, A.J. van der Schaft (1990)Nonlinear Dy-
namical Control Systems, Springer Verlag, USA.

van der Schaft, A. J. (2000).L2-Gain and Passivity
Techniques in Nonlinear Control, Springer Ver-
lag, London.

van der Schaft, A. J. (1984).System theoretic de-
scription of physical systems, CWI Tract 3, The
Netherlands.

van der Schaft, A. J. (2002). Slow dynamics of Hamil-
tonian systems.unpublished manuscript, Jan 7,
2002.

van der Schaft, A. J. (1982). Controllability and Ob-
servability for Affine Nonlinear Hamiltonian Sys-
tems,IEEE Trans. Aut. Cont., 27, 2,490–942.

van der Schaft, A. J., Oeloff J.E. (1990). Model Reduc-
tion of Linear Conservative Mechanical Systems,
IEEE Trans. Aut. Cont.,35,6, 729-733.

Scherpen J. M. A. (1994).Balancing for Nonlinear
Systems, PhD Thesis, Univ. of Twente.

Scherpen J. M. A. (1993). Balancing for Nonlinear
Systems.Syst & Contr. Let.,21, 143-153.

Scherpen J. M. A., A.J. van der Schaft (1994). Normal-
ized Coprime Factorizations and balancing for
unstable nonlinear systems.Int. J. Contr.,60, 6,
1193-1222.

Scherpen J. M. A.(1996)H∞-balancing for nonlinear
systems.Int. J. Rob. Nonl. Contr.,6, 645-668.

Weiland S.Balancing for Model Approximation of
Dissipative Dynamical Systems. In Helmke et. al.
(Edit.) Systems and Networks:Math. Theory and
apps. vol II, Berlin:Akademie Verlag,79, 555–
559, 1994.

Willems J.C. (1972). Dissipative Dynamical Systems,
Part I: General Theory.Arch Rational Mech.
Anal, 45, 321–351.


	79: 79
	80: 80
	81: 81
	82: 82
	83: 83
	84: 84


