
Value passing for Communicating Piecewise Deterministic Markov
Processes

Stefan Strubbe, Arjan van der Schaft and Agung Julius

Abstract— In this paper we extend the CPDP model, which
is used for compositional specification of PDP-type stochastic
hybrid systems, to the value passing CPDP model. With value
passing we can express communication of values of continuous
variables between CPDP components. We show that the class of
value passing CPDPs is closed under composition. We illustrate
the use of value passing CPDPs by modelling an Air Traffic
Management system as a network of interacting value passing
CPDPs.

I. INTRODUCTION

In [4], [6], the modelling framework CPDP is introduced.

CPDP stands for Communicating Piecewise Deterministic

Markov Process. With CPDPs we can model PDP-type

systems, which form a broad class of stochastic hybrid

systems [1], [2], in a compositional way.

The interaction power of composition of CPDPs as defined

in [6], is not strong enough to specify interactions where

communication of values of continuous variables is involved.

In this paper we extend the CPDP framework with value

passing. We show that this idea of value passing can be

‘coded’ in the active transitions. We show that composition

of value passing CPDPs can be formalized in the same way

as it is done for CPDPs: by using a composition operator |PA|.
We show that the result of composing two (or more) value

passing CPDPs is again a CPDP.

For the biggest part, this paper is written to illustrate how

value passing can be used and which types of interaction

can be expressed through it. This illustration is done by

specifying a rather complex Air Traffic Management system.

This example shows how value passing can be used to

communicate and store data/signals between components.

The paper is organized as follows. In Section II, we define

CPDPs and its composition. In Section III we show how the

CPDP model and its composition can be extended to the

value passing CPDP model. In Section IV we give a detailed

description of an Air Traffic Management system, modelled

as a composition of value passing CPDPs. The main aim

of this paper is to illustrate the use of value passing. For

technical results concerning value passing CPDPs, we refer

to [7].

This work was supported by the EU project Hybridge
Stefan Strubbe is with the Faculty of Electrical Engineering,

Mathematics and Computer Science, University of Twente. Arjan
van der Schaft is with the Institute for Mathematics and Computer
Science, University of Groningen. Agung Julius is with the
University of Pennsylvania. s.n.strubbe@math.utwente.nl,
a.j.van.der.schaft@math.rug.nl,
agung@seas.upenn.edu

II. CPDPS

We give the formal definition of CPDP as an automaton.

Definition 2.1: A CPDP is a tuple

(L,V,ν ,W,ω,F,G,Σ,A ,P,S), where: L is a set of

locations. V is a set of state variables. With d(v) for v ∈ V
we denote the dimension of variable v. v ∈V takes its values

in R
d(v). W is a set of output variables. With d(w) for w ∈W

we denote the dimension of variable w. w ∈ W takes its

values in R
d(w). ν : L → 2V maps each location to a subset

of V , which is the set of state variables of the corresponding

location. ω : L → 2W maps each location to a subset of W ,

which is the set of output variables of the corresponding

location. F assigns to each location l and each v ∈ ν(l) a

mapping from R
d(v) to R

d(v), i.e. F(l,v) : R
d(v) → R

d(v).

F(l,v) is the vector field that determines the evolution

of v for location l (i.e. v̇ = F(l,v) for location l). G
assigns to each location l and each w ∈ ω(l) a mapping

from R
d(v1)+···+d(vm) to R

d(w), where v1 till vm are the

state variables of location l. G(l,w) determines the output

equation of w for location l (i.e. w = G(l,w)). Σ is the set

of communication labels. Σ̄ denotes the ’passive’ mirror

of Σ and is defined as Σ̄ = {ā|a ∈ Σ}. A is a finite set of

active transitions and consists of five-tuples (l,a, l ′,G,R),
denoting a transition from location l ∈ L to location l ′ ∈ L
with communication label a ∈ Σ, guard G and reset map R.

G is a closed subset of the state space of l. The reset map

R assigns to each point in G for each variable v ∈ ν(l ′)
a probability measure on the state space of v for location

l′. P is a finite set of passive transitions of the form

(l, ā, l′,R). R is defined on the state space of l (as the R
of an active transition is defined on the guard space). S

is a finite set of spontaneous transitions and consists of

four-tuples (l,λ , l′,R), denoting a transition from location

l ∈ L to location l′ ∈ L with jump-rate λ and reset map

R. The jump rate λ (i.e. the Poisson rate of the Poisson

process of the spontaneous transition) is a mapping from

the state space of l to R+. R is defined on the state space

of l as it is done for passive transitions.

We introduce some notation. We call an active transition

with event a ∈ Σ an a-transition and we call a passive

transition with event ā ∈ Σ̄ a ā-transition. For a CPDP X
with v ∈ VX , where VX is the set of state variables of X ,

we call R
d(v) the state space of state variable v. We call

{(v = r)|r ∈R
d(v)} the valuation space of v and each (v = r)

for r ∈ R
d(v) is called a valuation. We call val(l) := {(v1 =

r1,v2 = r2, · · · ,vm = rm)|ri ∈ R
d(vi)}, where v1 till vm are

the variables from ν(l), the valuation space or state space

Proceedings of the 2006 American Control Conference
Minneapolis, Minnesota, USA, June 14-16, 2006

FrA16.3

1-4244-0210-7/06/$20.00 ©2006 IEEE 4736

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen Digital Archive

https://core.ac.uk/display/12944653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of location l and each (v1 = r1, · · · ,vm = rm) is called a

valuation or state of l. We call {(l,x)|l ∈ L,x ∈ val(l)} the

(hybrid) state space of the CPDP with location set L and

valuation spaces val(l). With the output variables (instead of

state variables) we define in the same way output valuations,

output space of location l and the (hybrid) output space of

the CPDP. If a state x lies in the guard Gα of active transition

α , then we say that α is enabled at x. We say that a passive

transition α is enabled at x if lx, the location of x, is the

origin location of α . We say that a transition leaves location

l if l is the origin location of that transition.

A reset map R of a CPDP consists of an indexed set

of probability measures (i.e. R assigns to each state x of

a location l a probability measure). We call the probability

measures of a reset map reset measures. A reset map/measure

probabilistically resets the state variables of a specific loca-

tion. We call this specific location the target location of the

reset map/measure.

To understand how CPDPs ‘run’, we give a very brief

informal semantics for CPDP now. A complete and formal

semantics for CPDP can be found in [7]. We assume that a

CPDP X = (L,V,ν ,W,ω,F,G,Σ,A ,P,S) starts at initial

hybrid state (l,x), with l ∈ L and x ∈ val(l). Then, the

continuous state x (which consists of valuations for the

variables in ω(l)), evolves along the vector fields F(l)(v)
for all variables v ∈ ω(l). Each spontaneous transition α
with origin location l, may cause a jump at any time. The

jump rate λ (x) of the spontaneous transition at continuous

state x determines the probability of jumping at state x.

Roughly said, the probability that a spontaneous transition

with jump rate λ (x) jumps within Δt time units after the

start at state (l,x) equals approximately λ (x)Δt for Δt small

enough. If a spontaneous transition α jumps at some state

(l,x′) (i.e. the state has already evolved from x to x′), then

the new location equals the target location of α and the new

continuous state (in the new location) is determined by the

probability measure of Rα(x′), where Rα is the reset map

of α . Besides a jump caused by a spontaneous transition,

a jump can also be caused by an active transition: if after

some time the state has evolved to state x′ and if x′ lies in

the guard of active transition α , then α may be executed

and the target location and state are determined by the target

location of α and the reset map of α . Note that there is

non-determinism in the model here: at state x′, α may be

executed, but α is not forced to be executed. A passive

transition with origin location l may be executed at all

states in location l. The target location and state are then

determined by the target location and the reset map of the

passive transition. Passive transitions need to be triggered by

active transitions from other CPDPs in a composition con-

text. This interaction mechanism between CPDPs is defined

in the following definition where the composition of two

CPDPs is determined. After the definition, we give a small

explanation of the composition rules. For a full explanation

of the composition operator |PA| we refer to [5] or [7].

Definition 2.2: Let X =
(LX ,VX ,νX ,WX ,ωX ,FX ,GX ,Σ,AX ,PX ,SX) and

Y = (LY ,VY ,νY ,WY ,ωY ,FY ,GY ,Σ,AY ,PY ,SY) be two

CPDPs such that VX ∩ VY = WX ∩ WY = /0. Then X |PA|Y
is defined as the CPDP (L,V,ν ,W,ω,F,G,Σ,A ,P,S),
where

• L = {l1|PA|l2 | l1 ∈ LX , l2 ∈ LY},

• V = VX ∪VY , W = WX ∪WY ,

• ν(l1|PA|l2) = ν(l1)∪ν(l2), ω(l1|PA|l2) = ω(l1)∪ω(l2),
• F(l1|PA|l2,v) equals FX (l1,v) if v ∈ νX (l1) and equals

FY (l2,v) if v ∈ νY (l2).
• G(l1|PA|l2,w) equals GX (l1,w) if w ∈ ωX (l1) and equals

GY (l2,w) if w ∈ ωY (l2).
• A , P and S are the least relations satisfying the rules

r1,r2,r2’,r3,r3’,r4,r4’,r5,r6,r6’,r7 and r7’, defined below

r1.
l1

a,G1,R1−→ l′1, l2
a,G2,R2−→ l′2

l1|PA|l2
a,G1×G2,R1×R2−→ l′1|

P
A|l

′
2

(a ∈ A).

r2.
l1

a,G1,R1−→ l′1, l2
ā,R2−→ l′2

l1|PA|l2
a,G1×vs(l2),R1×R2

−→ l′1|
P
A|l

′
2

(a �∈ A).

r2′.
l1

ā,R1−→ l′1, l2
a,G2,R2−→ l′2

l1|PA|l2
a,vs(l1)×G2,R1×R2

−→ l′1|
P
A|l

′
2

(a �∈ A).

r3.
l1

a,G1,R1−→ l′1, l2 �
ā

−→

l1|PA|l2
a,G1×vs(l2),R1×Id

−→ l′1|
P
A|l2

(a �∈ A).

r3′.
l1 �

ā
−→, l2

a,G2,R2−→ l′2

l1|PA|l2
a,vs(l1)×G2,Id×R2

−→ l1|PA|l
′
2

(a �∈ A).

r4.
l1

ā,R1−→ l′1

l1|PA|l2
ā,R1×Id
−→ l′1|

P
A|l2

(ā �∈ P),

r4′.
l2

ā,R2−→ l′2

l1|PA|l2
ā,Id×R2−→ l1|PA|l

′
2

(ā �∈ P)

r5.
l1

ā,R1−→ l′1, l2
ā,R2−→ l′2

l1|PA|l2
ā,R1×R2−→ l′1|

P
A|l

′
2

(ā ∈ P).

r6.
l1

ā,R1−→ l′1, l2 �
ā

−→

l1|PA|l2
ā,R1×Id
−→ l′1|

P
A|l2

(ā ∈ P),

r6′.
l1 �

ā
−→, l2

ā,R2−→ l′2

l1|PA|l2
ā,Id×R2−→ l1|PA|l

′
2

(ā ∈ P)

r7.
l1

λ1,R1−→ l′1

l1|PA|l2
λ̂1,R1×Id
−→ l′1|

P
A|l2

, r7′.
l2

λ2,R2−→ l′2

l1|PA|l2
λ̂2,Id×R2−→ l1|PA|l

′
2

,

where λ̂1 and λ̂2 are defined as λ̂1(ξ1,ξ2) := λ1(ξ1) and

λ̂2(ξ1,ξ2) := λ2(ξ2).
Interaction between CPDPs is expressed through synchro-

nization of active and passive transitions. The conditions

under which transitions synchronize are determined by the

4737

composition rules r1 till r7. A is the set of active synchro-

nization actions. Rule r1 expresses that for an action a ∈ A,

a component can execute an a-transition if and only if at the

same moment the other component executes an a-transition.

Rules r2 and r2’ express that if one component executes an a-

transition and the other component has a ā-transition enabled

at that time, then a ā-transition will synchronize with the a-

transition. Thus, this expresses how active transitions trigger

passive transitions in other components. Rules r3 and r3′

express that active transitions can still be executed when

the other component has no matching passive transitions

enabled. This expresses that active a-transitions (with a �∈ A)

are independent of transitions in other components. P is the

set of passive synchronization actions. Rules r4, r4’, r5, r6

and r6’ concern situations where more than one component

has passive transitions. For value-passing and for our ATM

example, this situation is not relevant and we refer to [7] for

an explanation of these rules. Rules r7 and r7’ express that

spontaneous transitions of the components are present in the

composite CPDP. Spontaneous transitions are independent,

i.e., they do not synchronize.

III. THE VALUE PASSING CPDP MODEL

The class of CPDPs is closed under composition (this

is proven in [7]). We now give an extension of the CPDP

model called value passing. With value passing, CPDPs can

communicate information about the continuous variables.

Technically, value passing is ‘coded’ into the active transi-

tions. This means that the definition of value passing CPDPs

is the same as the definition of CPDPs, except for the active

transitions, which get a richer structure. After the definition

of value passing CPDPs, we define how value passing CPDPs

can be composed such that the result of composition is again

a value passing CPDP. After that we briefly explain the value

passing composition rules. We illustrate the use of value

passing for CPDPs in the next section.

Definition 3.1: A value-passing CPDP is a tuple

(L,V,W,ν ,ω,F,G,Σ,A ,P,S), where all elements except

A are defined as in Definition 2.1 and where A is a

finite set of active transitions that consists of six-tuples

(l,a, l′,G,R,vp), denoting a transition from location l ∈ L
to location l′ ∈ L with communication label a ∈ Σ, guard G,

reset map R and value-passing element vp. G is a subset of

the valuation space of l. vp can be equal to either !Y , ?U
or /0. For the case !Y , Y is an ordered tuple (w1,w2, · · · ,wm)
where wi ∈ w(l) for i = 1 · · ·m, For the case ?U , we have

U ⊂ R
n for some n ∈ N The reset map R assigns to each

point in G×U (for the case vp =?U) or to each point in

G (for the cases vp =!Y and vp = /0) for each state variable

v ∈ ν(l′) a probability measure on R
d(v). Active transitions

α with ω(oloc(α)) = /0, i.e., whose origin locations have no

continuous variables, have value passing element vp = /0.

Definition 3.2: Let X =
(LX ,VX ,νX ,WX ,ωX ,FX ,GX ,Σ,AX ,PX ,SX) and

Y = (LY ,VY ,νY ,WY ,ωY ,FY ,GY ,Σ,AY ,PY ,SY) be two value

passing CPDPs such that VX ∩VY =WX ∩WY = /0. Then X |PA|Y
is defined as the CPDP (L,V,ν ,W,ω,F,G,Σ,A ,P,S),

where L, V , ν , W , ω , F , G, Σ, P and S are defined as

in Definition 2.2 and A is the least relation satisfying the

rules r1, r2, r2′, r3, r3′ from Definition 2.2 and the rules

r1data, r2data and r2data′ defined below.

r1data.
l1

a,G1,R1,v1−→ l′1, l2
a,G2,R2,v2−→ l′2

l1|PA|l2
a,G1|G2,R1×R2,v1|v2

−→ l′1|
P
A|l

′
2

(a ∈ A,v1|v2 �= ⊥).

r2data.
l1

a,G1,R1,v1−→ l′1

l1|PA|l2
a,G1×val(l2),R1×Id,v1

−→ l′1|
P
A|l2

(a �∈ A).

r2data′.
l2

a,G2,R2,v2−→ l′2

l1|PA|l2
a,val(l1)×G2,Id×R2,v2

−→ l1|PA|l
′
2

(a �∈ A),

where l1
a,G1,R1,v1−→ l′1 means (l1,a, l′1,G1,R1,v1) ∈ AX with

v1 �= /0, and l1
a,G1,R1−→ l′1 means (l1,a, l′1,G1,R1, /0) and v1|v2 is

defined as:

v1: v1|v2 :=!Y if v1 =!Y and v2 :=?U and

dim(U)=dim(Y) or if v2 =!Y and v1 :=?U
and dim(U)=dim(Y),

v2: v1|v2 :=?(U1 ∩U2) if v1 =?U1 and v2 =?U2 and

dim(U1)=dim(U2),

v3: v1|v2 := ⊥ otherwise, where ⊥ means that v1 and

v2 are not compatible.

Furthermore, G1|G2 is, only when v1|v2 �= ⊥, defined as:

g1: G1|G2 := (G1 ∩U)×G2 if v1 =!Y and v2 =?U ,

g2: G1|G2 := G1 × (G2 ∩U) if v1 =?U and v2 =!Y ,

g3: G1|G2 := G1 ×G2 if v1 =?U1 and v2 =?U2.

Here we define G∩U as the set of all states in G whose

output values lie in U .

Rules r2data and r2data′ express that if a �∈ A, then no

synchronization happens and the transitions interleave. Value

passing is expressed through rule r1data. Case v1 of r1data
expresses that if one component has an a-transition with

output !Y and the other component has an a-transition with

input ?U , then they synchronize, which expresses that the

output value is passed to the input transition. The input tran-

sition can ‘use’ the output value in its reset map, because the

reset map chooses different probability measures for different

input values (see Definition 3.1). Case v2 expresses that

two input transitions with the same dimension, i.e., which

can both receive values of the same dimension, synchronize.

This expresses that an output transition can pass its value

to multiple input transitions (one in each other component,

compare with rule r5). Case v3 expresses that when two

transitions are not compatible, i.e., have different dimensions,

then they will not synchronize. This also expresses that

a-transitions (with a ∈ A), which do not have a matching

partner in the other component (with the same dimension),

are blocked.

Value passing is partly ‘coded’ into the guards of the

resulting synchronized transition. Cases g1 and g2 express

that the guard of the output transition is restricted by U of the

4738

input transition. This expresses that if some u �∈U , i.e., when

the input transition cannot receive value u, then the output

transition is not allowed to be executed at states with output

u. Case g3 expresses that the guard of a synchronized input

transition is the intersection of the guards of the individual

input transitions. This means that in a composition context

with three or more components, an output a-transition can

pass value u only when all input a-transitions in the other

components allow value u, i.e., have u ∈U .

IV. AIR TRAFFIC MANAGEMENT EXAMPLE

We give an example of an Air Traffic Management system

modelled as a composition of value passing CPDPs. This

system is a part of the larger system ‘free flight’, which was

originally modelled as a Dynamically Colored Petri Net [3].

The system describes a pilot in an aircraft (the so called ‘pilot

flying’) who has to execute different tasks. There is an audio

alert system that can signal to the pilot which tasks need to be

done. The system is then decomposed into two parts: 1. Pilot

flying: models the pilot executing different tasks during the

flight. 2. Audio Alert: models the communication device that

communicates to the pilot which tasks need to be executed

at which times.

We decompose ‘pilot flying’ into three subsystems: Cur-

rent Goal, Task Performance and Memory. These three

systems do not correspond to actual systems, but form a

way to systematically model the behavior of the pilot. Task

Performance is the part of ‘pilot flying’ that is actually

executing a task. This system contains the information and

structure needed to execute the different tasks. Current Goal

is a control unit. It keeps track of which task is executed

and which tasks need to be executed in the future. It forms

the interface between Audio Alert, Memory and Task Perfor-

mance in the following sense: Audio Alert communicates to

Current Goal that a task needs to be executed. Then, either

Current Goal communicates to Task Performance to execute

the task, or, if the pilot is still busy executing a task, stores

the task into Memory such that when the pilot is not busy

anymore, it can retrieve this information from the Memory

and execute the task. Thus, Current Goal models in some

sense the awareness of the pilot what he is doing and what

he needs to do in the future. Memory models the memory

(or a memory aid) of the pilot. We now describe the system

and the communication within it, in more detail.

During the flight, there are seven distinguished tasks that

might be executed by the pilot, which are as follows. C1:

Collision avoidance, C2: Emergency actions, C3: Conflict

resolution,C4: Navigation vertical, C5: Navigation horizon-

tal, C6: Preparation route change and C7: Miscellaneous.

Task C2, emergency actions, is split up into six distinct tasks.

Each C2-task corresponds to a specific kind of emergency

action. Task C2.1 is executed in case of an engine failure,

task C2.2 is executed in case of a navigation-system failure.

Tasks C2.3 till C2.5 correspond to failures of other aircraft

systems. Task C2.6 is titled ‘other emergency’.

The ordering is an ordering of priority. This means that

C1, collision avoidance, has higher priority than C2, emer-

),(!, aa qkalert

13),,(!, Rqkgetmem mm

14),,?(, Rqkstoremem

endtask

11),,?(, Rqkmemchng cc9),~,
~

?(, Rqkalertchng aa

aa qk ,
mk
mq

151, Rλ

AudioAlert Memory

manceTaskPerfor

12),,?(, Rqkclearmem cc

10),~,
~

?(, Rqkalertchng aa

7l

8l

9l

10l
11l

cc qk ,

1l

cc qk , cc qk ,
aa qk ~,

~

1, Rendtask
),(!, cc qkclearmem

2),,?(, Rqkgetmem mm

31 ,),,(!, RGqkmemchng cc

cc qk ,

4),,?(, Rqkalert aa

5),,?(, Rqkalert aa

62 ,),,(!, RGqkstoremem aa

73 ,),,(!, RGqkstoremem cc

8),,(!, Rqkalertchng aa

2l

3l

4l

5l

6l

lCurrentGoa

aa qk ~,
~

Fig. 1. CPDP ‘pilot flying’ model

gency action, which has higher priority than C3, conflict

resolution, etc. If the pilot is executing task C2 and Audio

Alert communicates that task C1 needs to be done, then,

because C1 has higher priority, finishing task C2 needs to

be postponed and C1 is executed immediately. In this case

‘executing task C2’ should be put into Memory, such that

the pilot ‘knows’ after executing task C1 that he still has

to execute task C2. Vice versa, if the pilot is executing task

C1 and Audio Alert communicates that task C2 needs to be

executed, then the pilot should put ‘execute C2’ into memory

and continue executing task C1. There is no ordering for the

tasks C2.1 till C2.6. If the pilot starts executing task C2 while

there are multiple failures, i.e. multiple tasks of the set of

tasks C2 need to be executed, then a random choice is made

about which C2 task is executed.

We will model this system in detail as far as it concerns

the control unit Current Goal and its Memory. The number

of details of the Task Performance system is large and the in-

teractions happening within Task Performance are complex.

We do not model these details and we use a very simple

unrealistic model for the Task Performance. It is our goal

to show that interactions between these subsystems can be

modelled through composition of value passing CPDPs and

in order to that we do not need to model all the details of the

ATM system. Also, the Audio Alert system will be modelled

in a simple unrealistic way, where we assume that the time

that a task needs to be executed is exponentially distributed

for each task.

The total system will be composed as

((CurrentGoal|PA1
|TaskPer f ormance)|PA2

|Memory)|PA3
|

AudioAlert,

4739

where A1 = {alertchng,memchng}, A2 =
{getmem,clearmem,storemem} and A3 = {alert}. We

now describe all CPDP components.

1) CPDP AudioAlert: Location l10 of AudioAlert mod-

els the situation where an alert signal might be ‘generated’.

l10 is an empty location, i.e. there are no continuous dy-

namics at this location. Constant λ is the parameter of the

exponential distributed time indicating the time of an alert.

If an alert signal is generated at time t, meaning that a task

needs to be executed at time t, then AudioAlert switches to

location l11. Reset map R15 resets the state variables ka and

qa of location l11. The value of ka and qa denote the task

that needs to be executed. ka = i corresponds to task Ci and

in case ka = 2, qa = j corresponds to task C2. j. If ka �= 2,

then qa is irrelevant and equals zero.

Let the rate of occurrence that task C needs to be executed

be equal to λC. Then we get

λ = ∑
C∈Tasks

λC,

where Tasks = {C1,C2.1,C2.2,C2.3,C2.4,C2.5,C2.6,C3,

C4,C5,C6} and

R15 = ∑
C∈Tasks

λC

λ
RC,

where RC1 resets ka := 1 and qa := 0, RC2.1 resets ka := 2 and

qa := 1, RC2.2 resets ka := 2 and qa := 2, RC3 resets ka = 3 and

qa = 0, etc. The alert-transition from l11 to l10 is executed

immediately after the spontaneous transition, because there is

no guard. (Technically, the guard equals the whole state space

of location l11). In this ATM example we do not distinguish

between state and output variables. Formally, we model this

by having for each state variable x a copy output variable

yx whose value equals the state value everywhere. The value

passing part !(ka,qa) expresses that the values of variables ka

and qa are value-passed in a synchronization with component

CurrentGoal, as we will see later. (Formally only output

variables can be value-passed and the value passing part

should therefore formally be equal to !(yka ,yqa).)
We see that location l11 is an intermediate location where

no time is consumed, which only serves the value passing

of the alert signal (ka,qa) via channel alert.
2) CPDP TaskPer f ormance: The empty location l7 of

CPDP TaskPer f ormance denotes the situation where the

pilot is not executing a task and is waiting for a new

task to be executed. If a new task needs to be executed,

TaskPer f ormance switches to location l8 which denotes

the situation where a task is executed. The dynamics of

‘executing a task’ is large and complex in the ‘pilot flying’

system. We do not model this complexity and model it as one

location, l8. We unrealistically assume that the dynamics of

the execution of a task is expressed by a differential equation

ẋ = f (x), where each value for x denotes a state somewhere

in the execution of some task. We assume that for each

task C ∈ Tasks a state xC exists such that evolution from

xC denotes starting and evolution of task C. We also assume

that if xC enters guard area G4, then the task of execution

is completed. If a task is completed, TaskPer f ormance
switches to l7 via the active endtask-transition with guard G4.

The endtask signal will be received by CPDP CurrentGoal.
There are two ways in which a task execution is

started. First, if CPDP CurrentGoal executes a alertchng-

transition with value passing !(ka,qa). Execution of this

transition by CurrentGoal denotes the situation where,

as we will see later in detail, CurrentGoal has re-

ceived a (ka,qa) signal from AudioAlert. This value

(ka,qa) is received by the alertchng,?(ka,qa)-transition

from location l7 of TaskPer f ormance. Then, the re-

set map R9 resets state x of l8 to value xC, where

C is the task that corresponds to the passed value

(ka,qa). Note that the alert,?(ka,qa) transition is formally

specified as alert,?U with U = {(1,0),(2,1),(2,2),(2,3),
(2,4),(2,5),(2,6),(3,0),(4,0),(5,0),(6,0),(7,0)}, the set

of all values corresponding to all tasks. If the pilot is

execution a task, thus, if TaskPer f ormance is in location

l8, and a task with a higher priority needs to be executed,

then this switching of tasks is expressed by the alertchng-

transition from l8 to itself. Reset map R10 is equal to R9.

The second situation where a task execution is started, is

the one where CurrentGoal executes a memchng-transition

with value passing !(kc,qc). This expresses the situation

where after the completion of a task a new to-be-executed-

task is retrieved from the memory by CurrentGoal and stored

in variables kc and qc, after which the memchng, !(kc,qc)-
transition is executed. The value (kc,qc) is received

by the memchng,?(kc,qc)-transition from location l7 of

TaskPer f ormance. Reset map R11 resets x to xC, with C
the task corresponding to received value (kc,qc).

3) CPDP Memory: CPDP Memory has one location

l9 with state variables km and qm. There is no continuous

dynamics, i.e. k̇m = q̇m = 0. km has seven components, i.e.

km = (km,1,km,2, · · · ,km,7) and takes value in R
7. qm has six

components, i.e. qm = (qm,1,qm,2, · · · ,qm,6) and takes value

in R
6. If at some time km,i = 1, then this means that task

Ci needs to be executed because, as we will see, it is the

consequence of CurrentGoal putting the value km,i := 1 to

place task Ci on the stack. Similarly, qm,i = 1 means that task

C2.i is put on the stack. If a task Ci is not on stack, then

km,i equals zero. For example km = (0,1,1,0,0,0,0) and qm =
(1,1,0,0,0,0) means that tasks C2.1, C2.2 and C3 are put

on stack. This situation can happen in the unlucky situation

where the pilot is executing task C1, collision avoidance,

which has highest priority, while Audio Alert communicates

that the engine and navigation systems switched to failure

mode.

There are three transitions corresponding to three memory

actions. The three memory actions are: retrieving the memory

state, storing a new to-be-executed-task in the memory and

clearing a to-be-executed-task from the memory as soon as

this task has been completed by the pilot.

Retrieving the memory state is done via the

getmem, !(km,qm) transition. The memory value (km,qm) is

then passed to CPDP CurrentGoal. Reset map R13 is the

identity reset map, i.e. it does not change the state of the

4740

memory.

Storing a new task in memory is done via the

storemem,?(k,q) transition. The value (k,q) is passed by

CurrentGoal to Memory via this transition. Reset map R14
does not change the memory state except that for i = k and

j = q, km,i and qm, j are reset to one.

Removing a task from the memory is done via the

clearmem,?(k,q) transition. The value (k,q) is passed by

CurrentGoal to Memory via this transition, indicating that

the corresponding task is completed. Reset map R12 does not

change the memory state except that for i = k and j = q, km,i

and qm, j are reset to zero.

4) CPDP CurrentGoal: During the flight situation

where the pilot is not working on a task and there are no

tasks in memory, CPDP CurrentGoal is in location l4 with

kc = qc = 0. kc = 0 indicates here that no task needs to be

executed. If kc �= 0 in l4, then, as we will see later, this

would indicate that a task needs to be executed and then

the memchng-transition to l1 would be taken. Suppose that

kc = qc = 0 in l4. If an alert signal is executed by AudioAlert,
then CurrentGoal switches to l6 with value passing transition

alert,?(ka,qa). Reset map R4 copies the input values of

the transition (ka,qa) to the variables k̃a and q̃a. Thus,

in l4 k̃a and q̃a correspond to the task that needs to be

executed according to AudioAlert. The guardless transition

alertchng, !(k̃a, q̃a) to l1 is taken immediately, inducing the

alertchng,?(k̃a, q̃a)-transition in TaskPer f ormance, which

means that the task corresponding to (k̃a, q̃a) will be ex-

ecuted. Reset map R5 puts the values of k̃a, q̃a into the

variables kc and qc at location l1. Thus, at l1, kc and qc

correspond to the task that is currently worked on.

At l1, two things can happen: 1. An alert-signal

from AudioAlert is received, 2. An endtask-signal from

TaskPer f ormance is received.

In case 1, CurrentGoal executes the alert,?(ka,qa) transi-

tion and switches to location l5. Reset map R3 copies kc and

qc at l1 to kc and qc at l5 and R3 copies inputs ka and qa to k̃a

and q̃a at l5. At l3 the current task (kc,qc) and the requested

task (k̃a, q̃a) need to be compared in order to decide which

task has the highest priority. This ‘comparing’ is coded in

the guards G2 and G3. G2 contains all states of l5 where task

(kc,qc) has higher or equal priority, i.e.

G2 = {(kc,qc, k̃a, q̃a)|(kc,qc) > (k̃a, q̃a)},

where (kc,qc) > (k̃a, q̃a) means that task (kc,qc) has higher or

equal priority than task (k̃a, q̃a). Equal priority only happens

when both tasks are tasks of C2. (The tasks of C2 have

no ordering). G3 is the complement of G2, i.e. G3 contains

all states where task (kc,qc) has lower priority. If at l5,

G2 is satisfied, then the storemem, !(k̃a, q̃a) transition to l1
is executed, where R6 copies kc and qc at l5 to kc and

qc at l1. This transition induces the storemem transition of

Memory. The cycle l1 → l5 → l1, means that the requested

task of AudioAlert is stored into memory and the task that

is currently worked on at l1 is not changed. If at l5, G3
is satisfied, then the storemem, !(kc,qc) transition to l6 is

executed. This means that the task that was worked on at

l1 is now stored into memory. Reset map R7 copies (k̃a, q̃a)
at l5 to (k̃a, q̃a) at l6. At l6 the requested task (k̃a, q̃a) needs

to be executed, and this happens via the alertchng-transition

to l1.

In case 2 at location l1, CurrentGoal waits until the task

that is currently worked on is completed. After completion,

TaskPer f ormance sends the endtask signal, which induced

the endtask transition of CurrentGoal to l2. Reset map R1
copies (kc,qc) at l1 to (kc,qc) at l2. Thus, at l2 the state

(kc,qc) corresponds to the task that has just been completed.

This means that this task needs to be removed from the mem-

ory. This happens via the clearmem, !(kc,qc) transition to l3,

which induced the clearmem transition of Memory which

removes task (kc,qc) from the memory. At l3, the pilot needs

to check the memory, whether there is a to-be-executed-task

stored in the memory. The getmem,?(km,qm),R2 transition

to l4 checks the memory and stores the new to-be-executed-

task, or (0,0) in case there is no new to-be-executed-task, in

(kc,qc) at l4. Via this value passing transition, the memory

state is passed to CurrentGoal. Reset map R2 should then

be defined as:

1) Let i = min({r|km,r = 1}∪{0}).
2) If i �= 2, then j := 0, otherwise, take j randomly from

the set {r|qm,r = 1}.

3) Reset kc := i and qc := j at l4.

Note that R2 resets kc = qc = 0 if there are no tasks in

the memory, otherwise R2 takes the task with the highest

priority. At l4 the task from the memory is executed via the

memchng transition to l1, or, in case kc = qc = 0, the pilot

‘waits’ at l4 for an alert signal.

V. CONCLUSIONS

In this paper we introduced value-passing for CPDPs,

which can be used to express the communication of con-

tinuous data between components. In the future, we hope to

develop model-checking tools for CPDPs, such that system

properties can be automatically verified.

REFERENCES

[1] M. H. A. Davis, “Piecewise Deterministic Markov Processes: a general
class of non-diffusion stochastic models,” Journal Royal Statistical
Soc. (B), vol. 46, pp. 353–388, 1984.

[2] ——, Markov Models and Optimization. London: Chapman & Hall,
1993.

[3] M. H. C Everdij and H. A. P. Blom, “Petri-nets and hybrid-state
Markov processes in a power-hierarchy of dependability models”
in Preprints Conference on Analysis and Design of Hybrid Systems
ADHS 03, 2003, pp. 355–360.

[4] S. N. Strubbe, A. A. Julius, and A. J. van der Schaft, “Communicating
Piecewise Deterministic Markov Processes,” in Preprints Conference
on Analysis and Design of Hybrid Systems ADHS 03, 2003, pp. 349–
354.

[5] S. N. Strubbe and R. Langerak, “A composition operator for complex
control systems,” 2005, Accepted for 25th IFIP WG 6.1 International
Conference on Formal Techniques for Networked and Distributed
Systems, Taipei.

[6] S. N. Strubbe and A. J. van der Schaft, “Stochastic semantics for Com-
municating Piecewise Deterministic Markov Processes,” Accepted for
Conf. Decision and Control, Seville, 2005.

[7] S. N. Strubbe, “Compositional modelling of stochastic hybrid sys-
tems,” Twente University, Phd. Thesis, 2005.

4741

