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Abstract— This paper proposes a switching control strategy
for the set-point stabilization of a power converter connected
via a transmission line to a resistive load. The strategy employs
a Lyapunov function that is directly based on energy considera-
tions of the power converter, as well as of the transmission line
described by the telegraph equations. The proposed stabilizing
switching control still allows a certain freedom in the choice
of the control law, a comparison between a maximum descent
strategy and a minimum commutation strategy being discussed
on a simple example.

I. INTRODUCTION

Devices like power converters (Boost, Buck, Čuk, multi-

level converters) are widespread industrial devices. They are

used in many applications such as variable speed DC motor

drives, computer power supply, cell phone and cameras.

Those devices are electrical circuits controlled by switches

(transistors, diodes). Aiming at reducing switching losses and

EMI (Electromagnetic Interference) of power converters, a

lot of soft switching techniques are developed so that high

efficiency, small size and low weight can be achieved. When

they are operating in normal conditions, those circuits have

been designed such that the commutation of the switches

does not produce discontinuities. In this context, they can be

modelled by switched systems (without jump). For this class

of systems, multiple approaches for control have been de-

veloped, mainly based either on continuous time approaches

(i.e. sliding mode [1], passivity based control [2], stabilizing

control [3],...), or on hybrid approaches (i.e. model predictive

control [4], supervisory control [5],...).

The goal of this paper is to show how the hybrid stabilizing

control scheme presented in [6] can be extended to the case

where the power converter and load are not situated at the

same location, in which case the transmission line between

the power converter and the load needs to be taken into

account. The advantages of the proposed method are that

it uses a simple Lyapunov function deduced on energy con-

siderations and that the control variable is directly boolean.

The difficulty of the studied problem resides in the fact that

the transmission line model is a distributed parameter model

described by PDEs (the telegraph equations), to which the

original switching stabilizing control method of [6] cannot be

directly applied. To solve this problem, the power converter

part and the line and the load part are analyzed separately,

where a candidate Lyapunov function is proposed for each
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part on the same energy criteria as in the original method.

Then it can be shown that the sum of the two candidate

Lyapunov functions represents a Lyapunov function for the

entire system.

Section II introduces the models used for the power

converter subsystem as well as for the line and the load

subsystem. Section III recalls first how the stabilizing control

can be applied when the power converter and the load are

directly connected together and, second, how this method

can be extended to the power converter – line – load system.

The case of the “boost” converter is discussed in section IV,

where two strategies for control are analyzed and the paper

ends with the conclusions section.

II. MODELS OF THE SYSTEMS WITH SWITCHING

POWER CONVERTERS

The systems under consideration are electrical power

converters, which are used to adapt the energy supplied by

a power source to a load. Those systems include power

sources, energy storage elements (inductances or capacitors),

dissipative elements (resistances), transformers, gyrators and

switching components. In the following, the storage and

dissipative elements are supposed to be linear and the

transformers and gyrators are supposed to be constant. The

physical switches are considered to be ideal: in the state on,

their voltage is null and in the state off, their current is null.

In most of those systems, physical switches are associated

by pairs. In each pair, one physical switch is controlled (e.g.

transistor) while the other one may be not (e.g. diode). In a

normal operating mode both physical switches commutate

at the same time, which is equivalent to assuming that

only the continuous conduction modes are considered. This

association between two switches constitutes a commutation

cell, which is simply called switch in the following.

In order to derive models for physical systems, different

energy based approaches, such as circuit theory, bond graphs

[7], Euler Lagrange, Hamiltonian approach [8] can be used.

For switching systems, extensions have been proposed in [9]

for the Hamiltonian approach or in [10], [11] among many

other references for the bond graph approach.

When connecting a resistive load to a power converter,

taking into consideration or not the transmission line, the

most common cases are those presented in figure 1. The

situation depicted by figure 1(a) correspond, for example,

to the populars “boost”, “buck” and “buckboost” converters,

while the situation depicted by figure 1(b) correspond, for

example, to the multicellular converter.
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Fig. 1. The two most common cases when connecting the load to the
power converter through a transmission line

A. The Power Converter Model

If storage elements are independent, all previously cited

approaches can lead, for one mode (or switch configuration),

to model (1), which is called “port-Hamiltonian systems”

(with dissipation) [8], [9], [12]. 1

{

ẋ = (J − R) z + gu + glv

w = −gT
l z

. (1)

The vector u ∈ R
m corresponds to the energy sources

which are generally either constant in DC-DC or DC-AC

converters or sinusoidal in AC-DC or AC-AC converters.

This vector is supposed constant in the following. The couple

(v, w) is represented either by (Il, Vl) for the case depicted

by figure 1(a) or by (Vl, Il) for the case depicted by figure

1(b). Vector x ∈ R
n is the state vector and n is the

number of energy storage elements. State variables are the

energy variables (fluxes linkage in the inductors, charges

in the capacitors), z ∈ R
n is the co-state vector. Co-state

variables are the corresponding co-energy variables (currents,

voltages). In the case where the components are linear, the

relation between those two vectors is given by:

z = Fx (2)

where F = FT ≻ 0 . In simple cases, F is a diagonal

matrix the elements of which are the inverse of the values

of capacitances or inductances. The quantity ẋT z represents

the power entering the storage elements. The energy, which

is stored in the system, can be expressed as:

E(x) =
1

2
xT Fx (3)

Both n × n matrices J and R are called structure matrices.

The matrix J is skew-symmetric, J = −JT ; it corresponds

to a power continuous interconnection in the network model.

1In [8], [9] this was originally called a “port-controlled Hamiltonian
system”.

The matrix R is nonnegative; it corresponds to the energy

dissipating part of the circuit.

When the switches change their configuration, the continu-

ous conduction hypothesis is assumed, which is equivalent to

consider that physical switches commutate by pairs, implying

further that storage elements are still independent and the

state and co-state keep the same components. It also results

that, for those systems, there is no jump on state variable

when switching [10]. Those hybrid systems can be consid-

ered from the hybrid point of view as switching systems. As

J , R and g may depend upon the mode, the model can be

expressed as:

{

ẋ = (J (ρ) − R (ρ)) z + g (ρ) u + glv

w = −gT
l z

, (4)

where ρ ∈ {0, 1}
p

is a boolean vector describing the configu-

ration or mode of the system, p is the number of switches (or

pairs of physical switches). Due to the assumption made on

how the power converter and the line are connected together,

w is a component of z and, thus, gl does not depend on ρ.

Matrices J(ρ) and R(ρ) have the same properties than J and

R.

For this class of physical systems with pairs of physical

switches, it is assumed in the following that the three

matrices in (4) can be expressed using an affine relationship:

J(ρ) = J0 +

p
∑

1

ρiJi, (5a)

R(ρ) = R0 +

p
∑

1

ρiRi, (5b)

g(ρ) = g0 +

p
∑

1

ρigi, (5c)

where ρi are the components of ρ. This property which

has been verified on many usual devices (Buck, Boost,

Čuk ) [13], [9], and it has also been formally proved for

multicellular serial converters [14].

B. Ideal Line and Load Model

Consider the ideal lossless transmission line [12], where

the spatial variable, q, belongs to the interval [0, 1]. The

energy variables associated to the line are the charge density

Q = Q (t, q) dq, and the flux density ϕ = ϕ (t, q) dq. The

total energy stored at time t in the transmission line is given

as:

El (Q,ϕ) =

∫

1

0

1

2

(

Q2 (t, q)

Cl (q)
+

ϕ2 (t, q)

Ll (q)

)

dq (6)

where Cl (q) and Ll (q) are respectively the distributed

capacitance and distributed inductance of the line. Moreover,

the voltage and the current are given by:
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V (t, q) =
Q (t, q)

Cl (q)

I (t, q) =
ϕ (t, q)

Ll (q)

(7)

satisfying the telegraph equations:

∂Q

∂t
= −

∂I

∂q

∂ϕ

∂t
= −

∂V

∂q

(8)

Additionally, for the system that consists of the transmis-

sion line and the resistive load, RL, the following constraints

hold:

V (t, 0) = Vl

I (t, 0) = Il

(9a)

V (t, 1) = RLI (t, 1) (9b)

where V (t, 0) and V (t, 1), and, respectively, I (t, 0) and

I (t, 1) are the voltages, respectively the currents, at the

beginning and at the end of the line.

III. LYAPUNOV FUNCTION

The control approach which is proposed in this paper is

based on a common Lyapunov function for the different

modes, with its derivative depending on the control variable

ρ. In [6], for the case where the power converters is directly

connected to the load, it has been shown how ρ can be chosen

such that the derivative of the Lyapunov function can be kept

always negative. In the following, in III-B, it is shown how

this result can be extended to the case where a transmission

line is used to connect the power converter and the load, but,

first, the initial method (without the line) is recalled.

A. The Power Converter Directly Connected to the Load

If the case where the power converter is directly connected

to the load is analyzed, then the model expressed by (4)

becomes:

ẋ =
(

J (ρ) − R̃ (ρ)
)

z + g (ρ) u, (10)

where

R̃ (ρ) = R (ρ) + glR̃LgT
l , with (11a)

R̃L =

{

RL, for the figure 1(b) case

1/RL, for the figure 1(a) case
, (11b)

and R̃ (ρ) has the same properties as R (ρ).

1) Admissible Reference: The objective is to design a

switching control law such that the output of the system take

some specified value. Using the same approach as with an

average model where the control ρ is considered continuous

but constrained, the following definition of an admissible

reference is proposed.

Definition 1: z0 = Fx0 is called an admissible reference

for system (10) and (2) where u is constant, if there exists

ρ0 ∈ R
p, 0 ≤ ρ0i ≤ 1 such that constraint (12):

0 =
(

J (ρ0) − R̃ (ρ0)
)

z0 + g (ρ0) u, (12)

is satisfied.

Remark 2: If p < n and J (ρ0)−R (ρ0) is structurally in-

vertible, then the admissible reference belongs to a subspace

of R
p. p state variables that are considered as the output

of the model will be specified. The other state variables, as

well as ρ0, are fixed by constraint (12). In other cases, (12)

is still satisfied, but
(

J (ρ0) − R̃ (ρ0)
)

may be singular, so

x0 is not necessarily unique and some state variables can be

chosen arbitrarily.

2) Lyapunov Function:

Definition 3: A function H is a Lyapunov function for the

system represented by (1) or (10) and (2) in x0 if:

• H (x, x0) > 0 anywhere excepted in x0 where it holds

H (x0, x0) = 0,

• H is radially unbounded,

• for any x, a control ρ can be chosen such that

Ḣ (x, x0) < 0.

If such a control law is applied, then x will converge

asymptotically toward x0. The following results states how

a Lyapunov function can be determined for the case where

the power converter is directly connected to the load.

Theorem 4: Considering the system represented by (10)

and (2), it is always possible to find a boolean state feed-

back ρ (x) such that the function defined by H̃ (x, x0) =
E (x − x0) = 1

2
(x − x0)

T
F (x − x0) , where x0 is an

admissible reference according to definition 1, is a Lyapunov

function for the resulting closed–loop system.

Proof: Since there is no jump, H̃ is positive, continuous

and null only for x = x0. The time derivative of H̃ depends

on the value of the control ρ and will be denoted by
˙̃

Hρ.

˙̃
Hρ = (x − x0)

T
Fẋ

= (z − z0)
T

((

J (ρ) − R̃ (ρ)
)

z + g (ρ) u
) (13)

Using the skew symmetry property of J (ρ) and the property

of the admissible reference, this expression becomes:

˙̃
Hρ = − (z − z0)

T
R̃ (ρ) (z − z0)

+ (z − z0)
T

(J (ρ) − J (ρ0)) z0

− (z − z0)
T

(

R̃ (ρ) − R̃ (ρ0)
)

z0

+ (z − z0)
T

(g (ρ) − g (ρ0))u

(14)

And finally, replacing R̃, J , g using (5) and (11)

˙̃
Hρ = − (z − z0)

T
R̃(ρ) (z − z0)

+

p
∑

1

(z − z0)
T

((Ji − Ri) z0 + giu) (ρi − ρ0i)
(15)

Since R̃(ρ) is a nonnegative matrix, the first term of this

expression is never positive, and since 0 ≤ ρ0i ≤ 1, every
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term of the sum can be made negative by choosing each ρi

according to the sign of (z − z0)
T

((Ji − Ri) z0 + giu) .

Remark 5: In the engineering practice, the control vari-

able ρ has to be considered in a context where the application

specifications demand either a limited or a constant switching

frequency. The inclusion of these specification related to

Lyapunov based control has been discussed in [15]. However,

for the sake of simplicity, throughout this paper, there is not

any such limitation, the switching frequency being variable

and unbounded.

The solution provided by the proof of the theorem 4 for

the choice of ρ is referred next as the maximum descent

strategy. However, this choice is very conservative and, in

general, it is not the only one. Thus, one can relax the

commutation conditions and still have stability and the most

relaxed choice one can have is that of commutating when
˙̃

Hρ = 0. Additionally, if the minimum number of switches

commutate then the resulting strategy is referred next as the

minimum switching strategy.

B. The Power Converter Connected to the Load Using a

Transmission Line

1) Admissible Reference: Similar to the case without the

line, first some admissible reference has to be defined. An

equilibrium point for the line is defined by:

∂Q

∂t
=

∂ϕ

∂t
= 0, (16)

which, due to (8), implies that

I0 =
ϕ0 (q)

L (q)
(17a)

V0 =
Q0 (q)

C (q)
(17b)

are constant as functions of both time and spatial variable

q. Moreover, when the load resistance is considered, the

following constraint holds:

V0 = RLI0. (18)

Then, the admissible reference for the case when the power

converter is connected to the resistive load through a trans-

mission line is formulated like in the case without line:

Theorem 6: Every admissible reference for the system

formed by a power converter connected directly to a resistive

load is an admissible reference for the system where also a

transmission line is present.

Proof: At equilibrium, (18) holds which implies that

v0 = R̃Lw0 holds too. Thus, using also that w0 = −gT
l z0,

equation (12) is recovered.

2) Lyapunov Function: Like in section III-A.2, a suitable

Lyapunov function can be formulated for the entire system

based on energy considerations.

Theorem 7: For the system including a power converter,

a transmission line and a resistive load, it is always possible

to find a boolean state feedback ρ (x) such that the function

defined by H = E (x − x0) + El (Q − Q0, ϕ − ϕ0) is a

Lyapunov function for the resulting closed–loop system,

where x0 is an admissible reference according to definition

1 and (Q0, ϕ0) is the corresponding equilibrium of the line.

Proof: Consider first the term E (x − x0) =
1

2
(x − x0)

T
F (x − x0). Then, from (4), the computation of

the time derivative of this term leads to (19).

Ė = (x − x0)
T

Fẋ

= (z − z0)
T

[(J (ρ) − R (ρ)) z + g (ρ) u + glv]

= − (z − z0)
T

R (ρ) (z − z0) + (z − z0)
T

gl (v − v0)

+ (z − z0)
T

p
∑

1

[(Ji − Ri) z0 + giu] (ρi − ρ0i)

= Ḣρ − (w − w0) (v − v0)
(19)

Consider now the line energy function El (Q − Q0, ϕ − ϕ0),
evaluated in the shifted state variable. Then, using also (6) –

(9), the expression of the time derivative of El is given by:

Ėl =

1
∫

0

1

Cl (q)
(Q (t, q) − Q0 (q))

∂Q

∂t
dq

+

1
∫

0

1

Ll (q)
(ϕ (t, q) − ϕ0 (q))

∂ϕ

∂t
dq

= (V (t, 0) − V0) (I (t, 0) − I0)

− (V (t, 1) − V0) (I (t, 1) − I0)

= (w − w0) (v − v0) − (V (t, 1) − V0)
2

/

RL

(20)

Thus, the global time derivative is given by:

Ḣ = Ḣρ − (V (t, 1) − V0)
2

/

RL (21)

Similar to theorem 4, ρ can be chosen such that Ḣρ < 0,

and, thus, the same choice for ρ can be used to make Ḣ

negative.

Remark 8: By developing further (15), knowing that (11)

holds, the following is obtained:

˙̃
Hρ = − (z − z0)

T
R(ρ) (z − z0)

− (z − z0)
T

glR̃LgT
l (z − z0)

+

p
∑

1

(z − z0)
T

((Ji − Ri) z0 + giu) (ρi − ρ0i)

= Ḣρ − (w − w0)
2
R̃L.

(22)

Using also (21), the following relation can be derived be-

tween Ḣ and
˙̃

Hρ:

Ḣ = ˙̃
Hρ + (w − w0)

2
R̃L − (V (t, 1) − V0)

2

/

RL (23)

Hence, in general, the choice of ρ such that
˙̃

Hρ ≤ 0 is neither

necessary, nor sufficient for Ḣ to be negative! Nevertheless,

it can be noticed that the maximum descent strategy is robust

regarding the presence of the line.
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Fig. 2. The Boost converter with a transmission line

IV. EXAMPLE

Figure 2 represents a simplified circuit of a well known

power converter called (ideal) Boost converter. Under the

hypothesis previously formulated, only two operating modes

are considered: one, the diode is conducting when the con-

trolled physical switch is open (ρ = 1) and second, blocked

when the controlled physical switch is closed (ρ = 0).

The state vector x = (xl, xc)
T

is composed of the flux

linkage in the inductance and the charge in the capacitor.

The co-state vector z = (il, vc)
T

is composed of the current

in the inductance and voltage on the capacitor. The matrices

corresponding to (4), (5) and (10) are:

J (ρ) =

(

0 −ρ

ρ 0

)

R (ρ) =

(

0 0
0 0

)

(24a)

g (ρ) =

(

1
0

)

gl =

(

0
−1

)

(24b)

F =

(

1

L
0

0 1

C

)

R̃ (ρ) =

(

0 0
0 − 1

RL

)

(24c)

The state equation is:
(

ẋl

ẋc

)

=

(

0 − ρ
C

ρ
L

0

)(

xl

xc

)

+

(

1
0

)

e+

(

0
−1

)

Il

(25)

The set point is defined by:

(vc0, il0) =

(

e

ρ0

,
e

ρ2

0
RL

)

, (26)

while the equilibrium point of the transmission line is given

by:

(V0, I0) =

(

vc0,
vc0

RL

)

. (27)

The proposed Lyapunov function is:

H =
1

2

(xl − xl0)
2

L
+

1

2

(xc − xc0)
2

C

+
1

2

1
∫

0

[

(Q − Q0)
2

Cl

+
(ϕ − ϕ0)

2

Ll

]

dq

(28)

And its derivative:

Ḣ = [(vc − vc0) il0 − (il − il0) vc0] (ρ − ρ0)

− (V (t, 1) − V0)
2

/

RL

(29)

In the simulation, normalized values have been used (e =
1V, RL = 1Ω, L = 1H, C = 1F). First the output voltage
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3.5

il

vc

Fig. 3. The state evolution, from the origin to the equilibrium
point, using a maximum descent strategy, where the reference point
(il0 = 11.11A, vc0 = 3.33V) is indicated by the x
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(b) V (t, 1)

Fig. 4. The time evolution of the line input current, Il (t) = I (t, 0),
and of the load voltage drop, V (t, 1), when a maximum descent strategy is
employed. The dotted lines represent the corresponding admissible reference
points

is specified vc0 = 3.33V. Then ρ0 = 0.3 and il0 = 11.11A.

The line has been modeled using a ladder representation with

five cells, where the numerical values of the storage elements

used in the cell model are 0.1H for the inductance and 0.1F

for the capacitor.

The simulations were realized using the two control

strategies: the maximum descent and the minimum switch-

ing, with the origin used each time as the initial value

for the state vector. In figure 3 the (co-)state evolution

is presented for the maximum descent control strategy.

This strategy ensures that the derivative of the Lyapunov

function is always negative by keeping negative the term

[(vc − vc0) il0 − (il − il0) vc0] (ρ − ρ0), which leads to a

sliding mode. In figure 4 are presented the time evolutions

of the line input current and of the load voltage drop when

such a strategy is applied.

In figure 5 the (co-)state evolution is presented for a

minimum switching control strategy. This strategy takes the

decision of changing mode only when the Lyapunov function

derivative is becoming zero. In figure 6 are presented the time

evolutions of the line input current and of the load voltage

drop when such a strategy is applied. It can be noticed that,

even though there is overshoot, the system converges faster

than when the maximum descent strategy is used.
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Fig. 5. The state evolution, from the origin to the equilibrium
point, using a minimum switching strategy, where the reference point
(il0 = 11.11A, vc0 = 3.33V) is indicated by the x
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Fig. 6. The time evolution of the line input current, Il (t) = I (t, 0), and
of the load voltage drop, V (t, 1), when a minimum switching strategy is
employed. The dotted lines represent the corresponding admissible reference
points

V. CONCLUSIONS

This paper presented a hybrid stabilizing control law

that brings the system to an admissible reference point. To

achieve this, a Lyapunov function has been proposed for

the case when the load is connected to the power converter

through a transmission line. This Lyapunov function has

been deduced to be, using energy considerations, the sum

of the candidate Lyapunov functions for the power converter

part and for the transmission line. Moreover, the admissible

reference point is the same for the power converter part

either the line is present or not. Such a control law has then

been applied to the “boost” converter, with two strategies

outlined: the maximum descent, where the derivative of the

Lyapunov function has been minimized, and the minimum

commutation, where the commutation decision has been

taken only when the derivative of the Lyapunov function

became equal to zero. The second strategy proved to produce

faster tracking performances, but exhibits overshoot. Future

works will be concerned with the lossy line case, where

the admissible reference point changes and the equilibrium

voltage and current of the line are no longer constant with

the spatial variable. Further more extensions to the case of

nonlinear storage elements are planned as well as including

performances constraints that should lead to intermediate

switching strategies regarding the maximum descent and the

minimum switching strategies.
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[11] J.-E. Strömberg, “A mode switching modelling philosophy,” Ph.D.

dissertation, Linköping, 1994.
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