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Abstract— This paper considers the nonlinear left
coprime factorization (NLCF) of a nonlinear system.
In order to study the balanced realization of such
NLCF first a dual system notion is introduced. The
important energy functions for the original NLCF
and their relation with the dual NLCF are studied
and relations between these functions are established.
These developments can be used for studying a
relation between the singular value functions of the
NLCF and the normalized right coprime factoriza-
tion (NRCF) of a nonlinear system. The singular
value functions are a useful tool for model reduction
of unstable nonlinear systems.

I. INTRODUCTION

In linear systems theory the Gramians of a
system play an important role in many studies,
and in especially when the study is dealing with
balanced realizations. Balancing is a well-known
tool for model reduction of stable linear systems.
For unstable linear systems there exists balancing
methods based on normalized coprime factoriza-
tions that can be used as a tool for model reduction
(e.g. [11], [8]). In those studies a relation between
the Gramians of the right and left coprime factor-
izations and the solutions of the Control and Filter
Algebraic Riccati Equation (CARE and FARE,
respectively) are given.

A generalization of balanced realizations based
on normalized coprime factorizations as a tool for
model reduction for unstable nonlinear systems is
given in [15], where expressions for the normalized
left and right coprime factorizations (NLCF and
NRCF, respectively) are obtained. Other research,
such as [1], [12] further developed coprime factor-
izations. In [15] the focus is mainly on balanced
realizations for the NLCF and NRCF, and their
relation with the HJB balanced representation.

In the case of NRCF [15] presents a similar
relation as in the linear case for the observabil-
ity and controllability function of the nonlinear
NRCF, and the future and past energy function of

the original nonlinear system (in the linear case,
they are the solutions of the CARE and FARE).
However, a similar relation is not yet established in
case of the NLCF. For that, we need to use a new
notion of duality. The dual system as presented
in this paper is inspired by the results in [6],
where an adjoint state-space representation for the
the nonlinear Hilbert adjoint, [14], is developed.
For the dual system of the NLCF we are able to
establish the relations that are similar to the ones
for the NRCF.

Although the developments in this paper may
also be important for nonlinear robust control
(as in the linear case), our motivation for these
developments stems from the nonlinear balanced
realization theory as a tool for model reduction.
In [13], [5], [4] these tools are developed for
asymptotically stable systems. It is well-known,
[11], [8], [15] that for unstable systems the NRCF
and NLCF can be considered. Hence, model re-
duction of unstable nonlinear systems based on
the balanced realizations of the NRCF and NLCF
can be performed. In this paper we focus on a
nonlinear extension of the linear systems result that
establishes that the Hankel singular values of the
NRCF and NLCF are the same, e.g., [11], [8]. A
first step towards a similar relation between the
two nonlinear reduction methods, i.e., balanced
truncation based on the NRCF and NLCF of an
unstable nonlinear system, respectively, is given.

In Section II we present some preliminaries
about the NLCF of nonlinear systems. Then in Sec-
tion III we establish relations for the dual system
of the NLCF between the various energy functions
that are important for balanced realizations. In
Section IV we continue with balanced realizations
for the NLCF and NRCF, and finally in Section V
we give some conclusions.

Notation: We denote L2(−∞, 0) by L−
2 and

L2(0,∞) by L+
2 . Furthermore, by ∂K

∂x (x) we

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuA05.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 2254

Authorized licensed use limited to: University of Groningen. Downloaded on March 21,2010 at 10:10:34 EDT from IEEE Xplore.  Restrictions apply. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Groningen Digital Archive

https://core.ac.uk/display/12941828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


denote the row vector with partial derivative of a
function K(x).

II. PRELIMINARIES

Consider a smooth nonlinear system of the form

ẋ = f(x) + g(x)u,

y = h(x)
(1)

where u = (u1, . . . , um)T ∈ R
m

, y =
(y1, . . . , yp)T ∈ R

p
, and x = (x1, . . . , xn)T are

local coordinates for a smooth state space man-
ifold denoted by M. Furthermore, f, g1, . . . , gm

are smooth vectorfields on M , where g =
(g1, . . . , gm), and h = (h1, . . . , hp)T is the smooth
output map of the system. Throughout we assume
that the system has an equilibrium. Without loss
of generality we take this equilibrium in 0, i.e.
f(0) = 0. We also take h(0) = 0.

We can relate several energy functions with
system (1). This is done in the next definition.

Definition 2.1: The controllability and observ-
ability function of a nonlinear system (1) are given
by

Lc(x0) = min
u ∈ L−

2
x(−∞) = 0,
x(0) = x0

1
2

∫ 0

−∞
‖ u(t) ‖2 dt, (2)

and

Lo(x0) =
1
2

∫ ∞

0

‖ y(t) ‖2 dt, (3)

x(0) = x0, u(t) ≡ 0, 0 ≤ t < ∞,

respectively.
The past and future energy function of a nonlinear
system are defined as

K−(x0) = (4)

min
u ∈ L−

2
x(−∞) = 0
x(0) = x0

1
2

∫ 0

−∞
(‖ y(t) ‖2 + ‖ u(t) ‖2)dt,

and

K+(x0) = (5)

min
u ∈ L+

2
x(∞) = 0
x(0) = x0

1
2

∫ ∞

0

(‖ y(t) ‖2 + ‖ u(t) ‖2)dt

respectively. �

The above energy functions are related to some
Hamilton-Jacobi-Bellman type of equations, stem-
ming from Optimal Control theory. First we give

the equations for the observability and controlla-
bility function.

Theorem 2.2: [13] Assume that f(x) is asymp-
totically stable on a neighborhood W of 0. Then

∂L̄o

∂x
(x)f(x) +

1
2
hT (x)h(x) = 0, L̄o(0) = 0.

(6)
has a smooth solution L̄o for all x ∈ W . if and
only if Lo exists. Then Lo is the unique smooth
solution of (6) for all x ∈ W .
Furthermore, the Hamilton-Jacobi equation

∂L̄c

∂x
(x)f(x)+

1
2

∂L̄c

∂x
(x)g(x)gT (x)

∂T L̄c

∂x
(x) = 0,

(7)
L̄c(0) = 0 has a smooth solution L̄c for all x ∈ W
such that

−(f(x) + g(x)gT (x)
∂T L̄c

∂x
(x)) (8)

is asymptotically stable on W if and only if Lc(x)
exists. Then Lc(x) is the unique smooth solution
of (7), such that (8) is asymptotically stable, for
all x ∈ W . �

Theorem 2.3: e.g. [15] The Hamilton-Jacobi-
Bellman equation

∂K+

∂x
(x)f(x) −1

2
∂K+

∂x
(x)g(x)g(x)T ∂T K+

∂x
(x)

+
1
2
hT (x)h(x) = 0

(9)
with K+(0) = 0, has a smooth non-negative
solution on a neighborhood Y of 0, such that

f(x) − g(x)g(x)T ∂T K+

∂x
(x) (10)

is asymptotically stable, if and only if K+ exists.
Then K+ is that solution.
Furthermore, the Hamilton-Jacobi-Bellman equa-
tion

∂K−

∂x
(x)f(x) +

1
2

∂K−

∂x
(x)g(x)gT (x)

∂T K−

∂x
(x)

−1
2
h(x)T h(x) = 0

(11)
with K−(0) = 0, has a smooth non-negative
solution on a neighborhood Y of 0, such that

−(f(x) + g(x)g(x)T ∂T K−

∂x
(x)) (12)

is asymptotically stable, if and only if K− exists
on Y . Then K− is that solution. �
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We assume the system (1) to be zero-state ob-
servable. Furthermore, we assume that (11) has a
smooth non-negative solution K− on a coordinate
neighborhood Y of 0. It follows from (11) that
∂K−
∂x (0) = 0 and thus we can write (see [9])

∂K−

∂x
(x) = xT M(x), (13)

where M(x) is an n × n matrix with all entries
mij(x), i, j = 1, . . . , n, smooth functions of x and
M(0) = ∂2K−

∂x2 (0). We assume that

∂2K−

∂x2
(0) > 0

and therefore there exists a neighborhood U of
0 for which M(x) is nonsingular and thus is
invertible on U . Furthermore, since h(0) = 0, we
can write h(x) = C(x)x where C(x) is an p × n
matrix with entries that are smooth functions of x
and C(0) = ∂h

∂x (0). Now consider for x ∈ U

ẋ =
(
f(x) − (M(x))−1

C(x)T h(x)
)

+(
g(x) (M(x))−1

C(x)T
)
w̃

z = h(x) +
(

0 −I
)
w̃

(14)
This system is asymptotically stable on U under
the assumption that K− is proper on U . K−

then serves as a Lyapunov function for (14). The
system (14) is a representation of the normalized
left coprime factorization (NLCF) of (1), see [15],
[12].

Remark 2.4: It can be shown (see [15]) that
linearizing the above system yields the corre-
sponding linear NLCF. Since the linear NLCF is
asymptotically stable, (14) is exponentially stable.
Hence, there exists a neighborhood of 0 where all
eigenvalues of A(x) − (M(x))−1

C(x)T C(x) are
in the left half plane as well. �

III. THE NLCF AND DUALITY

For model reduction of nonlinear systems based
on balanced realizations, see e.g. [13], [5], [3], the
system has to be asymptotically stable. If this is
not the case, we could consider to balance the
normalized coprime factorization that is asymp-
totically stable. In [15] this is considered for the
normalized right coprime factorization (NRCF), as
well as for the nonlinear version of the linear LQG
balancing (e.g., [7]), the so-called HJB balancing.
For linear systems it does not matter if the NRCF
or the NLCF is considered for balancing; the
singular values are equal for the two factorizations.
However, such relation is not established yet for

nonlinear systems. Furthermore, the relation be-
tween the future and past energy functions and the
controllability and observability functions of the
NLCF is not established yet, whereas for NRCF
this is already established in [15].

Now consider K− and K+ for the system (1)
and the controllability and observability functions
Lc and Lo for the NLCF given by (14). Then it is
straightforwardly obtained that

K−(x) = Lc(x)

If we assume that system (1) is linear, and min-
imal, and thus also (14) is a linear system. Then
we can write

Lc(x) = K−(x) =
1
2
xT Zx,

Lo(x) =
1
2
xT Xx, K+(x) =

1
2
xT Px,

where Z, X , and P are positive definite matrices,
and for equation (13) we obtain M(x) = Z. Then
Z−1 and X are the controllability and observ-
ability Gramian of the NLCF, respectively. Z−1

and P are the stabilizing solutions of the FARE
(Filter Algebraic Riccati Equation) and CARE
(Control Algebraic Riccati Equation), respectively,
e.g., [11], [8]. Furthermore, it can be proven that
those matrices are related via (e.g. [11])

Z−1 = X−1 − P−1 (15)

Clearly, equation (15) is dealing with the inverses
of the matrices that appear in the quadratic forms.
This implies that (15) is not straightforwardly
extended to the nonlinear case. In order to establish
a relation like (15) for the nonlinear NLCF we first
need to establish an appropriate notion of duality
for nonlinear systems.

Now, we drop the assumption that the systems
are linear, and we will consider a dual system
that is inspired by the nonlinear Hilbert adjoint
notion, [14] for which we have obtained state-
space realizations in [6]. In [6] we mention duality
“in the sense of Young”, using the Legendre trans-
formation of the controllability and observability
functions. Here, we will use this notion related to
the nonlinear Hilbert adjoint descriptions of [6].

Consider f(x) = A(x)x and h(x) = C(x)x as
before, where A(x), C(x) are an n×n and p×n
matrix with elements depending smoothly on x,
with A(0) = ∂f

∂x (0) and C(0) = ∂h
∂x (0).

Now consider (1) in combination with the fol-
lowing dual system.

ṗ = A(x)T p + C(x)T ud

yd = g(x)T p (16)
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and consider the Legendre transform of K+(x) as
follows:

K̃+(p) = −K+(x) + pT x

then we can state the following lemma.

Lemma 3.1: K̃+(p) fulfills the Hamilton-
Jacobi-Bellman equation (11) for the past energy
function of system (16).
Proof: The result is straightforwardly obtained
by considering equation (9) for system (1) and
equation (11) for system (16) with p = ∂T K+

∂x (x).
�

Remark 3.2: Note that (16) is linear in p. �

The dual system of the NLCF (14) is given by

ṗ =
(
A(x)T − C(x)T C(x) (M(x))−1

)
p

+C(x)T w̃d

zd =
(

g(x)T

C(x) (M(x))−1

)
p +

(
0
−I

)
w̃d

(17)
where x is a solution of (14).

If we consider the controllability function Lc(x)
of (14), and its Legendre transform

L̃c(p) = −Lc(x) + pT x,

then the corresponding dual coordinates are given
by p = ∂Lc

∂x (x) = ∂K−
∂x (x) = M(x)x, and thus

x = M(x)−1p.

Lemma 3.3: The Legendre transform of Lo(x),
L̃o(p), fulfills the Hamilton-Jacobi-Bellman equa-
tion for the controllability function of system (17).
Furthermore, L̃c(p) is the observability function of
system (17).
Proof: This follows immediately by considering
the equations. �

Now we are able to establish the nonlinear coun-
terpart of (15), i.e.,

Theorem 3.4: With p = M(x)x we have that
L̃c(p) = L̃o(p) − K̃+(p).
Proof: Consider the corresponding equations, i.e.,

∂L̃c

∂p
(p)

(
A(x)T − C(x)T C(x) (M(x))−1

)
p

+ 1
2pT g(x)g(x)T p

+ 1
2pT M(x)−1C(x)T C(x)M(x)−1p = 0

∂L̃o

∂p
(p)

(
A(x)T − C(x)T C(x) (M(x))−1

)
p

+ 1
2

∂L̃o

∂p
(p)C(x)T C(x)

∂L̃o

∂p
(p) = 0

∂K̃+

∂p
(p)A(x)T

+
1
2

∂K̃+

∂p
(p)C(x)T C(x)

∂T K̃+

∂p
(p)

−1
2
pT g(x)g(x)T p = 0

Subtracting the equation for K̃+(p) from the equa-
tion for L̃o(p), where p = M(x)x, and thus x =
M(x)−1p = ∂L̃c

∂p (p), the relation is established. �

Remark 3.5: For a linear system Theorem 3.4
results in (15). �

Due to linearity in p we can now easily write
∂T L̃o

∂p (p) = Y (x)p and ∂T K̃+

∂p (p) = W (x)p, where
Y (x) and W (x) are positive definite matrices on
x ∈ U .

Corollary 3.6: The linearity in p yields

x = Y (x)
∂T Lc

∂x
(x) − W (x)

∂T Lc

∂x
(x)

Proof: Since

x =
∂T L̃c

∂p
(p) =

∂T L̃o

∂p
(p) − ∂K̃+

∂p
(p)

and p = ∂T Lc

∂x (x), we obtain the result. �

Remark 3.7: For linear systems we have that
Y (x) = X−1 and W (x) = P−1, and thus
Corollary 3.6 yields

x = X−1Zx − P−1Zx,

which results in (15). �

IV. BALANCING THE NLCF

In [5], [4] we have developed a unique balancing
transformation for nonlinear systems. Now con-
sider the NLCF system (14), and its corresponding
controllability and observability operators C and O
(see e.g., [5]). As in the linear case, the Hankel
operator H of the system (14) is given by the
composition of the observability and controllability
operators H = O ◦ C.

Now consider the solution pair λ ∈ R and v ∈
L+

2 of
(dH(v))∗ ◦ H(v) = λ v.
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This structure is called the differential singular
value structure of the Hankel operator. Then, [5],
there exist n independent solution curves in the
form

λ = λi(s)
v = vi(s)

‖v‖L2 = |s|
, i = 1, 2, . . . , n, s ∈ R

which are parametrized by s. The related input-
output ratio of the Hankel operator defined by

ρi(s) :=
‖H(vi(s))‖L2

‖vi(s)‖L2

min{ρi(s), ρi(−s)} > max{ρi+1(s), ρi+1(−s)}
are called axis singular value functions. They have
a closer relation to the Hankel operator than the
original singular value functions of [13] because it
satisfies

‖Σ‖H = sup
s∈R

ρ1(s)

in a similar way as in the linear case. Also, the
ρi’s are uniquely determined since they are defined
only using the input-output property of the Hankel
operator.

Assumption A1 Consider the NLCF given in (14)
and suppose that there exist a neighborhoods of
the origin where the operators O, C and C† exist
and are smooth. Here O denotes the observability
operator of system (14), C denotes the controlla-
bility operator of system (14) and C† denotes the
pseudo-inverse of C.

Assumption A2 Suppose that the Hankel singular
values of the Jacobian linearization of the system
(14) are nonzero and distinct.

Theorem 4.1: [5] Consider the system (14).
Suppose that Assumptions A1 and A2 hold. Then
there exist a neighborhood U of 0 and a coordi-
nate transformation x = Φ(z) on U converting
the system an input-normal/output-diagonal form
satisfying the following properties.

zi = 0 ⇔ ∂Lc(Φ(z))
∂zi

= 0 ⇔ ∂Lo(Φ(z))
∂zi

= 0

holds for all i ∈ {1, 2, . . . , n} on U . �

Given the above assumptions, we now have the
following useful model reduction result which fol-
lows straightforwardly from [4].

Theorem 4.2: Consider the state-space realiza-
tion of the NLCF given in (14). Suppose that
Assumptions A1 and A2 hold. Then there exist

a neighborhood U of the origin and a coordinate
transformation x = Φ(z) on U converting the
system into the following form

Lc(Φ(z)) =
1
2
zTz (18)

Lo(Φ(z)) =
1
2

n∑
i=1

(ziρi(zi))2. (19)

�

We can even go one step further and obtain a fully
balanced representation, i.e.,

Theorem 4.3: Consider the system (14). Sup-
pose that Assumptions A1 and A2 hold. Then there
exist a neighborhood U of the origin and a coor-
dinate transformation x = Φ(z) on U converting
the system into the following form

Lc(Φ(z)) =
1
2

n∑
i=1

z2
i

σi(zi)

Lo(Φ(z)) =
1
2

n∑
i=1

z2
i σi(zi).

In particular, if U = R
n, then

‖Σ‖H = sup
z1∈R

σ1(z1),

with Σ the input-output system given by (14) �

The above results make it possible to apply model
reduction based on the NLCF of a nonlinear sys-
tem. A similar procedure can be followed for
model reduction based on the NRCF of a sys-
tem. If we consider the NRCF (see [15]) and
its corresponding controllability and observability
functions L̂c(x) and L̂o(x) respectively, then the
following relation is easily established:

Theorem 4.4: L̂o(x) = K+(x) and K−(x) =
L̂c(x) − L̂o(x). �

This is the NRCF counter part of the NLCF result
of Theorem 3.4. For linear systems the relations of
Theorem 3.4 and Theorem 4.4 are used to show
that the Hankel singular values of the NRCF and
the NLCF are the same. For nonlinear systems this
is a topic of future research.

V. CONCLUDING REMARKS

In this paper we have studied the controllability,
observability and past and future energy functions
of the normalized left coprime factorization of
a nonlinear system. Furthermore, the notion of
duality in the sense of Young, related to the notion
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of nonlinear Hilbert adjoints, [6], has been used
in order to establish the relations between the
respective functions. The considered functions are
important for balancing the coprime factorizations,
which on its turn is a useful tool for model
reduction of unstable nonlinear systems.
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