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Nonlinear Input-Normal Realizations Based on the
Differential Eigenstructure of Hankel Operators
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Abstract—This paper investigates the differential eigenstructure
of Hankel operators for nonlinear systems. First, it is proven that
the variational system and the Hamiltonian extension with ex-
tended input and output spaces can be interpreted as the Gâteaux
differential and its adjoint of a dynamical input–output system,
respectively. Second, the Gâteaux differential is utilized to clarify
the main result the differential eigenstructure of the nonlinear
Hankel operator which is closely related to the Hankel norm of
the original system. Third, a new characterization of the nonlinear
extension of Hankel singular values are given based on the dif-
ferential eigenstructure. Finally, a balancing procedure to obtain
a new input-normal/output-diagonal realization is derived. The
results in this paper thus provide new insights to the realization
and balancing theory for nonlinear systems.

Index Terms—Balanced realization, model reduction, nonlinear
control.

I. INTRODUCTION

I N THE THEORY of continuous-time linear systems, the
system Hankel operator plays an important role in a number

of problems. For example, when viewed as mapping from past
inputs to future outputs, it plays a direct role in the abstract def-
inition of state [1]. It also plays a central role in minimality
theory, in model reduction problems, in realization theory, and
related to these, in linear identification methods. Specifically,
the Hankel operator supplies a set of similarity invariants, the
so called Hankel singular values, which can be used to quantify
the importance of each state in the corresponding input–output
system [2]. The Hankel operator can also be factored into the
composition of an observability and controllability operators,
from which Gramian matrices can be defined and the notion of
a balanced realization follows, first introduced in [3], and fur-
ther studied by many authors, e.g., [2] and [4]. The Hankel sin-
gular values are most easily computed in a state–space setting
using the product of the Gramian matrices, though intrinsically
they depend only on the given input–output mapping. The linear
Hankel theory is rather complete and the relations between and
interpretations in the state–space and input–output settings are
fully understood.
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The nonlinear extension of the state–space concept of bal-
anced realizations has been introduced in [5], mainly based on
studying the past input energy and the future output energy.
Since then, many results on state–space balancing, modifica-
tions, computational issues for model reduction and related
minimality considerations for nonlinear systems have appeared
in the literature, e.g., [6]–[11]. Recently, the relation of the
state–space notion of balancing for nonlinear systems with the
nonlinear input–output Hankel operator has been considered;
see, e.g., [6], [12], and [13]. In particular, singular value func-
tions which are nonlinear state–space extension of the Hankel
singular values for linear systems play an important role in
the nonlinear Hankel theory. It has been shown that singular
value functions are related to Hankel operators [12]–[14], [16].
However, there are some major differences with the linear
theory, i.e., studying similarity invariance of singular value
functions in relation to the nonlinear Hankel operator can be
done via several interpretations of the concept of similarity
invariance and may result in different conclusions. In this paper,
we use the input–output interpretation to study the differential
eigenstructure of the nonlinear Hankel operator, and show that
such interpretation results in a new characterization of Hankel
singular value functions for nonlinear systems. The relation
with the state–space characterization of the singular value
functions is also considered.

In order to study the singular value structure of nonlinear op-
erators, we need to consider the concept of adjoint operators.
Nonlinear adjoint operators can be found in the mathematics
literature, e.g., [15], and they are expected to play a similar
role in the nonlinear control systems theory. So called nonlinear
Hilbert adjoint operators are introduced in [12], [13], and [16]
as a special class of nonlinear adjoint operators. The existence
of such operators in input–output sense has been shown in [12]
and adjoint state–space realizations are only recently available
in [14], [17], and [18], where the emphasis has been on the use
of port-controlled Hamiltonian system methods.

However, these port-controlled Hamiltonian systems repre-
senting adjoint state–space realizations are not having clear re-
lations with the past input and the future output energy functions
of the original system, whereas the variational nonlinear adjoint
systems given by Hamiltonian extensions, e.g., [19], do have a
clear and strong relation with these energy functions. In order
to fully exploit the latter relation, we study adjoint operators
from a variational point of view, and provide a formal justifica-
tion for the use of Hamiltonian extensions with extended input
and output spaces using Gâteaux differentiation in a way sim-
ilar to [19] and [20]. Then we apply these results to study the
eigenstructure of the Gâteaux differential of the square norm of
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that operator. It is shown that the eigenstructure of these oper-
ators are closely related. This eigenstructure derives an alter-
native definition of the singular value functions, which have a
stronger relationship with the Hankel norm of nonlinear sys-
tems, other than the singular value functions given in [5] have.
Furthermore a new input-normal/output-diagonalization proce-
dure for nonlinear systems is derived based on the differential
eigenstructure.

In Section II, we present the linear system case as a para-
digm, in order to present the line of thinking for the nonlinear
case. In Section III, we provide the formal justification of the
use of Hamiltonian extensions for nonlinear adjoint systems
using Gâteaux differentiation. In Section IV, we concentrate on
the Hankel operator, and correspondingly on the controllability
and observability operators for nonlinear systems. In Section V,
we clarify the eigenstructure of the Gâteaux differential of the
square norm of the Hankel operator for nonlinear systems. In
Section VI, a new procedure is derived for bringing the system
in input-normal/output-diagonal form by using the differential
eigenstructure clarified in Section V, repetitively. In Section VII,
the proposed method is applied to a double pendulum system
with the approximation technique based on Taylor series expan-
sion. Finally, we end with some conclusions.

Notation: The mathematical notation used throughout
is fairly standard. Vector norms are represented by

for . represents the set of Lebesgue
measurable functions, possibly vector-valued, with finite
norm . A condition about 0 means
that this conditions holds for a neighborhood of 0. Finally,

is an abbreviation for . Throughout
this paper, by smooth we generally mean , unless stated
otherwise.

II. LINEAR SYSTEMS AS A PARADIGM

This section gives some examples of linear adjoint opera-
tors which play an important role in the linear systems theory;
see, e.g., [21]. We present them here in a way that clarifies
the line of thinking in the nonlinear case. Consider a causal
linear input–output system with
a state–space realization

(1)

where and is Hurwitz. The Laplace transformation
gives its transfer function matrix

Its adjoint operator is given by

with a state–space realization

where . Here and have the same dimensions as
and , respectively. It satisfies the definition for Hilbert adjoint

operators, namely

Since has the same dimension as we can calculate the mag-
nitude of operators as

by substituting . This relation can be utilized to de-
rive the singular values of the corresponding input–output map.

For the finite-dimensional system (1), the Hankel oper-
ator is given by the composition of the controllability and
observability operators , where the observability
and controllability operators, and

, respectively, are given by

(2)

(3)

Note that these operators and are also operators on
Hilbert spaces, hence, their adjoint operators are given by

and

It can be easily checked that they satisfy

These adjoint operators can be used to calculate the observ-
ability and controllability Gramians, respectively

(4)

(5)

These imply and . Also,
they fulfill Lyapunov equations

(6)

(7)
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Furthermore, from [21, Th. 8.1], we know the following fact.
Theorem 1: [21] The operator and the matrix

have the same nonzero eigenvalues.
The square roots of the eigenvalues of are called the

Hankel singular values of (1) and are denoted by ’s where
. In fact, the largest singular value charac-

terizes the Hankel norm of the system

(8)

Further, using a similarity transformation (linear coordinate
transformation), we can diagonalize both and and further-
more let them coincide with each other, i.e.,

The state–space realization satisfying the above equation is
called balanced realization of .

III. VARIATIONAL AND ADJOINT SYSTEMS

This section is devoted to the state–space characterization of
variational and adjoint systems based on [19], which were in-
tensively utilized in [5] and [20] as a preparation for the main
results in the following sections. In order to handle variational
and adjoint systems of Hankel operators in this paper, we gener-
alize the results in [19] using [18] and [22] so that they can treat
initial and final states as input and output of the system. Since the
proofs of the theorems are rather straightforwardly generalized
versions of the results in [19], we include them in Appendix.

Consider an operator defined on a
(possibly infinite) time interval described by the
state–space realization

(9)

with , , , and
an open neighborhood of 0. Here, we as-

sume is an equilibrium, i.e. and
hold for . and that all signals and functions

are sufficiently smooth. This dynamical system can also be
regarded as a mapping defined by

(10)
The variational system of is given by

(11)

The input-state-output set are called variational
input, state, and output, respectively.

The Hamiltonian extension of is given by a Hamiltonian
control system of the following form:

(12)

with the Hamiltonian

The structure already reveals a form that corresponds to the
linear adjoint notion. In the sequel, this issue is studied in more
detail.

Here, the concept of Gâteaux differentiation for dynamical
systems with initial and final states from an input–output point
of view is considered. It is of importance for understanding the
meaning of the Hamiltonian extensions and their relation with
adjoint systems. Also, Gâteaux differentiation of Hankel oper-
ators plays an important role in the analysis of the properties of
Hankel operators, which is the topic of Sections IV and V. To
this end, we state the definition of Gâteaux differentiation.

Definition 1: (Gâteaux Differential) Suppose and are
Banach spaces, is open, and . Then is
said to be Gâteaux differentiable at if, for all the
following limit exists:

We write for the Gâteaux differential of at in the
“direction” .

Then, we can prove the following property for the variational
system (11) which is a generalized version of the results stated
in [19].

Theorem 2: Consider an operator with the state–space re-
alization (10). Suppose that the trajectory of the state of

in (11) is uniquely determined for ,
, and where

and are open neighborhoods of 0 in and ,
respectively. Then

is Gâteaux differentiable
is a mapping1 of

Furthermore, the Gâteaux differential of is given by

Perhaps more well-known than the Gâteaux differential is the
Fréchet derivative, which is especially useful for analysis of
nonlinear static functions. Fréchet derivative is a special class
of Gâteaux differentiation and it coincides with Gâteaux differ-
ential if it is continuous and linear in the second argument “di-
rection;” see, e.g., [22] and [23].

1It is also assumed that the trajectory of the corresponding state is well-de-
fined.
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Next, we give the formal justification of calling the Hamil-
tonian extension the adjoint form of the variational system

, as is done in [19]. The most general form of the Hamiltonian
extension, i.e., including arbitrary initial conditions, can be seen
as the differential version of [18, Prop. 2].

Theorem 3: Consider an operator with the state–space re-
alization (10). Suppose that the assumptions in Theorem 2 hold
and that is a mapping of

. Then, there holds

(13)

with the inner product on .
Remark 1: In addition to the adjoint as given in Theorem 3,

for nonlinear operators the nonlinear Hilbert adjoint, e.g., [16]
and [18], is also a useful tool. A nonlinear Hilbert adjoint of a
nonlinear operator with Hilbert spaces and is
an operator satisfying

for all , , where is linear in . Relations
between the Hamiltonian extension concept and the nonlinear
Hilbert adjoint can be established. Furthermore, we have estab-
lished relations between nonlinear Hilbert adjoint operators and
port-controlled Hamiltonian systems; see [18] for the details.

Summarizing we may conclude from this section that the
Hamiltonian extension with the extended input and output
spaces is a control system that is a realization of the Hilbert
adjoint of the Gâteaux differential of the original operator with
the extended input and output . This interpretation results
from taking the Gâteaux differential from the squared and

norm of the nonlinear operator.

IV. HANKEL OPERATOR AND ITS DIFFERENTIAL

This section studies the state–space realizations for the ad-
joints of some energy functions and operators, and relates them
to singular value analysis of nonlinear dynamical operators.
We only consider special cases of system (9), namely, time
invariant, input-affine, sufficiently smooth nonlinear systems
without direct feed-through in the form of

(14)

defined on the time interval . The system is sup-
posed to be asymptotically stable on a neighborhood of 0, and

-stable in the sense that implies that
restricted to is in .

State–space characterization of nonlinear observability and
controllability operators can be given as intuitively clear exten-
sions from the linear case. The observability and controllability
operators are mappings of and

, and their state–space realizations are given by

(15)

(16)

Here is the time flipping
operator defined by

].
(17)

Furthermore the Hankel operator
of is given by

The original definition of these operators was given in [12].
Clearly, there holds [12].

The state–space realizations of the differentiations ,
and are given by the following lemma which will be utilized
in the succeeding sections.

Lemma 1: Consider the operator with the state–space
realization (14). Suppose that is a mapping of

. Then, the
state–space realizations of ,

and
are given by

(18)

(19)

(20)

Proof: The proof directly follows from Theorem 2 and the
definitions of , , .

Corollary 1: Consider the operator with the state–space
realization (14). Suppose that the assumptions in Lemma 1 hold.
Then, there hold

Here, , , and denote the Hankel operator, the con-
trollability operator and the observability operator of , re-
spectively.

The adjoints of the operators of Lemma 1 can be obtained by
applying Theorem 3, which results in the following lemma.

Lemma 2: Consider the operator with the state–space re-
alization (14). Suppose that the assumptions in Theorem 3 and
Lemma 1 hold. Then state–space realizations of

,
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, and
are given by

(21)

(22)

(23)

Proof: The proof is obtained by applying the adjoint
Hamiltonian extensions of Section III, and using techniques
from [18]. To begin with, substituting , ,

, for the (71) in the proof of Theorem
3 in Appendix yields

Substituting moreover and
as in (21) yields

This proves the first part.
The second part can be proven in a similar way as in the first

part. Substituting , , ,
for the (71) yields

Substituting moreover and
as in (22) yields

This proves the second part.
In order to prove the last part, we use the relation (20) for

arbitrary signals and .
Then

Therefore, we obtain

(24)

Wecancheck thestate–space realizationof the right-hand side of
the aforementioned equation using (21) and (22) coincide with
the left-hand side given by (23). This completes the proof.

Lemma 2 can be seen as the differential version of [18, Prop.
3]. It is readily checked that for linear systems the above char-
acterizations yield the well-known state–space characterizations
of these operators as shown in Section II.

V. DIFFERENTIAL EIGENSTRUCTURE OF HANKEL OPERATORS

This section clarifies the eigenstructure of the Gâteaux differ-
ential of the square norm of the Hankel operator based on the
results developed in the previous section. Furthermore, we in-
troduce a new definition of singular value functions which are
closely related to the differential eigenstructure and the Hankel
norm of nonlinear dynamical systems.

A. Preliminary Results on Singular Value Functions

In order to proceed, we need to define the energy functions.
Definition 2: The observability function and the con-

trollability function of as in (14) are defined by

It is assumed throughout that there exist well-defined controlla-
bility operators and Gramians in the linear case. These functions
are closely related to observability and controllability functions.
The relation between the observability function, operator and
Gramian is given by, e.g., [12] and [13],

(25)

with a square symmetric matrix . In the linear case
is constant and equals the observability Gramian; see (4).

For the controllability function we have a different relation,
since we have to deal with the minimum control energy, i.e.,

(26)

with a square symmetric matrix , where
, which is the pseudoinverse of defined by

In the linear case is constant and equals the inverse of the
controllability Gramian; see (5).

In a former result [5], the energy functions have been used
for the definition of balanced realizations and singular value
functions of nonlinear systems. Also, they fulfill corresponding
Hamilton–Jacobi equations

(27)

(28)

(with asymptotically stable) in a
similar way to the observability Gramian and the inverse of the
controllability Gramian are the solutions of the Lyapunov equa-
tions; see (6) and (7).
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In the following theorem, we review what we mean by input-
normal/output-diagonal form.

Theorem 4: [5] Consider an operator with an asymp-
totically stable state–space realization (14). Assume that
there exists a neighborhood of the origin such that
as defined above has a constant number of different eigen-
values. Then there exists a smooth coordinate transformation

, , on , which converts into an
input-normal/output-diagonal form, where

(29)

. . . (30)

with being the so-called smooth singular
value functions on .

The following example exhibits how Theorem 4 works.
Example 1: Let us take the system (14) with
, and and , and
as follows which fulfills the assumptions in Theorem 4; see

the equation at the bottom of the page. This system is zero-
state observable and asymptotically stable about 0. Solving the
Hamilton–Jacobi equations for and in (27) and (28) we
obtain the equation shown at the bottom of the next page, on

. We see that the controllability function is already
in input-normal form and that the observability function is in
output-diagonal form. It should be noted that the choice of the
singular value functions ’s are not unique and this property
was investigated in [6]. The neighborhood of 0, where the
number of distinct singular value functions is constant, is

i.e., for .

B. Differential Eigenstructure

This section discusses the nonlinear extension of Theorem 1.
It concerns the eigenstructure of the operator , that is, it
is on the solution and of a linear
equation

(31)

It is claimed in Theorem 1 that all nonzero solutions of are
given by , where ’s are Hankel
singular values.

Recently, in [12], its nonlinear extension based on nonlinear
Hilbert adjoint as given in Remark 1 was discussed. A simplest
nonlinear generalization of (31) with a nonlinear Hilbert adjoint

may be

Unfortunately the solution of the previous equation is not found
so far. A weaker version of this equation was investigated in
[12]. However, this is also insufficient in the sense that the re-
sult is coordinate dependent though the above equation does not
employ any local coordinates.

To overcome the problem explained above, we consider the
eigenstructure of another operator
characterized by

(32)

where is an eigenvalue and the
corresponding eigenvector, which employs a similar idea to [5],
[19], and [20]. Note that the operator
is nonlinear so in general the eigenstructure is different from the
linear case. First of all, we prove the fact that this eigenstructure
has a close relationship with the Hankel norm of defined by

(33)

Theorem 5: Consider an operator with its Hankel oper-
ator . Assume that the Hankel operator is continuously dif-
ferentiable. Let denote the input which
achieves the maximization in the definition of Hankel norm in
(33), namely

Then, satisfies (32) with the eigenvalue .
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Proof: The differential of (in the direction
) satisfies

for all variations at because it is a critical point. This
reduces to

which proves the theorem.
Theorem 5 uses the necessary condition for maximization

that the differential should be zero at the maximum. For the
maximization in the definition of the Hankel norm (33) it is
necessary that the input satisfies (32). Therefore, the eigen-
structure (32) is worth investigating and the solutions of (32)
derive fruitful results in what follows indeed. Now, we continue
to study more precise properties of the differential eigenstruc-
ture (32) by assuming the following assumption.

• Assumption A1: Suppose that the system in (14) is
asymptotically stable about 0, that there exist open neigh-
borhoods of 0 and of 0 such
that the operators , and

exist and are continuously differentiable.
First, the following lemma gives the complete characteriza-

tion of the eigenvectors corresponding to nonzero eigenvalues.
Lemma 3: Consider the system in (14). Suppose that As-

sumption A1 holds. Then a pair and
is a pair of eigenvalues and eigenvectors of the mapping

if and only if there exists such
that and satisfy

(34)

with the Hamiltonian

Proof: Necessity is proven first. Instead of considering the
state–space realization of the operator
directly, we use the (24) as in the proof of Lemma 2. Note that
both and are differentiable because of Assumption A1. We
can observe

(35)
Let , then (35) reduces to

(36)

Next, we consider the Gâteaux differential of in the di-
rection

Note that Assumption A1 implies that and and that
is differentiable on . This means that

Hence, from (36) it follows that

It follows from Lemma 2 that the state–space realization of this
operator is given by

If we consider the reverse-time expression of this system (with
and now representing the reverse time state variables) given

by
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Now, we have the causal state–space expression of the operator
using . Suppose and

hold, i.e., the pair and is the pair of eigenvalue and eigen-
vector. Then, we have

Let , then

Sufficiency follows straightforwardly from the converse argu-
ments. This completes the proof.

Lemma 3 gives the characterization of all pairs of eigenvalues
and eigenvectors. Next, we concentrate on a special class of
these pairs. They are closely related to the energy functions

and .
Lemma 4: Consider the system in (14). Suppose that As-

sumption A1 holds and that there exist and
satisfying

(37)

Then, is an eigenvalue of the mapping
corresponding to the eigenvector

Proof: For Assumption A1, the operator exists. Its
state–space realization of is given in [18] as

If (37) holds, then

Combined with the dynamics for in (34), with the
Hamilton–Jacobi–Bellman equation for in (28), and with
Lemma 2, this implies that

holds along the trajectory of . This concludes
the proof.

Although Lemma 4 gives a sufficient condition for pairs of
eigenvalues and eigenvectors in terms of the energy functions,
it does not say anything about the existence of pairs and that

fulfill (37). We now continue to investigate the necessity of the
condition. In order to proceed, we define two scalar functions

(38)

(39)

is closely related to the Hankel norm because if
, then

i.e., represents the Hankel norm under the fixed input
magnitude . In fact, this is a natural nonlinear gen-
eralization of the property (8) in the linear case. For ,
we do not have such an interpretation. Furthermore, and

equal the maximum and minimum Hankel singular value,
respectively, in the linear case. Therefore, these functions can
be seen as an alternative nonlinear extension of Hankel sin-
gular values other than the singular value functions ,

in Theorem 4. Now, the results on the necessity is
stated.

Theorem 6: Consider the system in (14). Suppose that As-
sumption A1 holds. Let and denote the inputs
which achieve the maximization and minimization under an ar-
bitrary input magnitude , in the definition of and

in (38) and (39), respectively, i.e., they satisfy

(40)

(41)

for . Then, and are the eigen-
vectors of with respect to the following
eigenvalues and , respectively

(42)

Furthermore, both pairs and
satisfy (37) in Lemma 4.

Proof: Let denote the index such that .
Firstly we define and show the existence of

such that

(43)

To this effect, let the level set of be given by

Then, follows from the fact that is
the input which minimizes the input energy. Indeed

denotes the set of the states derived by the input
. Consider a curve parameterized
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by a scalar variable such that holds. Since
is contained in the level set

(44)

holds along . Next, from the definition, we can observe the
following relations:

This implies that maximizes (minimizes) the value
in the level set . Therefore, we obtain

(45)

Equations (44) and (45) have to hold for all curves
. Namely both and are

orthogonal to the tangent space of at .
Because this tangent space is -dimensional, we can
conclude and are linearly dependent
at . Therefore, there exists a scalar constant
such that (43) holds. Remember that can be described by

. Then it follows directly from Lemma 4 that
is the eigenvector of

with respect to .
Second, we prove (42). By the previous discussion, for any

vector which is not orthogonal to the tangent space of
at , can be expressed as

Let be the directional differential of another curve
passing through the maximizing (minimizing) state.

Namely, it goes across the level set through
and holds. Then, we can obtain

because of the definition of (38) and (39). This proves the
theorem.

The above result only focuses on the maximum and minimum
values on the level sets. For linear systems this results in the
maximum and minimum Hankel singular values. In that case,

by “ruling” out these directions, and further using similar argu-
ments, the other Hankel singular values can also be obtained.
By using a similar method we can extend this result for axis
singular value functions ’s, which are
mappings from , under the following assumption.

• Assumption A2: Suppose that the Hankel singular values
of the Jacobian linearization of the system are nonzero
and distinct.

Theorem 7: Consider the system in (14). Suppose that
Assumptions A1 and A2 hold. Then there exists a neighbor-
hood of 0, smooth functions ’s,

such that

(46)

holds for all and and that there
exist distinct smooth curves satisfying
and

(47)

(48)

with

(49)

Furthermore, and
coincide with and respectively for all .
In particular, if , then

(50)

Proof: Suppose the state–space realization is in input-
normal form. Consider (37). For the smoothness of ,
there exists a smooth matrix valued function
such that

Assumption A2 that the Jacobian linearization of the system
has nonzero distinct Hankel singular values implies that there
exists a neighborhood of 0 on which is decomposed as

where and where is
a nonsingular smooth matrix valued function with

’s

Hence, (37) reduces to

(51)

Consider the generalized sphere and
mappings ’s defined by

(52)



FUJIMOTO AND SCHERPEN: NONLINEAR INPUT-NORMAL REALIZATIONS 11

Then, there exists a neighborhood of 0 on which,
for sufficiently small , we can choose closed sets2

’s ( , ) which are
homeomorphic to the -dimensional unit disc

satisfying

This results from the fact that equals the eigenvector of the
observability Gramian of the Jacobian linearization of the orig-
inal system and is smooth in a neighborhood of the origin.
(The image can be chosen small enough by choosing
a sufficiently small .) Then, it follows from Brouwer’s
fixed point theorem (see, e.g., [24]) that the mapping in (52)
has a fixed point, i.e. s.t.

Then, it can be easily checked that (51) holds with the eigenvec-
tors ’s and the eigenvalues ’s. Finally, define

Then, (48) holds. Property (47) can be proven in a way sim-
ilar to the proof of Theorem 6. Furthermore, the ordering

follows from
the fact that holds with the Hankel singular value
of the Jacobian linearization of the system. This completes the
proof.

Notice that the scalar variable of ’s,
can be negative, whereas the variable of ’s,

is nonnegative, since it represents the input en-
ergy level. Both and denote the ratio
with respect to the prescribed input energy .
The eigenstructure given in Theorems 6 and 7 is particularly
important because it is closely related to the Hankel norm and
the corresponding axis singular value functions. Indeed the
axis singular value functions represent the gain of the Hankel
operator at the eigenvector as in (41), i.e.,

(53)

holds. By its definition, the eigenvector repre-
sents the stationary point of this gain which follows from the
same arguments to the proof of Theorem 5. Furthermore, it
should be noted that Theorems 6 and 7 give an input–output
characterization of the Hankel operator without using any local
coordinates, that is, they are coordinate free.

For linear systems, we have that ,
where ’s are the Hankel singular values. Indeed, (37)

reduces to

22n is equivalent to the number of the axis intersecting the generalized sphere
S .

with observability and controllability Gramians and , re-
spectively. This equation implies that the result obtained here
is a natural nonlinear extension of the linear case result in The-
orem 1. The effectiveness of Theorem 7 is demonstrated in the
following example.

Example 2: Consider the state–space system in the form of
(14) which is in an input-normal/output-diagonal form, as given
in Example 1. In order to obtain the ’s we have to compute
the solution of (47) and (48), which reduces down to

(54)

(55)

Here, the second equation follows from the fact that is
parallel to and that is two-dimensional. These equa-
tions have the following two solutions which can be obtained by
a standard CAD such as Maple:

(56)

For (47), the axis singular value functions ’s can be ob-
tained by a direct calculation

(57)

(58)

Notice that both functions ’s and ’s are defined for
. We can easily check that the ’s given by (49)

satisfy (48). Furthermore, it can be observed that

holds for . This implies that the relation (46) holds on
. Therefore, it follows from (50) that

Thus, Theorem 7 is a powerful tool in investigating the gain
structure of the Hankel operator and also it is a natural nonlinear
extension of the linear case result Theorem 1.

VI. INPUT-NORMAL/OUTPUT-DIAGONAL REALIZATIONS

The previous section introduced axis singular value func-
tions ’s which are alternative nonlinear generalizations
of Hankel singular values in the linear case. Furthermore,
it was shown in Theorem 7 that those functions are closely
related to the curves on the state–space ’s. This section
utilizes Theorem 7 to derive a new characterization of the
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input-normal/output-diagonal realization. More precisely, it
will be proven that there exists an input-normal/output-diag-
onal realization whose (conventional) singular value functions

’s coincide with the axis singular value functions ’s
on the coordinate axes.

To this end, at first let us consider a coordinate transformation
which converts the curves ’s into the coordinate axes

’s.
Lemma 5: Suppose that Assumptions A1 and A2 hold. Then

there exists a neighborhood of the origin and a coordinate
transformation on satisfying

(59)

(60)

i.e., the system is described by an input-normal form on the
coordinate and the condition (37) holds on the coordinate axes

’s.
Proof: It is noted that the case is trivial from The-

orem 4. Hence, is assumed in what follows. It is also as-
sumed that without loss of generality that the system is already
in an input-normal form. Let us consider the generalized polar
coordinates

... ...

Here, denotes the function defined
by with the imaginary unit. It
satisfies for all . On these
coordinates, consider a rotational matrix with

,
changing the generalized polar coordinate into defined by

(61)

with ’s the rotation matrices for the component angles ,
defined by

. . .

. . .

and so on. Here, let us define a coordinate transformation

(62)

where will be defined later on. Note that this coor-
dinate transformation converts into . It can be readily
observed that it satisfies the isometric property (59) because the
rotation matrix is unitary.

Next, we need to prove the second property (60). To this end,
a generalized sphere

is considered. The -dimensional vector
can be regarded as the coordinates of .

What we have to do is to find a coordinate transformation
with satisfying

(63)

with and . Since Assump-
tion A2 guarantees that each curve coincides with the coor-
dinate axis at the origin, for a sufficiently small , there
exists open sets , ,

containing both and in such a way that
’s are separated from each other. We can find sub-

sets separated from each other, since ’s are
open. Then, Lemma 7 in the Appendix implies that there exist
diffeomorphism ’s on ’s which coincide with the iden-
tity on . Therefore, the diffeomorphism defined by

(64)

satisfies the constraints (63). Finally, the coordinate transforma-
tion in (62) is given by

with defined in (64). Obviously, this coordinate transforma-
tion satisfies (60) for the property (63) which completes the
proof.

Lemma 5 provides balanced coordinates in the sense that the
coordinate axis plays the biggest role in the input-output
behavior from the view point of Hankel norm. Unfortunately,
this state–space realization is not input-normal/output-diagonal
and has no relationship to the former result given in Theorem
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4. However, if we look carefully at the coordinate transforma-
tion in Lemma 5 and apply it recursively, then we can obtain
a unified realization which has both of the properties in The-
orem 4 and Lemma 5 as follows. That is, there exists an input-
normal/output-diagonal realization whose (conventional) sin-
gular value functions ’s coincide with the axis singular
value functions ’s.

Theorem 8: Consider the system in (14). Suppose that As-
sumptions A1 and A2 hold. Then there exist a neighborhood
of 0 and a coordinate transformation on converting
the system into an input-normal form (29) and (30) satisfying
the following properties:

(65)

(66)

(67)

hold for all . In particular, if , then

(68)

The proof of this theorem is very long and tedious, and breaks
down into several steps. Equation (65) is proven by induction
with respect to the dimension . Then, the output-diagonal form
in the coordinates is proven. The proof can be found in Ap-
pendix. It should be noted that the proof is constructive and it ac-
tually gives a procedure to obtain the new input-normal/output-
diagonal realization.

In Theorem 8, the existence of an input-normal/output-diag-
onal form is proven so that (65) and the properties in Theorem
7 hold along each coordinate axis. The relationship (65) is a
stronger version of the (37) which can be achieved by applying
Theorem 7 repetitively. This property is quite important because
the input-normal/output-diagonal structure is preserved under
the projection to lower dimensional subspaces spanned by each
coordinate axis and this will play an important role
in model reduction of nonlinear systems. We illustrate our final
result in the following example.

Example 3: Consider the state–space system in the form of
(14) as given in Examples 1 and 2 again. Equations in (56) imply
that the coordinate transformation is given by

(69)

in the form of the rotation coordinate transformation (61), which
maps the -axis into , i.e.,

See the proof of Theorem 8 in the Appendix for the detailed
procedure to obtain (69). The coordinate transformation (69)
converts the system vector fields and the output mapping into

The observability and controllability functions in the new coor-
dinates are given as follows:

which of course satisfy the HJB equations (28) and (27). It can
be readily checked that the aforementioned energy functions
and satisfy the balanced properties (65), (66) and (67) on the
valid region . Hence, (68) implies

which indeed equals the outcome of Example 2.
It can be observed from the previous example that the singular

value functions ’s have a close relationship with the Hankel
norm of the system in the new input-normal/output-diagonal re-
alization. The gain structure of the Hankel operator is clearly
exhibited in this coordinate.

Remark 2: The balancing method in the linear case [3], [21]
provides the balancing between input and output in the sense

with the observability and controllability Gramians
and as well as the balancing between each coordinate

axis as in the input-normal/output-diagonal realization given in
Theorem 8. Future research should cope with these two bal-
ancing properties simultaneously. So far, a procedure to con-
vert an input-normal/output-diagonal realization into a balanced
form in the sense of input and output on each coordinate axis
was given in [5].

VII. EXAMPLE

This section demonstrates how the input-normal/output-di-
agonal balanced realization procedure achieved in Theorem 8
works with a physical system, where Taylor series approxima-
tions are utilized. Consider a system given by

(70)
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Fig. 1. Double pendulum.

with

The system of (70) is the gradient system of the simple
Hamiltonian system that describes the equations of motion of
the frictionless double pendulum depicted in Fig. 1. The gra-
dient system is of lower order than the Hamiltonian system, and
therefore computationally easier to handle, but still captures the
physical properties of the system. Furthermore, the frictionless
system is only Lyapunov stable, but not asymptotically stable,
while the associated gradient system is asymptotically stable,
and thus fulfills the requirements of this paper. See [25] for
more details. and denote the potential energy and
the inertia matrix of the double pendulum, respectively. The
constant parameters are given by , ,

, and the gravity constant is given by
. See [25] for the details.

Solving the Hamilton–Jacobi equations (27) and (28) based
on Taylor series approximation up to fourth order gives the fol-
lowing controllability and observability functions.

Using a coordinate transformation
with

we can obtain an input-normal/output-diagonal form as follows
which is the outcome of Theorem 4:

Using (54) and (55), the solution pair of the differential eigen-
structure (37) can be obtained as

parametrized by a scalar . The property in (57) and (58)
gives the axis singular value functions as

Furthermore, constructing a rotational coordinate transforma-
tion as in the proof of Lemma 5, one can find that a coordinate
transformation with

converts the controllability and observability functions into

which is the input-normal/output-diagonal balanced realization
in the sense of Theorem 8. Finally, the Hankel norm of the
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system in a small neighborhood of the origin, e.g,
, (based on fourth-order Taylor series approxi-

mation) is readily given by

Thus this realization clarifies the gain structure of the Hankel
operator.

VIII. CONCLUSION

The differential eigenstructure of Hankel operators for non-
linear systems has been studied in this paper. First, it has been
proven that a variational system and a Hamiltonian extension
with extended input and output spaces can be interpreted as
the Gâteaux differentiation and its adjoint of a dynamical
input–output system respectively, as a preparation. Second, the
Gâteaux differentiation has been utilized in order to clarify the
differential eigenstructure of the Hankel operator for nonlinear
systems, which is closely related to the Hankel norm of the
original system. Third, a new characterization of the nonlinear
version of the Hankel singular values was given. Based on
this characterization, an input-normal/output-diagonalization
procedure has been derived. Future directions will involve the
extension of the presented methods to model reduction for
nonlinear systems.

APPENDIX

Lemmas

This appendix recalls two lemmas from [24] and [26], which
are necessary to prove Theorem 8 and Lemma 5.

Lemma 6: [26] Let be a smooth function in a convex neigh-
borhood of 0 in , with . Then

for some suitable smooth functions ’s defined on , with
.

The second one is the Brouwer’s fixed point theorem.
Theorem 9: [24] Let denote the unit disc on

Then, any continuous function has a fixed point.
The last one is an extended version of the homogeneity

lemma.
Lemma 7: [24] Consider two interior points and of a

smooth connected manifold . Then, there exists a diffeomor-
phism converting into which is smoothly iso-
topic to the identity. Furthermore, for any open set con-
taining and , the function can be chosen in such a way that

coincides with the identity.

Proof of Theorem 2

This proof is based on the results in [19]. Let
, denote a family of

input-state-output trajectories of parameterized by . Then,
we have

and, moreover

Therefore, the trajectories ( , ,
) coincide with the input-state-output trajectories

of the variational system . Now, let .
Then, we obtain

Due to the assumption that the state trajectory of the vari-
ational system is uniquely determined, we can conclude that
the existence of is equivalent to that is an operator on
spaces. As a result, coincides with the Gâteaux differential

. This proves the theorem.

Proof of Theorem 3

The proof follows similar arguments as [18, Prop. 2], i.e.,
it uses the port-controlled Hamiltonian systems structure. Let
the Hamiltonian function be given by , and denote

, , and for
simplicity. Then, we have
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This reduces to

Therefore

(71)

holds with the inner product on . Substituting
and im-

plies (13) and completes the proof.

Proof of Theorem 8

The theorem is proven by induction with respect to the di-
mension of the state .

a) Case : Trivial from Lemma 5.
b) Case : Suppose that the theorem holds in

the case . It is assumed without loss of gen-
erality that the system is already applied the coordinate
transformation in Lemma 5. The coordinate transforma-
tion with is constructed by

where the intermediate coordinates are described as

Each function has a form

...

...

...

...

satisfying

Here, the functions ’s are constructed by the the transforma-
tion in Theorem 8 in the case by regarding the param-
eter as a constant. That is, the function satisfies

On this coordinate, we have

Note that Assumption 2 guarantees that

(72)

holds at the origin. This implies

holds near the origin, where is the Hankel singular value of
the Jacobian linearization of the system. Hence, for any ,
there exists a satisfying

On the other hand, (72) also implies

Hence, for any , there exists satisfying

Therefore, choosing small enough and satisfying
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we obtain a relation

In the same way, we can prove the upper bound

That is

holds for all where

This proves that (65) holds on the region . Therefore, the
coordinate transformation , maps identically
since the region is already balanced. In fact, the coordinate
transformation given in Lemma 5, maps the balanced region
identically by its construction. This fact implies that (65) holds
on their union

Furthermore, it can be easily checked that

which implies that the theorem also holds in the case
(with ).

The cases (a) and (b) prove the (65) by induction.
Next, we show the fact that the system can be described by

an output-diagonal form in the coordinate. It follows from
Theorem 7 with

which holds along the coordinate axes ’s, that

(73)

(74)

Let be described by

with a smooth function . Now, (65), (73), and (74) imply
that

(75)

(76)

For (75) and Lemma 6, we have

with smooth functions ’s. Furthermore, from (76) we obtain

For example, define the scalar functions ’s
by

Then, we can see that

(77)

and the observability function is in output-diagonal form (30).
Equations (66) and (67) follow straightforwardly from (73),
(74), and (77). This completes the proof.
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