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AM-Both the insect brain and the vertebrate retina detect visual m ovcment with neurons having 
broad, cosine-shaped directional tuning curves oriented in either of two perpendicular directions. This 
article shows that this arrangement can lead to isotropic estimates of the direction of movement: for any 
direction the estimate is unbiased (no systematic errors) and equally accurate (constant random errors). 
A simple and robust computational scheme is pmsentcd that accounts for the dirrctional tuning curves 
as measured in movement sensitive neurons in the blowIly. The scheme inchuies movement detectors of 
various spans, and predicts several phenomena of movement perception in man. 

Visual movement detection Directional tuning curves Blowfly Rcichardt corrclator Gradient 
scheme Apparent motion 

INTRODUCTION 

A visual movement detector that is directionally 
selective can be characterized by its directional 
tuning curve. This curve is the sensitivity of the 
detector as a function of the direction of move- 
ment. It is maximal in the preferred direction of 
the detector, and usually becomes smaller the 
more the direction of movement deviates from 
the preferred one. The response of visual move- 
ment detectors generally depends on other fac- 
tors as well, such as the spatial structure of the 
stimulus, its contrast, and its speed. Therefore, 
it is not possible to determine the direction of 
movement accurately from the output of a 
single detector: a given msponse may indicate a 
stimulus moving exactly in the preferred direc- 
tion as well as a more efTect.ive stimulus moving 
in another direction. The direction can be 
obtained accurately, however, if two or 
more detectors are available with different 
orientations and overlapping tuning curves 
(Sutherland, 1961). If the detectors depend in 
the same way on stimulus properties as contrast 
and speed, the ratio of their responses will 
uniquely code the direction of movement. 

The main topic of this article is the problem 
of how, and how accurate, the direction of 
movement can be inferred from the output of 
two or more differently oriented detectors. I will 
concentrate on the simplest case of broadly 

tuned detectors along only two preferred axes. 
This is a situation encountered e.g. in the verte- 
brate retina (Oyster, 1%8) and in the brain of 
insects (e.g. Hausen, 19&1). A system with 
narrowly tuned detectors in many directions is 
mentioned as well. I show that under certain 
conditions, that appear to be satisfkd in the 
brain of the fly, detectors oriented along only 
two axes can yield isotropic directional esti- 
mates. By isotropic I mean that the estimate of 
the direction of movement is unbiased (i.e. with- 
out systematic errors) and equally accurate (i.e. 
with constant random errors) in any direction. 

The second topic of this article is the question 
of how tuning curves having the abovemen- 
tioned isotropic properties may be produced. In 
general, movement detectors with only two 
spatially identical inputs fail. I propose a com- 
putational model that accounts for the observed 
directional tuning curves in the brain of the 
blowfly, and that might be relevant as well 
for units encountered in the vertebrate retina 
(Oyster, 1968) and for some units in area MT of 
the vertebrate cortex (Movshon, Adelson, Gizzi 
& Newsome, 1986). 

METHODS 

Preparation 

Experiments were performed on female 
blowflies, Calliphora vicina. Movement sensitive 
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neurons in the lobula plate were recorded 
from using standard extracellular recording 
techniques (see e.g. Schuling, Mastebroek, Bult 
& Lenting, 1989). With regular feeding of the 
animals recordings were stable for typically a 
few days. Variations in sensitivity were checked 
with regular control experiments, and were very 
limited. The optical quality of the eye was 
checked by observing the far field radiation 
pattern (Franceschini, 1975) using antidromic 
light. The pattern often began deteriorating 
after 2 or 3 days, upon which the experiment 
was stopped. Tuning curves were obtained from 
10 movement sensitive neurons for various 
stimuli, all yielding very similar results. 

Stimuli 

The stimuli were generated on a computer 
controlled CRT (mean radiance 36 mW/(m%r), 
visual field 24” x 24”, frame rate 1 kHz, line 
width 0.12”). Direction of movement was 
changed with a Dove prism. The position of the 
stimulus relative to the far field (which shows 
the sampling lattice of the eye) could be ob- 
served during the experiment (van Hateren, 
Hardie, Rudolph, Laughlin & Stavenga, 1989; 
van Hateren, 1986) using an image intensifier 
and a video camera. The stimulus sequence for 
Fig. 2 was 1.08 set of movement in a preferred 
direction (a direction increasing the spike rate), 
1.08 set steady, 1.08 set in a null direction 
(a direction suppressing the spike rate), and 
1.08 set steady. For each condition the response 
was defined as the average spike rate in the 
period 0.4-1.0 sec. For directional tuning 
curves typically 400 stimulus presentations in 
each direction were presented, with directions 
presented in random order. 

RESULTS AND DISCUSSION 

Estimating the direction of visual movement 

As was mentioned in the Introduction, the 
direction of movement can be estimated from 
the responses of two or more difkrently ori- 
ented detectors with overlapping directional 
tuning curves. For the sake of simplicity, we will 
only deal with the problem of obtaining the 
direction from the responses of the two nearest 
detectors, i.e. those detectors with preferred 
directions closest to the direction of movement. 
The problem is depicted in Fig. l(a). Can we 
obtain the direction of movement 6 from the 
two shown detectors? The answer is obviously 
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Fig. 1. Estimating the direction of movement with two 
diffenatly oriented movement detectors with overlapping 
directional tuning curves. (a) The short arrows indicate the 
orientations (pnfcrrcd directions) of two movement detcc- 
ton, the long arrow indicates a difa%ion of movement B to 
be dctcW& from the output of the detectors. Their 
scncitivitiea depend on the direction of movement as shown 
in (b) (directional tuning curves). The ratio of the curves 
yiekls infomution of 0. fn (c) the tuning curves aie too close 
together for niiablc dircctiouaI &mates, in (d) the region 
of overlap is too small. The tuning curves of(c) do not yield 
information on 8 as their ratio is constant in the region of 
over&p. Noise in the tuning curves, as shown in (f), will lead 
to an uncertainty in the ratio of the two curves and thus to 

an uncerbinty A0 in the estimate of 6. 

affirmative, if the ratio of their tuning curves, 
shown in Fig. l(b), is unique for any direction 
in the region of overlap. 

A second question is how accurate this esti- 
mate of direction will be. This depends on 
several factors, illustrated in Figs l(c)-(f). 
Firstly, the overlap of the tuning curves is 
important. If the tuning curves are very close 
together, as in Fig. I(c), a change in the direc- 
tion of movement will hardly change the ratio of 
the cktector responses, and the accuracy will not 
be high (unless more than two detectors are 
compared, the more complicated situation not 
considered in this article). If, on the other hand, 
the curves are far apart, as in Fig. l(d), the 
direction can only be estimated in a very limited 
range. Clearly, in between these extremes there 
must be an optimum. Secondly, the shape of the 
tuning curvea wiII be important. This is obvious 
from the example of Fig, l(e): directions in the 
region of overlap can not be distinguished, as 
the ratio of the detector outputs does not 
change. Lastly, the amount of noise in the 
tuning curves is important: if both tuning curves 
fluctuate in&pet&m of each other, their ratio 
will fluctuate as well, and therefore the estimate 
of direction (Fig. If). 

The foIlowing analysis quantifies the con- 
siderations given above. Suppose we have two 
local movement detectors, responding to move- 
ment in a small part of the visual field. We 
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assume that we can write the respnses rl and r, 
of these local detectors as 

rl (0) = As1 (Q, (1) 

r,(Q = A%(0 (2) 

with sI and s2 only depending on the direction 
of movement 8, and A only on other factors, 
such as contrast and velocity of the stimulus. 
We further assume that sl and s2 are indepen- 
dent of each other with variabilities As, and 
As2 (possibly depending on e), thus all the 
covariance of r, and r, is assumed to be due to 
A. We can now define a function f that elimi- 
nates A from equations (1) and (2) 

rl w sI (0) f(e)--=--. 
r,(e) x2(e) 

(3) 

Given responses r1 and r2, we know the ratio 
sI /s2, and an estimate of 8 follows from the 
inverse of S, assuming it exists 

e=f-1 : 0 . (4) 

Equation (4) is not intended as a model of how 
8 is inferred by the nervous system, but only as 
a means to determine how precisely information 
about 0 is represented by the output of the 
two detectors. This information is already in a 
suitable form for further processing (in the spirit 
of the sensorium of Koenderink 8c van Doom, 
1987), eventually leading to motor output, and 
it is unlikely that there is somewhere during this 
processing an explicit calculation of 8. Never- 
theless, all information on 8 is represented by 
equation (4). The uncertainty in 8 is 

(3 

where we used de/df = (df/dQ-I, and the prime 
denotes a derivative to 6. Thus if we know the 
directional tuning curves and the variability, 
equation (5) yields the accuracy with which 8 
can be obtained. 

The analysis above assumes that sI and s2 do 
not depend on the nature of the stimulus. If they 
do, another source of uncertainty will be intro- 
duced. In order to infer the direction of move- 
ment by comparing sI and s,, some implicit 

&&rBption on the shape of sI and s2 has to be 
made by the nervous system. If the stimulus 
happens to produce a different sI and s, than 
those assumed, this will lead to a (systematic) 
error in the estimate of 0. Although the nervous 
system could avoid this by using independent 
information on the structure of the stimulus, 
this would lead to complicated, noise enhancing 
computations. Therefore, it is important that s, 
and s2 are as much as possible invariant for 
different stimuli. 

In order to gain more insight in this matter, 
I measured directional tuning curves and re- 
sponse variability of wide-field neurons in 
the brain of the blowfly. These neurons are 
relatively easy to record from for long times, 
they can be identified uniquely from animal to 
animal (Hausen, 1984), and have properties 
virtually identical from animal to animal due 
to the fact that, by biological standards, the 
blowfly eye and brain are ‘engineered’ to a very 
high degree of structural and functional preci- 
sion (see e.g. Franceschini, 1975; Strausfeld, 
1976; Laughlin, 1987). 

Directional tuning curves in the jly 

The wide-field movement sensitive neurons in 
the lobula plate of the blowfly respond either to 
horizontal or vertical movement (Hausen, 
1984). Figure 2(a) shows examples of directional 
tuning curves of two of these units, a horizontal 
one (Hl, open circles) and a vertical one (Vl, 
filled circles). The stimulus was a drifting 
square-wave grating, presented in the frontal 
part of the visual field. There the preferred 
directions of the horizontal and vertical neurons 
are very close to perpendicular; more to the 
periphery of the visual field the axes become 
more skew (Hausen, 1984). We will concentrate 
here on the simplest case of perpendicular axes, 
though the theory developed above may be 
applied to systems with skew axes as well. The 
neurons are directionally selective: movement in 
the preferred direction increases the spike 
rate, whereas movement in the null direction 
decreases the spike rate, suppressing the 
spontaneous activity (scaled to zero in Fig. 2). 
The curves of both neurons are well described 
by cosine functions (continuous curves in 
Fig. 2a) with different amplitudes in preferred 
and null directions, as was previously shown 
(Srinivasan & Dvorak, 1980; Hausen, 1982; 
Eriksson, 1984). 

One remarkable property of these neurons is 
that the shape of their tuning curves is very 
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Fig. 2. Directional tuning curves of neurons in the lobula 
plate of the blowBy. (a) JXectional tuning curve of an Hl 
neuron, dim&naUy &uive to ho&&al movement 
(open circks), and a Vl ncuroll. dimctioeally sektiw to 
vertical movcmcnt (tIlkd circles). The neurons were 
recordat from diftkmnt animak The stimulr was a drifting 
squarc-wavc grating (speed 46.15”lacc. tuapoml frequency 
3.85 Hz, spatial wavckqth 12”. con~ast 0.6 for ii1 and 0.4 
for Vl) gcncratai on a CRT (mce Methods), Direction of 
movement was controlled with a Dove prism. anglc8 arc 
given relative to the horizontal axis of symmetry of the far 
field radiation pattern. The intcrommatidial angle Aq was 
1.76”forHland1.55”forV1.SseM~forthe8timub 
protocol and a d&&ion of the mponre. Det8 points show 
norm&cd avcram of 400 stimtdus pmecntatbns in tech 
dinction;Oisthc~retotbertardyrtimuturofthe 
stimulus protocol (23 spibs/m for Hl, 12 @ccs/~ for 
VI), I is the maximum rcspime in titc pm&red dir&on 
(74~/rcx:forHi,34~/~forVl).Errorkntbow 
erronobtainedfromthestanduddcvktbnofthcmc8aof 
responacs to coatml aimdi mpeatal de tbc aqkmcnt. 
(b) Mearummen tof(a),H1neuron,&ccrrorbers&owthe 
standard deviation of the rc6ponrer, a meMure of the 

response variability from trial to trial. 

robust, i.e. the curves are eswntiolly indepn- 
dent of the spatial structure of the stimulus. I 
obtained similar tuning curves for stimuli of 
different contrasts, different spatial wave- 
lengths, different speeds, moving sinusoidal 
gratings, moving contrast borden, and d&&m 
sixes of the stimulus. Eriksson (19&)) obtained 
similar curves for a single moving spot. 

Nevertheless, we can not use the tuning 
curves of Fig. 2(a) as the functions s, and s2 
needed for equation (5) without making some 
assumptions. The neurons recorded from are 
wide-field units, and, though they are exquisitely 
sensitive to local movement, they integrate 
movement information over a large part of 
the visual field. The theory developed in the 
previous section basically aims at giving infor- 
mation on local movement, given the responses 
of local, small-field movement detectors (though 
it can be applied to large-field units with exactly 
overlapping receptive fields as well). For the 
following, we will assume that the curves ob- 
tained from the large-field units reflect the prop- 
erties of the underlying local subunits. 

A second assumption concerns the different 
response amplitudes in preferred and null direc- 
tions. This may reflect a similar asymmetry in 
the underlying subunits, but it seems more likely 
that it is due to the properties of the wide-field 
neurons themselves, as a similar asymmetry is 
seen in neurons being sensitive in the opposite 
direction (Hausen, 1984). We will therefore as- 
sume that the local subunits are bidirectional, 
i.e. have equal, but opposite responses in pre- 
ferred and null directions. An alternative is that 
they are composed of identical, unidirectional 
movement detectors oriented in opposite direc- 
tions and feeding with opposite signs into the 
wide-field neurons (e.g. Reichardt, 1969; see 
also Giitz & Buchner, 1978). Thus we assume 

s, (e) = cos 8, (6) 

s,(e) = sin 8. (7) 

What is the uncertainty, &, and As*, of these 
tuning curves? Figure 2(b) shows the response 
variability of the horizontal neuron of Fig. Z(a). 
Surprisingly, this variability is in good approxi- 
mation independent of the direction of move- 
ment. Again, we cannot infer the As, and As2 
needed for equation (5) directly without making 
further assumptions. Firstly, the variability 
shown in Fig. 2(b) is the standard deviation of 
responses defined as the average spike rate in 
a time window of 6OOmsec (see Methods). 
The size of the standard deviation will clearly 
depend on the length of the time window. This 
is unlikeely, however, to influence the indepen- 
dency of the variability as a function of the 
direction of movement, and we will assume it 
does not. Secondly, we assume that the spike 
rate represents a good measure of the response 
and variability of the neurons. Nevertheless, it 
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may be that another measure for the response 
and its variability is utilized by the nervous 
system (see e.g. de Ruyter van Steveninck & 
Bialek, 1988). Finally, the variability as shown 
in Fig. 2(b) is in fact the Ar of equation (l), thus 
consisting of a variability due to A (e.g. due to 
photon noise and to noise in the photo- 
receptors) and a variability due to s. Figure 2(b) 
shows Ar is approximately independent of the 
direction, the same is likely to be true for A, and 
it seems therefore not unreasonable to assume 
that As, and As2 are independent of the direction 
of movement as well. 

With the assumption As, = As2 = As, and with 
equations (6) and (7), equation (5) yields 

With As independent of 0, we find that 
A8 = constant. Thus the accuracy of estimating 
the direction of movement is direction indepen- 
dent. 

Isotropic directional estimates 

In the previous section we have seen that 
cosine-shaped directional tuning curves with 
the right overlap lead to an accuracy in the 
estimation of the direction of movement inde- 
pendent of this direction. Moreover, the experi- 
mental finding that the shape of the curves is 
very much independent of the spatial structure 
of the stimulus means that the estimate of 8 on 
the basis of equation (4) is unbiased for any 
direction. The estimate contains no systematic 
errors even without any further information on 
the stimulus (though the system obviously may 
suffer from the aperture problem, see e.g. Marr 
& Ullman, 1981). These two properties lead to 
a system that codes the direction of movement 
isotropically: despite the fact that two discrete, 
perpendicular detector units are utilii, the 
system performs equally well in any direction. 

If, on the other hand, the tuning curves sI and 
sz would depend on the spatial structure of the 
stimulus, equation (4) would give systematic 
errors in the estimate of 8 for some stimuli at 
least (see previous section). These errors could 
only be corrected if independent information 
about the spatial structure of the stimulus were 
available (Reichardt, SchlBgl & Egelhaaf, 1988). 
In one of the sections below we will see how 
we can construct a movement detector with a 
stimulus independent tuning curve. 

Figure 3(a) illustrates again the functions 
s, and s2 we assumed. Figure 3(b) shows an 

alternative way of obtaining the same kind of 
inf&mation, again with horizontally and verti- 
cally oriented units. Here four unidirectional 
units are used rather than two bidirectional 
units. The number of independent units has to 
be doubled because otherwise the estimate of 8 
is not unambiguous. Because the shape and 
overlap of the directional tuning curves is still 
the same, the accuracy is again independent of 
direction. 

Figure 3(c) shows the tuning curves of 
Fig. 3(b) in a polar plot. Interestingly, this 
may be close to the situation encountered in 
the on-off directionally selective movement 
sensitive ganglion cells in the vertebrate retina. 
In the rabbit, these cells are organized along 
approximately perpendicular axes (Oyster, 
1968), and have tuning curves with roughly the 
shape of cosines (rabbit: Oyster, 1968; turtle: 
Ariel & Adolph, 1985). Deviations from the 
ideal cosine shape do not necessarily mean that 
the concepts developed in this article cannot be 
applied. Complete isotropy of the estimation of 
direction is obviously an idealization. It makes 
no sense, e.g. to make systematic errors due to 
nonideally shaped tuning curves [equation (411 
very much smaller than the random errors due 
to noise in the tuning curves [equation (S)]. Thus 
depending on the required precision of the 
system some of the requirements for complete 
isotropy may be loosened. 

Similar tuning curves as in Fig. 3(c) have been 
observed in some neurons in area MT of the 
vertebrate cortex as well (Maunsell & Van 
Essen, 1983; Movshon et al., 1986). It is not 
clear, though, whether the tuning curves of these 
neurons are invariant with the spatial structure 
of the stimulus. 

Finally, Fig. 3(d) shows a system with a much 
larger number of unidirectional units, with 
narrow, cosine-shaped directional tuning 
curves. Because again shape and overlap are 
identical as in the previous examples, the esti- 
mate of direction is again isotropic. Obviously, 
the accuracy of this scheme will be higher than 
that of Fig. 3(c) if each neuron has a given 
amount of noise. It is tempting to suggest that 
Fig. 3(d) may describe some of the rationale of 
the narrowly tuned units encountered in the 
vertebrate cortex. In this context it is worth- 
while to note that there is no specific assumption 
on what the functions sI and s2 code for, apart 
from being functions of 8. This article concen- 
trates on the direction of movement, but alter- 
natively s, and s2 might e.g. code the orientation 
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direction [degree] direction [degree] 

d 

Fig. 3. Tuning curves yielding isotropic dimtbul estimate% (a) Two neurons with bid&&ma1 tuning 
curvea. (b) Four neurons with tmidhWM tua@ cp1u01, ykldhg equivalent information as in (a). (c) 
Thetuninpcumeof(b)inapolPrplot.(d)Apottplotofrryrtcmof24aeuronswi~narrow 

. . . 
llmhmMituningcurveo.AstlttloalsllapaRdovahpoftheamuons is sindiar to (c) (only SC&d), 
the system still yields isotropic dimctional cstimh This syatm is more accurate than that of (c). given 

a certain noise level in each neuron. 

of lines. Tbercfore, the theory may be apphicd as 
well to orientationally sensitive units not speci@- 
tally sensitive to movement. 

Let us go back to our starting point, Fig. 3(a). 
How do these curves compare to the tuning 
curves of some commonly used movement 
detectors? 

Directional tuning curves of common movement 
detectors 

First, consider the tuning curve of a daactor 
that directly codes the spaad it percaives alan$ 
the line connecting its inputs. This type of 
detector may be considered as the one-d&m- 
sional implementation of the gradknt m 
(Fennema & Thompson, 1979; Horn Bt Chunk, 
1981). On first sight, one may asaumc that 
such a detector will perceive the component of 
the velocity vector along its main axis (Le. 
r-W = u co8 0). Unfortunately, for moving 
gratings or moving edges the O-=t)/cosO 
(Zanker, 1988). The reader can c&k this by 

eonsi&ringthetime,asafunctionofthedimc- 
tion of movement, it takes for an cdgc+ moving 
with a given speed, to travel from input 1 to 
input 2. Thus this detector will respond stronger 
the mom the direction of movement deviates 
from its main axis, and the perceived velocity 
will approach infinity if 6 gof3s to 90” (Fig. 4, me 
also Zanker, 1990). 

A second popular movement &tee&r usas 
multiplication of suitably fikrcd inputs 
(Rdcsrrudt correlator, see e.g. R&char& 1969; 
van Sonten & Sparling, 1985). Its spatial 
b&&our is governed by the so-called inturfer- 
once fsctor (G&z, 1964; van &u&en % !@mhg, 
1985) 

with AQ the angular distance between its two 
inputs, and 1 the (angular) spatial wavelen& of 
th rtinrulus. Equation (9) is valid fin s~thary 
movement, for dynamic (i.e. starting, dranging) 
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direction of Mvcrnt Idcgrtcl 

Fig. 4. The diional tuning curve of a movement detector 
responding proportional to the velocity it perceiveJ along 
the line connecting its inputs (e.g. a one-dimensional imple- 
mentation of the gradient scheme). The curve is given by 

-O.l/cos 8, with 0.1 an arbitrary scaling constant. 

movement the situation may become more 
complicated (Egelhaaf & Borst, 1989). Other 
factors influencing the response of a multipli- 
cative movement detector, such as the temporal 
frequency of the stimulus, and the spatial low- 
pass filtering due to the optics of the system, do 
not change as a function of the direction of 
movement. However, the spatial wavelength 
perceived by the detector along its axis changes 
as I/cos 8, leading to a tuning curve given by 
(Zanker, 1988) 

s(B)=csin(ycos8), (10) 

with c a normalization constant. 
Figures S(a) and (b) show the tuning curves of 

the multiplicative movement detector for two 
spatial wavelengths, the wavelength giving opti- 
mal responses (1 = 4Arp, Fig. Sa), and a somc- 
what shorter wavelength (12 = 36~, Fig. 5b). 
The tuning curve is much closer to the observed 
curves of Fig. 2 than the tuning curve of the 
velocity detector (Fig. 4), but it still has defects 
(Zanker, 1990). As Fig. 5(b) shows, it develops 
a minimum in its preferred direction for short 
spatial wavelengths, which I never observed 
in the directional tuning curves I measured. 
Although the detector will have a cosine-shaped 
tuning curve for rt m AQ (the sine in equation 
(10) can then be approximated by its argument) 
its main defect is that its shape depends on the 
spatial wavelength (Figs Sa and b). Thus the 
estimate of 8, following from equation (4), will 
be liable to large systematic errors (see the next 
section), depending on the spatial structure of 
the stimulus. 

b 

0 360 
direction of mtvement [de@reel 

0 90 180 270 So 
direction of mveamt tdogfenl 

Fig. 5. Dinxtional tuning cums of a multiplicative move- 
ment detector (Reichardt correlator). in (a) for the spatial 
wavelength optimally exciting the dekctor Q = 4&p), and 
in (b) for a slightly smaller. but still quite &ctive wave- 
length (I = 36~). The curves are given by equation (10) 

(see text). 

Concluding, we have seen that both detectors 
considered above do not perform very well. 
Thus we are left with the question of how 
we can construct a detector that does perform 
satisfactorily, i.e. produces cosine-shaped 
directional tuning curves for arbitrary stimuli. 
Fortunately, the answer is quite simple. 

A computational model producing cosine-shaped 
tuning curves 

A promising way to produce a cosine-shaped 
tuning curve is by orienting two (unspecified) 
movement detectors at 60” to each other, as 
shown in Fig. 6. This follows from the following 
symmetry arguments. In Fig. 6(a) the stimulus 
is moving horizontally, i.e. 8 = 0”. Both detec- 
tors, stimulated at 30”, will give qua1 contri- 
butions to the total response, which we 
arbitrarily set at 1. If the stimulus is now moving 
in a direction 8 = 60” (Fig. 6b), one of the 
detectors is not stimulated, whereas the other is 
again stimulated at 30”. Therefore, the response 
will be 0.5 in this case. Finally, moving the 
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a b 

f- 

Fig. 6. Two detectors oriented at 60” to each other, with a 
common input at the origin. Simple considerations (ncc text) 
show that this confkguration yields dim&or& tuning curves 
equal to cos B at 0 = 0”. 60” and !XJ”, for any type of 

bidirectional detector. 

stimulus in the direction 90” (Fig. 6c) will 
stimulate both detectors at 60”, but in opposite 
directions. Thus the total msponse will be 0 if 
the detectors are bidimctional. These simpk 
considerations show that the response, indepen- 
dent of the type of the (bidirectional) detectors, 
will comply to cos 8 for 0 = 0”, 60” and 90”. As 
the sampling lattice of flies is in good 
approximation (Franoaschini, 1975). orkntmg 
the detectors at 60” to eaoh othar is a natural 
way of arranging them. In the frontal part of the 
visual field the hexagonal sampliug lattice is 
oriented such that the hexagons are pointing 
upward and downward. 

Figure 7(a) shows the performanse of the 
configuration of Fig. 6 using multiplkative 
movement dcteotors (stimuhrs with 1- 4&p). A 
justi&ation for using muItiplicative mowt 
detectors is that up till now this type of detector 
has been one of the most successful in cxplain- 
ing directionally selective movement sensitivity 
(Buchncr, 1984; van San&n & Sper%ng, 1M). 
From equation (10) it follows that the tuning 
curve of Fig 7(a) is given by 

-c sin 
I 

y co@ +M”)], (11) 

with c = 0.510, a normalization co-t fouud 
byfittingthisf~ctionto -cos8.Thamfetrcnac 
abovethattheaugkabetw3antheoMtWoas 
ofthe&ef3orsshouldbeWwaa~by 
fitting with a as another free 
fit yiekkd a = 60.0”, thus this vaIue is Maed 

a 

b 

+ 
0 0 

0 

9Q 0 
direction of mwent lcie9rcel 

eirection of rremlt Idl(cdll 

Fig. 7. (a) Dimctional tuning curve of a horizon@Uy wosi- 
tivt unit conksting of two mulGpii&ve movement &tee 
tom differing 60” in orientation. The afimuhw is a &w&al 
gratiw of wavelength 1= 4Acp. The curve ia m by 
equation (11). and is virtually identical to a cosine. (b) 
Tuningcurvcofaverkallyamwitiveunitcotwistkgofthrec 
mukiplkativc movement detu%om. Stimulus as in (a). The 
cum is given by equation (12), see text for fiuther details 

and discussion. 

optimal. The resulting tuning curve is very close 
to cos 6 for almost all A (see below, and Zankcr, 
1990). 

Figure 7(b) shows how a vertioaIly sensitive 
unit can be constructed by using thtar& multi- 
plkativc movement detectors. The curve (shown 
for 1= 4Aq3) is given by 

s(e) = -c, sin 
[ 

~cos@-lSOO) 1 
- c, sin [ 2rtArp 

7 cos(e - 90”) 1 
-C,& 2$ ] [ oos(B - 30”) 9 (12) 

with cl - 0.294 and c2 - 0.588, found by Wing 
the fun&ion to -sin& That cz=2c, in very 
good approximation fdlows also from the 
results of the horizontal scheme of Fig. 7(a): as 
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the curve of Fig. 7(a) is very close to cos 8, the 
unit e&ctively extracts from the movement the 
vector component along its preferred direction 
(Srinivasan & Dvorak, 1980). Therefore, the 
rules of vector addition apply, and the unit of 
Fig. 7(b) can be considered as the vector sum of 
two detector units of Fig. 7(a). A unit with an 
arbitrary preferred direction can be constructed 
by superimposing two detector units of Fig. 7(a) 
with suitable weights (given by the cosine of the 
angle between the desired preferred direction 
and the orientation of each detector, see also the 
Appendix). 

These linear superpositions of differently 
oriented movement detectors yield directional 
tuning curves very close to cosines for most 
spatial frequencies. Only tuning curves for 
spatial wavelengths closely approaching the 
sampling limit of the lattice deviate (A % 2Arp). 
This hardly deteriorates the performance of the 
system, as these spatial wavelengths are attenu- 
ated by the properties of the multiplicative 
movement detector [equation (9)j, and by the 
spatial low-pass filtering due to the optics of the 
eye (G&z, 1964; van Hateren, 1989). Equation 
(4) predicts that a combination of the units of 
Fig. 7 yields estimates of the direction of move- 
ment with systematic errors between 0.07” and 
1.75” for the most effective spatial wavelengths 
(A between 6A(p and 3Ap), whereas this is 
between 2.9“ and 15.5” for a combination of two 
dual-input movement detectors [as in Fig. 5, see 
equation (lo)]. This calculation is based on the 
assumption that the nervous system implicitly 
assumes that s, and s, are given by cosine- 
shaped functions [equations (6) and (711, i.e. the 
long-wavelength limits of equations (lo), (11) 
and (12). The systematic errors increase the 
directional uncertainty due to random errors, as 
given by equation (5). 

The theoretical tuning curves of Figs 7(a) 
and (b) were obtained for moving sinusoidal 
gratings. Tuning curves for arbitrary patterns 
will generally be similar, because the response of 
a multiplicative movement detector to a super- 
position of sinusoidal gratings of different 
spatial wavelengths equals the sum of the 
responses to each component separately (Poggio 
& Reichardt, 1973). As an arbitrary pattern can 
be thought of as a superposition of sinusoidal 
gratings (its Fourier components), its direc- 
tional tuning curve will be the sum of the tuning 
curves of these sinusoidal gratings. With detec- 
tors oriented as in Fig. 7 it will be very close to 
a cosine. Of course, if the pattern is skew, i.e. if 

its Fourier components are biased to one side 
with respect to the direction of movement, the 
tuning curve will be biased as well (the aperture 
problem). 

The range of movement detection 

The proposed schemes of Fig. 7 are consistent 
with results from behavioural experiments on 
flies (Buchner, 1976; Buchner, G&x & Straub, 
1978). Other studies, however, indicate con- 
tributions also from other input pairs with 
longer ranges (Kirschfeld, 1972; Riehle & 
Franceschini, 1984; Schuling et al., 1989), 
especially in dark-adapted flies (Pick & 
Buchner, 1979). At first sight, including longer 
range interactions seems to lead inevitably 
to blurring, and therefore a decrease in the 
response to high spatial frequencies. This is not 
consistent with experimental findings: the reso- 
lution limit of the movement detection system in 
the fly is very close to that expected from 
next-neighbour interactions as in Fig. 7 (see e.g. 
Buchner, 1976). Figure 8 shows how this appar- 
ent paradox can be resolved, while maintaining 
the cosine-shape of the tuning curve. 

Figure 8(a) shows again the scheme of 
Fig. 7(a). A similar set of detectors can be 
assumed to be pointing in the opposite direc- 
tion. Now suppose we pool inputs, as suggested 
in Fig. 8(b) by the large circles. If a suitable 
weighting is chosen for this pooling, short 
spatial wavelengths will be strongly attenuated, 
whereas longer spatial wavelengths will encoun- 
ter a system that is effectively identical to the 
one of Fig. 8(a), only with a longer range (or, 
of a larger spatial scak, see e.g. Koenderink, 
1984). As the system still consists of two detec- 
tors at 60” to each other, the tuning curve will 
still be cosine-shaped and independent of the 
spatial structure of the stimulus. Figure 8(c) 
shows a similar arrangement with a still longer 
range and stronger pooling. Finally, in Fig. 8(d) 
these systems are superimposed. Short spatial 
wavelengths are ignored by the long range 
components of this system, but are seen by the 
short range components. The system will thus 
still respond well to these short spatial wave- 
lengths, and have the high spatial resolution 
observed experimentally. The short range com- 
ponents of this system, on the other hand, will 
more or less ignore long spatial wavelengths 
because the phase-difference between the inputs 
then becomes small [see equation (911. There- 
fore, different parts of this system respond to 
different spatial frequency bands. 
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y&f y& 
0 

Fig. 8. The compatibility of long range interactions with 
high spatial resolution. (a) The scheme of Fig. 7(a), yielding 
robust directional tIminS curves and high spatid moiution. 

The small circkts represent inputs of the system (the sam- 
pling lattice), the fat lines two movement detectors. (b) 
Pooling of the inputs inside the large circles will abolish the 
response to the highest spatial frequencies. For lower spatial 
frequencies the system is functionally equivalent to the 
system of (a), only at a larger spatial scale. (c) As (b), at a 
still laqer spatial scale. (d) The superposition of the schemes 
of (a), (b) and (c), asrammd to be realized at the same time 
in a single movement detect@ system. With suitable 
wei&ts (suggested by the thickness of the circles), the system 
will respond to both high spatial frequencies and to low 
spatiaI frequencies moving at high speeds. See the Appendix 

for a mathematical foundation of this scheme. 

Figure 8(d) is a superposition of three discrete 
systems, but we can make the transition to the 
continuous case as well, superimposing many 
subsystems with continuously varying range and 
resolution (this is put on a quantitative basis in 
the Appendix). Ofcourse, I do not claim that the 
systems as in Fig. 8(d) are each present sepa- 
rately in the nervous system of the fly. Rather, 
they can be thought of as conceptual com- 
ponents of a single movement detecting system. 
This system pools the inputs, with suitable 
weights, before the multiplication, or, altema- 
tively, pools the outputs, with suitable weights, 
of the various detectors. The amount of pooling 
may depend on the state of light adaptation (Rick 
& Buchner, 1979; Srinivasan 8c Dvorak, 1980, 
Schuling et al., 1989). The proposed scheme is 
similar to measurements of Rick and Buchner 
(1979) and of Schuling et al. (1989). 

Interactions up to a certain limit (&) were 
also inferred for the human visual system as part 

of a low level, short range process (Braddick, 
1974). A possible advantage of including long 
range interactions (still belonging to Braddick’s 
short range process, not the long range process) 
is that they increase the velocity range of move- 
ment detection (Burr & Ross, 1982). Given a 
certain time course (delay or time constant) of 
the slow filter in the multiplicative movement 
detector, higher speeds can be perceived only 
if inputs are compared over longer distances. 
Figure 8(d) predicts that these high speeds can 
only be perceived with stimuli containing suffi- 
ciently long spatial wavelengths, which was 
indeed observed for the human visual system 
(Burr & Ross, 1982). Also, the dependence on 
spatial wavelength of both d_ (Chang & Julesz, 
1983) and receptive field size (Anderson & Burr, 
1987) follows naturally from Fig. 8(d). 

CONCLUSION 

In this article I showed how an isotropic 
movement detecting system can be constructed 
from detectors oriented along perpendicular 
axes. I also showed how these detectors can 
obtain the desired cosine-shaped and stimulus 
independent directional tuning curves from 
inputs located on a hexagonal sampling lattice. 
The system appears to be present in the eye of 
the blowfly, and may have been realized or 
approximated in other neural systems as well 
(vertebrate retina, area MT of the vertebrate 
cortex). Finally, I showed how long range inter- 
actions can be compatible with both well- 
behaved directional tuning curves and a high 
spatial resolution of the movement detecting 
system. 
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APPENDIX 

Eq~tion(lO)livertheditstionrltuninllcwcofadnlk 
multiplicntive movement detector. Suppusa tlut a contittu- 
ous lield of movement dctscton, with a central input 
common to all of them, is weighted according to 

w(r)- $, (Al) 
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with (r, $) polar coordinates centered around the common 
input. The tuning curve will be 

,(~.e)=~~~drrw(r)~~*d~cos~ 

x sin[2nf,r co@ - +)I, (A 2) 

with f, = l/1 the spatial frequency, 0 the direction of move- 
ment, and I the continuous equivalent of the discrete A9 of 
equation (10). The integral over $ can be evaluated by a 
change of variables p = $ - 6, a shift of the integration 
limits to -n and n (allowed, because the integral goes over 
2n), and an expansion of the first cosine. One of the 
resulting integrals quals zero (follows from symmetry), 
the other one is given by Gradshteyn and Ryzhik (1980, 

equation 3.17513). The result is 

I 

W 
~(1,) e) = co9 e 2n drrw(rV,(2nj,r) 

cl 

=c0se~,f~(f)j, (A3) 

with J, a Ressel function of the first kind, and H, the 
first-order Hankel transform. Thus we get a cosine-shaped 
directional tuning curve if the angular weighting goes 
according to cos $. The schemes of Fig. 7 are the simplest 
discrete approximations of this weighting. The sjratial fre- 
quency response is given by the first-order Hankel transform 
of the radial weighting function w(r). This leads to the 
possibility of quantifying and predicting the performance of 
systems as in Fig. 8(d). 


