Photochromism and electrochemistry of a dithienylcyclopentene

electroactive polymer

Philana Wesenhagen,^a Jetsuda Areephong,^a Tatiana Fernandez Landaluce,^c Nicolas J. A. Hereux,^a Nathalie H. Katsonis,^a Johan Hjelm,^c Petra Rudolf,^b Wesley R. Browne,^a Ben L. Feringa^{*a,b}

Electronic Supplementary Information

Figure S 1 Left) Conversion of **20** to **2c** by irradiation at λ_{exc} 365 nm in CH₂Cl₂. Right) sequential irradiation of **20** at 365 nm to form **2c** followed by irradiation at >450 nm to reform **2o** over three cycles.

Figure S 2 Absorption and fluorescence spectra of **20** in CH₂Cl₂. $\lambda_{exc} = 362$ nm

Figure S 3 Top: poly-2c electrochemical deposition on an ITO electrode by cyclic voltammetry (Scan rate, 0.5 V s⁻¹ during repetitive cycles between 0-1.6 V vs SCE) and bottom: increase in current at 0.3 V vs SCE with number of cycles.

Figure S 4 Cyclic voltammetry (0.5 V s⁻¹) of poly-2c deposited on a glassy carbon electrode potentiostatically at 1.55 V for 60 s (black) and 120 s (red).

Figure S 5 Electropolymerization of **20** as a function of switching potential in 0.5 V increments between 1.35 and 1.6 V, at a GC electrode in CH_2Cl_2 (0.1 M TBAClO₄) at 0.75 V s⁻¹. Left: Cyclic voltammograms of the 25th cycle measured for different maximum anodic potentials, right: change in faradic current of $E_{p,a1}$ of poly-2c.

Figure S 6 Cyclic voltammetry of left: 2c and right: poly-2c in CH₂Cl₂ (scan rate 0.5 V s⁻¹, 0.1 M TBAPF₆).

Figure S 7 Left: Clean (thin line) and poly-**2c** modified (thick line) glassy carbon electrode in an electrolyte solution (CH₂Cl₂/TBAClO₄) containing decamethylferrocene. centre: Clean (dotted line) and poly-**2c** modified (solid line) glassy carbon electrode in an electrolyte solution (CH₂Cl₂/TBAClO₄) containing ~ 1 mM [Ru(II)(4,7-diphenyl-1,10-phenanthroline)₃](PF₆)₂ (scan rate 0.5 V s⁻¹). Right: poly-**2c** modified (solid line) glassy carbon electrode in an electrolyte solution (CH₂Cl₂/TBAClO₄) containing ~ 1 mM [Ru(II)(4,7-diphenyl-1,10-phenanthroline)₃](PF₆)₂ (scan rate 0.5 V s⁻¹). Right: poly-**2c** modified (solid line) glassy carbon electrode in an electrolyte solution (CH₂Cl₂/TBAClO₄) containing ~ 1 mM perylene (scan rate 0.1 V s⁻¹).

Atomic force microscopy

Figure S 8 AFM (intermittent contact mode, in air) of poly-2c on ITO. a) 4.5 μ m x 4.5 μ m. The RMS roughness of this area is 2.6 nm. b) 1.7 μ m x 1.7 μ m.

Photo- and electrochemical switching of Poly-2c

Figure S 9 Visible absorption spectrum of poly-2c on an ITO electrode before (solid line) and after (dotted line) irradiation with visible light (> 420 nm) to form poly-2o and after subsequent electrochemical ring closure to reform poly-2c.

Figure S10 Cyclic voltammetry (a) (15 cycles) of a Poly-2c modified GC electrode in DCM (0.1 M TBAPF₆) at 0.05 V s⁻¹. (b) over a wider potential window after (a). Note that although the electrode remains modified by the polymer cyclic voltammetry at > 0.5 V s⁻¹ leads to irreversible loss of the redox response of poly-2c.

Figure S11 Cyclic voltammetry (a) 2c in DCM (0.1 M TBAPF₆) at 0.5 V s⁻¹ with a GC working electrode and (b) over a wider potential window showing electropolymerisation.

Figure S12 ¹H NMR spectra of open (20) and at PSS (2c) at 365 nm in CDCl₃. The PSS is >90% by integration.