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Abstract--A numerical method is presented for the solution of the Navier-Stokes equations 
for flow past a paraboloid of revolution. This method is based upon the ideas of van de Vooren 
and collaborators [1,2]. The flow field has been computed for a large range of Reynolds num- 
bers. Results are presented for the skinfriction and the pressure together with their respec- 
tive drag coefficients. The total drag has been checked by means of an application of the 
momentum theorem. 

1. INTRODUCTION 

The numerical solution of the Navier-Stokes equations for laminar incompressible flow 
past a semi-infinite fiat plate has been obtained by van de Vooren and Dijkstra [1]. Later, 
their method was improved and applied to the problem of flow past a parabolic cylinder by 
Botta, Dijkstra and Veldman [2]. In the present paper the axisymmetric viscous flow past 
a paraboloid of revolution is investigated. 

The problem depends on a Reynolds number Re, which is based upon the semi nose 
radius of curvature of the paraboloid. The following three cases can be distinguished: 

(i) Re = 0. This case corresponds to the semi-infinite needle which has no influence on any 
oncoming flow. 

(ii) Re--,  oo. In this case the flow is governed by the boundary layer equations. These 
equations have been solved numerically by Smith and Clutter [3]. An approximate 
solution has been given by Davis [4] who has used a local series truncation method. 

(iii) 0 < Re < oo. The governing equations then are the full Navier-Stokes equations. It is 
the purpose of this paper to cover this range of Reynolds numbers. A solution valid far 
downstream has already been given by Mather [5], Lee [6], Cebeci, Na and Mosinskis 
[7] and Miller [8, 9]. Tam [10] has proved the existence of such a solution for a heated 
paraboloid. 

The basic idea of the methods used in [I ] and [2] is the subtraction of the behaviour at in- 
finity. With the aid of analytical arguments an expression is derived for the streamfunction 
and the vorticity valid for large values of the coordinates. The quantities used in the actual 
numerical calculations then are the deviations of the full solution from this asymptotic be- 
haviour at infinity. Another important feature of the method is the transformation of the 
infinite region of interest to a finite region. This transformation is carefully adapted to the 
behaviour of the numerically calculated quantities. Using this method one obtains results for 
the full solution which are extremely accurate far downstream. 
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In this paper an iteration scheme is presented which differs from the one used in [2]. 
The scheme is based upon the almost parabolic behaviour of the Navier-Stokes equations 
and it leads to much faster convergence than could be obtained with the method f rom [2]. 
Especially for large and small values of Re very fast convergence is obtained. 

For  the parabolic cylinder an analytic expression could be found for the total drag acting 
upon the parabola (see Botta, Dijkstra and Veldman [2]). For the paraboloid of revolution 
also such an expression can be derived. The total drag then is given by an asymptotic series 
valid far downstream. The first two terms of this series are generated by the subtracted be- 
haviour at infinity, so that the most important term to which the numerically calculated 
quantities give a contribution is the third term of the series. The analytic value of this third 
term has been used as a check for the numerical results and good agreement is obtained. 

By the time this paper was finished a paper by Davis and Werle [l 1] was published which 
also treats flow past a paraboloid. Davis and Werle solve the Navier-Stokes equations by 
means of an implicit alternating direction method. They solve parabolic boundary layer 
type equations in one iteration step, and correct for the elliptic behaviour of the Navier- 
Stokes equations in the next iteration step. The use of boundary layer techniques in the 
iteration process leads to a convergence of the numerical calculations which is comparable 
with ours. For large values of the coordinates their solution is believed to be less accurate, 
since Davis and Werle do not subtract the behaviour at infinity. Moreover their transfor- 
mation of the infinite region of interest is not optimal. Because Davis and Werle present 
diagrams but no tables, only a rough graphical comparison with their results can be made. 
Good agreement is indicated. 

2. BASIC EQUATIONS 

The Navier-Stokes equations for an incompressible viscous fluid can be written as 

div q = 0 

t (2.1) 
½ grad q2 _ q x rot q = - -  g r a d p -  v rot rot q 

P 

where q denotes the velocity, p the pressure, p the density and v the kinematic viscosity. 
The pressure can be eliminated from the second equation of (2.1) by taking its rot. When 
to ffi rot q we can write 

div q = 0 
(2.2) 

rot(q x to) = v rot rot to 

Since we want to study axisymmetric flow, we introduce cylindrical polar coordinates 
(x, r, 0). Let the paraboloid be given by r 2 = 4a(x + a), where a is half the nose-radius of 
the paraboloid. The oncoming flow is supposed to be uniform with velocity Uo and parallel 
to the x-axis. Now the boundary conditions to equation (2.2) are 

q = 0 at the paraboloid, 
(2.3) 

q "* Uoix f o r x ~  - o o .  

To satisfy the first equation of (2.2) we introduce a streamfunction ~k according to 

u = r -1 ~ - r  - t  d~ "~r and v =  ~x'x' 
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where u and v are the velocity components in x- and r-directions. Next we define nondi- 
mensional variables in the following way 

x + ir = v(~/¢ + i,,/r/)2/Uo, (2.4) 

~0 = 2vZ~F / Uo . 

Now the paraboloid is given by 

r~ = Re = Wo a/v (2.5) 

where Re is the Reynolds number based upon the characteristic length a. 
In non-viscous plane flow, the vorticity co remains constant along streamlines. The non- 

dimensional quantity.which has this property in axisymmetric flow is given by 

2v 2 c0 
- -  - .  ( 2 . 6 )  

G=Uo3 r 

With these new variables the Navier-Stokes equations (2.2) become 

_-':'~. _--'r_ _'r"r d2G dG d2G 2 dG = dG d ' f  dG d~ (2.7a) 
dr/ dedr/ dr/d  

d2~ d2~ 
~ + r / ~  = - ~r/(~ + r/)G. (2.7b) 

When Re is very smaU, G has an almost singular behaviour near the nose of the paraboloid. 
This can be seen as follows: 

From symmetry we have ~(0,  r / ) - -V (~ ,  R e ) =  0 and the no-slip condition yields 
dW/dr/(~, Re) = 0. Therefore a Taylor series for the streamfunction near the nose of the para- 
boloid must begin with V ~ .4~(r/- Re) 2, where .4 is some constant which is unlikely to be 
zero. From equation (2.7b) we find that the corresponding term for G is given by  G ~ 

- 2.4 (~ + Re ) -  1, and this is a singular term when Re -- 0. Note the analogy with the vorticity 
in plane flow (see [1] and [2]). 

Furthermore, when ~ = 0 in the right hand side of (2.6) both numerator and denominator 
are zero, which leads to an undefined value for G. We therefore introduce a new variable 

L = -~(~ + r/)G. (2.8) 

The factor (~ + r/) is used to remove the singularity and the factor ~ makes L vanish on ~ -- 0. 
Equation (2.7) can now be expressed as 

~ + r / d r / 2  ~+r /  ~ - N  = d ~  &/ 0r/ d~ + ~ + r / [ 0 ~ -  2 + ~  ~ (2.9a) 

d2~F d2~F 
¢ - ~  + r / ~  = eL (2.9b) 

with boundary conditions 

~ = 0 :  ~F = L = 0  (2.10a) 

= Re: ~F a~F = d-'~" = 0 ( 2 . ] 0 b )  
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and/or r/--. oo: ~u ~ ?.f(r/) + ~-~--~fo07), L ,,- ~f"(r/) + ~ " ~ f o  (~/). (2.10c) 

The conditions (2.10c) will be discussed in the next section. 
The quantities ~P and L are unbounded at infinity. We therefore introduce the departures 

of the solution from the behaviour at infinity 

~ = ~ - ~f(r/) - ~(~ + ~?)-lfo(r/) (2.11a) 

L1 = L - ~f~07) - ~(~ + r/)-lfo'(r/) + 2~(~ + ~7)- 2fo'(r/). (2.1 lb) 

The last term in (2.1 lb) is an extra term, inserted to keep equation (2.9b) in its simplest form 
after substitution. This substitution changes equations (2.9) into 

 [02L1+C9 +,I + - + c 3 - - - -  
\ ~42 \ ~n 2 ¢ + ,7 \ o¢ an 

= ~ ' ~  + \"~'~ + \ dr/ + \ de + (2.12) 

+ 
+ I + "/ + ~+,i  l o t  ~I~o,1 

O2~t 0 2 ~ t  
+ .  7 p - - - - . L .  - 

The boundary conditions are now completely homogeneous 

~-~0: WI --L1 --0, 

17 = R e :  ~F 1 = = 0 ,  

drl (2.13) 

4 ~ ° ° :  qJ l - ' 0 ,  L1 ~ 0  

r/~.oo : W1 ~ 0, Lt ~ 0 (exponentially) 

To derive these conditions use has been made of results from the next section. 
That the vorticity decays exponentially as r / ~  oo has been proved for flow past finite 

bodies by Clark [12]. For flow past infinite bodies no full mathematical proof is available 
until now. 

The quantities C~, i - 1, . . . ,  7 appearing in equations (2.12) can be easily expressed in 
the subtracted functions f and fo.  

3. THE ASYMPTOTIC BEHAVIOUR FAR FROM THE NOSE 
Miller [9] has giveri a very detailed investigation on the behaviour of the solution for large 

values of the coordinates. In this section we will present his most important results. 
The method used by Miller to find the behaviour at infinity is based upon the matching 

of two asymptotic expansions. One is valid far from the paraboloJd surface (~, 17 ~ co) 
where we have potential flow. The other one is valid near the paraboloid surface (~ --* oo, 
r/ finite) where the full Navier-Stokes equations must be used. This last region we call 
boundary layer. 
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First consider the potential region. In the meridian plane we define nondimensional polar 
coordinates (p, ~) by 

U o x / v  = p cos dp, U o r/v = p sin ~. 

In the potential region L is exponentiaLly small, hence equation (2.9b) reduces to 

d2~p d2~p 

Written in polar coordinates we have 

p2 ~2~ ~2~j 
~p2 + (1 - / z  2) ~ --- 0 (3.1) 

where /z = cos ~. The relation between (p,/~) and (¢, r/) is given by p -- ¢ + ff and /~ = 
(¢ - ,7) / (¢  + ,7). 

To start with, we let the asymptotic series of ~u for large values of p consist of integer 
powers of p. Together with the condition • = 0 as ~ = 0 (~b = n) equation (3.1) has exactly 
one solution for each power of p. The beginning of the series thus becomes 

---- A2p2(l --/~2) + Alp(1 + / t )  + A°(I +/a) + A-I  \ T /  + " "  (3.2) 

The coefficients A~ must be determined by matching. The first term must match the oncoming 
flow • --- ¢~/, which results in A 2 -- ¼. Equation (3.2) re-expanded for large ¢ and finite r/ 
gives 

1 
-- ~F/ 2A1~ + 2Ao + ( -2Ao~/)~  + "'" (3.3) 

In the boundary layer region (r/finite) we assume the asymptotic expansion to be 

I 
= Of(r/) +fo(r/) + ~f~(r/) + . . .  (3.4) 

Substituting this in equation (2.9) and evaluating terms with equal powers of ~ we derive 
equations for the unknown func t ionsfand  f i ,  i = 0, 1 . . . . .  

The first equation is 

t l f "  + 2 f  '~ + f ' f "  + f f~ '  = 0 

which can be integrated once, obtaining 

~/f~' + f "  + i f "  = 0. (3.5a) 

The integration constant vanishes because for large ~/all second and higher derivatives o f f  
must be exponentially small because of the exponential decay of vorticity. Boundary con- 
ditions are given by 

f ( R e )  = f ' ( R e )  = 0 and f ' ( ~ )  = 1. (3.5b) 

The first two follow from (2.10b). The third one comes from the matching of the first terms 
of (3.3) and (3.4). Equation (3.5) is used to calculate f This has been done by means of  a 
simple shooting method. Some numerical values concerning f are presented by Veldman 
[13]. For large r/the behaviQur of f is 
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f ~  ~ / -  fl + exp. small terms. (3.6) 

Here ~ is a constant which follows from the numerical computations. The second term of 
(3.3) can now be matched which results in A1 = -½ft. 

The equation for fo can be written as 

r/fo" + ( f +  2)fo" + 2f7o" +fi fo '  = rlf'f" - i f " .  (3.7a) 

The boundary conditions are 

fo(Re) =fo'(Re) = 0 and fo'(Oo) = 0. (3.7b) 

Again the first two follow from (2.10b) and the third one from matching with (3.3). Also 
the second and higher derivatives offo must decay exponentially. Since fo'(Oo) = 0, fo  ap- 
proaches a constant when r/--, oo. This constant determines Ao in (3.3), viz. Ao = ½fo(OO). 
To calculate fo numerically equation (3.7) can be integrated twice resulting in 

~lfo" +fro '= ½(~" _ f2  + g~f, + Clrl + C2). (3.8) 

C1 and C2 are integration constants which can be evaluated by noting that the left hand side 
of equation (3.8) tends to zero as ~ ~ oo, and so must the right hand side. When we use the 
behaviour of f given by (3.6) we obtain by putting the right hand side of (3.8) equal to zero, 
C1 = - ~  and C2 = #' .  Equation (3.8) can now be integrated directly since two boundary 
conditions on the inner boundary are known. Some important values concerningfo are 

fo'(Re) = ½{#ZRe -1 - ~ + Ref"(Re)} and fo~'(Re) = -½~2Re-2. (3.9) 

The values offo(oo ) can also be found in Veldman [13]. 
Apart from the terms with integral powers of p equation (3.1) also has solutions with 

non-integer powers of p. Miller has pointed out that the leading term of such a, solution of 
order p-k, when expanded for large ~, has the form A ~ {-~. For a corresponding term ~- kf~(r/) 
in (3.4) this means that an outer boundary condition fk'(oo) = 0 exists. The other conditions 
are as always f~(Re)=fk ' (Re)= 0 and fk ' (oo)= 0 exp. The function f~(g) satisfies the 
homogeneous equation 

r/fk" + ( f +  2)fk ~' + (k + 2 ) f ~ "  +f ' fk '  - kff'fk = 0. (3.10) 

It appears that for some values of k this homogeneous equation together with the homo- 
geneous boundary conditions has a non-trivial solution. These values of k are called eigen- 
values. Calculation of the eigenvalues shows that the smallest value kl lies between 0 and 1 
for all Re. Therefore this creates in (3.4) a term of order ~-k, which comes directly after 
the  termfo(g). For details on the calculation of the first four eigenvalues see Veldman [13]. 
In Table 1 we present kx for several values of Re. In the appendix we prove that all eigen- 
values tend to integers as Re approaches zero. 

Table 1. The smallest eigenvalue kl 

Re kL Re kx 

10 -5 0.088 I0 0.686 
10 -3 0"142 102 0"950 
I0-~ 0"295 l0 s 0.995 
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We are now able to derive boundary conditions (2.10c). When we write (3.2)in terms of 
and ~ we find after using the matching results for A2, A1 and Ao 

~ ¢(n - ~) + ~-~/o(OO). (3.11) 

Combining this with (3.4) we can form an expansion valid in both potential region and 
boundary layer when we write 

~ ~f(n) + ~--~--~fo(n). (3.12) 

From this expansion together with (2.9b) boundary conditions (2.10c) are found. 
We have also seen that the most important term after the two terms in (3.12) is of the 

order p -h .  This then is the order of the variables VI and LI defined in (2.11). Since 
the smallest eigenvalue is positive we conclude that for large values of the coordinates the 
functions V1 and L~ tend to zero, thus yielding homogeneous boundary conditions as was 
stated in section 2. 

4. BEHAVIOUR OF THE SOLUTION FOR Re--.ov AND Re-.*O 

If Re ~ or, i.e. v --, 0 transformation (2.4) loses sense and it should be replaced by 

x + i r f f i a ( ~ / A + i ~ # )  2, ~ = 2 ~ U o ~  b and G - . ~ R e - 2 G b  . (4.1) 

The paraboloid can now be expressed by/~ = 1. In these new variables the Navier-Stokes 
equations are given by 

2 ~2Gb (~Gb (~2Gb aGb = /¢3Gb ~Gb .. ~t~ + 2 - ~ + ~ - ~ - ~  +2-~-  , ~  ~ ~. a~! 
(4.2) 

+ ~ ~ = - ~#(~ + ~)G~. 

To describe the flow pattern properly for large Re we must use a stretching transformation 

!~  - 1 = Re-l/21zb, g'b = Re-l /2u/b.  (4.3) 

Substitution of the transformation (4.3) into equations (4.2) yields in the limit Re ~ ~ a 
fourth order differential equation for the streamfunction ~Fb which can be integrated once 
with respect to/~b" The result then becomes 

I a~' ~ ~' ~% a~l ½){~ -½~ (4.4) ~.(~.+1)[~-~-~+ ~#b.----- ~ ~ ~ # ~  ~ s !  +(~'+ \~#~1 = 

where the fight hand side has been determined by matching ~Fb for #b ~ oo with the outer 
potential flow given by ).p}. The boundary conditions are 

~I'd0, ~b) = 0,  

~bO-, O) = ~ (~., O) = O, (4.5) 

C~, ()., /~}) --* ;~ for /~b --, 00. 
~/~b 



258 A.E.P. VELDMAN 

For large values of 2 the solution of equation (4.4) can be written as ~Pb = 2F(/~b) where 
F satisfies 

F "  + F F "  = 0, F(0) = F'(0) = 0, f ' (oo)  = 1. (4.6) 

Thus we see that F is the well-known Blasius function. 
For small values of 2 the solution can be written as ~Pb = 2G(#b), with G satisfying 

G "  + GG" - ½(G 'z - 1) = 0, G(0) = G'(0) = 0, G'(oo) = 1. (4.7) 

This is a special case of the Falkner-Skan equation. 
For all values of 2 equation (4.4) has been solved by Smith and Clutter [3] and by 

Davis [4]. 
From these solutions we infer that the variables 2,/~b and ~b are the proper ones to work 

with when we deal with large values of Re .  The relation between these variables and the ones 
introduced in section 2 can be found from (2.4), (4.1) and (4.3) resulting in 

= Re2 ,  q - R e  = R e l / 2 1 t b ,  utt = R e a / 2 u / b  , L = R e l / 2 L b ,  (4.8) 

where Lb is defined by Lb = 02qJb/tg#b 2, which is the boundary layer form of (2.9b). 
For small values of R e  there is a neighbourhood of the paraboloid where we have Stokes 

flow. The velocity in this region is so small that we may neglect the non-linear terms in the 
Navier-Stokes equations. It is appropriate to introduce Stokes variables according to 

x + ir =a(x/2 + ia/#) 2, ~k = 2a2U0 ~ks, 

Hence the Navier-Stokes equations become 

02G, 0G~ 6~2Gs dG~ 
2 " ~ ' + 2 " ~ + # - ~ " 2  + 2 " ~ - ~ = 0  

Boundary conditions are 

G = R e  - 2 G  s . (4.9) 

Otk, 
¢,,(0, ~) = ,/,,(L 1) = ~ (L  l )  = O. 

(4.10) 

The solution of equation (4.10) is given by 

~, = C2(# log # - / a  + 1), (4.11) 

where C has to be determined from an outer boundary condition. This condition can be 
found by matching (4.11) with an outer solution, for instance the Oseen solution. The leading 
term of such an outer solution is always ~/. When we write (4.1 l) in outer variables ~, r/ 
and ~ the most important term for small R e  is given by qJ ~ - Cet/log Re.  This must match 
the outer flow, resulting in 

C = - ( log  Re)  - t .  (4.12) 

We now observe the existence of three regions: 
(i) The Stokes region where the Stokes approximation is valid. In this region/~ = O(1) 

which means q = O ( R e ) .  

(ii) A transition region where one might use the Oseen approximation. Here r /= O(l). 
(iii) Far away from the surface of the paraboloid where the vorticity has become zero we 

have the potential region. 



The numerical solution of the Navier-Stokes equations 259 

l f'(i) ~t I // , 

l i 

• 6 Oseen.~ .~ 
I 

i Stokes ; 
0.~ 

f 

i 

0.2 
0 ~ " ° t ° g  T 1 

-S - t  -3 -2 -1 0 1 

Fig. 1. Downstream velocity profiles in Stokes approximation, Oseen approximation and 
exact for Re--- I O-s. 

These regions are visible in Fig. 1 where the downstream velocity profile f'(r/) is drawn 
for a Reynolds number of 10 -s. We see that in the Stokes region where ~/= O(10 -5) there 
is an important variation in f'(Pl). Therefore we must take this Stokes region into account 
if we want to solve the Navier-Stokes equations numerically. 

Also shown in Fig. 1 are the Stokes approximation and the Oseen approximation for the 
velocity profile. The Stokes value can be obtained by combination of (3.4) and (4. I 1) which 
results in 

fs'(r/) = 1 - log ~//log Re. 

The Oseen value is found most simply by linearization of eqttation (3.5) around the on- 
coming flow. We thus write 

rtf" + (n + 1)f" = O, f ( R e )  = f ' ( R e )  ffi 0, f ' (o~) ffi 1. (4.13) 

From the solution of this equation we derive 

I; fo , ' (~)=  1 - El(tl)/E1(Re), where El(x)  -- e - i t  -1 dt. 

The thickness of  the boundary layer is in Fig. 1 seen to be of  the order ~ -- O(10). Hence 
the boundary layer of a thin paraboioid is much thicker than the l~raboloid itself. But there 
is only a limited region [7 -- o(1)] in the boundary layer where the flow differs Significantly 
from the oncoming flow. In that region (4.13) may be approximated by 

tlf"' + f "  ---- 0 (4.14) 
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in which the non-linear term is neglected. There is almost no difference in that region 
between 
(i) the solution of (4.14), which is the Stokes solution, 

(ii) the solution of (4.13), which is the Oseen solution and 
(iii) the solution of (3.5), which is the exact solution. 

5. REFORMULATION OF THE PROBLEM 
In the preceding section we have seen that the variables introduced in section 2, i.e. ~, q, 

~P and L, are not the best ones to use for all values of Re. For large Re the variables 2,/zb, 
kv b and Lb are the proper ones. For small Re we have a Stokes region where Stokes variables 
should be used and a transition region where the variables from section 2 seem to be the 
best ones in order to keep all used quantities of order unity. 

To combine these cases we introduce the following transformatiotl 

= A2~, q - Re  = All (5.1) 
with 

A = 1 + Re  1/2. 

For large Re we see that ~ and f/tend to the boundary layer variables 2 and/lb. For small 
Re  we have chosen ~ to be approximately equal to ~. Although ~ now is no Stokes variable 
it appeared from the numerical calculations that ~ was the best variable to use. In the 
q-direction we must accept a small difficulty, namely that f/is O(Re)  in the Stokes region 
and O(1) in the transition region. 

The corresponding new variables for streamfunction and vorticity are given by 

W = A a ~  and L = A L .  (5.2a) 

Instead of W1 and L1 defined in (2.11) we use 

~1 =A-aWl  and £t = A-XLI  • (5.2b) 

Another difficulty arises from the infinite extent of the region of interest when we solve 
equations (2.12) numerically. To overcome this difficulty we follow the method used by 
van de Vooren and Dijkstra [1] by transforming the infinite region in the (~, 0)-plane to a 
finite rectangle in the (a, Q-plane. As finite region we take the square 

0__<q__<l, 0_<~_<1. (5.3) 

In ~-direction we base the transformation upon the behaviour of ~ and L~ for ~ ~ ~ .  
[n section 3 we have seen that this behaviour is like ~-k,, where kl is the smallest eigen- 
value. We choose the transformation such that the derivatives of the solution with respect 
to a are of the order unity for large ~. The transformatior~ used is given by 

a = 1 - (E~ + 1 ) - " .  (5.4) 

The constant E appearing is chosen such that the maximum of ]Lx [ lies in the middle of 
the a-interval. The best way to choose zl is to take it equal to k~. From the numerical cal- 
culation it appeared that this choice was not absolutely necessary, since any choice of z~ not 
too far from k~ gave satisfactory results. In the final calculations we have taken z~ < k~ for 
a reason mentioned by Veldman [13]. For values o f  Re  > 1 we have used z x = ½ and E = 2 
(see Table 1 for the eigenvalues). For each of the other values of Re different zl and E were 
chosen. 
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In//-direction the transformation is taken such that the boundary layer region is trans- 
formed to 0 < ~ < ½ and the potential region to ½ < z < 1. For Re > 1 the simple expression 

0 = D (5.5) 
1--'¢ 

gives excellent results. The constant D is evaluated such that the edge of the boundary layer 
is transformed to ~ -- ½. This edge is defined as the value of 0 where L1 becomes O(10 -7) 
compared to O(10 -1) at the paraboioid surface. Also at this value of 0 we have 1 - f'(t/) -- 
O(10-a). 

For values of Re _ 1 transformation (5.5) cannot be used. The appearance of the Stokes 
region becomes important and (5.5) then gives too few points in this region. Now another 
transformation is used which gives more points near the paraboloid surface 

,£.z2 
f /=  Ct + C2 ~, z 2 > 1 (5.6) 

The term C2 z is needed because df//dz must be unequal to zero when z = 0. The exponent 
z2 and the constants C1 and 6"2 are chosen such that we have a reasonable spreading of the 
Stokes region and the transition region over 0 < x < ½. A good choice for most of the 
Reynolds numbers is Ct = 200 and 6"2 = 5Re. The value of z2 varies from 3 to 7 for Re 
between I and 10-s. 

After the transformation to (a, r) and the substitution of (5.2b) the Navier-Stokes 
equations (2.12) are written as 

02"~1 ~O,2 t 02LI 0LI[ # ( ~  0~1 )} 
b~ 2 77:"''2 + W ~"' + A~+' + ~ ~' + Cs 

°+ :' 

a ' l A 2 " t ' { ~ ' ~ l ° ' + ~ ' - ( ~ ' 7  ( t 3 r  ~ 2A2 +~)}  

OLI [ ~o" 2~ + 0~ 1 : AC, _ C+ } 

2~ _ ¢ +  2A~ + ¢ a ¢ ~ - ¢ 4 t ~ s  - C ' ~ -  C~'1 +'42 ¢ 3 T ' ~  ¢+, t  

C, {,+C,-(2A' +~)C6}] +T7-  
029~ ~o '2 + 02~, oct, ~ oq'l 

(5.7a) 

(5.7b) 

In the potential region we may take/~1 numerically equal to zero and from equations (2.12) 
there only remains 

~o~ ~ nT '~ + ~ '7~ -'- Oo 
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The boundary conditions are given by 

o ' = 0 :  ~P~ =/~t  = 0, 

~" = 0: t'I'/1 = C~k~/1/C~'t" = 0, 

u = l :  ~t  = L l  =0,  

z = l : "  ~/1=0, 

"~ =½ +A~: L~=O. 

(5.8) 

The boundary condition for Lt at infinity (~ ~ oo) can be taken at the edge of the boundary 
layer. It has been taken at z = ½ + Az where Az is the meshsize in z-direction. 

6. T H E  N U M E R I C A L  P R O C E D U R E  

Equations (5.7) have been replaced by a system of difference equations based on a net 
of which the netpoints have coordinates 

a=ph (p=O, 1 . . . . .  N ;Nh=I ) ,  
(6.1) 

"r=qk (q=0 ,  1 . . . .  , 2 M ; 2 M k = I ) .  

Derivatives have been replaced by central difference expressions. Then equations (5.7) can 
be written in the following form 

atl/~la, m-t + bttLtn, m + CllLln, m+l + a12 ~ln,,.-z + b12 ~ln,., + c12 ~ l . , . + t  

= dltLln-t.~, + ellLtn+l,m + d l 2 ~ i n - l , r a  + el2~ttln+l,m "+ft (6.2a) 

a 2 2 ~ t l n , . - 1  + b22~ln,m + c22 ~lln, m+l + b 2 1 L l n , .  = d22~ln-t,me22 + ~'tln+l,m (6.2b) 

This form is valid in the boundary layer m = 1 . . . . .  M. In the potential region it simplifies to 

atPi.,,~-1 + b~Pln, m + e~P1.,m+1 = d~P1._1,m + e~Pi.+t,,. (6.2c) 
with 

m=M+l .... ,2M- I. 

In these expressions/~i., ,.-t denotes L1(nh, (m - l)k) and analogously for the other terms. 
The coefficients a H, bH, ... are found by writing out (5.7). The term b12 ~Pt.,~ will be 

introduced in the sequel. How the non-linear terms in (5.7a) are treated is suggested by the 
form in which this equation is written. For instance in the term 

+ ~'P~a' C5~ I O£1{"*" + A2"' (2A'(¢ + rl)-t + / t 

we regard the expression between parentheses including O~l/da as a coefficient and calculate 
it from previously found values of ~t .  In (6.2a) it then gives a contribution to alt and e~l. 

The boundary conditions to equations (6.2) are found directly from (5.8) except for the 
condition 0~J~9¢(~, 0) = 0 which must be written in a different form. To do so we combine 
it with equation (5.7b) which at the parabola surface reduces to z'2(d2~P1/dz2 ) = Lt. We 
then can derive that 

Ll,,, o = 8~/t"' 12k 2- ~/x~, 2 x"2 

This form has also been used in [2]. 
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After substitution of the boundary conditions, equations (6.2) have been solved using a 
line-iteration method along lines a = constant. The computations are started along the line 
a = h and proceed in the direction of increasing g. The unknowns LI(~, ~) and ~1(~, ~) 
along a line tr = constant, ~ = qk, q = 1, 2 . . . . .  2M - 1, are solved simultaneously from 
equations (6.2). For the values of ~P1 and r~ 1 appearing in the right hand side of (6.2) as well 
as in the coefficients in the left hand side we take the last calculated values. 

In spite of the use of underrelaxation the iteration process described above appeared to be 
unstable for values of Re > 1. This instability was caused by. the following phenomenon: 

Regard a very simplified form of equation (5.7a) 

1 t32L O2L-  2 ~ L _  3L 
Re c3~ 2 + ~ t3a 2 ~'z = 0 (6.3) 

Discretize this equation in the (~, z)-plane in the usual way with meshsizes h in both directions. 
Then we get 

(Re -1 - h)Ln+l,m + (Re - t  + h)L. - l ,m + (1 - h)L.,.,+l 

+ (1 + h)L.,,~_~ - 2(1 + Re-I )L . , . ,  = 0 

When this equation is solved by point iteration--Jacobi or Gauss-Seidel--the iteration 
process may be divergent if the matrix associated is not diagonally dominant. In fact 
diagonal dominance is a sufficient condition for convergence of linear systems. In our 
example diagonal dominance means 

2IRe -~ + 11 ~_ II + h l + l l  - h i + I R e  -1 + h i + I R e  -~ - h i  

When h <- 1 and h <_ Re-1 this condition is satisfied. But for large Re it is impossible in 
practice to choose h ~_ Re -~ and hence diagonal dominance cannot be obtained in this way. 

Greenspan [14] has suggested a method to retain diagonal dominance by using a backward 
difference expression for 3L/Oa 

3L L,, m - L,_ 1. ,  (6.4) 
t3a h 

Using this method the iteration process becomes stable, but some accuracy is lost since 
central discretization of ~L/t3~ has a smaller discretization error than the backward ex- 
pression (6.4). To obtain central discretization accuracy Dennis and Chang [15] have 
suggested to add a correction term. They write 

~ L  = L , .  , .  - L ~ _  l .  , ,  L( ,~  1. , .  - 2L('),.,~ + J -~ -  1 . , ~ ' ( ' )  
+ (6.s) 

&r h 2h 

The second part of (6.5) is the correction term and the superscript (a) indicates that it is 
calculated from previous values of L. In fact Dennis and Chang first solve (6.3) using (6.4) 
and, with this solution, they calculate the correction term and solve (6.3) again now using 
(6.5). They continue this process until overall convergence is obtained. 

In the method used in this paper we calculate the correction term from the last calculated 
values, i.e. when we are doing the kth iteration step we write 

3L l+(k) - -  i(k) Ttk- 1 )  - -  2L(k- ~) + L(~) 

(3a h 2h 
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We can rewrite this as 

c~L L a,- t) ,-(k) _ i:k) _ L(k- ~) n + l , m  -- /'~-- l, m --Pt, ~t n,m 

0~ 2h + h (6.6) 

In this form we see that the usual central difference expression for OL/Oo is used with a 
correction term which has the form of a time derivative (the iteration steps can be regarded 
as time steps). With expressions of the form (6.6) for 0/~1/0o and cge~i/Oa substituted in 
(5.7) the resulting equations (6.2) were modified such that the iteration process became 
stable. A relaxation factor of 1 gave the fastest convergence. 

For small Re  a problem appeared concerning the subtracted terms in (2.11). The presence 
of a factor (¢ + rt)- J in these subtracted terms means that at q = Re  these terms are con- 
siderably larger than ~ and L. Since finally W and L must be calculated from (2.11) after W~ 
and Lt have been obtained, we are faced with loss of significant figures. This can be avoided 
by replacing (~ + g)-~ by (~ + q + 1) - t  which has the same behaviour for ~ and rt --* oo. 

The initial solution for the iterative process has been taken identically zero, except for 
large R e  where it appeared useful to start the iterations with the solution of equation (5.7) 
without the second order ~-derivatives. To calculate this initial solution the method of 
Blottner and Fliigge-Lotz [16] for the solution of the boundary layer equations has been 
used. 

7. RESULTS 
The flow field has been computed for the following values of the Reynolds number 

R e  = Uoa/v:  

Re = 10", n = integral values between - 5 and 5 

These values have been chosen such that they are representative of the entire range 0 < R e  

< oo. For each of these values, calculations have been performed with nets of the form 
N x 2M (see (6.1)). The used netsizes were 8 x 32, 16 x 64 and 32 x 128. The Presented 
results are the ones obtained with the finest grid. 

The iteration process was stopped when in the whole field the change in the variables 
ff/t and Lx due to 1 iteration step was nowhere more than a given tolerance. Convergence 
appeared to be the best for large and small Re. The slowest convergence occurred at Re  = 
10. To give an idea of the rate of convergence we have found that, at R e  = 10, after 140 
iterations the values of ~t in the whole field differed nowhere more than about 0.1% from 
the finally-obtained values (after 287 iterations), when the finest grid was used. One 
iteration step with the 32 x 128 grid lasted 1.3 sec on a CDC Cyber 74-16 computer. 

7.1. Pressure 

At the paraboloid surface we have q = 0 when the Navier-Stokes equations (2.1) can be 
written as 

1 
- g radp  = - v  rot rot q 
P 

When we combine this with (2.6) we can derive the following relations valid at the para- 
boloid surface 

a-~ = - ~-~ (~a),  ~ ~¢ (¢c)  (7.1) 
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where P is the nondimensional pressure P = ( p -  p®)/pUo 2. Using (2.8) and (2.11) we 
obtain for the directional derivative of the pressure along the surface of the paraboloid the 
expression 

= + + ~"~fo" ~ f o  at r/= Re.  (7.2) 

The pressure P can be found by integration of equation (7.2), starting at ~ = oo with a value 
of P equal to zero and integrating back along the surface. 

The pressure P consists of two parts; one part is generated by the terms with f and fo 
and the other part is the contribution of the term involving L,. These parts we denote by 
Ps and PN respectively. Thus we have 

R e -  ~ . . . . .  

Re ( i f (Re)  -fo~'(Re)) + ( $ ~  ~e) , ]o t~e) (7.3a) Ps(~, Re) = ~ + a--"'~ 

and 

PN(~, Re) = - f ~  [ LI(~' Re) Re aL 1 } 
[(~ + Re) 2 + ~(~ + R-----~) ~1 (~' Re) d~. (7.3b) 

For large Re the pressure P approaches the pressure P~ which follows from inviscid theory. 
This inviscid pressure is given by 

1 Re 
P~ = 2 ~ + Re" (7.4) 

For a derivation of this result see Veldman [13]. He has also shown that 

lim P~ = Pi. (7.5) 

Results for P along the paraboloid surface are presented in Tables 2a and 2b and graphic- 
ally in Fig. 2. A normalization factor Re(1 + Rel/2) -2 has been used to keep the results of 
order unity for all Re. In Table 2a we have also tabulated the values of the inviscid pressure 
Pl at Re = oo. These values can be found from (7.4) by letting Re go to infinity. Using (5.1) 
we find for this pressure Pt(~) = ½(4 + 1) -1. 
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Fig. 2. Pressure at the paraboloid surface. 
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Table 2a. Pressure at the paraboloid 

Re(l + ReII2)-2P(~, Re) 

Re = 10 Re = i0" Re = 10 a Re = 10 '~ Re = 105 Re = oo 

0 0'332 0"422 0"472 0.491 0"498 0"5 
0"1531 0'275 0"363 0.408 0"426 0"431 0'434 
0"3889 0"219 0.299 0"338 0'353 0'358 0"360 
0'7800 0'165 0"233 0"264 0"275 0"279 0"281 
1"5000 O-ll4 0.164 0.187 0.196 0'199 0"200 
3-0556 0"069 0"101 0.115 0"121 0.123 0'123 
7.5000 0-032 0.048 0"055 0"058 0"058 0'059 

31"5000 0.008 0"012 0"014 0"015 0"015 0"015 

Table 2b. Pressure at the paraboloid 

Re(1 + Re:/~)-2P(~, Re) 

~/Re Re = 1 Re = lO - t  Re = 10 -2 Re--- 10 -a Re = 10 -4 Re = 10 -5 

0 0.264 0"227 0"192 0.152 0"118 0.095 
0"01 0.260 0"225 0.190 0"152 0-117 0.094 
0"1 0"235 0"202 0'173 0.139 0"107 0"086 
1 0"147 0"113 0"088 0-075 0"059 0"048 

10 0'038 0"024 0"020 0"011 0'010 0.009 
I O0 0.004 0.003 0.002 0.002 0.002 0"002 

The  pressure  drag ,  i.e. the force in x-d i rec t ion  on the p a r a b o l o i d  caused by the pressure  

is given by 
$ 

Dp = 2~ fo rP* sin y ds  (7.6) 

where y is the s lope o f  the p a r a b o l o i d  surface and  s is the curvi l inear  d is tance  f rom the t op  

a long  the surface. The  d imens iona l  pressure  P* is defined by  P* = p - p®.  A l o n g  the pa ra -  
bo lo id  we can write, using (2.4), sin y ds = dr  = v(Re/¢) I/2 d¢/Uo and  the non-d imens iona l  
pressure  d rag  coefficient becomes  

D, = 4 n R e  ~ P d ¢  =4nRe  j o ( P u  + P s ) d ¢  CDP = ~ ~o 

,, ~ + Re ~ d~] 
= 4ttRe[ ( R e ( f " ( R e ) - f o "  ( R e ) ) - f o  ( R e ) } l n ( ~ )  + 2 f o " ( R e ) ~ + ~ e  + foeN 

J 

(7.7) 

The  pressure  d rag  coefficient tends to infinity as ¢ grows wi thou t  l imit .  There fore  we in t ro-  
duce a modif ied  d rag  coefficient ~'o, by sub t rac t ing  the leading term which is given by 

4nRe{Re(f"(Re)  - fo"(Re))  - fo"(Re)}ln ~. (7.8) 

F o r  Co ,  there  remains  at  ~ = oo 

Pu d~ (7.9) = 47tRe ( R e ( f  "(Re) - f o " ( R e ) )  - f o " ( R e ) } l n  Re -1 + 2fo"(Re) + fo 

which is a finite value. 
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7.2. Skin friction 

When z denotes the shear stress, the local coefficient of skin friction is given by 

z 2v a 2Re 1/2 
C s = ~ = --~o2-~n v¢ = (¢ + Re)~l/2 L(~, Re) (7.10) 

In this expression (cg/~n)v¢ denotes the normal derivative of the dimensional velocity com- 
ponent re. Using (2.11) and (3.7b) we obtain 

2(,Re)t/z f 1 , ,  1 } 
Cy= ~ + Re f~(Re)+ ~--'+"Ref° (Re)+~LI(~,Re) . (7.11) 

In Tables 3a and 3b and in Fig. 3 we present values of½(~ + Re)(~Re)-X/zC I along the para- 
boloid surface. A normalization factor Re(l + Re1/2) -~ has been used. In Fig. 4 results for 

Table 3a. Skin-friction at the paraboloid. A = 1 + Re ~/2 

½A-~(Re/E)'/2(~ + Re)Cr 

Re = 10 Re---- 102 Re~-  103 R e =  10 + R e ~  l0 s 

0 0"598 0"775 0"871 0"989 0"921 
0"1531 0"586 0'747 0"833 0"866 0"877 
0'3889 0"571 0'714 0"787 0"816 0"825 
0.7800 0'552 0"673 0"734 0"757 0.764 
1.5000 0"528 0-626 0.673 0.690 0"696 
3"0556 0.499 0"574 0.607 0"619 0"623 
7.5000 0"466 0"519 0'541 0.548 0"551 

31'5000 0'435 0"472 0-487 0"491 0"493 
oo 0.421 0.452 0.464 0.468 0.469 

Table 3b. Skin-friction at the paraboloid. A = 1 + Re ~/2 

½,4- ~(Re/O ~/2(~ + Re)Ca 

R e =  1 Re = 10-* Re = 10 -2 R e =  10 -3 Re---- 10 -4 Re---- 10 -s  

0 0.413 0.284 0.199 0.145 0.112 0.090 
10 -1 0.413 0.284 0.199 0.145 0.112 0.090 

1 0.410 0-282 0.198 0.145 0.111 0.089 
10 0.390 0.277 0.197 0.144 0.111 0-089 
102 0.365 0.272 0,196 0.144 0.111 0-089 

0.357 0.271 0.195 0.144 0-111 0.089 

the skin friction in the nose are presented together with the values found by Davis and Werle 
[11]. For large Re these values should tend to the value assumed in first order boundary 
layer theory. This value is given by G"(0), the function G being defined in (4.7). From the 
numerical solution of equation (4.7) we have G"(0) = 0.927680. For small Re the Stokes 
approximation is valid. Therefore we present in Fig. 4 also the Stokes values of the presented 
quantity, which are found with the aid of the results of section 4. 

The friction drag Dy can be written as 
$ 

Df = 2n | rT cos ~ ds (7.12) 
ao 

CAF Vol. I No. 3--C 
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Fig. 3. Skin friction at the paraboloid surface. 

0"6 

0"6 

r 

~ 0.4 

0 

t i i i I I i I I i i 
1st order boundary ta~er 

- -  present resutts 
/ 

o Davis * Werte / 

~ ' ~  . ' t o g  Re 

I = l i = .... I f i = I r 
-5 -~ -3 -2 -I 0 1 2 3 ~ 5 

Fig. 4. Skin friction at the nose Of the paraboloid. 

Following the same reasoning as above for the pressure drag the non-dimensional friction 
drag coefficient is written in the form 

_ D/ 
CD, - " ~  = 2~ fo (~Re)l/2Cf d~. 

With the aid of (7.11) this becomes 

d+] 
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We see that the friction drag coefficient also tends to infinity as ~ --, oo. Again we subtract 
the leading terms, viz. 

47~ReLf"(Re)~ - {Ref"(Re) - fo"(Re))ln ~] (7.14) 

and we thus define a modified friction drag coefficient Cvs which at ~ ffi ov has a finite value 

CD~(~) = 4~Re {Re f ' (Re )  - fo "(Re)}ln Re - fo ' (Re)  + ~ + Re 

7.3. The momentum theorem 

For the flow past a parabolic cylinder Botta, Dijkstra and Veldman [2] have derived an 
analytic expression for the drag coefficients with which these numerically calculated coef- 
ficients can be compared. This is also possible for flow past a paraboloid. We can derive the 
following equation 

1 
2"~ {Cv,(~) + Cv,(~)} = 2~Ref'(Re) + t2 In ~ + M(Re) + 0(~ -t') (7.16) 

where 

M(Re)  = _ 2Re2f . (Re)  + 2fo(OV ) _ _~2 _ ½Re 2 

I2 + 3~Re - ~ - ~ In Re - [4f~- 0, + {(~ _ p)2 - f f } / ~ ]  d~ 
@ 

A derivation of this result is given by Veldman [13]. When we use (3.9) we see that the leading 
terms in (7.16) are produced by the sum of (7.8) and (7.14), that is they are generated by the 
subtracted terms. The first term to which the numerically computed quantities ~ and LI 
give a contribution is the term M(Re).  This term must satisfy the following equation 

1 {Cv,(oo) + Cv,(ov)) = M(Re) (7.17) 
2n 

Table 4. The drag-coeff~ents and the total drag compared with the exact 
result from (7.17). B ffi --2~r(1 + Re1/=), 

{~'ot(*~) ÷ ~'~,(oo))/B 
extra- 

Re ~vt(ov)lB C~,(oo)IB 32 × 128 polated 2~rM(Re)IB 

10 - s  0"108 --0"002 0"106 0"115 0"122 
] 0 - "  0"152 --0"002 0"150 0"160 0"161 
10 -3 0.221 --0"003 0"218 0.225 0"229 
10 -2 0.369 --0"015 0"354 0"366 0"372 
10 =1 0"653 --0"056 0"597 0"608 ~'610 
1 0"974 0"111 1 "085 1 "094 1-097 
10 0"892 1 "383 2"275 2-276 2.277 
102 0"518 3.790 4"308 4"312 4"312 
103 0"234 6"465 6"699 6"701 6"701 
10" 0"094 9"012 9"106 9"108 9"108 
10 s 0"035 11 "431 11 "467 11.469 11"469 

i 

In Table 4 the calculated values of Cv~(oo), Cv,(oo) and both sides of equation (7.17) 
are given. All values have been normalized by (l + Rel/2) ". For small Re there appeared 
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to be a large discretization error in the numerical calculated quantities, which causes the 
rather large discrepancy between the values of both sides of (7.17). To show that this dis- 
crepancy decreases when we use a finer grid we also present in Table 4 the values of the left 
hand side of (7.17) obtained with a Richardson extrapolation from the two finest grids 
based on a discretization error of  O(h2). The extremely good agreement between both sides 
of  equation (7.17) for large Reynolds numbers is caused by the fact that not only the pres- 
sure is approached by the contribution of the subtracted terms as Re --, oo (see equation 
(7.5)) but also the modified pressure drag Cop. For details see Veldman [13]. 
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A P P E N D I X  
In Section 4 we have seen that for small Re the Oscen approximation gives a good description of the flow 

pattern. Therefore it may be expected that the Osccn approximation also gives good resets  for the eigen- 
values mentioned in Section 3. 

The eigenvaluc equation (3.10) can be inte~ated once 

~TA" + ( f +  1)f," + (k + 1)f ' f , '  -- k f ' f k  = 0, (A.1) 

where the integration constant vanishes by reason of the boundary conditions for 77 ~ oo. For convenience 
we do not use the original O~en  approximation, i.e. a linearization around the oncoming flow, but we lin- 
¢arize around the potential flow past the paraboloid given by tF = ~07 - Re). Thus we substitute in equa- 
tion (A.I) f =  r / -  Re and we obtain 

r l f k ' + (  ~ -- R e +  1))~* + ( k +  l ) fd  == 0. 

In this equation we substitute r / =  - x  and fd07) = g(x), which results in 

xg" + (1 - Re - x)g" - (k + 1)g = 0, (A.2) 

with boundary conditions g ( -  Re) = 0, g ( -  oo) = g ' ( -  oe) = 0 exp. 
Equation (A.2) is Kummer's equation and the full solution in the complex z-plane can be written as 

g - - - - C t t F t ( k + l ; 1 - - R e ; z ) + C z z ~ ' t F t ( k + R e + l ; l + R e ; z )  

where Ca and C2 are constants, which can be evaluated by imposing the boundary conditions. First we 
examine the behaviour o f g  as z ~ oo, arg z --- rr. This behaviour is given by (see [17], equation 13.5.1) 

I e' '( '÷'z-~'+" e~+"" 1 g ~ c ,  r(1 - Re) ~ ~ - - 'B A -~ p-~ -~ Ti B) 

I e lZ(k  + l + Ice) z - (a + t + l(e) e Z z  j, } 
+C2za ' l " (1  - - R e )  t F(- -k)  A +  F ( k + l + X e ) B _  (A.3) 

where 
A - - - - ~ l ( k + l ) " ( l + k + R e ) " (  z) n =N) 

n-o n! - - +O([zl 
and 

B = ~ 1  ( - - k ) . ( - - k  -- Re)n 
n.o n! z-n + O(Izl-u). 

The exponential decay of g now implies the cancelling of the first terms between the pareiatheses in (A.3). 
This yields 

F(1 - Re) F(1 + Re) 
+ C2 e lxa" - -  = 0 .  ( A . 4 )  Ct F( - -k  - Re) F(--k)  

Next we demand that g(--  Re) = O. Since Re is small we can develop g(-- Re) in a power series in Re 

g ( - - R e ) ~ C x  1--1_R--- - '~Re+O(Re:)  + C 2 ( - - R e )  ~" 1 l + R e  R e + O ( R e 2 )  " " 
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Further we have (--Re) a" = e~'a'(1 + Re In Re + O(Re 2 In 2 Re)). When we substitute this in the expansion 
for g ( -  Re) and set g ( -  Re) = 0 we obtain 

C1 + C, e~a'(1 + Re In Re) = 0. (A.5) 

The two equations for C1 and C2, (A.4) and (A.5), must have a nontrivial solution hence we must set its 
determinant equal to zero 

l~(--k)Y(l - ReXI + Re In Re) = r ( - -Re  -- k)I~(l + Re). (A.6) 

Since Re is small we can develop Y(1 - Re), 1"(1 + Re) and Y ( - R e  -- k) in Taylor series whence equation 
(A.6) becomes 

r ' ( - -k)  
F ( - k )  = - In Re + 2F'(l). (A.7) 

For the left hand side of (A.7)a series expansion is available ([17], equation 6.3.16) and r'(1) = - 7 '  where Y 
is Euler's constant, so we can transform (A.7) to 

~2 - 1  - k  - - - I n  Re  --  ~. ( A . 8 )  
. - o  ( n  + l ) ( n  - -  k )  

The error in (A.8) is of the order Re In 2 Re. 
As Re approaches zero, In Re grows without limit thus we conclude that --k lies near a pole of F(z).  

Suppose k ~ m, m integer, then the main contribution to the sum in (A.8) is given by the term with n -- m. 
Setting this term equal to the right hand side of (A.8) we finally obtain 

k - -  m - 1/ln Re, m = 0 ,  1,  2 . . . .  ( A . 9 )  

with an error of the order (In Re)-2. Thus we see that the eigenvalues tend to integers as Re tends to zero. 
This result is completely in agreement with the numerically calculated eigenvalues by Veldman [13]. 
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