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We study the relative entropy density for generalized Gibbs measures.
We first show its existence and obtain a familiar expression in terms of
entropy and relative energy for a class of “almost Gibbsian measures” (almost
sure continuity of conditional probabilities). For quasilocal measures, we
obtain a full variational principle. For the joint measures of the random
field Ising model, we show that the weak Gibbs property holds, with
an almost surely rapidly decaying translation-invariant potential. For these
measures we show that the variational principle fails as soon as the measures
lose the almost Gibbs property. These examples suggest that the class of
weakly Gibbsian measures is too broad from the perspective of a reasonable
thermodynamic formalism.

1. Introduction. Since the discovery of the Griffiths–Pearce singularities
of renormalization group transformations [8, 28], a challenging question has
been whether the classical Gibbs formalism can be extended in such a way as
to incorporate renormalized low-temperature phases, so that renormalizing the
measure can really be viewed as a transformation on the level of Hamiltonians.
Later on, many other examples of “non-Gibbsian” measures appeared in the
context of joint measures of disordered spin systems [13], time evolution of Gibbs
measures [27] and dynamical systems [18], providing further motivation for the
construction of a generalized Gibbs formalism.

As soon as the first examples of non-Gibbsian measures appeared, Dobrushin
proposed a program of “Gibbsian restoration of non-Gibbsian fields,” arguing that
the phenomenon of non-Gibbsianness is caused by “exceptional” configurations
which are negligible in the measure-theoretic sense. He thus proposed the notion
of a “weakly Gibbsian” measure, where the existence of the finite-volume
Hamiltonian is not required uniformlyin the boundary condition, but only for
boundary conditions in a set of measure 1. This is clearly enough to define
the Gibbsian form of the conditional probabilities and Gibbs measures via the
DLR equations. Since Dobrushin and Shlosman [4], many articles have shown
the “weak Gibbs” property of renormalized low-temperature phases (see e.g., [3,
17, 19, 21]) and of joint measures of disordered spin systems [13, 14]. Parallel
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to this, Fernández and Pfister [6] developed ideas about generalized regularity
properties of the conditional probabilities. They proved that the decimation of the
low-temperature plus phase of the Ising model is consistent with a monotone right-
continuous system of conditional probabilities. In the framework of investigating
the regularity of the conditional probabilities, the notion of “almost Gibbs” was
introduced [19]. A measureµ is called almost Gibbs if its conditional probabilities
have a version which is continuous on a set ofµ-measure 1. If one does not insist
on absolute convergence of the sums of potentials that constitute finite-volume
Hamiltonians, then almost Gibbs implies weak Gibbs, but the converse is not true
(see [15, 19]). In [5] it was proved that the decimation of the plus phase of the
low-temperature Ising model is almost Gibbs, and the criterion to characterize
an essential point of discontinuity of the conditional probabilities given in [28]
strongly suggests that many other examples of renormalized low-temperature
phases are almost Gibbs. The investigation of generalized Gibbs properties of the
non-Gibbsian measures which appear, for example, as transformations of Gibbs
measures, is called the first part of the Dobrushin program.

The second part of the Dobrushin program then consists of building a
thermodynamic formalism within the new class of “generalized Gibbs measures.”
The question of whether, in the context of weakly Gibbsian measures, there
is a reasonable notion of “physical equivalence,” that is, if two systems of
conditional probabilities share a Gibbs measure, then they are equal, already was
raised [3]. In the classical Gibbs formalism, physical equivalence corresponds to
zero relative entropy density, or zero “information distance.” Generally speaking,
one would like to obtain a relationship between vanishing relative entropy density
and conditional probabilities. For Gibbs measures with a translation-invariant
uniformly absolutely convergent potential, a translation-invariant probability
measureµ has zero relative entropy densityh(µ|ν) with respect to a Gibbs
measureν if and only if µ is Gibbs with the same potential. Physically speaking,
this means that the only minimizers of the free energy are the equilibrium phases.
In complete generality (i.e., without any locality requirements),h(µ|ν) = 0 does
not imply thatµ andν have anything in common; see, for example, the example
in [31], where a measureν is constructed such that for any translation-invariant
probability measure,h(µ|ν) = 0.

In this article we investigate the relationship betweenh(µ|ν) = 0 and the
property of having a common system of conditional probabilities for general
quasilocal measures, almost Gibbsian measures and weakly Gibbsian measures.
We work in the context of lattice spin systems with a single-site spin taking
a finite number of values. Letγ denote a translation-invariant system of conditional
probabilities and letGinv(γ ) denote the set of all translation-invariant probability
measures havingγ as a version of their conditional probabilities. Ifγ is
continuous, then, forν ∈ Ginv(γ ), we obtainh(µ|ν) = 0 if and only ifµ ∈ Ginv(γ ).
If γ is continuousµ almost everywhere, then we obtain thath(µ|ν) = 0
and ν ∈ Ginv(γ ) implies µ ∈ Ginv(γ ). More generally, forν ∈ Ginv(γ ) and µ
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a probability measure, concentrating on a set of “good configurations,” we obtain
the existence ofh(µ|ν), an explicit expression for it whereν enters only through its
conditional probabilities and the relationshiph(µ|ν) = 0 impliesµ ∈ Ginv(γ ). The
good configurations here are defined such that a telescoping procedure—inspired
by the method of Sullivan [26]—converges almost surely. These results, together
with some examples of non-Gibbsian measures to which they apply, suggest that
almost Gibbsian measures exhibit a reasonable thermodynamic formalism. The
fact that some concentration properties of the measures are required is reminiscent
of the situation in unbounded spin systems [24], an analogy already pointed out
by Dobrushin.

The context of joint measures of disordered spin systems provides a good source
of examples for validity and failure of the relationship betweenh(µ|ν) = 0 and
µ ∈ Ginv(γ ). Here by joint measure we mean the joint distribution of both the
spins and the disorder. In these examples (especially for the random field Ising
model) there is a precise criterion that separates the almost Gibbsian case from
the weakly Gibbsian case. In particular, for the random field Ising model, the
joint measure is always weakly Gibbs, and at low temperatures we prove here
that it even admits a translation-invariant potential which decays almost surely
as a stretched exponential (so in particular convergesabsolutelya.s.). If there is
no phase transition, then the joint measure for the random field Ising model is
almost Gibbs (but not Gibbs in dimension 2 at low temperature). In the almost
Gibbsian regime we obtain the validity of the relationship betweenh(µ|ν) = 0
and µ ∈ Ginv(γ ), whereas in the weakly but not almost Gibbsian regime we
show its invalidity. More precisely, in that case the joint measure for the minus
phase (K−) is not consistent with the (weakly Gibbsian) system of conditional
probabilities of the plus phase (K+), but one easily obtains that the relative entropy
densitiesh(K−|K+) = h(K+|K−) = 0. Physically speaking, this means that we
are in the pathological situation where a minimizer of the free energy is not a phase
(in the DLR sense). At the same time, we also treat the joint measures in a very
broad sense, that is, for possibly non-i.i.d. disorder, we prove the existence of
relative entropy density, give an explicit representation in terms of the defining
potentials and discuss implications of our results for the Morita approach [22].

Our article is organized as follows: in Section 2 we introduce basic definitions
and notation, discuss the different generalized Gibbs measures and define the
variational principle. In Section 3 we prove a formula for the relative entropy
density for some class of almost Gibbsian measures using the technique of
relative energies [26]. This formula is then applied to prove the implication
“µ andν Gibbs with the same specification impliesh(µ|ν) = 0” for that class of
measures. In Section 4 we prove the full variational principle in our terminology
(i.e., in the sense of Definition 2.11) for measures with a translation-invariant
continuous system of conditional probabilities. In Section 5 we give as examples
the GriSing random field and the decimation of the low-temperature plus phase of
the Ising model. In Section 6 we discuss examples of joint measures of disordered
spin systems.
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2. Preliminaries.

2.1. Configuration space.The configuration space is an infinite product space
� = EZ

d
with E a finite set. Its Borelσ -field is denoted byF . We denote by

S = {� ⊂ Z
d, |�| < ∞} the set of the finite subsets ofZ

d and for any� ∈ S,
�� = E�. We letF� denote theσ algebra generated by{σ(x) :x ∈ �}. For all
σ,ω ∈ �, we denoteσ�,ω� the projections on�� and also writeσ�ω�c for the
configuration which agrees withσ in � and withω in �c. The set of probability
measures on(�,F ) is denoted byM+

1 . A function f is said to belocal if there
exists� ∈ S such thatf is F�-measurable. We denote byL the set of all local
functions. The uniform closure ofL is C(�), the set of continuous functions on�.

On �, translations{τx :x ∈ Z
d} are defined via(τxω)(y) = ω(x + y), and

similarly on functionsτxf (ω) = f (τxω) and on measures
∫

f dτxµ = ∫
(τxf ) dµ.

The set of translation-invariant probability measures on� is denoted byM+
1,inv.

We also have a partial orderη ≤ ζ if and only if for all x ∈ Z
d , η(x) ≤ ζ(x).

A function f :� → R is called monotone ifη ≤ ζ implies f (η) ≤ f (ζ ). This
order induces stochastic domination onM+

1 : µ � ν if and only if µ(f ) ≤ ν(f ) for
all f monotone increasing.

2.2. Specification and quasilocality.

DEFINITION 2.1. A specification on(�,F ) is a familyγ = {γ�,� ∈ S} of
probability kernels from��c to F that are proper and consistent.

1. Proper: For allB ∈ F�c , γ�(B|ω) = 1B(ω).
2. Consistent: If � ⊂ �′ are finite sets, thenγ�′γ� = γ�′ .

The notationγ�′γ� refers to the composition of probability kernels: forA ∈ F ,
ω ∈ �,

(γ�′γ�)(A|ω) =
∫
�

γ�(A|ω′)γ�′(dω′|ω).

These kernels also act on bounded measurable functionsf ,

γ�f (ω) =
∫

f (σ )γ�(dσ |ω),

and on measuresµ,

µγ�(f ) ≡
∫

f dµγ� =
∫

(γ�f )dµ.

A specification is a strengthening of the notion of a system of proper regular
conditional probabilities. Indeed, in the former, the consistency condition (item 2)
is required to hold forevery configurationω ∈ �, and not only for almost
everyω ∈ �. This is because the notion of specification is defined without any
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reference to a particular measure. A specificationγ is translation-invariant if for
all A ∈ F , � ∈ S, ω ∈ �,

γ�+x(A|ω) = γ�(τxA|τxω).

In this article wealwaysrestrict to the case of nonnull specifications, that is, for
any� ∈ S, there exist 0< a� < b� < 1 such that

a� < inf
σ,η

γ�(σ |η) ≤ sup
σ,η

γ�(σ |η) < b�.

DEFINITION 2.2. A probability measureµ on (�,F ) is said to be consistent
with a specificationγ (or specified byγ ) if the latter is a realization of its finite-
volume conditional probabilities, that is, if for allA ∈ F and � ∈ S, and for
µ-a.e.ω,

µ[A|F�c ](ω) = γ�(A|ω).(2.1)

Equivalently,µ is consistent withγ if∫
(γ�f )dµ =

∫
f dµ

for all f ∈ C(�). We denote byG(γ ) the set of measures consistent withγ .
For a translation-invariant specification,Ginv(γ ) is the set of translation-invariant
elements ofG(γ ).

DEFINITION 2.3. 1. A specificationγ is quasilocal if for each� ∈ S and
eachf local,γ�f ∈ C(�).

2. A probability measureµ is quasilocal if it is consistent with some
quasilocal specification.

2.3. Potentials and Gibbs measures.Examples of quasilocal measures are
Gibbs measuresdefined via potentials.

DEFINITION 2.4. 1. A potential is a family � = {�A :A ∈ S} of local
functions such that for allA ∈ S, �A is FA-measurable.

2. A potential is translation-invariant if for allA ∈ S, x ∈ Z
d andω ∈ �,

�A+x(ω) = �A(τxω).

DEFINITION 2.5. A potential is said to have the following attributes:

1. Convergentat the configurationω if for all � ∈ S, the sum∑
A∩�
=∅

�A(ω)(2.2)

is convergent.



1696 CH. KÜLSKE, A. LE NY AND F. REDIG

2. Uniformly convergentif convergence in (2.2) is uniform inω.
3. Uniformly absolutely convergent(UAC) if for all � ∈ S,∑

A∩�
=∅

sup
ω

|�A(ω)| < ∞.

For a general potential�, we define the measurable set of its points of
convergence as

�� = {ω ∈ � :� is convergent atω}.
To define Gibbs measures, we consider a UAC potential and define itsfinite-

volume Hamiltonianfor � ∈ S and boundary conditionω ∈ � by

H�
� (σ |ω) = ∑

A∩�
=∅

�A(σ�ω�c).

DEFINITION 2.6. Let� be UAC. TheGibbs specificationγ � with potential
� is defined by

γ �
� (σ |ω) = 1

Z�
�(ω)

exp
(−H�

� (σ |ω)
)
,

where the partition functionZ�
�(ω) is the normalizing constant.

A measureµ is a Gibbs measureif there exists a UAC potential� such that
µ ∈ G(γ �). Gibbs measures are quasilocal; conversely, any nonnull quasilocal
measure can be written in a Gibbsian way (see [10] and more details in Section 4).

2.4. Generalized Gibbs measures.

DEFINITION 2.7. A measureν is weakly Gibbsif there exists a potential�
such thatν(��) = 1 and

ν[σ�|F�c ](ω) = exp(−H�
� (σ |ω))

Z�
�(ω)

for ν-almost everyω.

REMARK 2.8. Some authors insist on the almost surely absolute convergence
of the sums definingH�

� . However, for the definition of the weakly Gibbsian
specification there is no reason to prefer absolute convergence.

DEFINITION 2.9. Letγ be a specification. A configurationω is said to be a
point of continuity forγ if for all � ∈ S, f ∈ L, γ�f is continuous atω.

For a givenγ , �γ denotes its measurable set of points of continuity.
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DEFINITION 2.10. A measureν is called almost Gibbsif there exists a
specificationγ such thatν ∈ G(γ ) andν(�γ ) = 1.

If ν is almost Gibbs, then there exists an almost surely convergent potential�

such thatν is weakly Gibbsian for� and thus almost Gibbsianness implies weak
Gibbsianness. The converse is not true: A measure can be weakly Gibbs and for
the associated potential�, �γ � is of measure zero [15, 19]. If a measure is almost
Gibbs and translation-invariant, then the corresponding potential can be chosen to
be translation-invariant.

2.5. Relative entropy and variational principle.For µ,ν ∈ M+
1,inv, thefinite-

volume relative entropyat volume� ∈ S of µ relative toν is defined as

h�(µ|ν) =



∫
�

dµ�

dν�

log
dµ�

dν�

dν, if µ� � ν�,

+∞, otherwise.

(2.3)

The notationµ� refers to the distribution ofω� whenω is distributed according
to µ. By Jensen’s inequality,h�(µ|ν) ≥ 0. Therelative entropyof µ relative to
ν is the limit

h(µ|ν) = lim
n→∞

1

|�n|h�n(µ|ν),(2.4)

where �n = [n,n]d ∩ Z
d is a sequence of cubes (this can be replaced by a

Van Hove sequence). In what follows, if we write lim�↑Zd f (�), we mean that
the limit is taken along a Van Hove sequence. The defining limit (2.4) is known
to exist if ν ∈ M+

1,inv is a translation-invariant Gibbs measure with atranslation-
invariantUAC potential andµ ∈ M+

1,inv arbitrary. The Kolmogorov–Sinai entropy
h(µ) is defined forµ ∈ M+

1,inv as

h(µ) = − lim
n→∞

1

|�n|
∑
σ�n

µ
(
σ�n

)
logµ

(
σ�n

)
.(2.5)

We are now ready to state the variational principle for specifications and
measures, which gives a relationship between zero relative entropy and equality
of conditional probabilities.

DEFINITION 2.11 (Variational principle). Letγ be a specification,ν ∈ Ginv(γ)

and M ⊂ M+
1,inv. We say that a variational principle holds for the triple

(γ, ν,M) if

0. h(µ|ν) exists for allµ ∈ M;
1. µ ∈ Ginv(γ ) ∩ M impliesh(µ|ν) = 0;
2. h(µ|ν) = 0 andµ ∈ M impliesµ ∈ Ginv(γ ).
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Items 1 and 2 are called the first and second part of the variational principle.
The second part is true for any translation-invariant quasilocal measureν [7] (with
M = M+

1,inv). The first part is proved for translation-invariant Gibbs measures
associated with a translation-invariant UAC potential (withM = M+

1,inv also).
We extend this result to any translation-invariant quasilocal measure in Section 4.
In [5], the second part was proved for some renormalized non-Gibbsian FKG
measures. In general, the setM will be a set of translation-invariant probability
measures that concentrate on good configurations (e.g., points of continuity of
conditional probabilities).

3. Variational properties of generalized Gibbs measures. We study the
variational principle—in the sense of Definition 2.11—for generalized Gibbs
measures. We first prove the second part for almost Gibbsian measures, which
is a rather straightforward technical extension of [7], Chapter 15.

3.1. Second part of the variational principle for almost Gibbsian measures.

THEOREM 3.1. Letγ be a translation-invariant specification on(�,F ) and
ν ∈ Ginv(γ ). For all µ ∈ M+

1,inv,

h(µ|ν) = 0

µ(�γ ) = 1

}
�⇒ µ ∈ Ginv(γ )

and thus such a measureµ is almost Gibbs w.r.t. γ .

PROOF. Chooseν ∈ Ginv(γ ) andµ such thath(µ|ν) = 0. We have to prove
that for anyg ∈ L,� ∈ S,

µ(γ�g − g) = 0.(3.1)

Fix g ∈ L and� ∈ S such thatg is F�-measurable. The hypothesis

h(µ|ν) = lim
�↑Zd

1

|�|h(µ|ν) = 0(3.2)

implies that for every� ∈ S, the densityf� = dµ�/dν� exists and is a bounded
positiveF�-measurable function. Introduce local approximations ofγ�g:

g−
n (σ ) = inf

ω∈�
γ�g

(
σ�nω�c

n

)
,

g+
n (σ ) = sup

ω∈�

γ�g
(
σ�nω�c

n

)
.

In the quasilocal case, we haveg+
n − g−

n → 0 uniformly whenn goes to infinity,
whereas here we haveg+

n − g−
n → 0 on the set�γ of µ-measure 1 and, hence, by

dominated convergence inL1(µ). To obtain (3.1) decompose

µ(γ�g − g) = An + Bn + Cn + Dn,(3.3)
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where

An = µ(γ�g − g−
n ),

Bn = ν
(
(g−

n − γ�g)f�n\�
)
,

Cn = ν
(
f�n\�(γ�g − g)

)
,

Dn = ν
((

f�n\� − f�n

)
g
)
.

Using

0 ≤ γ�g − g−
n ≤ g+

n − g−
n ,

An → 0 asn goes to infinity. ForBn, use

0 ≤ |Bn| = ν
(
(γ�g − g−

n )f�n\�
) ≤ ν

(
f�n\�(g+

n − g−
n )

) = µ(g+
n − g−

n )

to obtainBn → 0 asn → ∞.
Sinceν ∈ G(γ ) andf�n\� ∈ F�c , Cn = 0. The fact thatDn → 0 follows from

the assumption of zero relative entropy density (see [7], page 324).�

REMARK 3.2. 1. The role ofM in Definition 2.11 is played here by the set
of measures that concentrate on the points of continuity ofγ [µ ∈ M if and only
if µ(�γ ) = 1].

2. Note that in Theorem 3.1, we do not ask any concentration properties ofν.

3.2. Relative entropy density for some almost Gibbsian measures.To obtain
a relationship betweenµ ∈ G(γ ) andh(µ|ν) = 0—the first part of the variational
principle—it turns out that concentration ofµ on the set of points of continuity
of γ is not enough. In fact, we need some particular class of “telescoping
configurations” to be points of continuity of the specification. This is reminiscent
of asking for continuity properties of the one-sided conditional probabilities. In the
case of (uniformly) continuous specifications, this distinction between one-sided
and two-sided probabilities is, of course, not visible.

We choose a particular value written+1 in the state spaceE and denote
by + the configuration whose value is+1 everywhere. We use a telescoping
procedure with respect to this reference configuration. It is important that the
reference configuration be translation-invariant; hence, our choice of “the all+
configuration” is not restrictive. In Section 3.4, we generalize to a telescoping
configuration chosen from a translation-invariant measure: this will be important
in Section 6.

To any configurationσ ∈ �, we associate the configurationσ+ defined by

σ+(x) =
{

σ(x), if x ≤ 0,

+1, if x > 0.
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Here, the order≤ is lexicographic. We define then�<0
γ to be the subset of� of

the configurationsσ such that the new configurationσ+ is a good configuration
for γ :

�<0
γ = {σ ∈ �,σ+ ∈ �γ }.

This set is described in different examples in Section 5.

3.2.1. Results. We consider a pair(γ, ν) with ν ∈ Ginv(γ ) and a measureµ
which satisfies the following condition:

CONDITION C1.

µ(�<0
γ ) = 1.

We also introduce theν-specific energy of the plus state,

e+
ν := − lim

�↑Zd

1

|�| logν(+�),

whenever it exists.

THEOREM 3.3. Under ConditionC1:

1. If and only ife+
ν exists, h(µ|ν) exists and then

h(µ|ν) = −h(µ) + e+
ν −

∫
�

log
γ0(σ

+|σ+)

γ0(+|σ+)
µ(dσ ),(3.4)

whereh(µ) is the Kolmogorov–Sinai entropy ofµ.
2. If, moreover, µ ∈ Ginv(γ ) ande+

ν exists, then

h(µ|ν) = lim
�↑Zd

1

|�| log
µ(+�)

ν(+�)
.(3.5)

To obtain a result which is more reminiscent of the first part of the variational
principle in the standard theory of Gibbs measures, we add an extra condition to
Condition C1:

CONDITION C2.

µ ∈ Ginv(γ ) is such that lim
�↑Zd

1

|�| log
µ(+�)

ν(+�)
= 0.(3.6)

THEOREM 3.4. Assume that ConditionsC1andC2 are true. Then:

1. h(µ|ν) = 0;
2. e+

ν exists ande+
ν = e+

µ ;



GENERALIZED GIBBS MEASURES 1701

3. h(α|ν) exists for allα ∈ M+
1,inv satisfying ConditionC1.

REMARK 3.5. In the standard theory of Gibbs measures, the existence
of h(µ|ν) and the identity (3.4) are obtained by proving existence and boundary
condition independence of the pressure. This requires the existence of a UAC
potential, which in our case is replaced by regularity properties of the specification
and existence of the limit defininge+

ν . The existence is guaranteed, for example,
for renormalization group transformations of Gibbs measures and forν with
positive correlations (by subadditivity). Moreover, in the case of transformations
of Gibbs measures, Condition C2 is also easy to verify (see Section 5). However,
showing existence and boundary condition independence of the pressure is highly
nontrivial in this context.

REMARK 3.6. A consequence of Theorem 3.3 is that theν-specific energye+
ν

exists ifν satisfies Condition C1. This is a consequence of the existence ofh(ν|ν)

(= 0) and point 1 of this theorem for the particular choiceµ = ν.

3.3. Proofs. First we need the following lemma.

LEMMA 3.7. If µ(�<0
γ ) = 1, then the following statements are valid:

1. Uniformly in ω ∈ �,

lim
n→∞

1

|�n|
∫
�

log
γ�n(σ |ω)

γ�n(+|ω)
µ(dσ ) =

∫
�

log
γ0(σ

+|σ+)

γ0(+|σ+)
µ(dσ ).

2. For ν ∈ G(γ ),

lim
n→∞

1

|�n|
∫
�

log
ν(σ�n)

ν(+�n)
µ(dσ ) =

∫
�

log
γ0(σ

+|σ+)

γ0(+|σ+)
µ(dσ ).

In particular, the limit depends only on the pair(γ,µ).

REMARK 3.8. If µ is ergodic under translations, we have a slightly stronger
statement for item 1:(1/|�n|) ∫

� log((γ�(σ |ω))/γ�(+|ω))µ(dσ ) converges
in L

1(µ) to
∫
� log((γ0(σ

+|σ+))/γ0(+|σ+))µ(dσ ), uniformly in ω ∈ �.

PROOF OFLEMMA 3.7. 1. The proof uses relative energies as in [26]. For all
� ∈ S, σ , ω ∈ �, we define

E+
�(σ |ω) = log

γ�(σ |ω)

γ�(+|ω)
and D(σ) = E+

{0}(σ |σ) = log
γ0(σ |σ)

γ0(+|σ)
.

We consider an approximation ofσ+ at finite volume� with boundary conditionω
and define thetelescoping configurationT ω

� [x,σ,+]:

T ω
� [x,σ,+](y) =




ω(y), if y ∈ �c,

σ(y), if y ≤ x, y ∈ �,

+1, if y x, y ∈ �.
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Using the consistency property ofγ , we have, by telescoping,

E+
�(σ |ω) = ∑

x∈�

E+
x (σ |T ω

� [x,σ,+]).(3.7)

To see this, denote�≤x = {y ∈ � :y ≤ x}, �<x = �≤x \ {x} and�>x = � \�≤x .
Let � = {x1, . . . , xN } denote an enumeration of� in lexicographic order. Then we
can write, using consistency,

γ�(σ |ω)

γ�(+|ω)
=

N∏
i=1

γ�(σ�≤xi
+�>xi

|ω)

γ�(σ�≤xi−1
+�>xi−1

|ω)

(3.8)

=
N∏

i=1

γxi
(σxi

|σ�<xi
+�>xi

ω�c)

γxi
(+xi

|σ�<xi
+�>xi

ω�c)
.

Taking the logarithm yields (3.7). By translation invariance ofγ ,

E+
�(σ |ω) = ∑

x∈�

D(τ−xT
ω
� [x,σ,+]).

By translation invariance ofµ,∫
�

E+
�n

(σ |ω)µ(dσ ) = ∑
x∈�n

∫
�

D(τ−xT
ω
� [x, τxσ,+])µ(dσ ).

Therefore, we have to prove that, uniformly inω,

lim
n→∞

1

|�n|
( ∑

x∈�n

∫
�

[
D

(
τ−xT

ω
�n

[x, τxσ,+]) − D(σ+)
]
µ(dσ)

)
= 0.

By definition,

τ−xT
ω
�n

[x, τxσ,+] =



τ−xω(y), if y + x ∈ �c
n,

+, if 0 < y, y + x ∈ �n,

σ(y), if y ≤ 0, y + x ∈ �n.

Now, pick ε > 0, ω ∈ � and σ ∈ �<0
γ . Using the fact thatσ+ is a

point of continuity of D, we choosen0 such thatξ |�n0
= σ+|�n0

implies
|D(ξ) − D(σ+)| ≤ ε. We remark thatτ−xT

ω
�n

[x, τxσ,+] andσ+ differ only on
the set{y ∈ Z

d :x + y ∈ �c
n}. Therefore, the difference|D(σ+) − D(τ−xT

ω
�n

[x,

τxσ,+])| can only be greater thanε for x such that(�n0 −x)∩�c
n 
= ∅. Therefore,

1

|�n|
∣∣∣∣∣
∑

x∈�n

[
D

(
τ−xT

ω
�n

[x, τxσ,+]) − D(σ+)
]∣∣∣∣∣

(3.9)

≤ ε + 2‖D‖∞
|{x ∈ �n : (�n0 − x) ∩ �c

n 
= ∅}|
|�n|
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and this is less than 2ε for n large enough. So we obtain that

1

|�n|
∣∣∣∣∣
∑

x∈�n

[
D

(
τ−xT

ω
�n

[x, τxσ,+]) − D(σ+)
]∣∣∣∣∣

converges to zero on the set of�<0
γ of full µ-measure, uniformly inω. By

dominated convergence, we then obtain

lim
n→∞ sup

ω

1

|�n|
∫
�

∣∣∣∣∣
∑

x∈�n

[D(τ−xT
ω
� [x, τxσ,+]) − D(σ+)]

∣∣∣∣∣µ(dσ) = 0,

which implies statement 1 of the lemma.
2. Denote

F�n(µ, ν) = 1

|�n|
∫
�

log
ν(σ�n)

ν(+�n)
µ(dσ ).

Usingν ∈ G(γ ), we obtain

F�n(µ, ν) = 1

|�n|
∫
�

log

∫
� γ�n(σ |ω)ν(dω)∫
� γ�n(+|ω)ν(dω)

µ(dσ ).

Use

inf
ω∈�

γ�n(σ |ω)

γ�n(+|ω)
≤

∫
� γ�n(σ |ω)ν(dω)∫
� γ�n(+|ω)ν(dω)

≤ sup
ω∈�

γ�n(σ |ω)

γ�n(+|ω)
.

Let ε > 0 be given andω = ω(n,σ, ε), ω′ = ω′(n, σ, ε) such that∫
�

inf
ω∈�

log
γ�n(σ |ω)

γ�n(+|ω)
µ(dσ ) ≥

∫
�

log
γ�n(σ |ω(n,σ, ε))

γ�n(+|ω(n,σ, ε))
− ε

and ∫
�

sup
ω∈�

log
γ�n(σ |ω)

γ�n(+|ω)
µ(dσ ) ≤

∫
�

log
γ�n(σ |ω′(n, σ, ε))

γ�n(+|ω′(n, σ, ε))
+ ε.

Now use the first item of the lemma and chooseN such that for alln ≥ N ,

sup
ω

∣∣∣∣ 1

|�n|
∫
�

log
γ�n(σ |ω)

γ�n(+|ω)
µ(dσ ) −

∫
�

D(σ+)µ(dσ )

∣∣∣∣ ≤ ε.

Forn ≥ N , we obtain∫
�

D(σ+)µ(dσ ) − 2ε ≤ F�n(µ|ν) ≤
∫
�

D(σ+)µ(dσ ) + 2ε. �

PROOF OFTHEOREM 3.3. 1. Denote

hn(µ|ν) := 1

|�n|
∑
σ�n

µ
(
σ�n

)
log

µ(σ�n)

ν(σ�n)
.
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We recall that forµ ∈ M+
1,inv(�), the limit ofhn(µ) := −(1/|�n|)∑

σ�n
µ(σ�n)×

logµ(σ�n) is theKolmogorov–Sinai entropyof µ denotedh(µ). We write

hn(µ|ν) = −hn(µ) − 1

|�n|
∑
σ�n

µ(σ�n) log
ν(σ�n)

ν(+�n)
− 1

|�n| logν
(+�n

)
.(3.10)

When Condition C1 holds, the asymptotic behavior of the second term of the right-
hand side is given by Lemma 3.7. Hence, the relative entropy exists if and only
if e+

ν exists, and it is given by (3.4).
2. We considerµ ∈ Ginv(γ ) such thatµ(�<0

γ ) = 1 and use the following
decomposition of the finite-volume relative entropy:

hn(µ|ν) = 1

|�n|
∑
σ�n

µ
(
σ�n

)
log

µ(σ�n)

µ(+�n)

(3.11)

− 1

|�n|
∑
σ�n

µ
(
σ�n

)
log

ν(σ�n)

ν(+�n)
+ 1

|�n| log
µ(+�n)

ν(+�n)
.

By Lemma 3.7, in the limitn → ∞, the first two terms on the right-hand side
are functions ofγ rather than functions ofµ, ν ∈ Ginv(γ ) and cancel out. Hence,
the relative entropy exists if and only if the third term converges. Using item 1
(existence of relative entropy), we obtain the existence of the limit (3.5) and
the equality

h(µ|ν) = lim
n→∞

1

|�n| log
µ(+�n)

ν(+�n)
. �

PROOF OF THEOREM 3.4. 1. Start from the decomposition (3.11). For
µ andν in G(γ ), under Condition C1, in the limitn → ∞, the first two terms
on the right-hand side cancel (see Lemma 3.7), and we obtain, by Condition C2,

0 = lim
n→∞

1

|�n| log
µ(+�n)

ν(+�n)
= h(µ|ν).(3.12)

2. Now consider the decomposition (3.10). From (3.12), we obtainh(µ|ν) = 0;
hence, by Lemma 3.7,e+

ν exists and is given by

e+
ν = h(µ) +

∫
log

γ0(σ
+|σ+)

γ0(+|σ+)
µ(dσ ).

Existence ofe+
µ and the equalitye+

µ = e+
ν now follows trivially from Condition C2

and existence ofe+
ν .

3. Consider any other measureα ∈ M+
1,inv such that Condition C1 holds. The

existence of the relative entropyh(α|µ) follows by combining the existence ofe+
ν

with Theorem 3.3, and

h(α|ν) = −h(α) + e+
ν −

∫
log

γ0(σ
+|σ+)

γ0(+|σ+)
α(dσ ). �



GENERALIZED GIBBS MEASURES 1705

3.4. Generalization. In the hypothesis of the theorems above, the plus
configuration plays the particular role of a telescoping reference configuration.
Without too much effort, we obtain the following generalization where we
telescope w.r.t a random configurationξ chosen from some translation-invariant
measureλ. Results of the previous section are recovered by choosingλ = δ+. The
generalization to a random telescoping configuration will be natural in the context
of joint measures of disordered spin systems in Section 6.

For anyξ, σ ∈ �, we define the concatenated configurationσ ξ ,

∀x ∈ Z
d, σ ξ (x) =

{
σ(x), if x ≤ 0,

ξ(x), if x > 0,
(3.13)

and the set�ξ,<0
γ to be the subset of� × � of the configurations(σ, ξ) such that

the new configurationσ ξ is a good configuration forγ :

�ξ,<0
γ = {(σ, ξ) ∈ � × �,σ ξ ∈ �γ }.

We also generalize the specific energye+
ν and denote

eλ
ν = − lim

�↑Zd

1

|�|
∫
�

logν(ξ�)λ(dξ)(3.14)

provided this limit exists.
We consider a specificationγ , measuresν ∈ Ginv(γ ) andµ,λ ∈ M+

1,inv, and the
following conditions:

CONDITION C1′. We haveλ ⊗ µ(�
ξ,<0
γ ) = 1.

CONDITION C2′. We have lim�↑Zd
1

|�|
∫
� log(dµ�/dν�)(ξ�)λ(dξ�) = 0.

The following theorems are the straightforward generalizations of Theorems
3.3 and 3.4, respectively, and their proofs follow the same lines.

THEOREM 3.9. Under ConditionC1′:
1. If and only ifeλ

ν exists, h(µ|ν) exists and then

h(µ|ν) = −h(µ) + eλ
ν −

∫
�×�

log
γ0(σ

ξ |σ ξ )

γ0(ξ |σ ξ )
µ(dσ )λ(dξ).(3.15)

2. If, moreover, µ ∈ Ginv(γ ) andeλ
ν exists, then

h(µ|ν) = lim
�↑Zd

1

|�|
∫
�

log
dµ�

dν�

(ξ�)λ(dξ�).

THEOREM 3.10. If µ,ν ∈ G(γ ) are such that ConditionsC1′ and C2′ are
fulfilled, then:
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1. h(µ|ν) = 0;
2. eλ

ν exists and equalseλ
µ;

3. h(α|ν) exists for allα ∈ M+
1,inv satisfying ConditionC1′.

4. Variational principle for quasilocal measures. The usual way to prove
µ ∈ Ginv(γ ) ⇐⇒ h(µ|ν) = 0 in the Gibbsian context uses thatγ is a specification
associated with a translation-invariant and UAC potential�, and proceeds via
existence and boundary condition independence of pressure (see [7]). Since for
a general quasilocal specificationγ , we cannot rely on the existence of such a
potential (see [10] and the open problem in [28]), we show here that the weaker
property of uniform convergence of the vacuum potential, which can be associated
to the quasilocal specificationγ (see [10]), suffices to obtain zero relative entropy.

THEOREM 4.1. Let γ be a translation-invariant quasilocal specification,
ν ∈ Ginv(γ ) andµ ∈ M+

1,inv. Thenh(µ|ν) exists for allµ ∈ M+
1,inv and

µ ∈ Ginv(γ ) ⇐⇒ h(µ|ν) = 0.

PROOF. The implication of the left-hand side (the second part) is proved in [7].
To prove the first part, we need the following lemma to check the hypothesis of
Theorem 3.4. Condition C2 is trivially true whenγ is quasilocal (�<0

γ = �).

LEMMA 4.2. For all µ,ν ∈ Ginv(γ ) with γ translation-invariant and quasilo-
cal, e+

ν , e+
µ exist and

lim
n→∞

1

|�n| log
µ(+�n)

ν(+�n)
= 0.

PROOF. Kozlov [10] proved that to any translation-invariant quasilocal
specificationγ there corresponds a translation-invariant uniformly convergent
vacuum potential� such thatγ = γ �.

By uniform convergence, we have

lim
�↑Zd

sup
σ

∣∣∣∣∣
∑

A�0,A∩�c 
=∅

�A(σ)

∣∣∣∣∣ = 0.(4.1)

Note that in (4.1) the absolute value isoutsidethe sum, that is, (4.1) means that
the series

∑
A�0�A(σ) is convergent in the sup–norm topology onC(�), but not

necessarilyabsolutely convergent. We can define a Hamiltonian and a partition
function for any� ∈ S, η, σ ∈ �, as usual:

H
η
�(σ ) = ∑

A∩�
=∅

�A(σ�η�c) and Z�(ω) = ∑
σ∈�

e−Hω
�(σ).(4.2)

Lemma 4.2 is now a direct consequence of the following lemma.
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LEMMA 4.3.

lim
n→∞ sup

ω,η,σ

1

|�n|
∣∣Hη

�n
(σ ) − Hω

�n
(σ )

∣∣ = 0;(4.3)

lim
n→∞ sup

ω,η

1

|�n| log
Z�n(ω)

Z�n(η)
= 0.(4.4)

PROOF. We follow the standard line of the argument used by Israel [9]
to prove existence and boundary condition independence of the pressure for a
UAC potential, but we detail it because the vacuum potential is only uniformly
convergent. Clearly, (4.3) implies (4.4). For alln ∈ N,

exp
{

− sup
ω,η,σ

∣∣Hη
�n

(σ ) − Hω
�n

(σ )
∣∣} ≤ sup

ω,η

Z�n(ω)

Z�n(η)

≤ exp
{

sup
ω,η,σ

∣∣Hη
�n

(σ ) − Hω
�n

(σ )
∣∣}.

To prove (4.3), we write

H
η
�n

(σ ) − Hω
�n

(σ ) = ∑
A∩�n 
=∅,A∩�c

n 
=∅

[
�A

(
σ�nη�c

n

) − �A

(
σ�nω�c

n

)]
,

and we first note that

1

|�n|
∣∣∣∣∣

∑
A∩�n 
=∅,A∩�c

n 
=∅

[
�A

(
σ�nη�c

n

) − �A

(
σ�nω�c

n

)]∣∣∣∣∣
≤ 2

|�n|
∑

x∈�n

sup
σ

∣∣∣∣∣
∑

A�x,A∩�c
n 
=∅

�A(σ)

∣∣∣∣∣.
We obtain

sup
σ

∣∣∣∣∣
∑

A�x,A∩�c
n 
=∅

�A(σ)

∣∣∣∣∣ = sup
σ

∣∣∣∣∣
∑
A�x

�A(σ ) − ∑
A�x,A⊂�n

�A(σ )

∣∣∣∣∣
= sup

σ

∣∣∣∣∣
∑
A�0

�A(τxσ ) − ∑
A�0,A⊂(�n−x)

�A(τxσ )

∣∣∣∣∣
≤ sup

ξ

∣∣∣∣∣
∑

A�0,A∩(�n−x)c 
=∅

�A(ξ)

∣∣∣∣∣.
Pick ε > 0 and choose� such that

sup
ξ

∣∣∣∣∣
∑

A�0,A∩�c 
=∅

�A(ξ)

∣∣∣∣∣ ≤ ε.
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Then ∣∣∣∣∣
∑

A�0,A∩(�n−x)c 
=∅

�A(ξ)

∣∣∣∣∣ ≤
{

ε, if (�n − x) ⊃ �,

C, if (�n − x) ∩ �c 
= ∅,

where

C = sup
ξ

∣∣∣∣∣
∑
A�0

�A(ξ)

∣∣∣∣∣ < ∞.

Since for any� ⊂ Z
d finite,

lim
n→∞ ε

|{x :� + x ∩ �c
n 
= ∅}|

|�n| = 0,

we obtain

lim sup
n

1

|�n|
∑

x∈�n

sup
ξ

∣∣∣∣∣
∑

x�x,A∩�c
n 
=∅

�A(ξ)

∣∣∣∣∣ ≤ ε,

which by the arbitrary choice ofε > 0 proves (4.3) and the statement of the lemma.
�

To derive Lemma 4.2 from Lemma 4.3, we have to prove only that for all
ν ∈ Ginv(γ ), e+

ν exists and is independent ofγ . For such a measureν, write

ν(+�) =
∫
�

e
−H

η
�n

(+)

Z�n(η)
ν(dη),

whereH
η
�n

is defined via the vacuum potential ofγ in (4.2). We use Lemma 4.3
to write

ν(+�) ∼=
∫
�

e−H+
� (+)

Z+
�

ν(dη)

wherea�
∼= b� means lim�(1/|�|)| log(a�/b�)| = 0. Since� is the vacuum

potential with vacuum state+, H+
� (+�) = 0 and hence

ν(+�) ∼= (Z+
�)−1 = (Zfree

� )−1 =
[ ∑

σ∈��

exp

(
− ∑

A⊂�

�A(σ )

)]−1

,

whereZ+
� (resp.Zfree

� ) is the partition function with the+ (resp. free) boundary
condition, which in our case coincide. FixR > 0 and put

�
(R)
A (σ ) :=

{
�A(σ), if diam(A) ≤ R,

0, if diam(A) > R.
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Then, using the existence of pressure for finite range potentials (cf. [9]),

lim
�

1

|�| logZfree
�

(
�(R)

) := P
(
�(R)

)
exists.

Now use

log

∑
σ exp(−∑

A⊂� �A(σ ))∑
σ exp(−∑

A⊂� �
(R)
A (σ ))

≤ sup
σ

∣∣∣∣∣
∑

A⊂�,diam(A)>R

�A(σ )

∣∣∣∣∣
≤ sup

σ

∑
x∈�

∣∣∣∣∣
∑

A�x,diam(A)>R

�A(σ )

∣∣∣∣∣
≤ ∑

x∈�

sup
σ

∣∣∣∣∣
∑

A�x,diam(A)>R

�A(σ )

∣∣∣∣∣
= |�|sup

σ

∣∣∣∣∣
∑

A�0,diam(A)>R

�A(σ )

∣∣∣∣∣
and ∑

σ exp(−∑
A⊂� �

(R)
A (σ ))∑

σ exp(−∑
A⊂� �

(R′)
A (σ ))

≤ |�|sup
σ

∣∣∣∣∣
∑

A�0,diam(A)>R∧R′
�A(σ)

∣∣∣∣∣
to conclude that{P (�(R)),R > 0} is a Cauchy net with limit

lim
R→∞P

(
�(R)

) = lim
�↑Zd

1

|�| logZfree
� = e+

ν ,

which depends only on the vacuum potential (hence on the specificationγ ).
This proves thate+

ν and e+
µ exist for all µ,ν ∈ Ginv(γ ), and depend onγ

only. Therefore,

lim
�↑Zd

1

|�| log
µ(+�)

ν(+�)
= e+

ν − e+
µ = 0,

which proves Lemma 4.2.�

A direct consequence of this lemma is that in the framework of Theorem 4.1,
e+
ν exists and Conditions C1 and C2 are true. We obtain the theorem by applying

Theorem 3.4. �

5. Examples.

5.1. The GriSing random field.The GriSing random field is an example of
joint measure of disordered systems, studied more in Section 6. It was studied
in [30] and provides an easy example of a non-Gibbsian random fields which fits
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in the framework of our theorems. The random field is constructed as follows.
Sites are empty or occupied according to a Bernoulli product measure of parameter
p < pc, wherepc is the percolation threshold for site percolation onZ

d . For any
realizationη of occupancies where all occupied clusters are finite, we have the
Gibbs measure on configurationsσ ∈ {−1,+1}Z

d
,

µ
η
β(dσ ),

which is the product of free boundary condition Ising measures on the occupied
clusters. More precisely, underµ

η
β spin configurations of occupied clusters,C are

independent and distributed as

µβ,C(σC) = 1

Z�

exp

(
β

∑
〈xy〉⊂C

σ(x)σ (y)

)
.

The GriSing random field is then defined as

ξ(x) = σ(x)η(x).

In words,ξ(x) = 0 for unoccupied sites and equals the spinσ(x) at occupied sites.
We denote byKp,β the law of the random fieldξ . It is known that for any

p ∈ (0,1), β large enough,Kp,β is not a Gibbs measure (see [30] forp < pc

and [13] for anyp ∈ (0,1)). The points of essential discontinuity of the conditional
probabilitiesKp,β(σ (0)|ξZd\{0}) are a subset of

D = {ξ : ξ contains an infinite cluster of occupied sites}.
Sincep < pc, there exists a specificationγ such that{Kp,β} = G(γ ) and such
that for the continuity points�γ , we haveKp,β(�γ ) = 1, that is,Kp,β is almost
Gibbs. Moreover, if we chooseξ0 ≡ 0 as a telescoping reference configuration,
then clearlyσ ∈ Dc impliesσ ξ0 ∈ Dc, that is, in this case,�γ ⊂ �<0

γ . Therefore,
in this example Condition C1 is satisfied as soon asµ concentrates onDc. Using
{Kp,β} = G(γ ) and

lim
�↑Zd

1

|�| logKp,β(0�) = log(1− p),

we obtain the following proposition:

PROPOSITION5.1. If µ(D) = 0, thenh(µ|Kp,β) exists and is zero if and only
if µ = Kp,β .

5.2. Decimation. Let µ+
β (resp.µ−

β ) be the low-temperature (β > βc) plus

(resp. minus) phase of the Ising model onZ
d . For b ∈ N, ν+

β (resp.ν−
β ) denotes

its decimation, that is, the distribution of{σ(bx) :x ∈ Z
d} whenσ is distributed

according toµ+
β (resp.µ−

β ). It is known thatν+
β is not a Gibbs measure [28].
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In [6] it was proved that there exists a monotone specificationγ + (resp.γ −)
such thatν+

β ∈ G(γ +) [resp.ν−
β ∈ G(γ −)]. In [5] it was proved that the points

of continuity�γ + satisfyν+
β (�γ +) = 1, that is,ν+

β is almost Gibbs. The points of
continuity ofγ + can be described as those configurationsη for which the “internal
spins” do not exhibit a phase transition when the decimated spins are fixed to beη.
For example, the all plus and the all minus configurations are elements of�γ + ,
but the alternating configuration is not.

The first part of the variational principle for(γ +, ν+
β ,M) has already been

proved in [5] (and is direct by Theorem 3.1), with a setM consisting of the
translation-invariant measures which concentrate on�γ + . Here we complete this
result by adding a second part:

THEOREM 5.2. For anyµ ∈ M+
1,inv satisfying ConditionC1 for γ +:

1. h(µ|ν+
β ) exists;

2. We have the equivalence

µ ∈ Ginv(γ
+) ⇐⇒ h(µ|ν+

β ) = 0.

We first use a lemma.

LEMMA 5.3. Expressionsµ ∈ G(γ +) andµ(�γ +) = 1 imply

ν−
β � µ � ν+

β .(5.1)

PROOF. Considerf monotone. By monotonicity ofγ + [6], for all � ∈ S,∫
f dµ =

∫
�
(γ +

� f )(ω)µ(dω) ≤
∫
�
(γ +

� f )(+)µ(dω) = (γ +
� f )(+).

Taking the limit� ↑ Z
d and usingγ +

� (·|+) goes toν+
β gives∫

f dµ ≤
∫

f dν+
β .

Similarly, usingµ(�γ +) = 1 and the expression of�γ + in [6], we haveγ +(f ) =
γ −(f ), µ-a.s. and hence∫

f dµ =
∫

γ −
� (f ) dµ ≥ γ −

� f (−),

which gives ∫
f dµ ≥

∫
f dν−

β . �

The following corollary proves Theorem 5.2 using Theorem 3.4.
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PROPOSITION5.4. 1. The equalitye+
ν+
β

= − lim�↑Zd
1

|�| logν+
β (+�) exists.

2. For anyµ ∈ G(γ +),

lim
�↑Zd

1

|�| log
µ(+�)

ν+
β (+�)

= 0.

PROOF. Statement 1 follows from subadditivity and positive correlations.
Statement 2 follows from stochastic domination (5.1) and

lim
�↑Zd

1

|�| log
ν+
β (+�)

ν−
β (+�)

= lim
�↑Zd

1

|�| log
µ+

β (+b�)

µ−
β (+b�)

= 0,

where, to obtain the last equality, we used thatµ+
β ,µ−

β are the Ising plus and
minus phases.�

REMARK 5.5. We conjecture that Condition C1 is satisfied for any ergodic
measureµ ∈ G(γ +) in dimensiond = 2. This means proving that the internal
spins do not show a phase transition, given a typical configuration ofµ on bZ

d to
the left of the origin and all+ on bZ

d to the right. Fixing these decimated spins
acts as a magnetic field, pushing the spins on the right of the origin into a plus-like
phase and the spins on the left of the origin into a plus-like or minus-like phase,
depending onµ. The location of the interface between right and left should not
depend on the boundary condition ind = 2 (no Basuev transition). However, we
do not have a rigorous proof of this fact.

6. More examples: joint measures of random spin systems. We consider
the joint measures of disordered spin systems on the product of spin space
and disorder space defined in terms of a quenched absolutely convergent Gibbs
interaction and an a priori distribution of the disorder variables. They were treated
before [13, 14] and provide a broad class of examples of generalized Gibbs
measures. A specific example of this, the GriSing field, was already considered
in Section 5.1.

First we prove that, for the same quenched potential, the relative entropy density
between corresponding, possibly different, joint measures is always zero. Next we
prove in generality that these measures are asymptotically decoupled whenever
the a priori distribution of the disorder is. The useful notion of asymptotically
decoupled measures was recently coined by Pfister [23] and provides a broad class
of measures, including local transformations of Gibbs measures, for which the
existence of relative entropy density and the large deviation principle holds. Using
these results, we easily obtain existence of the relative entropy density. Next we
specialize to the specific example of the random field Ising model in Section 6.3.
We focus on the interesting region of the parameter space when there is a phase
transition for the spin variables for almost any configuration of disorder variables.
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Here we show on the basis of [14] that the joint plus and the joint minus state for
the same quenched potential are not compatible with the same interaction potential.
In [14] it was already shown that there is always a translation-invariant convergent
potential or a possibly nontranslation-invariant absolutely convergent potential for
the corresponding joint measure. We also discuss this in more detail and sketch a
proof on the basis of [14] and the renormalization-group (RG) analysis of Bricmont
and Kupiainen [2] that shows that there is a translation-invariant joint potential that
even decays like a stretched exponential. This provides an explicit example of a
weakly (but not almost) Gibbsian measure for which the variational principle fails.

6.1. Setup. We consider disordered models of the following general type. We
assume that the configuration space of the quenched model is again as detailed in
Section 2.1 and we denote the spin variables byσ . Additionally we assume that
there are also disorder variablesη = (ηx)x∈Zd that enter the game, taking values in

an infinite product space(E′)Z
d
, where againE′ is a finite set. We denote thejoint

variablesby ξ = (ξx)x∈Zd = (σ, η) = (σx, ηx)x∈Zd . It will be convenient later also
to write simply(ση) to denote the pair(σ, η).

One essential ingredient of the model is given by thedefining potential
� = (�A)A⊂Zd , which depends on the joint variablesξ = (σ, η); �A(ξ) depends
on ξ only through ξA. We assume that� is finite range. When we fix a
realization of the disorderη, we have a potential for the spin variablesσ that
is typically nontranslation-invariant. We then define the correspondingquenched
Gibbs specificationby Definition 2.6 using the notation

µσ̄
�[η](B) := 1

Zσ̄
�[η]

∑
σ�

1B(σ�σ̄Zd\�)

(6.1)

× exp

(
− ∑

A : A∩�
=∅

�A(σ�σ̄Zd\�,η)

)
.

To keep the notation simple, we suppressed the symbol� on the l.h.s. of (6.1).
The measures (6.1) are also called more looselyquenched finite-volume Gibbs
measures. Obviously, the finite-volume summation is overσ� ∈ E�.

The second ingredient of the quenched model is the distribution of the disorder
variablesP(dη). Most of the time in the theory of disordered systems one considers
the case of i.i.d. variables, but we can and will be more general here.

The objects of interest then are the infinite-volumejoint measuresKσ̄ (dξ), by
which we understand any limiting measure of lim�↑Zd P(dη)µσ̄

�[η](dσ ) in the
product topology on the space of joint variables. Of course, there are examples
for different joint measures of the same quenched Gibbs specification for different
spin boundary conditions̄σ . In principle, there can even be different ones for the
same spin-boundary condition̄σ , depending on the subsequence.
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For all of this, think of the concrete example of therandom field Ising model.
Here the spin variablesσx take values in{−1,1}. The disorder variables are
given by the random fieldsηx that are i.i.d. with single-site distributionP0 that is
supported on a finite setH0 and assumed to be symmetric. The defining potential
�(σ,η) is given by �{x,y}(σ, η) = −βσxσy for nearest neighborsx, y ∈ Z

d ,
�{x}(σ, η) = −hηxσx , and�A = 0 else.

6.2. Relative entropy for joint measures.For the first result we do not need
the independence of the disorder field. In fact, without any decoupling assumption
onP, we have the following theorem:

THEOREM 6.1. Denote byKσ̄ and Kσ̄ ′
two joint measures for the same

quenched Gibbs specificationµ·
�[η](dσ ), obtained with any two spin boundary

conditionsσ̄ and σ̄ ′, respectively, along any subsequences�N and �′
N , respec-

tively. Then their relative entropy density vanishes; that is, h(Kσ̄ |Kσ̄ ′
) = 0.

REMARK 6.2. Note that we are more general than in the usual setup and we
do not need to assume translation invariance, not even of the defining potential�.

REMARK 6.3. This result is directly related to neither the first part nor to the
second part of the variational principle. It does not yield the first part (which will
be proved differently) because it is not clear that every measure that is compatible
with the same specification asKσ̄ ′

can be written in terms ofKσ̄ . Applied to the
random field Ising model in Section 6.3, this result will disprove the second part
of the variational principle for weakly but not almost Gibbs measures.

PROOF OFTHEOREM 6.1. We have from the definition of the joint measures
as limit points with suitable sequences of volumes,

Kσ̄ (σ�η�)

Kσ̄ ′
(σ�η�)

= limN Kσ̄
�N

(σ�η�)

limN Kσ̄ ′
�′

N
(σ�η�)

= limN

∫
P(dη̃)1η�

µσ̄
�N

[η̃](σ�)

limN

∫
P(dη̃)1η�

µσ̄ ′
�N

[η̃](σ�)
.(6.2)

Here and later we will write for short1η�
for the indicator function of the event that

the integration variablẽη coincides with the fixed configurationη on �. We have
from the finite range of the disordered potential that

sup
ση=σ ′η′ on�

∣∣∣∣∣
∑
A

(
�A(ση) − �A(σ ′η′)

)∣∣∣∣∣ ≤ C1|∂�|

for cubes� with some finite constantC1. By ∂� we mean ther-boundary of�,
wherer is the range of�. So we get that forN large enough,

exp(−2C1|∂�|)µσ̂
�[η�η̂Zd\�](σ�) ≤ µσ̄

�N
[η�η̃Zd\�](σ�)

≤ exp(2C1|∂�|)µσ̂
�[η�η̂Zd\�](σ�)
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for any joint reference configuration̂σ η̂. This gives the upper bound exp(4C1|∂�|)
on the right-hand side of (6.2) by application of the last inequalities on the
numerator and the denominator of (6.2) for the same reference configuration.

This implies for the finite-volume relative entropy an upper bound on the order
of the boundary, that is,

h�

(
Kσ̄ |Kσ̄ ′) = ∑

σ�η�

Kσ̄ (σ�η�) log
Kσ̄ (σ�η�)

Kσ̄ ′
(σ�η�)

≤ 4C1|∂�|.

The claim h(Kσ̄ |Kσ̄ ′
) ≤ lim supn↑∞(1/|�n|)h�n(K

σ̄ |Kσ̄ ′
) = 0 for (�n)n∈N

a sequence of cubes clearly follows.�

The next theorem also can be proved in a natural way when we relax the
independence assumption of the a priori distributionP of the disorder variables.
It says that the property of beingasymptotically decoupledcarries over from
the distribution of the disorder fields to any corresponding joint distribution.
Following [23], we give the following definition:

DEFINITION 6.4. A probability measureP ∈ M+
1,inv is called asymptotically

decoupled (AD) if there exist sequencesgn, cn such that

lim
n→∞

cn

|�n| = 0, lim
n→∞

gn

n
= 0

and for allA ∈ F�n , B ∈ F�c
n+gn

with P(A)P(B) 
= 0,

e−cn ≤ P(A ∩ B)

P(A)P(B)
≤ ecn.(6.3)

THEOREM 6.5. SupposeP is asymptotically decoupled with functions
gn and cn. Assume thatKσ̄ is a corresponding translation-invariant joint mea-
sure of a quenched random system, with a defining finite range potential. Then
Kσ̄ is asymptotically decoupled with functionsg′

n = gn and c′
n = cn + C|∂�n|,

whereC is a real constant.

PROOF. It suffices to show that for anyfiniteV ⊂ �c
n+g′(n)

, we have

exp(−c′
n) ≤ K(ξ�nξV )

K(ξ�n)K(ξV )
= K(σ�nη�nσV ηV )

K(σ�nη�n)K(σV ηV )
≤ exp(c′

n).(6.4)

We show only the upper bound. It suffices to show

lim sup
N

Kσ̄

�̃N
(σ�nη�nσV ηV )

Kσ̄

�̃N
(σ�nη�n)K

σ̄

�̃N
(σV ηV )

≤ exp(cN)



1716 CH. KÜLSKE, A. LE NY AND F. REDIG

for any sequencẽ�N . The quantity under the lim sup equals∫
P(dη̃)1η�n

1ηV
µσ̄

�̃N
[η̃](σ�nσV )∫

P(dη̃1)1η�n
µσ̄

�̃N
[η̃1](σ�n)

∫
P(dη̃2)1ηV

µσ̄

�̃N
[η̃2](σV )

.(6.5)

Look at the term under the disorder integral in the numerator. We have by the
compatibility of the quenched kernels that

µσ̄

�̃N

[
η�nηV η̃Zd\(�n∪V )

](
1σ�n

1σV

)
=

∫
µσ̄

�̃N

[
η�nηV η̃Zd\(�n∪V )

]
(dσ̃ )1σV

µσ̃
�n

[
η�nηV η̃Zd\(�n∪V )

](
1σ�n

)
≤ exp(2C1|∂�n|)µσ̂

�n

[
η�nη̂Zd\�n

](
σ�n

) × µσ̄

�̃N

[
η�nηV η̃Zd\(�n∪V )

](
1σV

)
,

where the inequality follows from the uniform absolute convergence of the
quenched potential for any reference configurationσ̂ η̂.

We use that

µσ̄

�̃n

[
η�n(η̃1)Zd\�n

](
σ�n

) ≥ exp(−2C1|∂�n|)µσ̂
�n

[
η�nη̂Zd\�n

](
σ�n

)
and the similar lower bound on the first disorder integral in the denominator
of (6.5) with the same reference joint reference configurationσ̂ η̂. From this we
get an upper bound on (6.5) in the form

exp(4C1|∂�n|)
∫

P(dη̃)1η�n
1ηV

µσ̄

�̃N
[η̃](σV )∫

P(dη̃1)1η�n

∫
P(dη̃2)1ηV

µσ̄

�̃N
[η̃2](σV )

.(6.6)

Last we need to control the influence of the variation of the random fields inside
the finite volumeη�n on the Gibbs expectation outside. We have that

µσ̄

�̃N

[
η�nη̃Zd\�n

]
(σV ) ≤ exp(2C1|∂�n|)µσ̄

�̃N

[
η

(1)
�n

η̃Zd\�n

]
(σV )

for any configurationsη andη(1) inside�n. This gives the upper bound on (6.6) as

exp(8C1|∂�n|)
∫

P(dη̃)1η�n
1ηV∫

P(dη̃1)1η�n

∫
P(dη̃2)1ηV

,

but this, by the property of asymptotic decoupling of the disorder field, is bounded
by exp(8C1|∂�n| + cn) and the proof of the upper bound in (6.4) is done. The
proof of the lower bound is similar.�

Applying Pfister’s theory [23], we have the following corollary:

COROLLARY 6.6. SupposeP is asymptotically decoupled and thatKσ̄ is a
corresponding translation-invariant joint measure of a quenched random system,
with a defining finite range potential. Thenh(K|Kσ̄ ) exists for all translation-
invariant probability measuresK .
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Moreover we have the following explicit formula:

THEOREM 6.7. Suppose that the defining potential�(σ,η) is translation-in-
variant and thatP is asymptotically decoupled. Suppose thatKσ̄ is a translation-
invariant joint measure constructed with the boundary conditionσ̄ . Suppose that
K is a translation-invariant measure on the product space. Denote byKd its
marginal on the disorder variablesη. Then

h(K|Kσ̄ ) = h(Kd |P) − h(K) − h(Kd)

+ ∑
A�0

1

|A|K
(
�A(ση = ·)) + K

(
lim
�

1

|�| logZσ̄
�(η = ·)

)
,

whereh(K) is the Kolmogorov–Sinai entropy(2.5).

REMARK 6.8. The fourth term has the meaning of theK expectation of the
joint energy. The last term is theK mean of the quenched pressure. Note that it is
boundary conditionσ̄ -independent, of course.

REMARK 6.9. In the case thatP is a Gibbs distribution, the existence of the
relative entropy density is obtained directly, that is, without relying on Pfister’s
theory.

PROOF OFTHEOREM 6.7. We have
1

|�|h�(K|Kσ̄ ) = 1

|�|
∑

σ�η�

K(σ�η�) logK(σ�η�)

− 1

|�|
∑

σ�η�

K(σ�η�) logKσ̄ (σ�η�),

where the first term converges to−h(K). For the second term we use the
approximation

sup
σ̄ ,σ̂ ,η̂

∣∣∣∣log
(

Kσ̄ (σ�η�)

P(η�)µσ̂
�[η�η̂Zd\�](σ�)

)∣∣∣∣ ≤ 2C1|∂�|.

First we have

− 1

|�|
∑

σ�η�

K(σ�η�) logP(η�) = 1

|�|h�(Kd |P) − 1

|�|
∑
η�

Kd(η�) logKd(η�).

The second term converges toh(Kd); the first term converges toh(Kd |P). This is
clear either by the classical theory for the case thatP is Gibbs or even independent,
or by Pfister’s theory ifP is asymptotically decoupled. Next, by definition

logµσ̂
�[η�η̂Zd\�](σ�) = − ∑

A : A∩�
=∅

�A(σ�σ̂Zd\�η�η̂Zd\�)− logZσ̂
�(η�η̂Zd\�).
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Using translation invariance of the measureK , we get that the application
of 1

|�|
∫

K(dσ� dη�) over the first sum of the right-hand side converges to

−∑
A�0

1
|A|K(�A(ση = ·)). To see that the average over the last term converges

we use the ergodic decomposition ofKd to write Kd(dη) = ∫
ρ(dκ)κ(dη), where

ρ(dκ) is a probability measure that is concentrated on the ergodic measures
on η. Fix any ergodic measureκ . Forκ-a.e. disorder configurationη we have the
existence of the limit− lim�

1
|�| logZσ̄

�(η = ·) by standard arguments [25]. The

convergence is also inL1, by dominated convergence. So we may integrate overρ

to see the statement of the theorem.�

6.3. Discussion of the first part of the variational principle for joint measures.
To discuss the first part of the variational principle, we use an explicit represen-
tation of the conditional expectations of the joint measures. For this we need to
restrict to the case thatP is a product measure. First, in the situation detailed be-
low, we prove the first part of the variational principle by direct arguments. Next,
we illustrate the criteria given in the general theory of Section 3.4 by showing that
they can be verified in the context of joint measures in the almost Gibbsian case,
giving then an alternative proof of the variational principle.

We start with the following proposition from [14].

PROPOSITION6.10. Assume thatP is a product measure. Assume that there
is a set of realizations ofη of P-measure1 such that the quenched infinite-volume
Gibbs measureµ[η] is a weak limit of the quenched finite-volume measures(6.1).
Then a version of the infinite-volume conditional expectation of the corresponding
joint measureKµ(dσ, dη) = P(dη)µ[η](dσ ) is given by the formula

Kµ[ξ�|ξ�c ] = µ
ann,ξ∂�

� (ξ�)∫
µ

ann,ξ∂�

� (dη̃�)Q
µ
�(η�, η̃�, η�c)

.(6.7)

Hereµ
ann,ξ∂�

� (ξ�) is the trivial annealed local specification given in terms of the
potentialU triv

A (σ,η) = �A(σ,η)−1A={x} logP0(ηx) w.r.t counting measure on the
product space. Furthermore, we have put

Q
µ
�(η1

�,η2
�,η�c) = µ[η2

�η�c ]exp
(−�H�(η1

�,η2
�,η∂�)

)
,

where

�H�(η1
�,η2

�,η�c)(σ ) = ∑
A∩�
=∅

(
�A(σ,η1

�η�c) − �A(σ,η2
�η�c)

)
.

According to our assumption on the measurability onµ[η], Q
µ
� depends

measurably onη�c . We fix a version of the map and define the right-hand side
of (6.7) to be the specificationγ µ. Note that for the random field Ising model, this
specification exists for all configurationsη of the random field by monotonicity.
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In this context we always have the first part of the variational principle. Note
that we do not need any further assumption about almost Gibbsianness.

THEOREM 6.11. Assume thatP is a product measure. There exists a
constantC depending only on�, P such that for anyK , K ′ ∈ G(γ µ), one has

sup
ξ

∣∣∣∣log
K(ξ�)

K ′(ξ�)

∣∣∣∣ ≤ C|∂�|.

In particular, h(K|K ′) = h(K ′|K) = 0.

PROOF. UsingK,K ′ ∈ G(γ µ), it suffices to show that we have the estimate

γ
µ
�(ξ�|ξ�c)

γ
µ
�(ξ�|ξ ′

�c)
≤ eC|∂�|,

where the constantC is independent of�,ξ, ξ ′. From the explicit representa-
tion (6.7) we obtain

γ
µ
�(ξ�|ξ�c)

γ
µ
�(ξ�|ξ ′

�c)
= µ

ann,ξ∂�

� (ξ�)

µ
ann,ξ ′

∂�
� (ξ�)

∫
µ

ann,ξ ′
∂�

� (dη̃�)Q
µ
�(η�, η̃�, η′

�c)∫
µ

ann,ξ∂�

� (dη̃�)Q
µ
�(η�, η̃�, η�c)

.(6.8)

Using the definition ofµann,ξ∂�

� and using the finite range assumption on�, we
obtain the boundec|∂�| for the first factor on the right-hand side of (6.8). The
second factor on the right-hand side of (6.8) is bounded by

(
sup
η̃�

Q
µ
�(η�, η̃�, η′

�c)

Q
µ
�(η�, η̃�, η�c)

)∫
µ

ann,ξ ′
∂�

� (dη̃�)Q
µ
�(η�, η̃�, η�c)∫

µ
ann,ξ∂�

� (dη̃�)Q
µ
�(η�, η̃�, η�c)

.

Using the same argument onµann,ξ∂�

� again, we see that the second factor is
bounded byeC|∂�|. To estimate the first factor, recall the explicit expression

Q
µ
�(η�, η̃�, η�c ) = µ[η̃�η�c ](exp

(−�H�(η�, η̃�, η�c )
))

≤ ec|∂�|µ[η̃�η�c ](exp
(−�H�(η�, η̃�, η′

�c)
))

.

Here the inequality follows from the definition ofH� and the finite range property
of �. Now use the definition of the quenched kernels and once again the finite
range of� to see that the last expectation is bounded from above by

ec|∂�|µ[η̃�η′
�c ](exp

(−�H�(η�, η̃�, η′
�c)

)) = Q
µ
�(η�, η̃�, η′

�c).

This completes the proof.�

Let us now check what can be said about the criteria for the first part of the
variational principle for joint measures. It turns out that it is natural to use the
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criteria given in Section 3.4 with a measureλ that is not a Dirac measure. Instead,
let us take any translation-invariant configurationσ 0 and putλ := P ⊗ δσ0.

First, using the arguments given in the proof of Theorem 6.7, it is simple in this
situation to see that the limit (3.14) exists and to give an explicit expression for it.

PROPOSITION 6.12. Suppose that the defining potential� is translation-
invariant. Suppose thatKσ̄ is a translation-invariant joint measure constructed
with the boundary condition̄σ . Then

eλ
Kσ̄ = −h(P) + ∑

A�0

∫
P(dη)

�A(σ 0, η)

|A| +
∫

P(dη) lim
�↑Zd

1

|�| logZσ̄
�[η]

exists.

Put

Hµ := {η ∈ H, η �→ Qµ
x (η1

x, η2
x, ηZd\x) is continuous∀x,η1

x, η
2
x}.

Then we have thatση ∈ �γ µ ⇔ η ∈ Hµ. Assume thatP[Hµ] = 1. Then any
joint measure is almost Gibbs. This was pointed out and discussed in [13, 14] and
is apparent from the above representation of the conditional expectation.

Let us remark that wheneverK is a translation-invariant probability measure on
the product space andKσ̄ is any joint measure with marginalKσ̄

d (dη) = P(dη), we
have thatKd(dη) 
= P(dη) ⇒ h(K|Kσ̄ ) > 0. This is clear from the monotonicity
of the relative entropy w.r.t. to the filtration (see [7], Proposition 15.5c).
So h(K|Kσ̄ ) = 0 would imply that h(Kd |P) = 0, which again would imply
Kd = P by the classical variational principle applied to the product measureP.
So, given a joint measureKσ̄ , the class of interesting measures is reduced to those
that have the sameη-marginal.

PROPOSITION6.13. Suppose thatP is a product measure and thatγ µ is the
above specification for a translation-invariant joint measureKµ. Suppose that
P(Hµ) = 1. TakeK a translation-invariant measure with marginalKd = P. Then
ConditionC1′ holds for the measureK for the above choice ofλ.

PROOF. We have to check thatλ(dσ 1dη1)K(dσ 2dη2) a.s. a configura-
tion σ 1

<0η
1
<0σ

2≥0η
2≥0 is in �γ µ , where for a configurationσ we have written

σ<0 = (σx)x<0 and so forth. This is equivalent toη1
<0η

2≥0 ∈ Hµ for P ⊗ P-a.e.η1,
η2, since bothλ andK have marginalP, and the later is immediate because it is a
product measure.�

To illustrate the general theory of Section 3.4 we note the following corollary:
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COROLLARY 6.14. Suppose thatP is a product measure and thatγ µ is the
above specification for a translation-invariant joint measureKµ. Suppose that
P(Hµ) = 1. TakeK ∈ Ginv(γ

µ) with marginalKd = P. Then ConditionC2′ of
Theorem3.10is true and hence

h(K|Kµ) = lim
�

1

|�|
∫

P(dη) log
K(σ 0

�η�)

Kµ(σ 0
�η�)

= 0

for any translation-invariant spin configurationσ 0.

6.4. Random field Ising model: failure of the second part of the variational
principle. Let us now specialize to the random field Ising model. For all that
follows we denote byK+(dσ dη) = P(dη)µ+[η](dσ ) the plus joint measure. Here
we clearly mean byµ+[η](dσ ) = lim�↑Zd µ+[η](dσ ) the random infinite-volume
Gibbs measure on the Ising spins. The limit exists for any arbitrary fixedη, by
monotonicity. Similarly we writeK−(dσdη) = P(dη)µ−[η](dσ ). In this situation
we have the following proposition:

PROPOSITION6.15. Assume that the quenched random field Ising model has
a phase transition in thesense thatµ+[η](σx = +) > µ−[η](σx = +) for P-a.e. η
and for somex ∈ Z

d . Then the joint measuresK+ andK−, obtained with the same
defining potential, are not compatible with the same specification.

REMARK 6.16. We already know by Theorem 6.1 that the relative entropy
h(K+|K−) is zero. Thus we prove here that the second part of the variational
principle is not valid in the case of phase transition for the quenched random field
Ising model.

REMARK 6.17. In the so-calledgrand ensemble approachto disordered
systems proposed in the theoretical physics literature [22], it is implicitly assumed
that the potential for the joint measure always exists and does not depend on
the choice of the joint measure for the same defining potential. Here we give
a full proof that nonunicity of the joint conditional expectation (and necessarily
of the corresponding joint potential) really does happen, despite the fact that the
joint measures are always weakly Gibbs. It is thus an important example of a
pathological behavior in the Morita approach in a well-known disordered system
in a translation-invariant situation. For a discussion of the problems of the Morita
approach within the theoretical physics community, see [11, 12, 29].

PROOF OFPROPOSITION6.15. The proof relies on the explicit representation
of Proposition 6.10 for the conditional expectations ofK+ (resp.K−) in terms
of µ+ (resp.µ−). We show that

∫
K+(dξxc)K−

x (·|ξxc) 
= K+(·). Let us evaluate
both sides on the eventB := {ηx = +,

∑
y : |y−x|=1σy = 0}.



1722 CH. KÜLSKE, A. LE NY AND F. REDIG

Using Proposition 6.10, it is simple to see that we have, in particular, for the
local eventηx = + for any configurationσ with

∑
y : |y−x|=1σy = 0, the formula

K+(ηx = +|σxcηxc) =
(

1+
∫

µ+[ηx = −, ηxc ](dσ̃x)e
2hσ̃x

)−1

=: r+(ηxc ).

So we get that

K+(B) =
∫

P(dη̃)µ+[η̃]
( ∑

y : |y−x|=1

σy = 0

)
× r+(η̃xc ).

Definer−(ηxc ) as above, but with the Gibbs measureµ−. Then we have∫
K+(dξxc)K−

x (·|ξxc)(B) =
∫

P(dη̃)µ+[η̃]
( ∑

y : |y−x|=1

σy = 0

)
× r−(η̃xc ).

Now it follows from our assumption that forP-a.e. configuratioñη, we have the
strict inequalityr+(η̃xc ) < r−(η̃xc ). However, this shows that both measures give
different expectations ofB and finishes the claim.�

In the following discussion, we show from the weakly Gibbsian point of view
that K+ and K− have a “good” (rapidly decaying) almost surely convergent
translation-invariant potential. This strengthens the results in [14], where the a.s.
absolutely convergent potential is not translation-invariant.

THEOREM 6.18. Assume thatd ≥ 3, β is large enough, the random fieldsηx

are i.i.d. with symmetric distribution that is concentrated on finitely many values
and thathPη2

x is sufficiently small. There exists an absolutely convergent potential
that is translation-invariant for the plus joint measureK+(dσ dη) for sufficiently
low temperature and small disorder, and it decays like a stretched exponential.

PROOF. Applying Remark 5.5 that relies on Theorem 2.4 of [14], we have the
following fact.

FACT (proved in [14]). Assume thatKµ(dξ) = P(dη)µ[η](dσ ) is a joint
measure for the random field Ising model. Denote the disorder average of the
quenched spin–spin correlation by

c(m) := sup
x,y : |x−y|=m

∫
P(dη)|µ[η](σxσy) − µ[η](σx)µ[η](σy)|.

Suppose we give ourselves any nonnegative translation-invariant functionw(A)

giving weight to a subsetA⊂Z
d . Then there is a potential̄Uµ(η) on the disorder

space that satisfies the decay property

∑
A : A�x0

w(A)

∫
P(dη)|Ūµ

A(η)| ≤ C̄1 + C̄2

∞∑
m=2

m2d−1w̄(m)c(m)
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if the right-hand side is finite. Herēw(m) := w({z ∈ Z
d; z ≥ 0, |z| ≤ m}), where

≥ denotes the lexicographic order. ConstantsC̄1 andC̄2 depend onβ,h. If Kµ is
translation-invariant, then̄Uµ(η) is translation-invariant, too. The total potential
U triv(σ, η) + Ūµ(η) is a potential forKµ. HereU triv is a potential for the formal
Hamiltonian−β

∑
<i,j> σiσj − h

∑
i ηiσi − ∑

i logP0(ηi).

It was already stated in [14] that we expect a superpolynomial decay of the
quantityc(m) with m whenm tends to infinity. We remark first that it was already
stated and proved in [2] that|µ[η](σxσy) − µ[η](σx)µ[η](σy)| ≤ C(η)e−Cβd(x,y)

with a random constantC(η) that is finite for P-a.e. η. The problem is that
integrability of the constant is not to be expected. Unfortunately, Bricmont and
Kupiainen [2] did not explicitly control the decay of the disorder averagec(m).
Now we reenter their renormalization group proof and sketch how stretched
exponential decay is obtained forc(m). Obviously, we cannot repeat the details
of the RG analysis here. For a pedagogical exposition of the RG for disordered
models, see also [1], where the example of an interface model is treated.

COROLLARY 6.19 (from [2]). There is an exponentα > 0 such that for allm
sufficiently large, we have

c(m) ≤ exp(−mα).(6.9)

Sketch of proof based on RG.For the first part we follow [2], Section 8.3,
page 750. Fixx andy. We are interested in sending their distance to infinity. Let
us denote byH⊂Z

d the half spaceH := {z ∈ Z
d, e · z ≤ a} for a > 0, wheree is

a fixed unit vector. Let us denoteµH [η] := lim�↑H µ+
�[η]. By monotonicity we

have for any configuration of random fieldsη that the quenched expectation of the
spin at the origin in the measureµ+

H [η] is greater than that in the measureµ+[η].
Repeating the FKG arguments given in the first steps of [2], Chapter 8.3, it is

sufficient to show stretched exponential decay of the quantity∫
P(dη)

(
µ+

H [η](σ0) − µ+[η](σ0)
)

as a function ofd(Hc,0) to prove (6.9). As in [2] we denote byEH the “good”
event in spin space in all ofZd that there is no Peierls contour around 0 that touches
the complement ofH . Then, in the same configurationη, we have that the right-
hand side is bounded by

µ+
H [η](σ0) − µ+[η](σ0) ≤ µ+[η](Ec

H ).

Now, we can always estimate this expectation as a sum over probabilities of Peierls
contours

µ+[η](Ec
H ) ≤ ∑

γ : intγ�0,intγ∩Hc 
=∅

µ+[η](γ ).
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The problem is that there is no uniform Peierls estimate for all configurations of
the disorder. There is, however, a “good event” in disorder spaceG = GH such
that there really is a Peierls estimate for all the “long” contours that appear in
the above sum. TheP probability of the complement of this event is small and
controlled (in a very nontrivial way) by the renormalization group construction.
Forη ∈ GH we really have that∑

γ : intγ�0,intγ∩Hc 
=∅

µ+[η](γ ) ≤ exp
( − Cβ d(Hc,0)

)
.

This is stated as (8.34) in [2]. So we have that∫
P(dη)µ+[η](Ec

H ) ≤ P(Gc) + exp
(−Cβ d(Hc,0)

)
.

From the construction of the renormalization group in Bricmont–Kupiainen
we can see thatG is expressable in the so-called bad fieldsNk

x(η) in the form
G = {η,Nk

x(η) = 0 ∀ |x| < L,∀ k > (logd(x,Hc)/logL)}. L is a fixed finite
length scale (the block length suitably chosen in the construction of the RG).
It appears here just as a constant. Thex ∈ Z

d runs over sites in the lattice and
k is a natural number that denotes thekth application of the renormalization
group transformation. The renormalization group gives the probabilistic control
of the form

P
(
Nk

x(η) 
= 0
) ≤ exp(−Lr1k)

with somer1 > 0 (this follows from [2] Lemmas 1 and 2, page 563) and so we have

P(Gc
H ) ≤ Ld

∑
k>(logd(0,Hc)/logL)

exp(−Lr1k) ≤ Ld exp
(−d(0,Hc)r2

)

for d(0,Hc) sufficiently large withr1 > r2 > 0. This proves the claim.�
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