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1. Introduction 

There is by now a vast analytic theory of Mathieu's equation 

5i + (a + bp(t))x = O, p(t) -- p(t + 2~), (1) 

where a and b are real parameters. Apparently, the first stability diagram was 
drawn in the classical paper by B. vaN DER POL & M. J. O. STI~UTT [-15]. Since then 
many papers and textbooks have appeared on the subject; we mention J. J. STOKER 
[-13], J. MEIXNER & F. W. SCH~FKE [12], D. M. LEVY 8~ J. B. KELLER [-11], M. I. 
WEINSTEIN & J. B. KELLER [,16, 17], J. POSCHEL & E. TRUBOWlTZ [-9] and V. I. 
ARNOLD [-3, 5, 6]. This literature contains extensive estimates on the order of 
tangency of resonance tongues and the behavior of stability boundaries at infinity. 

A full understanding of the stability diagrams is still lacking. For instance, the 
appearance of instability pockets in some cases (see Figure 1; cf. [15]) calls for 
a geometric explanation. It should be noted that this phenomenon does not occur 
in the classical Mathieu case; cf. [12]. For a preliminary study near resonances 
using singularity theory, we refer to AFSHARNEJAD [, 1]. Related bifurcational aspects 
of nonlinear perturbations of Mathieu's equation near resonances were studied by 
BROER & VEGTER [7]. The global geometry of the symplectic group was used for 
a stability proof of a Hill equation in LEVI [10]. 

We introduce the main object of study of this paper. 

Definition 1. Hill 's map is given by H: (a, b) ~ Pa, b, where Pa, b, is the Poincar6 (or 
period) matrix of (1). Thus H maps ~2 into SP(1), the 3-dimensional space of 
symplectic 2 x 2-matrices. 

Our driving motivation is to give a global geometric picture of Hill's map. This 
geometrical approach to this classical problem turns out to be very fruitful, giving 
a transparant explanation of the nature of the stability domains in the parameter 
plane. 

Let us briefly describe our approach. Stability regions in the (a, b)-plane shown 
in Figure 1 are the preimages under Hill's map H of the stability domain in the 
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Figure 1. Stability diagram of Hill's equation when p is a square wave; cf. [15]. The diagram 
is symmetric with respect to the a-axis. Unstable regions are shaded. 

symplectic group, Figure 3. The boundary of the stability domain in the neighbor- 
hood of _+ I consists of a pair of cones, giving rise to the resonance tongues 
mentioned earlier. Restriction to the reversible case of even p (i.e., with 
p ( -  t)=-p(t)) reduces the range of H to a 2-dimensional cylinder inside the 
symplectic group; cf. Figure. 3. Our  goal is to determine how H wraps and folds the 
(a, b)-plane around this cylinder. 

The map H is studied by means of a decomposition H = rc o//, where/ / :  ~2  ~ S 
is a diffeomorphism to a surface S c ~3  and where 7c is a projection onto N2. The 
behavior of H now is completely described by the shape of S and in particular by the 
way in which ~ projects S. This approach is applied to two examples. 

We conclude this introduction by summarizing our results. In Section 2 some 
facts about  reversible symplectic 2 x 2 matrices are briefly reviewed. 

In Section 3 we study a reversible deformation of the Mathieu equation at the 
second resonance (a, b) = (1, 0), depending on a parameter  e. Local stability dia- 
grams for e ~ 0 are given in Figure 3. These diagrams can be geometrically 
understood by putting Hill's map H = H~ into a Whitney normal form, which is 
a 1-parameter family of folds. This naturally gives a decomposition H = ~ o//;  cf. 
Figure. 5: This approach, among other things, explains the following aspects of the 
stability diagrams in the Figure 3: 

�9 For  ~ = 0 the boundaries have a nondegenerate tangency, which changes to 
a transversal crossing for e 4= 0, thereby creating an instability pocket. This is 
explained by the fact that for e = 0 the surface S folds (under the projection ~) 
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above the matrix I; for e :# 0 the fold line moves away from I, which then is 
doubly covered by S in a diffeomorphic way. 

�9 This geometry is persistent under C2-small reversible perturbations of the 
family. Any LP-small change of q(t) in the class of even periodic functions 
leads to C2-small perturbations of H. 

In Section 4 we consider Hill's equation when p is a square wave: 
54 + (a + b sgn cos t )x  = 0. We explain the geometry of the whole stability diagram 
shown in Figure 1; cf. VAN DZR PoI. & STRUTT [15]. Note that now the instability 
pockets have a more complicated combinatorial structure. Again we decompose 
Hill's map H = n o H, with H: N2 ~ S c N3 a suitable diffeomorphism: see 
Figures 2 and 7. In order to keep track of all resonances (a, b) = (�88 2, 0) we replace 
the cylinder of reversible symplectic matrices by its covering plane. The (shaded) 
instability domains antiproject to shaded regions of S which, in turn, are diffeomor- 
phic to the instability domains in the (a, b)-plane. Here is a partial list of properties 
made transparent by this picture: 

�9 Stability boundaries meet transversally at odd resonances and quadratically 
at even resonances. 

�9 Instability boundaries meeting at the nth resonance have n intersections, 
counting multiplicity, thereby enclosing the instability pockets. This occurs 
because the antiprojection line of the nth resonance has exactly n intersection 
points with S, counting multiplicity. 

�9 This property persists under LP-small reversible perturbations of Hill's equa- 
tion. The transversal intersections mentioned above persist, while the quad- 
ratic ones are contained in a family of Whitney folds of Section 3. 

2. Sympleetie reversible matrics 

Let us consider Hill's equation 

5d + q( t )x  = O, q(t) = q(t  + 2n) 

which is equivalent to the time-periodic linear system 

= Q ( t ) z ,  

where 

(2) 

(3) 

(x) l0 z :=  2 '  Q:= - q  

Let us denote the Poincar6, or period, map of system (3) by P: z It = o ~ z It= 2~. We 
recall that P belongs to the symplectic group Sp(1) of 2 x 2 matrices with de tP  = 1; 
see [4]. 

It is well-known that the symplectic group Sp(1) topologically is an open, solid 
torus; see GELFAND 8r LIDSKII [8]. There are several ways to prove this. One 
method, following [8], is to use a polar decomposition P = O H  into the orthogonal 
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Figure 2. The surface S associated with Hill's equation when p is a square wave. Shaded 
parts of S in the right-hand figure project onto domains of unstable matrices. 

and the symmetr ic  factors, and to observe that  the former  form a circle while the 
latter form a disk. 

An al ternative way to see that  Sp(1) ~ S 1 x R 2 is to write 

U+Z vq-w~ 
P =  

- v + w  u - z /  

and to observe that  det P = 1 amoun t s  to 

u 2 + v 2 = 1 + w 2 + z 2. (4) 

The last equat ion describes a hyperbolo id  in R 4 diffeomorphic  to S 1 x R 2, i.e., an 
open solid torus. The stable matrices,  i.e., the ones with eigenvalues in 
$ 1 \ { -  1, + 1}, are character ized by I t rPI  < 2 and therefore by lu] < 1. The corres- 
ponding  regions are indicated in Figure 3. 

The  following wel l -known propos i t ion  is simple to check. 

Proposition 2 (Reversible symplectic matrices). I f  q ( -  t) =- q(t), the system is re- 
versible, i.e., its Poincar~ map satisfies P R P  = R, where R = diag(1, - 1). In the 
form (4) this is equivalent to z = O, giving the characterization 

( u v + w )  v2 w2" P = , u 2 + = 1 + (5) 
- - v + w  u 

F r o m  now on, by SR(1) we denote the space of reversible symplectic 2 x 2- 
matrices. SR(1) is paramet r ized  by vectors (u, v, w) satisfying the equat ion in (5) 
const i tut ing a 1-sheeted hyperboloid;  see e. Figure 3. We define the polar  angle 
~._.~arg(u + iv) on the covering plane SR(1). The  stability boundar ies  l u[ = 1 in 

SR(1) cor respond to the curves w = __ tan(~o - kn), k = 1, 2 , . . . .  
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Figure 3. Geometry of the symplectic group and of its reversible subset. 

Remark. If qb(t) = q_b(t - c), for some constant c, where b is a parameter, then the 
Poincar6 matrices Pb and P_ b are similar, and thus share stability properties. 

As an application of this remark for the equation 

5/+ (a ~- b cos t + e cos 2t)x = O, 

the stability diagram in the (a, b)-plane for any fixed e is symmetric under reflec- 
tions in the a-axis. Notice that e = 0 is the classical Mathieu case. 

3. Local creation of an instability pocket by folding 

3.1. A reversible perturbation o f  Mathieu's equation 

We study the structure of Hill's map in the reversible perturbation of Mathieu's 
equation: 

2 + (a + b(cos t + ~cos2t))x = 0. (6) 

Near the first resonance (a, b ) =  (�88 0), the situation is qualitatively as in the 
Mathieu case: the stability boundaries meet transversally. The first interesting case 
arises near the second resonance (a, b) = (1, 0); for stability diagrams cf. Figure 4. 
Here H0 turns out to have a fold (see Figure 5) where the e-dependence of H~ is 
sketched as well. A detailed description of H~ is given below. 

Theorem 3 (Hill's map near second resonance). Hill's map H~ of(6) in the coordi- 
nates ((p, w) on SR(1) is 9iven by 

1 2 ~o = - ~1 + ~ + c (~ )~  + o (1~?) ,  c(e) = ~ + ~ 2 ,  
(7) 

1 2 w = - � 8 9  - � 8 8  + 2 ~ 2  + o ( t ~ ? ) ,  

where (/~1, #2) = �89 b) - (1, 0)). 
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Figure 4. Stability diagrams of a reversible perturbation of Mathieu's equation near the 
second resonance as ~ passes through zero. 
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Figure 5. Creation of an instability pocket by folding. 

Here and elsewhere the O-estimates are uniform in e, for e in a sufficiently small 
ne ighborhood of 0. This theorem implies the geometry of Figure 3. 

Corollary 4 (Asymptotic description near  second resonance). 
1. For a = 0 the stability boundaries at (a, b) --- (1, 0) have a nondegenerate tangency. 
2. For e 4= 0 the stability boundaries have two transversal intersections and an 
instability pocket. 
3. The stability boundaries at (a, b) = (1, 0) are given by 

a = 1 - �89 + ( ~  - ~ e 2 ) b  2 + O(b3), 
(8) 

a = 1 + �89 - ( ~  - ~ , 2 ) b 2  + O(b~) .  

4. The fold line oJH~ near (a, b) = (1, 0) is given by 

b = a -  ~ ( a -  I) + O ( ( a -  1)2). (9) 

Proof.  We prove the statements of bo th  theorem and corollary by analyzing the 
local behavior  of our  1-parameter family of Hill's maps 

H~: (a, b ) ~  2 ~-~ Pa, b;~ESR(1). 
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Consider the time-dependent Hamiltonian of (6), given by 

F~(x, y, t; a, b) = l y 2  + �89 + b(cos t + 8 cos 2t))x 2. 

By a repeated averaging process, one can obtain an almost autonomous, reversible 
normal form 

F~(x, y, t; p,) = �89 2 + y2)  + �89 _ x2)  + O(Ip,I  0~ 

for this. Here p, = (a - 1, b). For details see BROER & VEGTER [7]. We define the 
corresponding system matrix in sp(1) by 

then Hill's map He(p,) is given by H~(p,) = exp 2rcL~(p,) + O(]p,]~). Again by [7] we 
have 

E~(# )  = �89 - 1) - ~ (a  - -  1) 2 - -  �88189 + 1%682)b 2 + o(Ip,?), 
(11) 

(Pc(P,) = - �88 + ~ 8 ( a  - 1) + slb + O(Ip,12) .  

These formulae are obtained by averaging twice. 
The exponential map 

A ~ exp27cA (12) 

is a local diffeomorphism sp(1) --, Sp(1), near A = 0. We use this as a local chart, 
replacing p, ~ He(p,) by its logarithm 

p , E ~  2 ~ L~(p,)esp(1).  

The reversibility condition P R  = R P -  a (see Proposition 2) translates to its infini- 
tesimal version L R  = - R L ,  as can be readily checked. If, in the 3-dimensional 
vector space sp(1) = s/(2) of trace-zero matrices, we consider the ordered basis 

{( 010) ,(0110) ' ( ;  o)} 
with respective coordinates (4, t/, ~), then the space st(l) of infinitesimally reversible 
matrices is exactly the plane ~ = 0. Moreover, the domain of stable matrices in 

= 0 corresponds to [41 > I t/I. These statements follow by direct computation. 
After these preliminaries, we can express the planar map p  ̀~ ~2 ~_~ L~(#) ~ st(l) 

in the coordinates a, b, 4 and t/. Indeed, by (10) and (11), this map is given by 
= E~(p`), t / =  b~be(#), or more explicitly by 

�89 1) - ~-(a 1) 2 1 1 . . . .  ~(~ + l-!~e2)be + O(lp`13), 
(13) 

t /=  - �88 + ~ ( a -  1)b + ~b 2 + O(Ip,13). 

For the Jacobian determinant of (13) we find 

~(~' q) = - �89 + f s ( a  - 1) + �89 + o(Ip,2), 
~?(a, b) 
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yielding the fold line (9). Also the stability boundaries, determined by ~ = + t/, or 
equivalently by E = + b~b, are easily seen to have the form (8). Moreover, we 
compute the Le-image of the fold line (9) as given parametrically by 

1 I. = - ~(~ + ~e2)52 + �89 + 52(�89 + ~ 6 e z ) ) ( a  - 1) + O(la - 112), 
(14) 

= - ~52  - ~ 5 2 ( a  - 1) + O ( l a  - 112). 

Finally, we easily check t~he following (local) relations between the coordinates (4, ~/) 
in sr(1) and (cp, w) in SR(1) (see (12)): 

(P(~, ~/) = -- ~ + 0(1(4, q)13), 

w G  ~) = ~ + o(1(4, ~)?). 

From this the proofs of Theorem 3 and Corollary 4 are straightforward. [] 

3.2. A local universal model for the Hill map family He 

To better understand the family He we bring it into a Whitney normal form by 
changing variables in both range and domain as well as reparametrizing 5. Such 
a compound transformation is referred to as a left-right equivalence; for example, 
see [14]. Most importantly this serves to establish the qualitative persistence of 
Theorem 3 in this Hamiltonian reversible setting. As a background for this kind of 
approach; for example, see ARNOLD [23. 

More formally, two families Me and Fe of maps are left-right equivalent if there 
exist diffeomorphisms (rife, ~b~) as well as a reparametrization p(5) making the 
following diagram commute. 

( ~ ,  o) F~ -, ( ~ ,  o) 

(~2, o) Mo(% ( ~ ,  O) 

Theorem 5 (A Whitney normal form). Within the class of all local C 2 1-parameter 
families of planar maps that fix the origin, there exists a C2-neiyhborhood of the 
family H~(a,b), all elements of which are left-right equivalent to Me: 
(4, t/) e (.~2, 0) ~ (4, q2 _ 25t/) e (N2, 0). Under this equivalence, stability boundaries 
transform into curves transversal to the image of the fold line. 

Proof. By quadratic left-right equivalence we can bring the lower-order terms of(7) 
into the form M~. The following geometric properties of (7) enable us to do this. 

1. Both the fold line and its image are tangent to the horizontal axis, while the 
stability boundaries have a nondegenerate (quadratic) tangency. 

2. The fold line, as a function of 5, moves with positive speed. 
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Figure 6. Opening of an instability pocket under non-reversible perturbation of Mathieu's 
equation near the second resonance. 

Moreover, the transversality of the stability boundaries to the image of the fold line 
turns out to be preserved under this equivalence. By a parameter-dependent 
version of Whitney's theorem (cf. BROCKER & LANDER [14]), the higher-order terms 
can be removed. Since the properties 1 and 2 are C2-open, the family He is 
structurally stable under left-right equivalence with normal form in Me. [] 

In Figure 5, we show the decomposition He = rc o He. The surface S~ c N? 3 is 
given by the parametrization H~: (3, 17) ~ (~, 17, t/2 - 2~t/), while ~: Se --* SR(q) 
projects onto the first two coordinates. For  e =~ 0 the map He folds the parameter 
plane along a line, doubly covering the half-plane of SR(1) containing I. The image 
of the fold line consists of the points above which 7c fails to have maximal rank. 

In general such a decomposition of a 2-dimensional map involves its graph, 
which is a surface in ~4. In the present case, however, this surface can be embedded 
in N3. 

Remarks.  i. It is unclear whether the left equivalences 7Je can be made to respect 
the 'cross' ~ = + t/. The fact that for e = 0 only three lines through the origin are 
involved gives some hope for this. 
ii. An example with the coefficient function p(t) = cos t + el cos 2t + e2 sin 2t per- 
turbs away from the reversible setting. Now the image space is 3-dimensional and 
folding no longer is generic. For  e2 = 0 we still are in the above, reversible setting, 
with the stability diagrams of Figure 4. For  e2 > 0, however, a corresponding 
stability diagram is shown in Figure 6. 

Here, in the (a, b)-plane we consider the level curves of the 2-parameter family of 
~b 2 functions A81,~2 = det L~I, 82 = EzS~,e2 - -  b 2 ]  8~,e2] �9 Indeed, the zero level of A~ 1, 82, 

which always contains the resonance (a, b ) =  (1, 0), exactly gives the stability 
boundaries. Instead of (1 1) we now have 

E~(#) . . . . .  �89 1) ~(a 1) 2 ~(~1 ~ + ~ ( e ~  + e~))b 2 + 0(1~13), 

(b~(tt) = - �88 + ~ e l ( a -  1) + �89 + i(�88 - � 8 9  1)) + 0(1#12), 
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with q~ complex-valued. Applying singularity theory to this, we find a normal form 

Here ~ ~ el + e2 z and v ~ - (e~ + e2), while e = a - 1 + 0(I/~12) and fi = b. The 
origin (~, fi) = (0, 0) for all parameter  values is still a critical point in the zero level 
set. In the parameter  region of interest to us, this is a saddle point. Moreover, the 
function A~, v here has one more saddle point. The point is that the levels of these 
saddles coincide for ez = 0, while they do not for e2 �9 0. This explains the diagrams 
shown in Figure 6. 
iii. At the third resonance (a, b ) =  (9, 0) the stability boundaries of Mathieu's 
equation have third order of contact. Here a local analysis of (1) with the 2- 
parameter  deformation p(t) = cos t + ~ cos 2t + ~ cos 3t of coefficient functions is 
likely to reveal a family of Whitney cusps. A formula manipulator  would be helpful 
here. 

4. Geometry in the large of the Hill equation when p is a square wave 

In this section we consider the Hill equation 

5i + (a + bsgncost)x  = 0, (15) 

i.e., equation (1) with p(t) = sgn cos t. Our  aim is to describe the global geometric 
picture of Hill's map H: (a, b) ~ Pa, b. The diagram is symmetric under reflection in 
the a-axis, by the remark following Proposit ion 2. 

4.1. Geometric picture a summary 

We consider the Hill map H: R 2 ~ SR(1) associated with the Hill equation (15). 
This map wraps and folds the quadrant  

Q := {(a, b)eR2: a > Ibl} (16) 

around the cylinder SR(1). This quadrant  contains all the interesting parameter  
values of (15). In order to unwrap its image, we consider a l i f t / t  to the covering 
plane SR(1) ~ R 2. This lift still fails to be 1 : 1, due to the 'folding' part: In fact, the 
analysis below shows that it has infinitely many  fold lines and has a transcedental 
nature. 

We give a decomposition H = ~ o H into a diffeomorphism /7 of Q onto 
a smooth surface S c N3 and a projection n onto the horizontal plane in ~3: 

/4: Q ~ S c ~3  & SR(I). (17) 

Here ~ is the (skew) projection in the direction (1, 0, - 2), as in Figure 7. The 
surface S and the map H are specified in Proposition 8 below. Postponing the 
formulas, we give the geometric corollaries. We show how the properties of the 
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Figure 7. A fundamental piece of the surface S and an instability pocket of Hill's equation 
where p is a square wave. The shaded part of S projects onto the shaded instability domain in 

SR(1). 

stability d i ag ram ment ioned  in Section 1 (also, see Figure 1) are encoded in Figures 
7 and. 2. 

Referring to Propos i t ion  2, we see that  the point  (re o H)(a, b) = ((p,w) gives the 
coordinates  of  the image under  Hill 's m a p  

/ 4 ( a , b ) =  - v + w  u ' 

where u and v satisfy u 2 + v z = 1 + w 2, and where cp = arg(u + iv). We denote  the 

coordinates  in R 3 - SR(1) x R by (~o, w, T). F o r  any  k, let R~ be the ruled surface 
in N 3 =  {(qo, w, T)} ob ta ined  by 7r-antiprojection of the stability b o u n d a r y  
w = _+ tan(cp - krc). Also let rk = (~rc, 0, krc) and ak, m = (mrr, 0, 2(k - m)Tr), 
m = 1, 2 , . . . ,  k - 1. No te  that  rk = ak, 1/2k for k even. All this is shown in Figure 2. 

Theorem 6 (Geomet ry  of the surface S). The surface S, which is the image under the 
dif feomorphism/7: Q ~ S ~ ~ 3  = {(~o, w, T)}, has thefol lowin9 properties. 

1. S intersects the plane w = 0 alon9 the vertical straight lines (p = mTz, w = O, 

m = 1, 2 . . . .  , as well as alon9 the straight line T = 2q), w = O. These  lines 
intersect at the points rzm: S is everywhere transversal to w = O, except  at those 
points. 

2. For any f i xed  k E.A/~ the intersection S n R ~  contains a piecewise analytic 
curve ~3~. The  two curves 0~ and 0~ intersect at ak, m, m = 1, 2 . . . .  , k - 1, 
and at rk. 

3. The projection re f rom S is a diffeomorphism near r, for  n odd and has a fo ld  at 
r, f o r  n even. Moreover,  the estimates of  ARNObD [4] on the sharpness o f  the 



236 H. BROER & M. LEVI 

resonance tongues are recovered: 

l z  2 b a = ~n  + + o(b) for  odd n, 
ritz 

1 2 4bZ  a = ~ n  + n ~  + o ( b  2) for  evenn .  

A proof is given below. Theorem 6 implies 

Corollary 7 (Properties of stability regions in the parameter plane). The two 
boundaries of  the stability regions which meet at the nth resonance have exactly 
n points o f  intersection, counting multiplicity. For n odd, n o f  these intersections are 
transversal, yielding n distinct points and at least n + 1 instability pockets. For 
n even, the two boundary curves have a nondegenerate quadratic tangency at the 
resonance, while the remaining n - 2 intersections are transversal, yielding at least 
n instability pockets. 

Remarks. i. The existence of n intersections (counting multiplicity) between the 
boundaries of the nth instability persists under U-small reversible perturbations of 
Hill's equation with p a square wave. 
ii. Under any U-small reversible perturbation, the quadratic tangencies at 
rn = an, n/2, for even n, are contained in a fold family described in the previous 
section, in general creating an extra instability pocket. 
iii. If the transversality of the two surfaces were shown, it would follow that 0~ are 
smooth curves. In that case, the term 'at least' in Corollary 7, concerning the 
numbers of instability pockets, can be replaced by 'exactly'. Although transversal- 
ity is not easy to establish analytically, it is strongly suggested by numerical 
evidence. 

4.2. Decomposiiton o f  Hill 's map 

The first step of our analysis of (15) is a rescaling of time, with the aim of making 
the phase flow a Euclidean rotation for half the period. Setting 

T 
T :=  ~ t, 

where T is a parameter, turns (15) into 

x" + iF)  u-+bsgnc~ x=0 

We now choose T such that 

- -  ( a + b ) = l  (18) 



and denote 

Geometrical Aspects of Stability Theory for Hill's Equations 237 

/21r\~T)2(a_b) =: B. (19) 

The old parameters a and b have been replaced by B and T, given by (18) and (19), 
or, more explicitly, by 

a - b  
B -  b' T = 2 ~ x / a + b .  (20) a +  

Renaming r back to t, we obtain the following equivalent form for Hill's equation 
(15): 

{;  2,1 Yc + p(t)x = O, p(t) = otherwise. 

We take B > 0 and T > 0, which in the (a, b)-plane gives the restriction to the 
quadrant Q = {(a, b) e R 2 : a > I bl }. Our goal now is to decompose the transformed 
Hill map H: (B, T) ~-~ PB, r. 

% 
Proposition 8. The lift ~I: Q. ~ SR(1) = {q0, w} is a composition [I = 11 o 7c. The 
diffeomorphism 1I is given by 

(B, T) ~ (~, w, T), 

where 

T 1 . T 1 . T 
I t= e o s ~ - ,  v =  ~ ( ~ - I - ~ ) s l n ~ ,  w =  ~ ( ~ / - - ~ ) s l n x ~ -  , 

(22) 

with 

where (cos  (cos   
R~ = _ s i n ~  c o s e /  Pz = _ , , ~ s i n x / ~ 2  r cosx/~2r ]. 

Writing P2 in the coordinates (u, v, w) of (5) gives (22). 

P = P1 o P2 o P1, (24) 

P1 = RT/4, 

and the skew projection rc is 9iven by 

(~o, w, T) ~--~ ((p + T ,  w). (23) 

Proof. Since (21) has piecewise-constant coefficients, the Poincar6 map P is the 
composition 
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If 

then 

To compute the product (24), we observe a simple but important relation: 

- V + W  =R~ - v + w  u 

=R2~ , W = w .  (26) 
V 

Applying this remark t o  (24) we conclude that the (U, V, W)-coordinates of P are 
given by (26) with 2c~ = T/2 such that arg(U + i V ) =  qo + T/2. This proves 
(23). [] 

4.3. Proofs of Theorem 6 and Corollary 7 

Theorem 6.1 follows immediately from Proposition 8. We first sketch a proof of 
Theorem 6.2, showing the existence of a boundary curve ~?+k,m c Smc~R~, where 
Sm = Sc~{(m - 1 ) ~  < ~o < m~}, l -< m < k. 

Consider the piece of Sm given by 

1 < B < L ,  L l a r g e , ( m - 1 ) ~ <  x / ~ T < m S ,  
- -  - -  - -  ~ z L -  1 2 

which is a topological rectangle parametrized by B, 0 = x/BT/2.  The top bound- 
ary, given by B = L, lies above the surface R ] ,  while the lower boundary, given by 
B = L -1, lies below R ] .  Hence the scalar function f (B,  O)= projT(F/(B, T ) -  

R~(B, T)), where r = 20/x/B and where e [ ( B ,  T) is  the point on R~ on the same 
vertical as F/(B, T), has values of opposite signs on the two opposite sides of the 
rectangle. Together with the analyticity o f f  this implies that the zero level set of 
f contains a piecewise-analytic curve 3 + In fact 3 + k,m. k,m connects the points 
ak, m-1 and ak, m, since these are the only zeros of f on the boundary of the 
rectangle. We define #~ = U,,=lk 0k,,,. + Since S meets R~ precisely at rk and at the 
ak, m, m = 1, 2 . . . .  , k - 1, we conclude that the curves ~?~ also meet precisely at 
these points. 

It remains to prove Theorem 6.3, and in particular to give a geometric 
explanation of the 'sharpness' of the resonance tongues. Let us start with the odd 
resonances a = (k + �89 b = 0, k = 1, 2 . . . . .  The stability boundaries are the 

preimages of two curves in SR(1), the tangent lines of which at q0 -- (2k + 1)~z, 
w = 0 are given by dw = ++_ do. Computing their preimage under the linearization 
of/4: (a, b) ~-~ (% w) we recover ARNOLD'S estimate [4] on the stability boundaries 
at the odd resonances 

1 
a = ( k + l ) a + + _  tc ~ b  +~ 
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A similar a rgumen t  explains the quadra t ic  tangencies of  the even resonance 
tongues. We consider  the point  r2k = (krc, 0, 2krr) ~ S, observing that  the surface S at 
this point  is vertical. In  fact, the tangent  plane here is given by w = 0, causing 
degeneracy of the skew project ion re onto  the (~o, w)-plane. A simple calculat ion 
shows that  S is given locally by 

dw = � 8 9  1)k(kzcdB 2 + d B d r ) ,  dcp = �89 + dr ,  

or equivalently in terms of (a, b), 

re re 
dw = ~ ( -  1)k+l(dadb - db2), d~0 = ~da. 

This shows that  S is a saddle near  rak, which projects by ~ as a fold. 
As before, the stabili ty boundar ies  meet ing at a = k 2, b = 0 are the preimages  of 

the two boundar ies  w = ___ tan(cp - 2kre) with tangents  dw = +_ do at the reso- 
nances ~o = 2k~, w = 0. This leads to the infinitesimal equat ion  

and  hence to 

da = •  2 + o(db2), 

1 b2 a = k  2 + ~  +o(b2) .  
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