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Abstract 

We perform a generalised Scherk-Schwarz reduction of the effective action of the heterotic string on T6 to obtain a 
massive N = 4 supergravity theory in four dimensions. The local symmetry-group of the resulting d = 4 theory includes a 
Heisenberg group, which is a subgroup of the global 0(6,6 + n) obtained in the standard reduction. We show explicitly that 

the same theory can be obtained by gauging this Heisenberg group in d = 4, N = 4 supergravity. 0 1997 Elsevier Science 
B.V. 

1. Introduction 

Dimensional reduction is a key to understanding the interplay between various dualities in string theory. 
Many results in the field of string dualities have been obtained using standard toroidal reductions. Recently there 

has been a renewed interest [ 1,2] in the generalisation of toroidal reduction introduced long ago by Scherk and 
Schwarz [3]. Its basic property is that it allows a certain dependence of the fields on the coordinates which are 

wrapped around the torus. The result is usually that parameters with the dimension of mass are introduced into 

the resulting theory. 
A nontrivial feature of the Scherk-Schwarz reduction is that, although before reduction some of the fields 

depend on the torus coordinates, the reduced theory is independent of these coordinates. To achieve this one 

specifies the particular dependence of the fields on the torus coordinates by using a global symmetry of the 
theory. In the original work of Scherk and Schwarz, the global symmetry used for this purpose was a compact 
subgroup of the internal symmetry group of the theory. The Scherk-Schwarz mechanism in this form was 
applied to the six-index formulation of d = 10 supergravity in [4] and to the effective action of the heterotic 

s%ng on T6 in [5], to obtain a gauged d = 4,N = 4 supergravity theory 
similar work on d = 11 supergravity and M-theory was done in [6,7]. 

with a positive semidefinite potential; 
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Almost coincident with the work of Scherk and Schwarz, it was realized that supergravity theories have extra 
noncompact global symmetries [8]. It is natural to ask oneself whether one of these extra global symmetries can 
be used as well in the Scherk-Schwarz mechanism. Recently, it has been shown that indeed this can be done in 
the reduction of IIB supergravity to nine dimensions [ll. The motivation of [ll was to establish duality rules 
relating type IIB supergravity to the massive version of type IIA supergravity [9]. The relevant noncompact 
symmetry used was a particular SL(2,R) symmetry involving the Ramond-Ramond scalar of IIB supergravity. 
Basically the RR scalar ,Y was replaced by /’ =/+ my, where y is the coordinate over which one reduces. The 
fact that this global shift of the field / is a symmetry of the ten-dimensional action ensures that the linear 
y-dependence disappears in the reduction. The nine-dimensional theory then contains the massive parameter m. 

The purpose of this letter is to show that the noncompact symmetry used in [l] can also be applied in a more 
general context involving more scalars. To be explicit, we will start with the standard toroidal compactification 
of the heterotic string effective action on T5 [lo]. This theory has a global 0(5,5 + n) symmetry 4, which we 
use in a Scherk-Schwarz reduction to d = 4 thereby giving a linear x4-dependence to n + 8 scalars. We find 
that the Scherk-Schwarz reduction induces a local nonabeliau symmetry in the resulting N = 4,d = 4 supergrav- 
ity theory. We establish that this generalised reduction is equivalent to the gauging of this nonabelian group in 
matter-coupled N = 4,d = 4 supergravity [ 111. 

Let us first give an example of our use of the Scherk-Schwarz mechanism. Consider a complex scalar field 1 
coupled to gravity in d dimensions 5: 

\ 

d-dimensional fields 

A c+dii 
A-+- 

a+b/i ’ 

(1) 

are indicated by hats. This lagrangian has a modular invariance SL(2,[w)/&: 

(2) 

For b = 0 and a = d = 1, we have a i-parameter subgroup isomorphic to ([w, + 1. The real components of 1 
transform as & + 1, + c and i, + A,. We use this subgroup in the generalised reduction. The spacetime 
coordinates are divided as 2(D) = (xcD_ ,,, y) and th e generalized reduction rules for the scalars become 

fi,( 3) = h,(x) + my, X2( 2) = h2( x) . (3) 

This results in the following lagrangian in d - 1 dimensions: 

(4) 
The derivative $3 is defined as SPA, = $A, - mA,. The modular symmetry is broken down to a one-parameter 
local subgroup, for which 9 is the covariant derivative 6: 

AA, =mp(n), AA,=$p(x). (5) 

The gauge field A, has become massive, as can be seen by going to the gauge A, = 0. 

4 For the heterotic string n = 16. It is convenient to keep n arbitrary. 

’ This example is similar to the reduction of the type IIB string in [l]. 

6 Throughout this paper we will use A to indicate finite transformation, defined for any field F by AF = F’ - F, where F’ is the 

transformed field. We will use 6 for infinitesimal transformations. 
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In this example it is straightforward to see that this result can also be obtained by first doing a standard 
reduction and by then gauging the appropriate one-dimensional subgroup of SL(2,R)/Z, in d - I dimensions. 
Note however that by doing this one does not recover the dilatonic potential. If this example is embedded in a 
supersymmetric theory, the potential can be recovered by requiring supersymmetry. 

In the next section we will consider a similar, but more complicated example. A basic difference with the 
above example will be that, after reduction, three instead of one symmetries receive m-dependent modifications. 
Correspondingly, this example involves the gauging of a three-dimensional group, which turns out to be the 
Heisenberg group. 

2. Generalized reduction 

We carry out a standard reduction of the low energy effective action of the heterotic string on T5 to obtain 
the five dimensional N = 4 supergravity theory. The action for the bosonic fields is [lo] 7: 

This action has 0(5,5 + n) symmetry [lo]. The scalars parametrize an 0(5,5 + n) element _K’ : 

(6) 

(7) 

Here I&’ . IS an element of 0(4,4 + n), containing 4(4 + n) independent scalars, and L is the invariant metric 
of 0(4,4 + n). e^’ equals f”L,,fb. The indices have the range i, j = 1, . . . ,lO + n, a,b = 1, . . . ,8,+ n. 

For the Scherk-Schwarz reduction we use the subgroup of 0(5,5 + n) under which the scalars L’, transform 
by constant shifts. These transformations take on the form: 

(8) 

Under these transformations k-+ &‘&jr 8, which implies that /a +/’ + Aa, while I$? and A, are invariant. 
The vector fields transform as JZ& + ij2fi. Writing out JZ? in terms of n + 8 vectors 9“ which transform as a 

7 The hats indicate five-dimensional fields and coordinates, the absence of a hat implies that the corresponding object is four-dimensional. 

We use the notation and conventions of [ 121. 

s Recall that k-l = _Fk_Y, where .Y is the 0(5,5 + n) invariant metric. 
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vector under 0(4,4 + n), and vectors A and B which are Kaluza-Klein and winding vectors obtained in the 
reduction from six to five dimensions, we get the following transformations under B: 

P+P+na, A^iL+Q’ & -+ jP - +A’/$ + AaL,,Qbb , $’ -+ $ta - .&=A:, . (9 

In the implementation of the Scherk-Schwarz reduction to four dimensions we include in the relation between 
four- and five-dimensional fields a dependence on the fifth coordinate y, by choosing A y-dependent. The 
generalized reduction rules, expressing the 5-dimensional fields in terms of 4-dimensional ones, become 

&V = gpl’ -(K2)2AE)A;2), &,= -(!c~)~+), ivy= -(K2)2, &++;lOgK,, 

e;l=P+A’(y), i?, = K, , IG=M, A?,=A,+aAf’. &=a, 

&=B,-fA’(y)A,+ A”(y)L,bV,b+A~)(-~A2(y)a+b+Aa(y)L,b~b), 

hY = b - +A’( y)u + Aa( y) Labub, 

tivp = Bf’ - 5 B, - ;A” - ~zPL,~V~~, $. = Bpy + Af’- B,$’ - aA$ B,,, - bAf’2 A,, - uaLab Af’LVwi. 

( 10) 

In the reduction we will generate in the action terms proportional to JY Aa, at most to the second power, so that 
the y-dependence disappears in four dimensions when A’ = m’y. The scalar kinetic term reduces as follows: 

1 
$tr(~fi&%#-l) = $tr(8jMa”M-‘) - (alnK,)* - 2Krnakt~~rnb 

1 2 

+gd dpfu - m”AF))M,‘( Deb - mbA(2)p). 
1 

(11) 

As expected we find the local symmetry A/‘” = rnp(x), AA:’ = d, /3( > x , with /3(x) an arbitrary function of 
the four-dimensional coordinates. We also obtain a scalar potential that depends on the 0(4,4 + n) scalars and, 
in the full action, on the dilaton. 

For the vectors we can make the 0(6,6 + n> structure explicit, by making ma-dependent modifications: 
Define 

9J &‘) = 

q,“< A) 
\ ( q3 A) 

s,l”( B) FJt’( B) + 2m”L,b A, .Vyi 

WA) = F,“( A) 

<Y( B) F,,(B) + 2m”L,,V[b, A$’ 

%zd V”) j F,,( VO) + 2rn”Ari A,,] 

for I= l,..., 12 + n. All vector kinetic terms can now be gathered in the expression 

- $FP, Jtr- lsT*V, 

(12) 

(13) 
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where .N- ’ is an 0(6,6 + n) element parametrizing the 6(6 + n) scalars in four dimensions: 

Jr-1 = 

I 
-+ Zk%fk<’ - 

Z2 \ 
- Z k~kj 
21(; 

Z2 1 1 
-- 

2k; K2’ 

TZiqj 

K2 

Z2 1 

\ 
‘I-- 2K; 

-ZkZk 

I 

( 14) 

Here A-’ is the same matrix as (7), but now without hats. The 10 + n scalars z’ correspond to a, b and u’, z2 

is now z’~.~z~. 
The 3-form strength tensor HP”,, can be written as 

H 
PVP = 4 Y&l 

- mULab At’; AvVpi + ;qIJd/psTpl( dJ) , 

with 17,~ the invariant metric of 0(6,6 + n). We will need its explicit form later on: 

(15) 

%_I = 

The derivatives of the scalars zi can be conveniently 

I 
%a 

\ 

gpz’ = d,b - m”Lab( V; + u’Af’) . 

dju” + m”( A, + aAf’) 

The complete action then takes on the form: 

(16) 

rewritten with ma-dependent contributions: 

(17) 

s 4D.massive 
=~d4x~~-‘“{R-4(a~)‘-ktr(a~~aYM-‘)+(alnK,)’+(dlnK2)’ 

1 
+- map- trnb _ 

2K;K; ab 

&(a&/” - mnA(2)~)M;~[&/b - rn’A2)) + +H’ 
1 

1 
+ $FFV “N- ‘9-pL” - -B z.K’~~z . 

2K2 ’ 2 I 

(18) 

3. Symmetries of the reduced action 

The gauge transformations of the vector fields A, , (*) A and Vpa, with parameters p,t and r]‘, respectively, 

that leave the action (18) invariant obtain ma-dependent modifications. To determine them, one should use the 
fact that the parameters [, & and Gj” corresponding to the gauge transformations of the vector fields iP, gP and 
$z, respectively, are reduced as follows: 

i= 5, & = (Y - $y2maLabmbg+ ym”L,b~b, ?)a = va - ymF. (19) 
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Using this, we find that the &-modifications in the transformations, which we call As, A, and 477, 
respectively, take on the form: 

$AZL’)=a /3 P ’ 

ApA,=O, 

ApV,” = -myA,, 

Apa=O, 

Apuu = -mya. 

m2 
Apb= -~fi’a+prn~L,,~~, 

Apea = rnj3, 

A,A&‘= 0, 

A,A,=$L 

AsVt = rnTAF), 

A,a=O, 

A,v” = -m%$, 

A*BF)= -!34’- SmnLabVj, 

A,B,=O, 

“$pv= -A~.a,,~-B~.a,,5~ 

A*b=O, 

A,P=O. 

(20) 

A,$‘= 0, 

A,A,=O, 

A,,V; = ap7f ) 

A,a=O, 

Aqua =O, 

A Bc2) = m”L,,qbA ?I I* IL’ 

A, BP = - m*L,,q”AF) , 

ATBpv= -LobV;p~l~b~ 

A, b = maLobqb , 

A,/==O. 

Note that the Ap transformations are determined by performing a general coordinate transformation in five 
dimensions in the y-direction, with parameter p(x). The remaining gauge transformations that do not obtain 
ma-dependent modifications are given by: 

AJ$=ap, A,Bf)=aj~, Aol,v,m~,,=a(~~“V1-~rcLa~l~-~t~au~y. (21) 

The generahsed reduction has broken 0(6,6 + n) invariance to an 0(4,4 + n) global symmetry, which acts in an 
obvious way on the four-dimensional fields. 

The local infinitesimal transformations 6 a, a,, St, 8, and 6, satisfy the following algebra: 

[Se,$] =S,,, rY=rnY3(, 

(22) 
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We see that the symmetries with parameters /?,[,n form an inhomogeneous Heisenberg 9 algebra. The 
corresponding global transformations have generators Tp, Tt and T(. The algebra is 

[ Tp ,T5] = maLabT$ , [$,T,"] =O, [q,T;] =O. (23) 
Note that the only nontrivial commutation relation in this algebra involves the combination maLa,Tb. This can 

also be seen from the mu-dependent terms in the transformations (20), which always contain the combinations 

maLabV’b and maLabTb. Therefore, effectively the nonabelian group which emerges from the Scherk-Schwarz 
reduction is three-dimensional. 

4. Equivalence with a gauged symmetry 

We will now show that (18) can also be obtained by starting from mu = 0 (the standard reduction) and by 

gauging an appropriate subgroup of 0(6,6 + n). This will give all terms in (18) except the scalar potential, 

which will be obtained by supersymmetry. 
Using indices Z,J= I,..., 12 + II as in (12) and by considering the algebra (22) we obtain structure 

constants f[T: 

ftb = maLab, fi, = maLab, fr3 = ma. (24) 

Here the directions 1,2,3,4 and a correspond to the symmetries with parameters P,y,[,o and v”, respectively. 

Assuming local transformations of the gauge fields of the form S.$ = $A’ + fiK hJdpK we recover the 
modified field-strengths (12). Since the transformations of the scalars under global 0(6,6 + n) transformations 

are given, we are uniquely led to covariant scalar derivatives in (18). 
By gauging the bosonic theory (18) for ma = 0 we do not recover the scalar potential in (18) since it is 

gauge invariant by itself. To obtain it we must use the fact that (18) is the bosonic part of a supersymmetric 
theory, namely some version of N = 4 supergravity. We should therefore be able to obtain (18), now including 

the potential, from the results of [II]. 
In matter coupled N = 4 supergravity the scalars parametrize an 0(6,6 + n)/(O(6) X 0(6 + n)) X 

SU( 1 , l)/ U( 1) coset. The SU( 1 , l)/ U( 1) coset corresponds to the dilaton and to the dual of BP,, . The scalars of 

0(6,6 + n)/(0(6) x O(6 + n can be expressed in terms of real fields Zi, where I = 1,. . . ,12 + n and ) 
a=1 , . . . ,6, satisfying 

z&z; = -a,, . (25) 

For our purposes it is convenient to introduce the combination lo ZIJ = ZLZ,“. The lagrangian of gauged N = 4 

supergravity can be expressed in terms of the ZtJ. We give only the scalar kinetic terms and the potential, and to 

compare to (18) we will use the string frame: 

(26) 

9 The Heisenberg algebra is the algebra of three operators Q, P and E that fulfill the canonical conmutation relations [Q, P] = E, 
[Q,E]=Oand[P,E]=O. 

lo These variables were introduced in [13]. 
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The structure constants are defined as f sST = f,&qr”. We must now show that these terms are equivalent to the 

corresponding terms in (18) for the case of the group (24). First of all note that (25) implies that WRS = 77 RS + 

2ZRS is an element of 0(6,6 + n): 

WR&WT” = qR”. (27) 

Introducing W in (26) we obtain 

S 4D,N=4 = +/d4xf&-2m(R - 4( a+)‘- +~FWRS~PWSR 

+ &{27f”$“77TW + 37)R”7f” w TW + WRuWsvWTw]f~~~f~~~]~ (28) 
We can now identify WRS = JtTRs, which gives the correct kinetic term. In the potential we use that the only 

nonzero &I_tCtUre COUStaUtS with ]OWer indices are f0i3 = mbLba. Using the explicit form of Jt/ (14) and 77 (16) 

we recover exactly the potential of (18). 
This shows that our massive theory (18) obtained by the Scherk-Schwarz method, is equivalent to a gauged 

N = 4 supergravity theory. 

5. Conclusions 

In this letter we perform a generalised Scherk-Schwarz reduction of the effective action of the heterotic string 

on T6 to obtain a massive supergravity theory in four dimensions. Our implementation of the Scherk-Schwarz 

method uses a noncompact subgroup of 0(5,5 + n) in the step from five to four dimensions. We have shown 

explicitly that this theory can be obtained by gauging a Heisenberg subgroup of the global Of6,6 + n) symmetry 
group of d = 4, N = 4 matter coupled supergravity. 

In the Einstein frame, with the dilaton kinetic term normalised to 1 /2(&$)2, the scalar potential in (18) 

appears with a factor exp( $), which would be exp (\/m 4) f or a similar analysis in d dimensions. The 

presence of such a scalar potential, with the same dilaton dependence, had to be assumed in [14] in order to 

obtain maximally symmetric black hole solutions in a d = 5 context. It is interesting to note that the 
Scherk-Schwarz procedure, as well as gauging supergravity (see [15] for an example in d = 7) generates such 
potentials. In this respect it would be interesting to elucidate further the relationship between the Scherk-Schwarz 

procedure and stringy reduction methods *I. 
Clearly, by breaking the global 0(4,4 + n) symmetry in five dimensions, there are further possible shift 

symmetries that can be used in the dimensional reduction. A study of these possibilities has been made in [2]. It 

would be interesting to see whether they also lead to gauged supergravities in four dimensions and to determine 

the corresponding gauge group. In this way, a whole class of gauged supergravities could be given a 
higher-dimensional interpretation. We do not expect that this can be done for all gauged supergravity theories. 

For instance, it cannot be done for the massive d = 10 supergravity theory of Romans (other exceptions have 
been given in [2]). It would be interesting to see whether these exceptional cases can be given a higher-dimen- 
sional interpretation by some other techniques. 
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