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Abstract 

The superfield equations of massive IIA supergravity, in the form of constraints on the superspace geometry, are shown 
to be implied by K-symmetry of the topologically massive D-2-brane. 0 1997 Elsevier Science B.V. 

1. Introduction 

The problem of the determination of the full 
K-symmetric action for type II super D-branes in 
general supergravity backgrounds has now been 
largely solved by the concerted efforts of several 
groups [l--7]. Most of this work has concentrated on 
the verification of K-symmetry in backgrounds of 
varying generality, but it is known from earlier work 
on super p-branes [8--l l] that the requirement of 
K-symmetry constrains the possible backgrounds. For 
example, K-symmetry of the D = 11 supermembrane 
requires the background to satisfy the field equations 
of D = 11 supergravity. Moreover, since tc-symme- 
try is necessary for the consistency of the worldvol- 
ume field equations, i.e. the ‘branewave’ equations, 
one can view the equations of D = 11 supergravity 
as branewave integrability conditions. The field 
equations of D = 10 IIA supergravity similarly fol- 
low from K-symmetry of the IIA D-Zbrane; we shall 
verify this here, but it is an immediate consequence 

of the fact that the super D-2-brane action is dual to 
the D = 11 supermembrane action in D = 11 back- 
grounds with a U( 1) isometry [5]. Such a background 
is equivalent to one of D = 10 IIA supergravity. 
However, not all IIA backgrounds can be viewed as 
reductions of D = 11 supergravity backgrounds. 
Specifically, only the usual, ‘massless’, IIA super- 
gravity is obtainable in this way. The ‘massive’ IL4 
theory, which has a cosmological constant propor- 
tional to a mass parameter m [12], has no known 
interpretation of this type, although one might expect 
the field equations to be required by K-symmetry of 
some generalization of the super D-2-brane action. In 
fact, it was shown in [5] that K-symmetry of the 
D-2-brane action in a purely bosonic IIA background 
requires the inclusion of a worldvolume Chem- 
Simons term when m # 0, as expected from earlier 
T-duality considerations [13,14]. We shall refer to 
this as the ‘topologically massive’ D-2-brane, since 
the CS term constitutes a topological mass term for 
the Born-Infeld field [15]. 
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The main purpose of this letter is to show that the 
massive IIA field equations are a consequence of 
K-symmetry of the topologically massive D-2-brane 
action; similar results then follow for lower-dimen- 
sional massive supergravity theories [16,17] by di- 
mensional reduction. To establish this requires con- 
sideration of general IIA supergravity backgrounds, 
including fermions. It is notable that the massive 
field equations obtained in this way arise as a partic- 
ularly simple set of superfield constraints that are 
formally the same as those of the massless IIA 
theory, differing only in the m-dependence of the 
field strengths. Superspace constraints for both mass- 
less and massive IIA supergravity have been pro- 
posed previously [18]. It is not clear to us whether 
our results are in complete agreement with those of 
[18]. In any case, we think it worthwhile to have an 
independent derivation of these constraints in view 
of the fact that invariance under supersymmetry was 
not completely established in [12] because terms 
quartic in fermions were omitted from the action. 

The coupling of D-branes to a supergravity back- 
ground leads to a particular basis of supergravity 
field variables. As seen in [14], and as we shall see 
again here, this basis leads to a number of simplifica- 
tions as compared to the ‘canonical’ basis used in the 
supergravity literature (e.g. [ 19,201). We conclude 
this paper with an examination of the details of the 
map from the old variables to the new ‘D-brane 
inspired’ ones. 

2. The D-2-brane in a general IIA background 

Let ZM be local coordinates on D = 10 IIA 
superspace, with Ei the superspace vielbein, so 

EA = dZ”Ei is a basis of one-forms on superspace. 
We define a worldvolume metric, in local coordi- 
nates t’, by 

gij = EpEp qgb 9 (2.1) 

where Ep = a.Z”EA and 77 is the D = 10 

Minkowski met;ic. W”, introduce a scalar superfield 
4 and two-form superspace gauge potential B, the 
lowest components of which are, respectively, the 
dilaton and the Neveu-Schwarz/Neveu-Schwarz 
(NS @3 NS) two-form gauge potential. We also intro- 

duce a Born-Infeld l-form gauge potential V with 
‘modified’ field strength 

F=dV- B. (2.2) 

Whereas V is defined directly on the worldvolume 
the two form B is here the pullback of the two-form 
on superspace; we use the same letter to denote the 
superspace and worldvolume forms since it should 
be clear from the context which is intended. Finally, 
we introduce the superspace l-form C and 3-form 
A, the lowest components of which are the 
Ramond/Ramond (R ~3 R) gauge potentials. Again, 
we shall use the same letters to denote their pull- 
backs to the worldvolume. With these ingredients we 
can write down the action for the super D-2-brane in 
a general IIA supergravity background. Setting the 

tension to unity we have 

S= -jdT [e- +/- det( g +F) 

+icijk( Aijk + 3CiFj, + srnvI$,)] , (2.3) 

where m is the mass parameter. 
The structure group of the superspace tangent 

bundle is taken to be the Lorentz group, with respect 
to which EA decomposes into EA = (E”,E”) where 
E” is a Lorentz vector and E” a Majorana spinor. 
The spacetime Dirac matrices r, can be pulled back 
to the worldvolume to yield 

yi = E,T a 7 (2.4) 

which behave like three-dimensional Dirac matrices 
except for the fact that the product of all three is not 
the identity matrix. Instead, the matrix 

(2.5) 

is traceless, commutes with yi matrices, and satisfies 

r,$ = 1 . (2.6) 

We refer to [5] for further details of the notation and 
conventions, but we note here that the exterior 
derivative of a scalar superfield 4 can be expanded 
on the basis of l-forms EA = dZ”Ei as 

dqb= EADA+, (2.7) 
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which defines the supercovariant derivative DA+ of 

4. 
To present the K-symmetry variations it will be 

convenient to define 6EA: = SZ”Ei. The variation 
of the worldvolume fields ZM is always such that 
8, E” = 0. Making use of various lemmas presented 
in [5] we then find that 

S,gij= -2S,E”E;E;T,b,rl,, 

8~Ci=8i(8~E”C,)‘-6,E”E~(K-mB),, 

8, Aijk = 8, E*E,BE;E,D(F,,,, - 4CL,Hcsal 

-3mBLxBkJ + derivative (2.8) 

where TAcB is the superspac ,rsion, H = dB is the 

NS @ NS two-form field strel gth, and 

K=dC-!-mB 

F=dA+Hr\C+imBAB (2.9) 

are the R 8 R superspace field strengths [14,5]. The 
square brackets around suffices indicate super-anti- 
symmetrization on the enclosed indices. Note that we 
adopt the conventions 

P = LEAp.. . EA’PA ,,,, A 
P! P 

d(PQ) =PdQ+(-l)“(dP)Q (2.10) 

for superspace p-form P and q-form Q, where the 
exterior product of forms is understood. These con- 
ventions lead to some sign differences relative to 
[14]. We adopt the same conventions for worldvol- 
ume forms, e.g. 

3 = +dr$‘dc i Fij , (2.11) 

which leads to some sign differences relative to [5]. 
Apart from the specification of 8, E”, which will 

be postponed until later, we must also specify S,V. 
This must be such as to ensure that the variation of 
9 is ‘supercovariant’, i.e. appears without deriva- 
tives of the parameter K, and this property essen- 
tially fixes it uniquely to be 

6 y = Ei”s, EBB,, . (2.12) 

The resulting transformation of 9 is ’ 

6 
K 

9.. = EPE!$ 
lJ 1JK 

E*H aBA . (2.13) 

With these variations in hand, and discarding a 
surface term, we compute that 

+ ‘EPE?H 
21 J BAa 

++iik(E;E,!E;FcBAa+3E;FjkKAa)}, 

(2.14) 

where (g + sT)ij are the entries of the inverse of the 
matrix (g + ST). Note that all m-dependence of this 
variation is now implicit in the R 8 R field strengths. 

Following [5], it is convenient to introduce the 
matrix X by X = g-‘F, or 

X; = g ikFk j (2.15) 

Because of the antisymmetry of 9, this matrix 
satisfies the identity 

x3 = i(trX2) x. (2.16) 

We now rewrite (2.14) as a sum of terms in which 
each term involves a different number of worldvol- 
ume fermions. Thus, 

S,S= jd?$dT 

Xe-~6,E*[A,+A,+A,+A,], (2.17) 

where 

(A,,)~={~([(1 +X)-‘1: 

X cijk[ E,“E;EFFcbaa + 3ET( gX)jkK,,] 

’ The sign differs from [5] as a result of the ‘reverse order’ 

convention (2.11) for the components of worldvolume forms. 
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(A&=/-[(1 +X)-l]: 

~sk’[E;~i~Tpcu?7,u - E;:E;H,@] 

e” 
+ 

24q 

X E ijkE,P [ EyEiF,bp, + ( gx) jk Kp,] 

Videt(l+[(l +X)-i]: 

e+ 
(A3)a = $lq 

.y ‘jkE&‘@F I Sy/3a. (2.18) 

The subscript on A indicates the number of world- 
volume fermions. Each of these terms must vanish 

separately, for some choice of 8, E”. 
We know that 8, E” must take the form 

l&E*= [Z(l -i.)]“, (2.19) 

where the matrix 1” is tracefree and squares to the 
identity matrix. From [5] we know that for back- 
grounds that are purely bosonic solutions of IIA 

supergravity we can choose 2 

P= j(’ rcO, + +xijPrii . (2.20) 

We do not wish to assume here that this is the form 
of f in general backgrounds, although this will turn 
out to be the case. We shall need only the expansion 
to first order in X, which is 

f= &, - ;yijxijr,, +a( X”) . (2.21) 

The leading term, independent of X is one of only 
two possibilities consistent with spacetime and 
worldvolume Lorentz invariance; the other possibil- 
ity is r,, but this choice leads immediately to much 
stronger constraints on the background so we may 
discard it. The term linear in X is also effectively 
unique; there is a freedom to replace r,, by TcOjr,i 

2 We refer to [5] for the relation of f to the ‘standard’ matrix 

r that arises in the proof of K-invariance for general p. 

since this affects only the @(X2) terms, but this 
leads to equivalent results 151. 

We now turn to an examination of each of the 
four A terms in (2.17). The term involving A, can 
cancel only if 

F upys = 0. (2.22) 

Consideration of the terms independent of and linear 
in X in the A, term leads directly to the conclusion 
that 

H apy=O, FaPya=O. (2.23) 

We turn next to A,. The vanishing of 8, Ed, to 
zeroth order in X requires 

+ isijk EFEJte+F,bsa] = 0. (2.24) 

Without the (1 - &,,) factor, terms with different 
numbers of E,? factors would have to cancel sepa- 
rately. This would impose very strong constraints on 
the background. In fact, the constraints are weaker 
because the identity 

(1 - ~O,)[\/-detg yi + &‘j”yjk] = 0 (2.25) 

allows a cancellation between terms, but this can 
happen only if 3 

T~a=i(rc)clp, FahPn=ie-9(&,)ap. (2.26) 

In principle, these expressions could come multiplied 
by some scalar function but this could be removed 
by a resealing of the component of the spin connec- 
tion that these ‘conventional’ constraints allow us to 
solve for. We may now use (2.26) in the terms linear 
in X in the expansion of 8, Ed, to find 

O=+(gX)ij[(l -T;Oj)yijk]yp[eoKP,- (rii)pn] 

+X’k(l-I;,,)yp[E~H,B,- <Yi’ii>+], 

(2.27) 

from which we deduce that 

H .ap=i(Tarll)ap) K,, = ie-&( rll)ap. 

(2.28) 

3 The factor of i is needed for reality of S,S with standard 

conventions for complex conjugation of products of anticommut- 

ing spinors. 
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We have now determined that the superspace con- 
straints (2.26) and (2.28) are necessary for rc-symme- 
try. Since the A, terms involve no background 
fermions it follows from the results of [4,5] that the 
these constraints are also sufficient for the cancella- 
tion of the A, terms to all orders in X if f is given 

by (2.20). 
We now turn to the A, terms in (2.17), which 

involve background fermion fields. We first expand 
expand 8, Ed, in powers of X. To zeroth order we 
find that 

(1 - &) h + gi’E,PE,!T;C,q.a 
[ 

e+ 
+ 

6,/T 
gijkEaEhEFF, = 0 

k J I chaa 
I 

’ 
(2.29) 

where we have introduced the dilatino superfield 

h,=D,$. (2.30) 

As before, terms with different numbers of E,! fac- 
tors would have to cancel separately were it not for 
the possibility of combining them by means of the 
identity (2.25) and the further identity Ei . Ej = gij. 
We thereby deduce that the vanishing of the A, 
terms requires 

Tcb=%‘x,, Fabcy=e-~[rabr(h+3X)ly) 

(2.31) 

where x is some background spinor field. We may 
choose x at will since the torsion constraint defining 
x is a ‘conventional’ one that just determines some 
components of the spin connection. Obvious choices 
are x = 0 and x = - 3 h, but neither of these turns 
out to be the simplest one so we leave x free at 
present. 

If we now use (2.31) in the terms in 8, Ed, linear 
in X we find that 

0=~~(gX)ij[(l-r(a~)yij~*i(h+3X)]P 

-dqX;gkjE;E;(l - &,)puHba, 

-k f?‘SiijkE,f( gX)jk(l - r(Oj)paK,, . (2.32) 

It follows by a reasoning similar to that used previ- 
ously that 

H nby= [rob& K,,= e-+[C51p v (2.33) 

where [ and LJ are two further spinor fields. If this 
information is now used in (2.32) one finds that 

c+ <= -rti( h + 3x). (2.34) 

At this point we have found the general form of the 
constraints in terms of the dilatino superfield and 
two other undetermined spinor superfields, one com- 
bination of which must be fixed by the cancellation 

of terms higher order in X in the kappa-symmetry 
variation (for consistency with known results for 
D = 11 supermembrane. Indeed, with f given by 
(2.20) one finds that the relation 

5= -2r,, x (2.35) 

is needed for cancellation of terms quadratic in X, 
and that all higher order terms then cancel. Thus 

H & = -2[r,bT,, xl, 

K a/3 = -e-‘[C~II(~+x)]p. (2.36) 

We now see that there is another obvious choice for 

x, namely 

x= -h (2.37) 

since K,, then vanishes. This choice greatly simpli- 
fies the analysis of the Bianchi identities, to which 
we now turn. 

3. Bianchi identities 

The superspace constraints derived above are all 
m-independent. The m-dependence is implicit in the 
R @ R field strengths K and F, defined in (2.9), 
which results in an m-dependence of the Bianchi 
identities. These are 

dTA = EBRA B, dH=O, dF=HAK, 

dK=mH, (3.1) 

where Rt is the curvature 2-form. At dimension 
zero or less the Bianchi identities are indeed satisfied 
by superspace tensors satisfying the constraints found 
above. In particular, the F Bianchi identity at dimen- 
sion zero is satisfied by virtue of the gamma-matrix 
identity 

which is clearly the dimensional reduction to D = 10 
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of the D = 11 identity required for K-symmetry of identity for K. For example, the Bianchi identity for 
the D = 11 supermembrane [lo]. K at dimension 1 is 

Because the structure group of the frame bundle is 
taken to be the Lorentz group, the Bianchi identities 
determine the only remaining torsion component at 
dimension l/2, Tz’. The result given in 141, where 
the choice x = 0 was made, is rather complicated. 
Here we shall see that the choice x = -h leads to 
considerable simplifications. With this choice, the 
Bianchi identity for K at dimension l/2 (which is 
m-independent since Has,, = 0) implies that 

(Gi)E(J:/s)= (G*)(@*rP (3.3) 

while the torsion Bianchi identity at dimension l/2 

implies that 

+me+(rar,,)p,=O. 

This implies that 

(3.10) 

Tzp = ?ayP - $me”( &)i, (3.11) 

where TA is the torsion 2-form for m = 0. This 
m-dependent modification of the torsion tensor was 
first found in [18], in which a complete set of 
constraints for massless and massive IIA supergrav- 
ity were proposed. As far as we can tell, our results 
are in agreement with those of [18], but it is not clear 
to us whether the m-dependence of the 4-form field 
strength was taken into account by these authors. 

These are solved by 

Tzp= S&AB,. (3.5) 

We have now arrived at a set of constraints on all 
superspace tensors of dimension l/2 or less in terms 
of the dilatino superfield 4 (since h = 04). These 
constraints are as follows, in order of increasing 
dimension. At dimension - 1: 

F 0. apys = 

At dimension - l/2: 

H =O, 
aPY 

Fapva=O. 

At dimension 0: 

(3.6) 

W) 

G=i(r’)p,, K+c=i(rCG)+ 

Kpn = ie-@( r,,)Pa, FaPba = ie-‘#‘( rba)+. 

(3.8) 

At dimension l/2: 

TaCp = - S& , 7& = Sy, A,, , 

H abc =2(rb,r,,h),, K,,=O, 

F nabc = -2e-+[ r,,,h], . (3.9) 

The only undetermined components of the torsion 
and field strengths are now those of dimension 1 or 
higher. These include the bosonic field strengths 

K ab’ Fabcd and Habc and the torsion component Tayb 
at dimension 1. These will be m-dependent, in gen- 
eral, because of the m-dependence of the Bianchi 

When m = 0 the IIA superspace constraints found 
above are just those obtained by dimensional reduc- 
tion of the standard D = 11 superspace constraints. 
In fact, they were deduced in this way in [ll], 
independently of [18]. These constraints are known 
to imply the field equations of D = 11 supergravity 
[21]. Thus, the m = 0 constraints imply the field 
equations of massless IIA supergravity. It follows 
that the m # 0 constraints imply the field equations 
of the massive IIA theory. Note that by ‘constraints’ 
we mean the specification of the components of all 
superspace tensors of dimension l/2 or less. The 
massive IL4 constraints are therefore formally identi- 
cal to those of the massless theory, differing only in 
the m-dependence of the R 8 R field strength super- 
forms. This is a consequence of the ‘natural’ choice 
of basis of IIA supergravity field variables selected 
by the coupling to the super D-2-brane. We shall 
now conclude with a discussion of how this basis is 
related to the ‘canonical’ one, and why the new basis 
is simpler. 

4. Field variables in IIA/IIB supergravity 

We first recall what the canonical variables are. 
To simplify the notation we use form notation and 
indicate the NS @ NS 2-form by B with correspond- 
ing gauge transformation 6B = dA. All other gauge 
fields are R @ R potentials which we denote by 
Cc’,(r= 1 . . . t ,9). We use the notation and conven- 
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tions of [19] but have renamed the fields of IIA/IIB 

supergravity as follows: 

A(‘) + C(i), g(z) + C(2), C + Cc3), D -+ Cc4’ _ 

(4.1) 

The potentials with r 2 5 are the corresponding dual 

potentials. The fields 6’) are potentials of IIA (IIB) 

supergravity for r odd (r even>. In the canonical 
basis the R c3 R potentials transform under the fol- 
lowing R @ R gauge transformations with parame- 
ters Acr)(r = 0, . . . ,8) [19] 4: 

~C’i’= d#‘- “A 

defined above. More precisely, the following redefi- 
nitions are needed: 

c(4Y = (54) + $@, 
, 

cw = c(5) - !2@3, 
7 

C@Y = C(6) + 1~2C(2) 
4 7 (4.4) 

and 

2 ’ 

6cF = &P’+ 2dA’O’B - m/m, 
aC’4’ = dA’3’ + $A(‘$ _ $dA@‘, 

~C(s, = dA(4, _ $dA(2’B + 9A,53), 

SC’@ = dAc5’ + Ac3)dB + A(‘)BdB - ;dABCc2’ . 

(4.2) 

With respect to [19] we have renamed the parameters 
as follows: 

A(‘, + A(“, , -32) _+ A(l), x + A(“) , p -+ Ac3) . 

(4.3) 

A(2)’ = A(2) + 2 BA(a,, 

A(3Y = A(3) + $BAc’, 

A(4)’ = A(4) _ I~&@; _ 15B2A@,, 

A(5)’ = A(5) + lg2A”’ 
4 (4.5) 

In the new basis the R 8 R gauge transformations 
are given by (omitting the primes) 

SC”’ = dA’a’_ “A 
2 ’ 

6 C(2) = d A”), 

6 C(3) = dAc2) - 2 A(O)& - m AB 

6 C(4) = dA’3’ + xA(“dB 
2 9 

6Cc5) = dAc4) + 15Ac2)dB + $mAB2, 

6 ~‘6’ = d@ + Ac3’dB (4.6) 
As an example of the simplicity inherent to the 

new basis we will give the T-duality rules of [19] in 
this basis. First, to keep the calculations simple, we 
make the same assumption about the background 
fields as [14], i.e. 5 

The gauge transformations of the dual potentials Cc5) 
and C@ have been taken from [20] and [22], respec- 
tively. 

The new basis presented in [14] has the following 
distinguishing features: 

g xp=Bxp=O. (4.7) 
Here x refers to the isometry direction. Under this 
assumption the T-duality rules of [19] simplify as 
follows. The T-duality rules for the NS @ NS fields 
reduce to 

1. None of the R 8 R potentials transform under 
the gauge transformation of the NS ~3 NS 2-form B 
(with parameter A> except for the m-dependent terms 
in the IIA case. 

2. All R 8 R gauge transformations are written in 
a canonical way such that in the terms containing the 
NS @ NS a-form B the R 6-4 R parameter A(‘) always 
occurs undifferentiated. 

It is now straightforward to show that by perform- 
ing a suitable redefinition of the fields Cc” (r 2 4) 
and the parameters ACT) (r 2 2) the canonical basis 
(4.1), (4.2) can be transformed into the new basis 

&y = gILy > g,, = l/g,, 7 &Ly = Bpv 7 

e2& = e2+/lg,,l, (4.8) 
while those of the R 8 R potentials are given by 

c”(O) = C(i) C’(i) = C(O) 
XT x 7 

c”(1) = - c(2) 
P XP ’ 

p = - c(1) 
+P P ’ 

@) = Ic(3) 
FLY 2 pux 3 

C(3) = +y’? , 
PVX 

c”(3) = sC(4) - C(2) B 
PVP 3 XPVP X[P VPI’ 

C4) 
X&VP 

= 1 cfJp - Cp$,l] . 
8[ (4.9) 

4 For simplicitly we only give the rules for r = 1, . . . ,6. The 5 This assumption is not essential to the simplifications dis- 
remaining RB R potentials can be dealt with similarly. cussed below. 
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We see that under T-duality the R 8 R potentials 
C(‘) transform to the potentials Cc” ‘) except for 
Ct3) for which the T-duality rule involves the NS @ 
NS 2-form B. We find that in the new basis all 
dependence on B disappears. In particular the rules 
involving C (3) Cc4) are given by (omitting the primes) , 

(4.10) 

It is not too difficult to understand why, in the 
new basis, the T-duality rules of the R @ R poten- 
tials are of the simple form given above. The point is 
that, using an appropriate normalization, the kinetic 

term of any of the R 63 R potentials takes the form 
(using the string-frame metric) 

GOR = lilsl z’,‘I’z;‘! q+,(c) 9 (4.11) 

where the hatted fields are ten-dimensional and R(C) 
is defined as [14] 

R(C) =dC-dBAC+meB. (4.12) 

Because of the assumption (4.7), the reduction rules 
for the R @ R potentials are particularly simple: 

(4.13) 

Similar simple reduction rules apply to the curva- 
tures. Consider now the kinetic term for a IIA poten- 
tial for fixed (even) p. Reduction in the isometry 
direction x leads to 

(-l)@l 
~I,A = \ilgl 2c p + 2) !  ex14 Ri+2( C) 

+/iZ (-‘)’ 
2(p+l)!e 

-X’4R;+I(C) (4 14) 3 . 

with g,, = - ex/‘. Similarly, reducing the kinetic 
term for a IIB potential for fixed (odd) q leads to 

%lEl = dlgl 
(-1y+’ 
2(q+2)! 

eex14 Ri+2( C) 

+JZ 
(-1)” 

2(q+ I)! 
ex14 Ri+l(C). (4.15) 

with g^,,= -e . -x/2 Comparing these two expres- 
sion for the two cases q = p &- 1 immediately leads 

to the following simple T-duality rules for the R @ R 
potentials (together with the usual Buscher’s rules 
for the NS 8 NS fields) 

(4.16) 

These are exactly the same T-duality rules as those 
given in [14]. 
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