!

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by University of Groningen Digital Archive

‘H 25 September 1997
{L
%@ PHYSICSLETTERS B
ELSEVIER Physics Letters B 410 (1997) 13-21

Massive ITA supergravity from the topologically massive
D-2-brane

E. Bergshoeff *, P.M. Cowdall °, P.X. Townsend ®

* Institute for Theoretical Physics, Nijenborgh 4, 9747 AG Groningen, The Netherlands
® DAMTP, University of Cambridge, Silver St., Cambridge CB3 9EW, UK

Received 28 June 1997
Editor: P.V. Landshoff

Abstract

The superfield equations of massive ITA supergravity, in the form of constraints on the superspace geometry, are shown
to be implied by k-symmetry of the topologically massive D-2-brane. © 1997 Elsevier Science B.V.

1. Introduction

The problem of the determination of the full
x-symmetric action for type II super D-branes in
general supergravity backgrounds has now been
largely solved by the concerted efforts of several
groups [1-7]. Most of this work has concentrated on
the verification of k-symmetry in backgrounds of
varying generality, but it is known from earlier work
on super p-branes [8—11] that the requirement of
Kk-symmetry constrains the possible backgrounds. For
example, k-symmetry of the D = 11 supermembrane
requires the background to satisfy the field equations
of D =11 supergravity. Moreover, since x-symme-
try is necessary for the consistency of the worldvol-
ume field equations, i.e. the ‘branewave’ equations,
one can view the equations of D = 11 supergravity
as branewave integrability conditions. The field
equations of D = 10 IIA supergravity similarly fol-
low from k-symmetry of the IIA D-2-brane; we shall
verify this here, but it is an immediate consequence

of the fact that the super D-2-brane action is dual to
the D = 11 supermembrane action in D = 11 back-
grounds with a U(1) isometry [5). Such a background
is equivalent to one of D= 10 IIA supergravity.
However, not all IIA backgrounds can be viewed as
reductions of D =11 supergravity backgrounds.
Specifically, only the usual, ‘massless’, IIA super-
gravity is obtainable in this way. The ‘massive’ IIA
theory, which has a cosmological constant propor-
tional to a mass parameter m [12], has no known
interpretation of this type, although one might expect
the field equations to be required by k-symmetry of
some generalization of the super D-2-brane action. In
fact, it was shown in [5] that x-symmetry of the
D-2-brane action in a purely bosonic IIA background
requires the inclusion of a worldvolume Chern-
Simons term when m # 0, as expected from earlier
T-duality considerations [13,14]. We shall refer to
this as the ‘topologically massive’ D-2-brane, since
the CS term constitutes a topological mass term for
the Born-Infeld field [15].
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The main purpose of this letter is to show that the
massive IIA field equations are a consequence of
x-symmetry of the topologically massive D-2-brane
action; similar results then follow for lower-dimen-
sional massive supergravity theories [16,17] by di-
mensional reduction. To establish this requires con-
sideration of general ITA supergravity backgrounds,
including fermions. It is notable that the massive
field equations obtained in this way arise as a partic-
ularly simple set of superfield constraints that are
formally the same as those of the massless IIA
theory, differing only in the m-dependence of the
field strengths. Superspace constraints for both mass-
less and massive IIA supergravity have been pro-
posed previously [18]. It is not clear to us whether
our results are in complete agreement with those of
[18]. In any case, we think it worthwhile to have an
independent derivation of these constraints in view
of the fact that invariance under supersymmetry was
not completely established in [12] because terms
quartic in fermions were omitted from the action.

The coupling of D-branes to a supergravity back-
ground leads to a particular basis of supergravity
field variables. As seen in [14], and as we shall see
again here, this basis leads to a number of simplifica-
tions as compared to the ‘canonical’ basis used in the
supergravity literature (e.g. [19,20]). We conclude
this paper with an examination of the details of the
map from the old variables to the new ‘D-brane
inspired’ ones.

2. The D-2-brane in a general ITA background

Let Z¥ be local coordinates on D =10 IIA
superspace, with Ej the superspace vielbein, so
E*=dZME}} is a basis of one-forms on superspace.
We define a worldvolume metric, in local coordi-
nates £, by

gij=EiaE})77ab’ (2.1)

where Ef = 3,ZME{} and 7n is the D =10
Minkowski metric. We introduce a scalar superfield
¢ and two-form superspace gauge potential B, the
lowest components of which are, respectively, the
dilaton and the Neveu-Schwarz/Neveu-Schwarz
(NS ® NS) two-form gauge potential. We also intro-

duce a Born-Infeld 1-form gauge potential V with
‘modified” field strength

F=dV—B. (2.2)

Whereas V is defined directly on the worldvolume
the two form B is here the pullback of the two-form
on superspace; we use the same letter to denote the
superspace and worldvolume forms since it should
be clear from the context which is intended. Finally,
we introduce the superspace 1-form C and 3-form
A, the lowest components of which are the
Ramond /Ramond (R ® R) gauge potentials. Again,
we shall use the same letters to denote their pull-
backs to the worldvolume. With these ingredients we
can write down the action for the super D-2-brane in
a general ITA supergravity background. Setting the
tension to unity we have

S = —[d3§ [e—"’\/—det(g-i-&’")

+LeT (A + 30T +2mViF)]. (23)
where m is the mass parameter.

The structure group of the superspace tangent
bundle is taken to be the Lorentz group, with respect
to which E# decomposes into E* = (E% E*) where
E? is a Lorentz vector and E* a Majorana spinor.
The spacetime Dirac matrices I, can be pulled back

to the worldvolume to yield
v =ET,, (2.4)

which behave like three-dimensional Dirac matrices
except for the fact that the product of all three is not
the identity matrix. Instead, the matrix

1
- jk,y_ N
6y —detg Y
is traceless, commutes with y; matrices, and satisfies

rg=1. (2.6)

I = (2.5)

We refer to [5] for further details of the notation and
conventions, but we note here that the exterior
derivative of a scalar superfield ¢ can be expanded
on the basis of 1-forms E* = dZME}} as

d¢=E*D, o, (2.7)
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which defines the supercovariant derivative D, ¢ of
.

To present the k-symmetry variations it will be
convenient to define SE*: = 8Z"E;}. The variation
of the worldvolume fields Z¥ is always such that
6, E® = 0. Making use of various lemmas presented
in [5] we then find that

6.p=8.ED, ¢

b.8ij= _26KEHE(£;Ej/)\TAbanab

5,C,= (8, EC,) — 8, E°EF (K — mB) 5,
8 Ajjr = 8, EaEiBEjCEkD{FDCBa —4CpHcpa

—3mBpcBg,} + derivative (2.8)

where T, is the superspac  rsion, H=dB is the
NS ® NS two-form field stre. gth, and

K=dC+ mB
F=dA+HAC++mBAB (2.9)

are the R ® R superspace field strengths [14,5]. The
square brackets around suffices indicate super-anti-
symmetrization on the enclosed indices. Note that we
adopt the conventions

1
P=;-!—EAP...EA1PA1MAP

d(PQ) = PdQ + (—1)*(dP)Q

for superspace p-form P and g-form Q, where the
exterior product of forms is understood. These con-
ventions lead to some sign differences relative to
[14]. We adopt the same conventions for worldvol-
ume forms, e.g.

(2.10)

F=1dgidE' 7, (2.11)
which leads to some sign differences relative to [5].

Apart from the specification of §_E“*, which will
be postponed until later, we must also specify 8, V.
This must be such as to ensure that the variation of
& is ‘supercovariant’, i.e. appears without deriva-
tives of the parameter x, and this property essen-
tially fixes it uniquely to be

8V,= EfS E®B,, . (2.12)

The resulting transformation of & is

8.5, = E{E" E°H,p, . (2.13)

With these variations in hand, and discarding a
surface term, we compute that

5.5= [d¥8 E{e [ det(g+7)
X[D,¢+ (g +5)/(BLES T M.,
+ %EiAEjBHBAa)]

+ %Sijk(El?E]BEiCFCBAa + 3EiA‘97jk Kyq )} ’
(2.14)
where (g +.% )" are the entries of the inverse of the
matrix (g +.% ). Note that all m-dependence of this
variation is now implicit in the R ® R field strengths.

Following [5], it is convenient to introduce the
matrix X by X=g¢"'9, or
X}=g"k37kj (2.15)
Because of the antisymmetry of &, this matrix
satisfies the identity
X’=3(eX?)X. (2.16)

We now rewrite (2.14) as a sum of terms in which
each term involves a different number of worldvol-
ume fermions. Thus,

5.5= [d¥/=detg

Xe * 8 E“[Ay+ 4, + A4, + A,
where
(40) =BT+ 3) {[1+0)7"],

X Y| ESE}Ts o + SEFEPH,, |

(2.17)

e?®

+D, }+——
- ® 6y — detg

X &% EfEPESF, 00 + 3Ef(8X) K 1o ]

baa

! The sign differs from [5] as a result of the ‘reverse order’
convention (2.11) for the components of worldvolume forms.
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(4), =@ +x) [1+x)7"]
ngj[ E(a’E]l;T allea — E[zEj]HaBa]
e¢

- 2y —detg

X gk EP [ E{E{F p.+ (8X) K “]

{
-1 i
(Az)a=§Ei’3Ej?’{\/det(1+X) [a+x)71;
e?®
kj ijk e
Xg ]Hyﬁa_‘/__T—e_;‘E! % Fepya
e? N
(4;),= &' *EPEYE’F; 4, . (2.18)

6y —detg
The subscript on A indicates the number of world-
volume fermions. Each of these terms must vanish
separately, for some choice of §_E“.

We know that §,E“ must take the form

8. E*=[r(1-1]", (2.19)

where the matrix I is tracefree and squares to the
identity matrix. From [5] we know that for back-
grounds that are purely bosonic solutions of IIA
supergravity we can choose >

'=y(1—-3wx?) Ly +3X,;TT, (2.20)

We do not wish to assume here that this is the form
of [ in general backgrounds, although this will turn
out to be the case. We shall need only the expansion
to first order in X, which is

=T —3y"X, I +@(X?). (2.21)

The leading term, independent of X is one of only
two possibilities consistent with spacetime and
worldvolume Lorentz invariance; the other possibil-
ity is I;; but this choice leads immediately to much
stronger constraints on the background so we may
discard it. The term linear in X is also effectively
unique; there is a freedom to replace Iy, by o, [T,

2 We refer to [5] for the relation of I” to the ‘standard’ matrix
I’ that arises in the proof of k-invariance for general p.

since this affects only the #(X?) terms, but this
leads to equivalent results [5].

We now turn to an examination of each of the
four A terms in (2.17). The term involving A, can
cancel only if

Fop,5=0. (2.22)

Consideration of the terms independent of and linear
in X in the A, term leads directly to the conclusion
that

H

aBy

=0, F,

wpya=0- (2.23)
We turn next to A,. The vanishing of § EA, to

zeroth order in X requires
B jpac
(1 - I}O)) [ - detg gk]Ej 7;3a77ca
+3e* EPEPe?F,5,] = 0.

Without the (1 — I'g) factor, terms with different
numbers of E7 factors would have to cancel sepa-
rately. This would impose very strong constraints on
the background. In fact, the constraints are weaker
because the identity

r(n))[\/Tetg v+ %Eijijk] =0

allows a cancellation between terms, but this can
happen only if *

723601 = i(rc)ﬂfﬁ ’ Fabch ie”® ( b)aﬁ (226)

In principle, these expressions could come multiplied
by some scalar function but this could be removed
by a rescaling of the component of the spin connec-
tion that these ‘conventional’ constraints allow us to
solve for. We may now use (2.26) in the terms linear
in X in the expansion of 8, EA; to find

O—z(gX),][ (0) ?’”k [ ¢K;3a (FII)Ba]

+X' (I_EO)) [E;‘Haﬁa_(yirll)ﬂa]7
(2.27)

(2.24)

(2.25)

from which we deduce that

H aB=i(I:1F11)aB9 KaB=le"¢(Fll)aﬁ'

(2.28)

3 The factor of i is needed for reality of 5.5 with standard
conventions for complex conjugation of products of anticommut-
ing spinors.
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We have now determined that the superspace con-
straints (2.26) and (2.28) are necessary for x-symme-
try. Since the A, terms involve no background
fermions it follows from the results of [4,5] that the
these constraints are also sufficient for the cancella-
tion of the A, terms to all orders in X if I is given
by (2.20).

We now turn to the A, terms in (2.17), which
involve background fermion fields. We first expand
expand 6, _EA, in powers of X. To zeroth order we
find that

(1 - EO)) A+ gijEianbTbCanca

e?

* 6y —detg

where we have introduced the dilatino superfield
A,=D,¢. (2.30)

As before, terms with different numbers of E? fac-
tors would have to cancel separately were it not for
the possibility of combining them by means of the
identity (2.25) and the further identity E;-E;=g,;.
We thereby deduce that the vanishing of the A,
terms requires

Th=8% xoo Fupey=e ?[ (A +3X)],.
(2.31)

ijkpapbc
eV EJEJETF, .,

=0, (229)

where x is some background spinor field. We may
choose y at will since the torsion constraint defining
X is a ‘conventional’ one that just determines some
components of the spin connection. Obvious choices
are =0 and y= —3A, but neither of these turns
out to be the simplest one so we leave y free at
present.

If we now use (2.31) in the terms in 8§, EA, linear
in X we find that

. B
0=y —detg (gX)ij[(l — L) y"I(A+ 3X)]
A detg ingkj EtaE]b(l - 'F(O))ﬁaHbaa
+ e EN( gX) (1 — Tp) Ko (2.32)

It follows by a reasoning similar to that used previ-
ously that

Hab'y=[‘r{'1b§]‘y’ Kaﬁ=e—¢[lz,§]3, (233)

where ¢ and ¢ are two further spinor fields. If this
information is now used in (2.32) one finds that

E+¢=-T 1 (A+3x%). (2.34)

At this point we have found the general form of the
constraints in terms of the dilatino superfield and
two other undetermined spinor superfields, one com-
bination of which must be fixed by the cancellation
of terms higher order in X in the kappa-symmetry
variation (for consistency with known results for
D =11 supermembrane. Indeed, with r given by
(2.20) one finds that the relation

{=-2I x (2:35)

is needed for cancellation of terms quadratic in X,
and that all higher order terms then cancel. Thus

Haby= ~—2[‘Fabr,11 X]y

Kyp=—e [T (A+x)]- (2.36)

We now see that there is another obvious choice for
X, namely

X=—A (2.37)

since K, then vanishes. This choice greatly simpli-
fies the analysis of the Bianchi identities, to which
we now turn.

3. Bianchi identities

The superspace constraints derived above are all
m-independent. The m-dependence is implicit in the
R®R field strengths K and F, defined in (2.9),
which results in an m-dependence of the Bianchi
identities. These are

dT*=E®R;, dH=0, dF=HAK,
dK = mH , (3.1)
where Rj is the curvature 2-form. At dimension
zero or less the Bianchi identities are indeed satisfied
by superspace tensors satisfying the constraints found
above. In particular, the F Bianchi identity at dimen-
sion zero is satisfied by virtue of the gamma-matrix
identity
(I'*Yap(Lap)ye) T (I ap(T1113)45) =0

(3.2)

which is clearly the dimensional reduction to D = 10
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of the D = 11 identity required for k-symmetry of
the D = 11 supermembrane [10].

Because the structure group of the frame bundle is
taken to be the Lorentz group, the Bianchi identities
determine the only remaining torsion component at
dimension 1/2, T.);. The result given in [4], where
the choice y =0 was made, is rather complicated.
Here we shall see that the choice y= —A leads to
considerable simplifications. With this choice, the
Bianchi identity for K at dimension 1/2 (which is
m-independent since H,g, = 0) implies that

(rll)e(yTaEB) = (Fll)(aﬁA‘y)’ (3-3)

while the torsion Bianchi identity at dimension 1/2
implies that

(ra)e(vTa€3)= (ra)(aB’\y)- (34)
These are solved by
T = 81 Ag)- (3.5)

We have now arrived at a set of constraints on all
superspace tensors of dimension 1/2 or less in terms
of the dilatino superfield ¢ (since A = D@). These
constraints are as follows, in order of increasing
dimension. At dimension —1:

Fopys=0: (3.6)
At dimension —1/2:
H,z, =0, Fpy.=0. 37

At dimension 0:

Tgo=i(I'") g s

Kge=ie"®(I)) o> Fappra=1€ *(Tpa) ap-
(3.8)

Haﬁc=i(rcru)aﬁ >

At dimension 1/2:
Tis= =84, Tga= 3870,

Habczz(rbcru)‘)a’ K B=0’

= —2e7[ L], (39)

The only undetermined components of the torsion
and field strengths are now those of dimension 1 or
higher. These include the bosonic field strengths
K, F,.q and H,,  and the torsion component 7)),
at dimension 1. These will be m-dependent, in gen-
eral, because of the m-dependence of the Bianchi

F,

aabe

identity for K. For example, the Bianchi identity for
K at dimension 1 is

(Da¢)(rll)ﬁy + 2Ta?B(F11)B)a - e¢(rb)B'YKba

+me® (I, 1), =0. (3.10)
This implies that
Ty =Tl —3me® (L)}, (3.11)

where T# is the torsion 2-form for m = 0. This
m-dependent modification of the torsion tensor was
first found in [18], in which a complete set of
constraints for massless and massive IIA supergrav-
ity were proposed. As far as we can tell, our results
are in agreement with those of [18], but it is not clear
to us whether the m-dependence of the 4-form field
strength was taken into account by these authors.

When m = 0 the IIA superspace constraints found
above are just those obtained by dimensional reduc-
tion of the standard D = 11 superspace constraints.
In fact, they were deduced in this way in [11],
independently of [18]. These constraints are known
to imply the field equations of D = 11 supergravity
[21]. Thus, the m =0 constraints imply the field
equations of massless IIA supergravity. It follows
that the m # 0 constraints imply the field equations
of the massive IIA theory. Note that by ‘constraints’
we mean the specification of the components of all
superspace tensors of dimension 1/2 or less. The
massive ITA constraints are therefore formally identi-
cal to those of the massless theory, differing only in
the m-dependence of the R ® R field strength super-
forms. This is a consequence of the ‘natural’ choice
of basis of IIA supergravity field variables selected
by the coupling to the super D-2-brane. We shall
now conclude with a discussion of how this basis is
related to the ‘canonical’ one, and why the new basis
is simpler.

4. Field variables in IIA /1IB supergravity

We first recall what the canonical variables are.
To simplify the notation we use form notation and
indicate the NS ® NS 2-form by B with correspond-
ing gauge transformation 6B = d A. All other gauge
fields are R® R potentials which we denote by
Cc(r=1,---,9). We use the notation and conven-
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tions of [19] but have renamed the fields of IIA /1IB

qnnprarnw ty as follows:

BD D, D—CY .

(4 1\
\T7-1)

AW » CcH C—C9Y,

The potentials with r > 5 are the corresponding dual
potentials. The fields C*" are potentiais of IIA (IIB)
supergravity for r odd (r even). In the canonical
basis the R ® R potentials transform under the fol-

lowing R ® R gauge transformations with parame-
ters A(r=0,---,8)[19]*:

5CM =dA® — %A,

5CD =dAW,
8CH=dA? +2dAYB - mAB,
C® =dA® + 2dAVB — 3dACP,

(5) y A {4) 15 » s 15 7 a4 (3)
V=anttt — a!l DT Fantr’,

8C
5CO = dAS + A®dB + AVBdB — L1d ABC® .
(4.2)

With respect to [19] we have renamed the parameters
as follows:

AN

AD S A® SO L AD. 4 5 AD s AD.

(4.3)
[ o RPN . SUSUIPPLRY UL T TR ST DR )
111 gdugc uaildl I1daLiOnd Ul UIC uudl PUL Iidld U
and C® have been taken from [20] and [22], respec-
tively

The new basis presented in [14] has the following
distinguishing features:

1. None of the R ® R potentials transform under
the gauge transformation of the NS ® NS 2-form B

(unfh nqrnmptpr A\ excent for the m-denendent terms

ol P CPLnQonn Wiilis

in the IIA case.

2. All R ® R gauge transformations are written in
a canonical way such that in the terms containing the
NS ® NS 2-form B the R ® R parameter A" always
occurs undifferentiated.

It is now straightforward to show that by perform-
ing a suitable redefinition of the fields C” (r> 4)
and the parameters A (r > 2) the canonical basis
(4.1), (4.2) can be transformed into the new basis

4 For simplicitly we only give the rules for r=1,---.,6. The
remaining R® R potentials can be dealt with similarly.

defined above. More precisely, the following redefi-
nitions are needed:

CW = c® 4 2BC®

CY = C® — B5pc®

C® = C® 4+ 1p2c®), (4.4)
and

A® = A® £ 2 BAO

AGY . A() 4 3 noa(l)
ALY = AW o,

T 3DA

AW = A® — 15BA® — 15BAO,

AGY = AG) 4+ Lp24D FA &N
/Y =/} T 3D . \‘P.J)

In the new basis the R ® R gauge transformations

are n-1unn hy {(omittine the nrimec)
v BIVUIR Uy \uuumuus uis pPritnes s

5CH = dA® — ?A,

SCH=dAD,

SCO=dAD -2 A94dB - mAB,

3CH =dA® + 2 AN0gB,

8CO =dA® +15A9dB + ¥m AB*,

8CO =dA® + A®B. (4.6)
As an example of the simplicity inherent to the

new basis we will give the T-duality rules of [19] in

this basis. First, to keep the calculations simple, we

make the same assumption about the background
fields as [14], i.e. >

&in="8,,=0. {4.7)
Here x refers to the isometry direction Under this

PP Py [P PP P,

ASSULITPUVIE lllC 1—uuau|._y lule Ul |_17_| billlpllly as

follows. The T-duality rules for the NS ® NS fields
reduce to

g;ut:g,u/’ gxx=1/gxx’ EMV=B;LV’

AZJ’ __ 2¢ A Q)
e =e¢ /|g”|, (%.0)
while those of the R ® R potentials are given by
CO=ch, ¢O=c®
x >

Sy 2 52y 1
C() Ci,f, C()——C(),

2) _ 33 3 22
C( ) C;(Lv)x » C;(Lv)x - C}S.V) >
GO =800 _~@ p

Suvp T 3%apvp  Va[uPrpl

~4) =3[ 0B (1)
Cxuvp B [C/wp C[#BVP]] : (4'9)

* This assumption is not essential to the simplifications dis-
cussed below.



20 E. Bergshoeff et al. / Physics Letters B 410 (1997) 13-21

We see that under 7-duality the R ® R potentials

r‘(') transform to the nnfpnha]q F(r+‘) except for

C® for which the T- duahty rule involves the NS ®
NS 2-form B. We find that in the new basis all
dependence on B disappears. In particular the rules
involving C®,C™ are given by (omitting the primes)

~(3) — 8@ ~(4) 3003)
C;x,Vp 3 Cxp.vp * nyvp C;zvp (410)
It is not too difficult to understand why, in the

new basis, the T-duality rules of the R ® R poten-
tials are of the simple form given above. The point is
that, using an appropriate normalization, the kinetic
term of any of the R ® R potentials takes the form
(using the string-frame metric)

_ 1)p+ 1
Z 18l (C 4.11)
R®R \/ 2(p+2)' p+2( )’ ( )
where the hatted fields are ten-dimensional and R{C)

R(C)=dC—dB A C+ me®
Because of the assumption (4.7), the reduction rules
for the R ® R potentials are particularly simple:

=C,, é =C

y o Mo Moy S Hy oy

(4.13)

Oy

Similar simple reduction ruies apply to the curva-
tures. Consider now the kinetic term for a IIA poten-
tial for fixed (even) p. Reduction in the isometry
direction x leads to

1\1"*‘1

(=1
Zip =gl m e*/* Ry 15(C)

F

with g = —eX/ 2. Similarly, reducing the kinetic
term for a IIB potential for fixed (odd) g leads to

e x/4 RPH(C) , (4.14)

+1)'

r—r (—1)
2(q+l)'

t 5 = — o XxX/2 Cpamnarin
H e . L0

=
o

=
®
=

to the following simple T-duality rules for t

potentials (together with the usual Buscher’s rules
for the NS ® NS fields)

A A A A

Cor oy = Cony oy Gy ooty = Gty o, -

(4.16)

These are exactly the same T-duality rules as those
given in [14].
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