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Abstract. We consider intersections in eleven dimensions involving Kaluza—Klein monopoles
and Brinkmann waves. Besides these purely gravitational configurations, we also construct
solutions to the equations of motion that involve additiom&2- and M5-branes. The maximal
number of independent objects in these intersections is nine, and such maximal configurations,
when reduced to two dimensions, give rise to a 0-brane solution with dilaton compﬁﬂgg.

PACS numbers: 1125, 0450, 0465, 1127

1. Introduction

Eleven-dimensional supergravity has regained its prominent role in the search for a quantum
theory of gravity. It is the low-energy limit of the conjectur@d-theory, from which all
five 10-dimensional string theories can be obtained.

One implication of this viewpoint is that all solutions of type IlA theory should have an
11-dimensional interpretation [1]. Indeed, the fundamental striit) (2] and the solitonic
5-brane §5) [3, 4] are the double-dimensional reduction of the 11-dimensigdfialbrane
[5] and the direct dimensional reduction of the 11-dimensiagd&tbrane [6], respectively.

The Dirichlet D2- and D4-branes can be obtained fram2 and M5 via direct and double-
dimensional reduction, respectively. Ti- and D6-branes in the IIA theory are related

to the purely gravitational Brinkmann wave [7}W) and the Kaluza—Klein monopole [8]
(KK) in eleven dimensions. These 1l-dimensional solutions also have their counterparts
in D = 10, which we denote byv and KK. Each of these solutions preserv%sof the

D =11 (or D = 10, N = 2) supersymmetry. In figure 1 we summarize the relationship
between thes® = 10 IIA and D = 11 solutions. The 11-dimensional interpretation of the
type IIA 8-brane [9, 10] is still a mystery (see also below). Presumably, it is related to a
9-brand in D = 11. The direct reduction of such a 9-brane is expected to led2 010
Minkowski space.

The aim of this paper is to extend our recent work on intersection® »f and M 5-
branes [15] by including the wave and monopole solutions indicated in figure 1. This paper
is organized as follows. In section 2 we will first discuss the case of two intersecting 11-
dimensional solutions. In section 3 we obtain all multiple intersections which are purely
gravitational, i.e. which do not involve the 3-form gauge fieldIpf= 11 supergravity. In
section 4 we discuss multiple intersections involvii@- and M5-branes as well. We draw

T The conjectured 9-brane is also discussed in [10-14].
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Figure 1. The relation betweerD = 10 IIA and D = 11 solutions. Vertical lines imply
direct dimensional reduction, diagonal lines double-dimensional reduction. The shadowed area
indicates the relationship between known 10-dimensional solutions and a conjectured 9-brane in
D =11.

our conclusions in section 5. In the remainder of this section we will summarize some
relevant properties of thiy and KXC solutions.
The Brinkmann wave irD dimensions is given by the metric

ds? = (2— H)dr* — Hdz? +2(1 — Hydrdz — (def + -+ dxZ,_y), (1)

where H is a harmonic function in the variablest z, x,, ..., x(p_1). In ten dimensions
the wave solution ig'-dual to the fundamental strin§ 1}, after assuming isometry in the
z direction.

There are two ways to reduce the wave fb— 1)-dimensional spacetime. On imposing
that z is an isometry direction, the solution becomes static and corresponds -inl
dimensions to a O-brane. The charge is carried by a vector field of which only the time
component does not vanish, and is givendy= 1 — H~1. Alternatively, one can impose
that H is independent of one of the, (,LL =2,...,(D— 1)) coordinates. This results in
a Brinkmann wave inD — 1 dimensions.

The metric for the Kaluza—Klein monopole reads=1, 2, 3)

ds? = dr® —dxf — - —dvZ_5 — H N(dz + A; dy))? — Hdy?, 2)
where H and A; depend ony;, and the relation betweeH and A; is

Fij=0A; — 04 = s H . ®)
Here the directions, x,, (u =1...,(D— 5)) and z are isometry directions. Reduction

overx, leads to a Kaluza—Klein monopole i — 1 dimensions. Reduction overleads to
a (D — 5)-brane inD — 1 dimensions, where thg directions correspond to the transverse
space. The solution (2) in ten dimensionsTisiual, with respect to the direction, to the
solitonic 5-braness.

On several occasions we will assume that one of yhesay y;, corresponds to an
isometry direction as well. In that case, and Az can be gauged away, and the metric
becomes (inD — 1 dimensions)

ds? = ¢ M2(di® — dxf — -+ — dify_g) — 9VA(A® + (H? + AD(dY] + dy))) @
whereH, A; and

¢=H/(H*+ A) (5)
are harmonic iny,, y3. The coordinate transformation tq v, where

du +iv) = (H +iA1) d(y2 + iy3) (6)

preserves the harmonic property@fand gives the usual metric, dilaton and a vector field
with a non-vanishing component in thelirection for a magneti¢D — 5)-brane. Of course

1 Since the wave, and also the monopole solution considered below, involve only fields which IIA and 1B theories
have in common, this duality transformation can be considered as a IIA transformation.
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z remains an isometry direction i — 1 dimensions. The coordinate transformation (6)
can also be done directly i dimensions.

Sometimes we will consider monopoles which are truncated further, and for which the
harmonic functionH depends on only a single variable, say This implies that (locally)

H = mys + ¢, A1 = —my, for constantc. Note that this does not imply an additional
isometry, and reduction over; indeed gives, after the coordinate transformation (6), a
(D — 5)-brane for whichy again depends om andv.

To obtain a(D — 5)-brane inD — 1 dimensions which has two additional isometries, we
must choose folH and A; special functions that are harmonic jg, y3. If the harmonic
function ¢ depends only om, it must be linear in:, and the coordinate transformation (6)
then implies thatd and A; must satisfy

H—iA . .
d (—> = (H+1A1)d(y2+1iy3). )
H2+ A2
which is solved by
_ 1
(H+iA)? = ——————— 8)

T 20 +iyzt o)’

where« is a complex integration constant. Reducing over thalirection, we find that
indeed the functionp, after the coordinate transformation (6), dependsuoanly, and
that the only non-zero component of the gauge field is inztldirection, and is given by
vde/du. This form of the(D — 5)-brane inD — 1 dimensions was given in [1] for the case
of the 6-brane in ten dimensions. There it7isdual to the 8-brane [10]. Note that, strictly
speaking, th& D — 5)-brane does not have two additional isometries since the gauge field is
linear inv. However, as discussed in [10], such linear dependence disappears after a further
reduction over to D — 2 dimensions. Furthermore, thedependence also disappears in
the (D — 1)-dimensional dual formulation where the vector field has been replaced by a
(D — 4-form gauge field. In this sense we may consider thdirection as a kind of
‘generalized’ isometry direction.

It is interesting to consider the uplifting of the truncatgd—5)-brane solution discussed
above toD dimensions:

ds? = dr® —dx? — - —dxZ_5 —u H(dy — v de)® — u(dz? + du? + dv?) . 9)

Since this solution ha® — 2 isometries and one ‘generalized’ isometry, it is similar to a
(D — 2)-brane solution inD dimensions. FoiD = 11 this would correspond to a 9-brane
solution. Upon reduction to eight dimensions it leads to a solution which is identical to the
ten-dimensional 8-brane when reduced to eight dimensions.

The Kaluza—Klein monopoles, for which additional isometry is imposed in the direction
of the Kaluza—Klein vectors, are no longer asymptotically flat. Although this will disqualify
them for certain applications, they are nevertheless solutions of the equations of motion,
and reduce to (truncated)6-branes inD = 10. Since in this paper we do not consider
global properties of our solutions, we will include these truncated monopoles in multiple
intersections.

2. Intersection rules

Intersections of a pair of branes are at the basis of the construction of multiple intersections.
In a multiple intersection each pair obtained by setting all but two of the independent
harmonic functions equal to one, must be one of the basic pairs described below. For the
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Dp-branes and the NS-NS-brang4 and S5 in D = 10, as well as for th&/2 and M5
branes inD = 11, the allowed pair intersections are known [16—21]. For pair intersections
involving waves and monopoles partial results were given in [17, 22, 23].

Table 1. Pair intersections inD = 11 and their reductions t® = 10 with dependence on
overall transverse coordinates. The first column represents the pair intersectibns=id1.
(¢|p1, p2) denotes an intersection ofa and ap, brane over a commo(y + 1)-dimensional
world-volume. Reductions to non-trivial solutions i = 10, obtained by compactification

in different directions (common world-volume, relative transverse and overall transverse) with
respect to the branes, are indicated in the remaining columns.DTkel0 solutions marked
with * are not of the usual harmonic form.

Common world-volume  Relative transverse  Overall transverse

o/M2,M2)  — (0|F1, D2) (0|D2, D2)

(1|M2, M5) (O|F1, D4) (1F1, S5) (11D2, §5)
(11D2, D4)

(3|M5, M5) (2|D4, D4) (3| D4, §5) (3/55, $5)

1IM2, W) (0|F1, DO) (1F1, W) (11D2, W)

(11M5, W) (0| D4, DO) (11D4, W) (1|85, W)

(2IM2,KK)  (1]F1, KK) (2|D2, KK) (2|D2, D6)

(5|M5,KK) (4 D4, KK) (5|85, KK) (5|85, D6)

OM2,KK)  — (0|F1, D6) (0|D2, D6)*
(0|D2, KK)

(3|M5, KK) (2|D4, KK) (3| D4, D6) (3|55, D6)*
(3|85, KK)

aw, KK) (0|DO, KK) (LW, KK) (1w, D6)

(4KK,KK)*  (3IKK, KK)* (41D6, K K)* (41 D6, D6)

(4KK, KK)?  (3KK,KK)" (4/D6, KK) (4/D6, D6)*

In tables 1 and 2 we summarize old and new results on the pair intersections. The two
independent harmonic functions of the pairs in table 1 depend on the coordinates which
are transverse to both branes (overall transveérdedr the pairs in table 2 both harmonic
functions must depend on the relative transverse coordinates. In sections 3 and 4, where
we discuss multiple intersections, we will use only the pairs of table 1.

The first three rows of table 1 denote the intersectiong/@ and M5-branes. As an
example, which also explains our notation, considé# 2, M5). Denoting a world-volume
direction of a brane by, and a transverse direction by, the metric for this pair can be
represented by

XX X = = = = = — — =

(1M2, M5) = { (10)

X — X X X X - = - -

The coordinates = x°, x*, ..., x% are indicated from left to right. The common world-
volume in this case is two dimensionaP(x1), the overall transverse space four dimensional
(x7, ..., x%0), and there are five relative transverse directior’s (.., x®). The spacelike
directionsx?, ..., x® correspond to isometries. Reduction owérgives (0| F1, D4) in ten

1 For some of the entries in table 1 another possibility exists, namely that one harmonic function depends on
overall transverse, the other on directions which are transverse to only one brane in the pair (relative transverse)
[18, 24]. We will not consider this option in this paper.
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dimensions. For the relative transverse directions the possibilities are: either reduction over
x2, giving (1| F1, S5), or reduction over one of the directions, . .., x®, giving (1| D2, D4).

Finally, one can impose an isometry in one of the overall transverse directions by restricting
the dependence of the harmonic functions to three coordinates. Reduction over such a
direction gives(1|D2, S5). The next two rows represent the addition of a wave to the

D =11 M-branes. The direction of the wave must be placed in the world-volume of the
M-brane. The dependence of the harmonic functions is only on the directions transverse to
the M-brane, so that the wave does not propagate. The metric for thes® twd 1 pairs

can be represented by

X X = = = = = = — =

LM2, W) = { » (11)

7 - - - - - - - - =

X X X X X - - - - - (12)

7z - - - - - - - - =

(1|M5, W) = { z

The next four rows in table 1 denote the pairs involving aférane and one Kaluza—
Klein monopole. The metric for these four cases takes on the form

@MZKO = {04 4 Az ox x x x x x a3
GMEKRO= | |4 a4 45 2 x x x x x x )
OM2KO = {04 4 Ay 2 x x x x x x as)
GMSKO = 1 J |4, 4 As 2 ox x x x x x 16

As we see, there are two possibilities. Thedirection of the Kaluza—Klein monopole,
the natural isometry direction which on compactification gives a magigtie 5)-brane,
can be placed either in a direction transverse(8&M 2, ) and (5|M5, KK)) or in the
world-volume of theM-brane (0|M2, KK) and (3|M5, KK)). The solutions (13) and (14)
were given in [17, 23]. For these, the reductionto= 10 is straightforward. Note that the
reduction over an overall transverse direction can be either over a direction indicated by
or, by imposing an additional isometry, in the direction of a component of the vector field.
In the solutions (15) and (16) the harmonic functions depend only on the two overall
transverse coordinates, so that the Kaluza—Klein monopole has one additional isometry
direction (indicated byA;). In both of these solutions the reduction over the relative
transversed; andz directions yields, after a coordinate transformation, the same result.
The last three rows of table 1 correspond to intersections of Kaluza—Klein monopoles and
waves. The possibilities are shown in (17)—¢19)ote that there are two ways to intersect
two Kaluza—Klein monopoles, both with a five-dimensional common world-volume. In
solution (18) the two harmonic functions depend on a single coordin&}eif (19) on two

1 Note that we extend the notatidg|p1, p2) to include waves and monopoles with the understanding that the
world-volume directions of the)V-brane’ are given by, z (see (1)), and the transverse directions of tkigC*
brane’ are given by the isometry directignand the coordinates in which the Kaluza—Klein vector is oriented.
These directions (called; in (2)) will be denoted byA;.

{ Solution (17) was presented in [17].
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coordinates X%, x?)

— X| - - - - 1 - - - = =

Aw, KK) = { WAL Ay As 2 x x x x x x a7)
a_ x| A1 Ay A3 7 X X X X X X

QIKK, KK)* = { B, x x 2 Bs Bs x x x x (18)
b_ x| A1 Az Az z1 X X X X X X

(HEK, KK)” = { X | By By X X Bs zo x X X x ' (19)

For these solutions it may be useful to present the metric explicitly. We have:
AIKK, KK)* — ds® = di* — HiHo dx? — Hydx%_g — Hpdx5_g — dx_s

— (H1Hp)"}(dz + (A1 + By) drg + Az dr

+ Agdxs + Bsdxs + Bgdyg)®, (20)
(4IKKC, KK)? — ds® = dr® — HyHp dx(_, — Hidxz — Hodxs — dxg_yg

— Hi'(dza + Apdxy + Az dxp + Azdrs)?

— Hy(dzp + By dxy + Bpdxz + Bs dxs)?. (21)

Note that in (20) the harmonic functions depend only -on Therefore two of the
components of each of the gauge fielend B can be gauged to zero. For the reductions

in table 1, different gauge choices are employed. In (21) the harmonic functions depend on
x1 andx,. Here also different gauge choices can be made.

The solution (18) solves the equations of motion, since it is the known ten-dimensional
solution(4| D6, D6) lifted up to D = 11. The configuration (19) must be a solution because,
after reduction over a common world-volume direction it can be related to a known solution
involving two solitonic 5-branes via the following§-duality chain inD = 10:

(3|S5, S5) — (3|85, KK) - (3|KK,KK)". (22)

Note that it is possible to relate (18) and (19) by a chair’eduality and oneS-duality
transformations in ten dimensions. This involves theuality transformation between
(3| D5, D5) and (3|S5, S5).

Similarly, the intersection of a wave and a Kaluza—Klein monopole can be obtained
from ten dimensions by first constructing an intersectio®is= 10 of a DO-brane with the
Kaluza—Klein monopole:

(0|D1, S5) — (0|DO, KK), (23)

and by lifting this to eleven dimensions.

In table 1 there are four reductions 1 = 10 that do not lead to solutions which are
expressed in a standard form in terms of harmonic functions. As an example, consider
the reduction of (18). The harmonic functions dependxgnthe non-zero gauge field
components can be chosen to dgand Bs, which then depend oms and xg, respectively.
Reduction over; gives (4| D6, D6), but also reduction ovet, is possible. This gives a
D = 10 configuration which has the properties(dfD6, K K), but the fields do not have
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the standard harmonic form. It is given by:

ds? = o Y2(dr? — dx(ZHO) — H, dx(2576))
— Hy'oY?((dz + Bsdxs)? + (HZHa + A3)(dx3 + Ha dx?)),

= 32, (24)
pA2 @A2Bsg
A C5 I ——
H H; HyH,
where
¢ = HiHp/ (A3 + H7Hp). (25)

The non-zero components of the RR-vector fieldin= 10 are denoted by,. Note that

¢ is indeed not harmonic iy, x3. If H, =1 and Bs = 0, ¢ does become harmonic, and

we obtain a standar®6 solution, after the coordinate transformation (6). Conversely, for
H, =1, A, =0 a standard Kaluza—Klein monopole is obtaine®ir= 10. These solutions
show that the usual harmonic ansatz for intersecting pairs does not cover all possibilities.
It will be interesting to investigate these non-harmonic solutions further (see also [24]).

Table 2. Pair intersections inD = 11 and their reductions t® = 10 with dependence on
relative transverse coordinates. The reductions indicated*bgra not expressed in a standard
way in terms of harmonic functions.

Common world-volume  Relative transverse  Overall transverse

(1/M5, M5)  (0|D4, D4) (11D4, S5) (1/S5, S5)

M2, KK) — (0D2, KK) (0D2, D6)
(0|F1, D6)*

(1M5,KK)  (0|D4, KK) (1185, KK) —
(1) D4, D6)

(3IM5,KK)  (2/D4, KK) (3185, KK) (3185, D6)
(3|1D4, D6)*

(KK, KK) (UKK,KK) (2|D6, KK) —

KK, KK) (4KK,KK) (41D6, KK) (41 D6, DB)*
(41D6, KK)*

In table 2 we consider intersections in which the two harmonic functions depend on the
relative coordinates. There is one pair involving oMb [19], and five pairs involving
Kaluza—Klein monopoles. Some of these configurations and their generalization to non-
orthogonal intersections were discussed recently in [25].

Below we present the metric of these pairs in the usual way. The pairs involving
Kaluza—Klein monopoles are each related to known solutions thraugh 10, so that we
can be sure that they solve the equations of motion. For exan@€/C, LK) can be
reduced to(1|K K, K K) in ten dimensions, and applyirig-duality twice, in the directions
z1 andzp, we find

(1} KK,KK) — (1|85, KK) — (1]S5, S5, (26)
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and this can be oxidized td|M5, M5), which is a known solution

(1M5,M5) = | * | > x x x — =~ — = = 27)
X|X — — — — X X X x -
X | x X - - - — - - — -
O1M2, KK = x| A1 Ay A3 z X X X X X X (28)
X[ X X X X X - = - — =
(11M5, KK) = x| A1 Ay A3 z X X X X X X (29)
X| X X - - — — — X x X
(31M5, KK) = x| A1 Ay A3 7z X X X X X X (30)
. X | A1 A2 A3 73 X X X X X X
KL, KK) = X| x X X X 7z Bg By Bg x X (31)
. X | A1 A A3 7 X X X X X X
(ALK, KK = X| x x B3 By Bs zo x X x x (32)

In (27)—-(32) the dependence is on the relative transverse coordinates, e.g. in (30)
H; depends orxs,...,x7 and H, on xp, x. In the reduction of (30) tab = 10 we
obtain (3|55, K K) when an isometry in one of the coordinates. . ., x; is assumed, and
(3| D4, D6)* when reducing ovek; or x».

3. Purely gravitational solutions: monopoles and waves

In this section we will consider configurations involving several monopoles, with or without
an additional wave, using the pair intersections of table 1. The interest of such solutions
lies in the fact that they involve only the gravitational field. If the spacetime is of sufficient
dimensionality, such solutions can always be present.

Configurations involving only monopoles differ in the way #ésometry directions are
related. In (33)—(35) we present three configurations to which no further monopole can be
added

X | X X X X X X A7 Ag Ag z
. X | X X X X Bs Bg x x Bg z
Type A: X| x x C3 C4 x x x x GCo z (33)
x| D1 Dy x X X X X X Dg z
X|x X X X X X A7 Ag A9 21
X | X X X X Bs Bg X X Bg 272
. X | x x x zz Cs X x Cg Cg X
Type B: X | X X X z4 X Dg D7 x Dg X (34)
X | x x zz x Es x E; x Eg x
X|x X zg X x Fg x Fg Fyg x
X |z A2 X X X X X X Ag Ap
. X | X X z By x x x x Bg By
Type C: X| X X x x z Cg x x Cg Cqpo° (35)
X | X X X X X x z Dg Dg D
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In (33) there is a common isometry directignin (34) the six monopoles come in pairs
with a commonz-isometry, while the four monopoles in (35) have no commasometry.
Note that in (33) and (34) the solution depends on only one coordinate, in (35) the harmonic
functions may depend on two coordinates. To the solution (34) we can add a single wave
in either thex! or the x? direction.

Table 3. Maximal number of monopoles and waves irt&D < 11 dimensions. We indicate the
maximum number of Kaluza—Klein monopoles in different dimensions, superimposed according
to type A, B or C (see (33)—(35)). W means that a wave can be added.

D TypeA TypeB TypeC

5 1 1 1
6 1+W 1+wW  14+W
7 2 2 2
8 24+W 4 2+W
9 3 6 3
10 3+W 6+W 3+W
11 4 6+W 4

It is interesting to see how these purely gravitational solutions survive in lower
dimensions. In table 3 we indicate the configurations with a maximum number of
monopoles. Note that if we go to dimensions higher than eleven, configurations of type A
and type C are naturally extended to an additional monopole in each odd-dimensional
spacetime. The configurations of type B cannot be extended beyond six monopoles in higher
dimensions. In some cases a single wave can be added to these monopole configurations.
Note that the solution iD = 5, 6 is the same for type A, B and C. Ib = 7 there is no
difference between type A and type B.

The supersymmetry of these purely gravitational solutions, embedded i 11
supergravity and its toroidal compactifications,fgsof the D = 11 supersymmetry.

4. Multiple intersections

Having determined the ‘no-force’ condition between the basic 11-dimensional solutions
in section 2 and the multiple intersections of waves and monopoles in section 3, we next
consider multiple intersections that also involMe&- andM5-branes. Multiple intersections

of D-branes inD = 10, and of M2- and M5-branes inD = 11 have only recently been
classified [15]. TheD = 11 result is given in table 1 of [15]. In this section we will
generalize the result of [15] to intersections that also involve waves and monopoles. We
will first restrict ourselves to configurations that can be reduced to intersections with only
D-branes inD = 10. Looking back at table 1, we see that all pairs involving monopoles
should then be of the forn@2|M2, KKC), (3|M5, KK) or (4K, KK)¢, and that with a
wave only (1)M5, W) may be used. Thus only multiple monopoles of type A (see the
previous section) will be used. At the end of this section we will relax these restrictions
and consider the possibility of also usitgM2, W).

Our strategy will be to take table 1 of [15] as our starting point and then consider to
which M-brane intersections waves and/or monopoles can be added. The rule for adding
a wave is known [17,26]. To each intersection involving at least a common string a
wave can be added in such a way that thisometry direction of the wave lies in the
spacelike common string direction. Furthermore, at most one wave can be added to any
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given intersection.

From the intersection (13) we see that the world-volume of & brane must lie in
the world-volume directions of the monopole. Furthermore, two interse@d2gbranes
have distinct (spacelike) world-volume directions. Since the monopole has six (spacelike)
world-volume directions we conclude that monopoles may be added to configurations that
contain at most thred/2-branes [23]:

X X - = - - - - - —=
- X - - T T T T (36)

X X X X X X z Ag A9 Ai

X X X X

We next consider thé/5-branes. Using only the pai3|M5, K) we see that the
z-isometry direction of the monopole should lie in a common world-volume direction of
the M5-branes. One finds that to a single monopole one can add at mos¥fenranes.

An example of such a configuration is:

X|— X X — X — X - X -
X | X — — X X — X = X -
XX — X — — X X = X — . (37)
X|x — X — X - — X X -
X | X X X X x x A7 Ag z Ay

The harmonic functions depend only on the coordinate However, one may add more
than one monopole to the four 5-branes. From (37) it is clear that the monopole could also
have been placed with two components of the vector field in(ther,), (x3, x4) Or (x5, x¢)
directions. In fact, in this way one can combine four monopoles with the fdbbranes:

X| — X X - X - X - X =
X| x - - X X - X - x -

X| x - x - —-— X X - x -

X| x - xXx - X - - X x - 38
X | X x X x X x A7 Ag z Ay (38)
X | x X X X Bs Bg x X 7z Biog

X | x x C3 C4 x x x x z Ci

x| Dy D x x x X x X z D

One may verify that this intersection is consistent with #1&—C/C intersection rule (16)
and theICK—CK rule (18).

Having established the rule of how to add monopoles to an intersectiafh2elbranes
and M5-branes or a mixture thereof, we are able to list all intersections invol¥izg
branes,M5-branes, waves and monopoles. It is enough to give only the intersection with
the largest number of independent harmonics. All other intersections can be obtained from
these by setting one or more of the harmonic functions equal tp. one

The result is given in table 4. The maximum number of intersecting objéatsjuals
eight if we restrict ourselves to configurations which can be reduced to pdipeane
intersections inD = 10. We use the same notation as in [15]. In= 11 a configuration
is characterized by the number of's (world-volume directions) in each of the spatial
coordinates. In this notation, the four 5-branes in (37) or (38) are denoted]4.[8, 4, 1},
since there are four coordinates with ose zero with two x’s etc. In D = 10 the
same notation can be used, but then a convention can be chosen to avoid Tyietira

t This is not the case if one considers multiple monopoles of type B and C.
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Table 4. N = 8 intersections that reduce to pubebrane intersections. The column headings
indicate the 10-dimensional T-duality class. The notatioh 3 + #/XK indicates that the
intersections contairk M2-branes,! M5-branes and: monopoles. An additional wave is
indicated by+W.

(0,4,0, Y s5usy=1/32 (1,0,7,0)susy=1/32 (0,0,0, Nsusy=1/16
[24,5%{0,4,0,5,0,0, 0} [24,5%{1,0,6,1,1,0,0, 0} [23,5%{0,0,6,2,0,0,0} + KK
[23,5%{1,2,4,1,1,0,0} + KK [28,5%{1,3,1,4,0,0,0} + KK [21,5%{1,6,0,1, 1} + 3KK
[22,5%{2,2,2,3,0,0} + 2KK [22,5%{1,4,2,1,1,0,0} + 2KK [571{0,0,0,7,0,0, 1} + W
[2%,5%{0, 4, 2, 2,0} + 3KK [22,5%{0, 2, 4, 2,0, 0} + 2KK

[5%{4,0, 4, 1} + 4KK [21,54(3,1,3,2, 0} + 3KK

[571{0,3,0,4,0,1, 1} + W [54{0, 6, 0, 2} + 4KK

[571{0,0,7,0,0,0,2} + W
[571{1,0,4,0,3,0, 1} + W

solutions. The convention is that in each coordirBtduality should be used to minimize

the number of world-volume directions. Then far = 8 only four humbers need to be
specified to characterize B = 10 class of (duality) equivalent solutions. In table 4 we
have also indicated the unbroken supersymmetry which directly follows from the unbroken
supersymmetry of the correspondifgbrane intersection.

Now consider using also the paf|M2, ). The reduction toD = 10 will then
necessarily include also NS/NS brahedt turns out that there are three such maximum
intersections. All other intersections follow by truncation of these. We find one intersection
with N = 8 and two intersections witlv = 9 independent harmonics:

N=8: [2%,5%{1,0,4,3,0,0, 1} + W,
N=9: [2%,571{1,0,0,7,0,0,0,1} + W, (39)

[21,5%{1,6,0,1, 1} + 3KK + W.

All three solutions have31—2 unbroken supersymmetry. Interestingly enough we find
intersections witmine independent harmonics. These intersections have one common time
direction, nine relative transverse directions and one overall transverse direction. They
therefore naturally reduce, upon identifying all harmonics, to a supersymmetric dilatonic
O-brane solution in two dimensions. Since this solution involves the newly constructed
N = 9 intersection given above, it did not occur in our previous paper [15]. The specific
dilaton coupling in two dimensions is the same for each of the Nve- 9 intersections
since it only depends on the number of independent harmosicfie(d strengths in two
dimensions) [27]. We find that the dilaton coupling is givendoy —g.

The two intersections withV = 9 are extensions oV = 8 intersections Withli6
supersymmetry in table 4. The remaining intersection \ﬁ}étbupersymmetry, 254 +KK
can also be extended 16 = 9, but this necessarily requires the use of a pair from table 2.
For example, an additional 5-brane can be added, giggnngersymmetry.

1 Such intersections were indicated by grey colour in the tables of [15].
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5. Conclusions

In this paper we have considered intersectionsMi®-branes, M5-branes, waves and
monopoles. We first considered the pair intersections, which fall in two groups (tables 1
and 2) depending on the coordinates on which the intersecting branes depend. Using
only the pairs of table 1, where the branes depend on overall transverse coordinates, we
then considered purely gravitational solutions with only monopoles and waves. We found
three types of such intersections (see table 3) consisting of multiple monopoles and in
one case an additional wave. We next included Mi2- and M5-branes and gave all
intersections that can be reduced to 10-dimensional intersections involvingDebignes.

This restriction is implemented by using only a limited number of the pair intersections of
table 1. This was completed by adding additional waves. As a new result we found two
new configurations witmine independent harmonic functions. Upon reduction they lead to

a new supersymmetric 0-brane solution in two dimensions with dilaton coupli:ag—g.

The pair intersections in section 2 show the interesting feature that in some cases the
reduction toD = 10 gives rise to a solution which is not expressed in the standard way in
terms of harmonic functions. In much of the previous work on pair intersectiofms=n10
the possibility of such solutions, which interpolate between standard harmonic single-brane
solutions, but cannot themselves be expressed in terms of two harmonic functions, was not
considered (see, however, [24]). These solutions may provide a useful hint in a search
for more general, non-harmonic, pair intersections. In particular, it may well be that the
structure of completely localized brane intersections can be clarified in this way.

In this paper we did not consider intersections containing multiple monopoles of type B
and C where the-isometry direction is not the same for all monopoles. Such configurations
are characterized by the fact that, upon reduction to ten dimensions, they always lead to
an intersection involving at least one monopole. Although the result can be derived in a
straightforward manner it turns out that the answer is involved. This is due to the fact that
for these cases not all possible configurations follow by truncation from the intersections
with the maximum number of harmonics.

We finally note that we did not consider 11-dimensional intersections involving 9-
branes. In order to do that, one should first be able to construct such a 9-brane solution.
We nevertheless found a hint in our calculations that the addition of such would-be 9-
branes would be consistent with supersymmietnythe following sense. Assuming that the
unbroken supersymmetry of the 9-brane is determined by

(1 + )/01...9)6 =0, (40)

we found that such a projection operator naturally follows by taking products of similar
projection operators corresponding to the other 11-dimensional solutions. This suggests
that to specific combinations dff2-, M5-branes, waves and monopoles a 9-brane can be
added without breaking supersymmetry [19]. It would be interesting to clarify the role of
this would-be 11-dimensional 9-brane.
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