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Abstract. Within the framework of the AN, expansion of treatment of a four-fermion modélla Nambu-Jona Lasinio
four-fermion interaction models, we analyse the next to lead-which is alternative to the approaches formulated in [2] and
ing 1/N. corrections to the well known largh. result  [6] and is of more immediate use in the derivation of hadron
Mg = 2Mg where Mg is the mass of the scalar boson and properties. In this case the model is treated as fully non
Mg is the constituent quark mass. The calculation is per+enormalizable (see [7] and [8] for reviews).
formed in the Extended Nambu-Jona Lasinio (ENJL) model Effective constituent quark modeld la Nambu-Jona
which is suitable for describing low energy hadron prop- Lasinio have been found to be successful in reproducing
erties. We treat the model as fully non renormalizable andhe experimental values of the low-energy coupling con-
discuss the comparison with approaches based on the equistants toO(p*) in Chiral Perturbation Theory (ChPt) [9].
alence with renormalizable Yukawa type models. We con-Here the proper time regularization has been used. Small de-
sider both theGy = 0 and theGy # 0 cases withny = 2 pendence upon the regularization scheme has been also ver-
flavours and study the dependence upon the regularizatioified in [10, 7]. Many of the couplings between resonances
scheme. We find that pure next-to-leadingVL corrections and pseudoscalar mesons have been computed [9, 11] and
are large and negative, while a partially resummed treatmemicely compare with the experiment, as well as the vector
can induce positive and smaller corrections. A triplet-singletand axial-vector masses [9, 12].
states’ splitting is observed. Large4V. two and three point functions have been de-
rived in the fully fermionic language via the resummation
of linear chains of constituent quark bubbles (sausage dia-
grams of theb* theory) [12, 13]. In all the phenomenological
1 Introduction results the explicit dependence upon the ultraviolet cut-off
of the effective theory is kept treating the model as fully
The physical content of four-fermion interaction models hasnon renormalizable and away from the infrared limit. The
been extensively analysed in the past recent years. Within thiarge4V,. calculation of the scalar two point function in the
1/N expansion approach [1] for a geneta]N) symmetric  fully fermionic language and in the chiral limit reproduces a
model, the equivalencander certain assumptionsf four- pole atMg = 2M [12], whereM is the constituent quark
fermion models with scalar four-fermion interactions and mass. With a typical value af/, = 250+ 350 MeV one has
Yukawa-type models has been investigated in [2, 3], whileMs = 500+ 700 MeV. The question arises if this pole has
the consequences of imposing the so calbednpositness to be identified with a physical hadron state or it remains an
condition have been derived by [4, 5] and most recently artefact of the low energy model possibly related to the lack
by [6]. In all the cases the renormalized ratio of boson andof confinement. One remote possibility is that the eventual
fermion masses plays a relevant role. In [2] is shown that thdow lying scalar resonance has a very large width.
ratio goes to a fixed value due to the infrared freedom of the  From the experimental point of view a signal of a nar-
renormalizable Yukawa-type model and the assumption thatow scalar state around 750 MeV is reported in [14], while
the couplings are generic at the cut-off scale. In addition ahe first clear scalar resonances aredh@®83) and the isos-
common trend of all the analyses seems to be the fact that thiaglet fo(975) states. Their interpretation as an ordinagy
largeN, value of the mass ratid/s /Mg = 2 gets a large  bound state is dubious [15, 16, 17]. Most recently a fit of
and negative next to leading/ ¥, correction for a realistic  the available data [18] indicated that theéX component is
value N, = 3. This suggests an asymptotic behaviour of thelarge for both theio(983) andf,(975) states. It is then clear
series where each finite order /¥, fails to give a good that the identification of the physical scalar staigsand f,
estimate of the real value of the mass ratio for useful valuesvould probably require the insertion of a mixing with exotic
of N.. states (glueballsgl K bound states etc.) inside a low energy
In this paper we address a calculation of th&Vl next  model. This is beyond the scope of this paper.
to leading correction to the scalar boson mass based on a
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The present version of the ENJL model only allows for a O(1) in the /N, expansion, b are flavour indices and a
scalar state which can be elementary gp@omposite state. sum over colour d.o.f is implicit between brackets/
Nonetheless we show thaf A corrections to the largé. is the QCD Lagrangian in the presence of external sources
value of the scalar mass can produce a splitting between thand in the presence of a low energy cut-off where high fre-
octet and the singlet scalar states. quency quark and gluon modes (i.e. with energy greater than

In Sect. 2 we first outline the model and make clear theA) have been integrated out. The problem of the connection
main differences amongst the present approach and the apetween QCD and this Lagrangian has been addressed in
proaches in [2] and [6] based on the equivalence of the four{9]. The non renormalizable (by power counting) part of the
fermion interaction models with a renormalizable Yukawa- Lagrangian (2.1) is in principle the first term of a double
type model. Then we clarify the correspondence betweerxpansion in 1IN., whereN., is the number of colours, and
the non-bosonized version of the ENJL model, where onlyin 1/A42.
fermion degrees of freedom are present, and its bosonized It is worth at this stage to outline the main differences of
version which only contains the auxiliary boson fields onceour approach with recent analyses of four-fermion models
the fermions have been integrated out. The appearance dfased on their equivalence with renormalizable Yukawa-type
overlapping divergences in the diagrams which give themodels at least in the cagg, = 0. There are essentially two
1/N. n.tl. corrections to the scalar two-point function in pictures explored alternative to the present one. A quite gen-
the non-bosonized version can prevent from a simple aneral RG equations analysis of the Gross-Neveu (GN) model
unambiguous calculation. We chose to compute them in théas been done by Zinn-Justin in [2] (see also [3] for a nu-
bosonized version which gives a reliable and fully analyticalmerical study of a NJL model on the same lines), while a
approximation of the exact result. In Sect. 3 we derive theNJL model has been studied in [6]. Here the consequences
1/N. corrections to the scalar pole mass in &g = 0 case, of imposing thecompositness conditiaon the scalar field of
where only scalar and pseudoscalar meson fields are preseiie renormalizable Yukawa model as an additional constraint
in the bosonized action and witly = 2 flavours. Here a sub- are analysed (see also refs. therein).
section is dedicated to the treatment of leading divergences In the RGE analysis in [2] the mass gap equation and
in this type of theories required by chiral invariance. We the scalar propagator of the renormalizable generalized GN
also comment on different covariant regularization schemesmodel in four dimensions reduce to the ordinary GN ones
In Sect. 4 we extend the model to the c&8g # 0, where in the infrared limito, p < A, whereo is the vacuum ex-
also vector and axial-vector fields are present. For both casqsectation value of the scalar field apds the typical four-

a numerical analysis is shown and the appearance of a massomentum. Then in this case the equivalence of the four-
splitting between the scalar singlet and the non-singlet ifermion model with the generalized GN model is strictly
obtained. We comment on numerical results and state ouvalid in theinfrared domainwithin the 1/N expansion. The
conclusions in Sect. 5. equivalence can be in principle spoiled beyond th& ex-
pansion for small values a. As also pointed out in [2]
this regime can be investigated by numerical studies of the
2 Bosonized versus non-bosonized version of the ENJL  four-fermion model in four dimensions and compared with
model analytice expansion of the renormalizable model. The type

. i ) of equivalence in [2] also allows for the presence of higher
The effective ENJL Lagrangian can be written as follows gimensions operators in the four-fermion model which are

[9]: irrelevant ind < 4 dimensions.
FaNJL = u%/élcp + Ls.p+ Lyoa, (2.1) Thecompositness conditioom the scalar field of a renor-

) ) malizable Yukawa model treated in [6] is a stronger extra
where Zs p and £y 4 are all the possible four-fermion  constraint which guarantees the equivalence between a NJL
lowest dimensional interactions allowed by chiral symmetrymodel and a Yukawa one and which affects the RG flow of

and leading in the AN, expansion the renormalized couplings of the Yukawa model. It spoils
B 812G's(A) . the renormalizability of the Yukawa model in four dimen-
Lsp= N A2 > (@hah) (@ ak) sions. One underlying difference between the approaches in
¢ a,b [2] and [6] is the fact that the compositness condition im-
Gy, — 0 plies a particular value of thkare couplings at the cut-off
= N2 [(¢9)” — (¢759)°] scale while they are naturally assumed to be generic in the
¢ 5 RG analysis of [2]. The analysis in [6] also provides a pre-
L a = _8r°Gy(4) S UG )@ diction for the ratio of the boson and fermion masses at
: NeA2 PR AL E next-to-leading order in the/IV expansion. As will be also
HL - R). 2.2) true in our case, AN next-to-leading corrections to the mass

ratio are large and negative.

At this level the model contains only fermion d.o.f. and The main difference with our approach is that they keep
is written in terms of three independent parametérs; the original four-fermion model at the infrared limit, which
Gy, and the physical cut-offi of the effective interaction. actually corresponds to the limil — oo or equivalently
New extra parameters can be hidden in the cut-off proces,p < A. What we do is to keep the modalvay from the
dure which is necessary in a non renormalizable model. Thénfrared domain which corresponds to being away from the
couplingsGs andG\, are explicitly dependent upon the cut- limit ¢ < A in the RGE analysis and in the solution of the
off and we have pulled out a factor/,. so that they are mass gap equation. In this case the four-fermion model stays
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with I'(0, ¢€) = f:o dzie_z andgs = 4n?Gg /N A?.
————— |:| NC As an example, at next to leading order in\L the re-
summation of the self-energy insertion diagrams as in Fig. 2a

]F\lfg.”]r.r.“'tl'wo-pmnt function in the non bosonized ENJL model in the large- |gse?s|ven bygsIl = 15351? + l—;sﬁ 9521—91517 +...and one
Q%
@ (DG 1 (1_ (Z5(Q2)gs) ) 26)
gs Q%+ (2MqQ)? — X(Q)Zs(@H)~t) © T
@ (b) with

2y —
Fig. 2a and b. Two-point function in the non bosonized ENJL model at Y(g) =
next-to-leading order in AN.. Diagramsa are self-energy insertions. Dia- 1, A2k — 2
gramsb are vertex corrections. The double lines are linear chains of con- zgs (27r)4 T(q, k)

stituent quark bubbles

1 1
1— g5 1) 1— gsiT((q — k) &7

T(q, k) is a three-point function vertex of the type SSS,
SPP, SVV, SAA, SPA (S=scalar, P=pseudoscalar, V=vector,
as non renormalizable and/X¥,. corrections to the scalar A=axial-vector).
maSS can in principle .be derived in the non-bosonized ver- Because of the appearance of Over|apping divergences
sion where only constituent quarks appear. and the necessity of numerically evaluating contributions
A full two-point function in the largeN. limit is given  |ike (2.7) due to a complex momenta dependence we chose
by the infinite resummation of linear chains of quark bUbbleSto estimate them using a reliable and fu”y ana|ytica| ap-
with the insertion of a four—quark interaction vertex as ShOWﬂproximation within the bosonized version of the model. The
in Fig. 1. It is of orderN.. (each fermion loop gives a factor correspondence with the non bosonized case is such that a
N¢). Two and three-point functions have been derived instring of quark bubbles is replaced by a meson line with the
[12, 13]. Analogously a full n-point function in the large- same quantum numbers. The n.tJ\L corrections become
N, limit is given by the one-constituent quark loop dressedone loop corrections in the meson theory. In the bosonized
by the insertion of two-point function legs attaching to the versjon, after integrating over constituent quarks, only the
external sources. auxiliary boson fields remain: scalar and pseudoscalar in
Next to leading in LN, corrections are given in the di- the Gy, = 0 case and the additional vector and axial-vector
agrammatic language by all the possible insertions of ongields in theGy # 0 case. In what follows we refer to the
loop of chains of quark bubbles in the larg&- diagrams.  posonized version with the non linear realization of the chi-
They are of two types: self-energy insertions (Fig. 2a) andral symmetry (i.e. the non linear representation for the pseu-

vertex corrections (Fig.2b). Being a non renormalizabledoscalar field and derivative coupling of the pseudoscalar to
model the one loop correction implies a new divergencethe other degrees of freedom).

and thus a new counterterm which we keep rilegv cut-off Our approximation does correspond in practice to ne-
A of the |00p. The exact calculation of the next to Ieading g|ecting momenta dependence in vertices and masses of
in 1/N. corrections to the scalar two-point function (and (2.6). We discuss in Sect.3 the numerical relevance of the
in particular to its pole mass) involves the one loop in- approximation. On the more formal side our approximation
sertions of the type 2(a) and 2(b) in the laye-scalar  corresponds to compute the next to leadirig/d corrections
two-point function of Fig. 1. Defining the scalar two-point yithin the bosonized version keeping the leading order con-
function asI(¢?) = i [d*z €7"(0|T'S(x)S(0)0), where  tributions in the Heat Kernel Expansion (HKE) approach [9]

S(x) = —\}Zq_(m)q(x) (we omit for simplicity flavour in-  to the boson vertices and masses. (see also [19] for a review
dices), the largeV, expression is given by [12] on HKE). Besides this it is easy to verify that the resummed
- HKE for a g;venzinteraction vertex (which is an expansion in

AN(N.—00) — T7(N2 = 2T powers ofd“/M§) and the largeV, resummation of quark
Q% =@ )Z (gSH(Q )> bubbles proéucg the SAME momenta dependence.

— ”;0 For the concerns of the numerical evaluation it is use-
_ @) (2.3)  ful to notice that the HKE behaves as a slowly convergent
1-gsII(Q?)’ ' series (alternating signs with slowly decreasing coefficients)

which implies that the leading term is a better estimate of
the exact result than any truncation at a finite order outside
- 1 the domaing® < M3. In what follows, only the lowest or-
QY =~ —(Q*+(2M)) Zs(Q? 2.4 . g™ < Mg it Tolows, only

@9 gs (@7 +(2Mo))Zs(@) (2.4) der in the derivative expansion will be kept for each vertex.
This approximation allows us to simplify the calculations
and preserves chiral invariance.

where

is the bare fermion loop diagram in the mean-field approx-
imation andZs(Q?) is the scalar wave function renormal-
ization constant which in the proper time regularization is

given by 3 The Gy = 0 case

Zs(@% =

N, > ! dal' (0 a(l— a)Q*+ Mé (2.5) In the Gy = 0 case non renormalizable four-quark interac-
1672" J, @ ’ A2 ’ ' tions in the Lagrangian (2.1) reduce to the scalar and pseu-
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doscalar type with one coupling const&@nt. The bosoniza- {

- \

tion introduces scalar and pseudoscalar auxiliary fields and .- O I
the integration over constituent quarks generates the effec=__ +— —
tive action for the scalar and pseudoscalar physical mesons. ¢ ® ©

The pseudoscalar sector is the Ch_Pt Lagranglan of th%ig. 3a—c.Two-point scalar function in the bosonized ENJL model at next
pseudo-Goldstone bosons. The effective Lagrangian thus ohg leading order in 1N,. Diagramsa are self-energy insertions. Diagrams

tained is by construction globally chiral invariant (and lo- b are tadpoles. Diagrantscontribute to the one-point scalar function and
cally chiral invariant in presence of external left and right have to be included in the gap equation

handed sources) and it is non renormalizable being an infi-

nite expansion in powers of derivatives acting on the meso
fields. Details on the method can be found in [9].

We restrict ourselves to th&(2), x U(2)g case (we
disregard the effect of th&/(1)4, anomaly which is also a
next to leading effect in AN.). The general form of the
meson fields, singlets or triplets undg&t/(2),-, reads

ri!1as not to be included in order to avoid double counting. The
1/N. corrections to the gap equation have been considered
in [10] and proven to be numerically relevant but still in a
perturbative regime. The one boson loops have to be regu-
larized and thus explicitly depend onnaw cut-off A. This

is the signal of the non renormalizability of the model. Phys-

5.1 @. 1 ical inputs can be used to constrain its value (see Sect. 3.2).
M=Y" " Mguyr+ ° Mo, (3.1)  One loop diagrams in Fig. 3 can be up to quartically diver-
= V2 V2 : : Jart .
a=1 gent by naive power counting due to the derivative coupling
wherer@ ¢ = 1,..3 are the Pauli matrices withr(r*7%) = of the pseudoscalar field. As was noticed in [20] with a spe-

2620 and M is the singlet component. In the chiral limit Cific example of a phenomenological pion Lagrangata
(m. = mq = 0), the effective chiral Lagrangian including Weinberg, the quantization of effective theories like the one

scalar and pseudosca'ar mesons at |eading (m:(p%) in in (32) with an arbitrary number of deriVatiVeS, can fail if

the derivative expansion is given by: onﬁ uses naive Feynman rules with a cutoff regularization
scheme.
2 . . .
ISP = Ix < €8 > +1 <d,Sd"S > In_thg next subsec_tlon we briefly show that. all the Ieadm_g
4 2 quartic divergences disappear under the requirement of chiral

1 _ invarian f th rtition function. r i impl
B M§<52>+=%;i’tp ariance of the partition function. Our case is a simple

2 extension of the example shown in [20] to an effective theory
B A A of pions interacting with scalar fields.
:Jiif=—3?<S3>—4‘|'<S4>+cd<S£M§“> P g
1) 2 u (2 7 L L .
+eg” < 8L > eyt < 5S¢ > (32) 3.1 Quartic divergences versus chiral invariance
Building blocks of the Lagrangian (3.2) are the scalar field . - . o )
S and the axial current of the pseudoscalar figjd = The Lagrangian (3.2) satisfies two requisites: a) it is an in-

et . - et finite expansion in powers of derivatives acting on the fun-
zég (ez%erngur)ightﬁ;% ed Zé’r‘])(f ﬁé}t_vr\:gﬁzjeeg" s?ﬂ?cgs fgfd damental fields and b) the fundamental fields transform non

_ ; : . .__linearly under the chiral group. Expanding the figlgd in
i P
VU = expt- V2 fw) is the usual exponential representation powers of thep field matrix, and reducing covariant deriva-

Withh tfheldpseUdOdsca|ar mfeson ma?@(defineddas i;]‘ (3-h1_)- I tives to ordinary ones which enter in our calculation, the La-
Both fields¢,, and$ transform non linearly under the chiral o o ion'(3 ) can be written a4 = Lyib(@, 50,5504,

= 72 an -
group = U(2)r, x U(2)r 85 — h(@)” h'(#). The cou lx:Lvherea”, b are flavour indices going from 0 (for the singlet

plings amongst mesons have been derived using the HK ; : -
and with proper time regularization. Their expressions are(?ase) to 3 (for the triplet case) according to the decomposi

listed in Appendix A. They are functions of the cut-off  tion (3.1). The metric tensog™(®, S) is explicitly depen-

of the fermion loop, the constituent quark mak,, the dent on the pseudoscalar field and the scalar field due to the
axial-pseudoscalar mixing parametgy (g4 = 1 in the case ~ Presence of interaction terms. We find

Gy =0) and the number of colout..

As itis implied by the non renormalizability of the model .;  .» 4cq
the values of the parameters axeoriori regularization de- 9 ~ o [1 + V22 51
pendent. Most suitable regularizations are the covariant ones: T 5
proper time, four-momentum cut-off and Pauli-Villars. Ex- 2, Nz . 2, (1 2 i
plicit solutions of the gap equation of the four-fermion model +f2 (cg” + st + 12 (ci” — ) Z SiS ]
in the three cases can be found in [7]. A small regularization " T =1
dependence of the parameters has been found [7, 10]. +(5,6% + Sbéo&)( dea 4 (D + C(z))Sl)
The next to leading in AN.. corrections to the pole mass “ V2pe ot
of the scalar two-point function within the bosonized version 3
are given by the one loop corrections to the scalar meson 4 2 Z S 50500 4 4 2 gagh (3.3)
propagator generated by the vertices in (3.2). The diagrams 2 " 2 ’ '

which contribute are the ones in Fig. 3a, the self-energy in- »
sertions and 3b, the tadpoles. The diagram 3c does enter tivéth flavour indicesz, b=1,...3. The metric tensg® defines
gap equation (it modifies the one point scalar function) anda non linear chiral transformation of the pseudoscalar field
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contained in the original Lagrangia = 15%9,di0ndb  ANTZ
with a flat metric 6. Under this transformation the full M2 2m? { 42 (1 4m2

partition function has to be invariant (we are not concerned = 1672 f2 - 12 MZ)F(—L M)
with anomaly in this context). Since the chiral transformed " " S

- 2
measure is the original one multiplied B§(0)+/detgi?, the 4D + £2) m’; I'(=1,my)
chiral invariant partition function is defined in terms of the Mg
ian%’ = % 4 ab : 2 2
new La_granglan£ L +6 (0)In Vdetgi. By doing an. +8cd 1_ Mn ro.m,)] 3.7)
expansion in the small couplings to the scalar field we find ~ f2 M3
- ADME
In \/detg“b Ss
5 _ Mé 2m?2 263 1 4mfr -1
_ 8y g _(4cd )2(52_‘_125‘51) ~ 1612 12 —fﬁ - Mé (=1,mz)
\/2f7'2r ' \/ng " i=1 ' 1ym2 4c? m2
4 T D(—Lmg)+ A (1— T ) 0(0,my)|, (3.8)
4 DY 550 L (e D524 0(S8 3.4 s A M
+ St + + + . . . . S
VE “a ; ! 12 (ca”+ )51+ O(5) (3.4) which also include the contribution from the wave func-

tion renormalization constant. We notice however that ex-

The new terms wit*(0) = [ d*k/(27)* do exactly cancel plicit mass terms in the pseudoscalar Lagrangian have not
all the leading quartic divergences generated by diagramgeen included. The partial gamma functidné:, M;) of the

in Fig. 3 whose final expressions are listed in Appendix B.Proper time regularization depend upon the adimensional ra-
The first term cancels the quartic divergence of Fig. 3c (retio M?/A? with i = S, P and where/ is thenewcut-off of

ferred to as “top” diagram in Appendix B) for the pseu- the one-boson loop. It is worth to notice that the diagrams
doscalar case, the second term cancels the one in Fig. 38 Fig. 3c which have not been included here do not gen-
(self-energy) pseudoscalar, and the last two terms the one ififate any mass splitting between the singlet and the triplet

Fig. 3b (tadpole) pseudoscalar in the triplet and singlet casécalar component as expected for a contribution to the gap
respectively. equation, while the self-energy diagrams give to the triplet

component half of the contribution to the singlet one.
We have disregarded the splitting between the singlet
3.2 Numerical analysis and the triplet components running in the loops. In the pseu-
doscalar case this is due to thE1) axial anomaly, which
appears in the effective Lagrangian at next-to-leading order

suming that the scalar particle is a singlet and 2) assumin _}hed].’/NC %Xp";“.‘s'on- In the scr:]alar Cﬂse I Ihs agau:tr? neﬁt-
that the quark content of the scalar particle is the same a eading effect in IN. as We have shown here, althoug
that of thep(770) vector meson. This could be the case of theOther sources can compete in this sector like mixing with
physicalap(983) scalar resonance. Obviously &y (2) cal- glugrbhalls. ical luati f the/N . .
culation has to be interpreted as a first indicative approxima—(3 5) ?BnGl;m(egl;:;l aen\(/ja (u3ag§mneoe dts ea/s icn CS{ rteﬁé'o\?jugs of
tion of the fully realisticSU(3) calculation. The self-energy h. I' 'N’ ' 'f he ENJL % Y;

and tadpole contributions are listed in Appendix B for thet e larged. parameters of the modell an Q

scalar and pseudoscalar loops and both for the singlet an®r alternativelyA andGs) and thenewone-loop cut-off/.
triplet cases. In the chiral limit¢.. = 0) all the pseudoscalar All these quantities are regulgnzatlon dependent and have
one loop corrections vanish. Denoting wiM§ = (2M)? to be con5|s_tently evall_Jate;d in thg same scheme. We used
the pole mass of the scalar two-point function in the large-th€ Proper time regularization, while the corresponding ex-
N, limit, the corrected scalar mass at next-to-leading orderessions in the Pauli-Villars scheme can be easily obtained
in 1/N, with a proper time regularization is the following (previous cancellation of the spurious leading divergences

We have calculated the/V, corrections in two cases: 1) as-

in the singlet case: dqe to the_ non invariance of the measure) through the sub-
. stitutions listed at the end of Appendix B. For the choice of
M§1 the numerical value oft we follow the argument developed

in [10] which, although purely phenomenological, provides

A A1
4 3 (o, MS)] , (3.5) a self-consistent way of estimating the size of the boson

- 2

16m2 M loop cut-off; it proves that keeping the physical valuefgf
while for the neutral scalar triplet (the one associated withat n.t.l. order in YN, constrains the allowed range for
73) we get to be A < A0, Where A, is of the order of the con-
- stituent quark loop cut-offl. The values for the largés.
Mg, = parameters in the proper time regularization &g = 199
) 2 M\ 1 )\g 1 MeV and A = 667 MeV in theGy = 0 case (see fit 4 of
M [1+3 1672] CLMs) =5 1) M2 (o, Ms)} -(3:6)  [8, 9]). The analysis in [7] shows in addition a small depen-

dence of these parameters upon the regularization scheme.
Away from the chiral limit (i.e.m, # 0) the additional cor- In Fig.4 we show the squared scalar mass corrected at next
rections we get are as follows: to leading order in AN, and in the chiral limit (formulas
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quark massM, as a function ofA for fixed A and f. In

Fig. 5 we show the result of using a running valud\%(/f)

in formulas (3.5) and (3.6)) which qualitatively reproduces
the behaviour found in [10]. The surprising result is that the
partially resummed corrections are now positive and softer,
while the splitting is not modified.

To estimate the error which affects our zero momenta ap-
proximation we studied the momentum dependence of each
vertex entering the boson loop. All the couplings are weak-
ened by they? corrections and reduced in absolute value by
about 20-30% up to—¢? ~ A?. This leads to the conclusion
that theq? resummed value cannot overcome the approxi-
mated value. The same numerical results for the scalar mass
in the Pauli-Villars regularization are obtained to a good
approximation with the rescaling of the proper-time cut-off

0.8— —_— Singlet
****** Triplet

0.6 —

0.4—

& il
-

v i
<

S i
n i
= —

SN N I BN B N B
0.0 0.2 0.4 0.6 0.8 1.0
X

=
1)

Fig. 4. The squared scalar mass at next-to-leading order/iN.lin the App =~ 2\/2APV-
caseGy =0 as a function of the ratie = A/ A for the singlet casesplid

curve and the triplet cased@shed curve Here A is fixed atA = 667 MeV

and Mg = 199 MeV according to fit 4 of [8] 4 The Gy #0 case

o I I B The less explored behaviour of four-fermion models is in the

presence of vector like interactions, i@, # 0 in our case.
The Interaction Lagrangian of scalar mesons with vectors
and axial-vectors at leading order in the derivative expansion
is:

oy A =Y < 5V, 5vH > +d2 < 5?2V, VM >
+eap < S{€,, A*} > +Ca < SA AY >
+D) < SA,54" > +B < §24,A" > . (4.1)

All the couplings are listed in Appendix A. Notice also the
presence ab(p) of the mixed term scalar-pseudoscalar-axial
with couplingc4p. The additional diagrams contributing to
the scalar pole mass are again the ones in Fig.3a, b with
vector, axial, or mixed axial-pseudoscalar internal lines. All
. the one loop contributions are listed in Appendix B. In this
Fig- 5-tTthe|pa;t_ia”y VZS““?”/‘;\? S‘wtlsr mas:;quargd “M@g/‘) tc,o"e‘]ftﬁ?e case quartic divergences can be addressed to two different
at next-to-leading oraer In ¢ In the cas =0 as a iuncton o . H H H H H H H
ratiox = A/A forgthe singlet casesplid curve ;/nd the triplet cased@shed Sources. a) for dlagrams with .de”.vatlv.e couplings their ori-
curve. Here A is fixed at/ = 667 MeV andMg(x) = 0.199 +.0995:2  9IN can be the breaking of chiral invariance as for the gen-
GeV which reproduces a 50% of positive correction to its leadigralue  UiN€ pseudoscalar case, b) for diagrams with non derivative
atz = 1 according to the results in [10] couplings quartic divergences are a natural consequence of
the the bad high energy behaviour of the massive vector
propagatord,,, = (g, — kuk,/M?Z)/(k* — M%) and they
(3.5) and (3.6)) in the singlet and triplet cases as a functiorsignal the non renormalizability of the massive vector La-
of the boson loop cut-offl with fixed My = 199 MeV,  grangian. Divergences of type a) are cancelled following
A = 667 MeV. The scalar boson masg? in the r.h.s of the same demonstration as in 3.1 where the generic field
(3.5) and (3.6) is fixed at its largd=. value M2 = 4Mé. & is now replaced by a generic vector fielgl. They are
The corrections are negative both to the singlet and the tripleabsent in our case. Divergences of type b) can be cured
states and push the mass to zero already /at ~ 0.8. A by the introduction of a spontaneous symmetry breaking
triplet-singlet splitting is induced which grows with but ~ mechanism or taking into account the compositness of the
remains small. Away from the chiral limit, with the physi- vector fields. Nonetheless we observe that a nearly quartic
cal pion mass, pseudoscalar contributions are again negativdgivergence could not be avoided in the calculation within
but suppressed. The behaviour of the genuine next to leadinthe non bosonized version using the laryg vector two-
1/N. corrections seems to be in qualitative agreement withpoint functions predicted in [12], where the running vec-
the results based on equivalence arguments as in [2, 6]. Ther mass behaves liké1y (k) ~ Ink. This is the signal
interesting exercise is to take into account the n.t/lNV1  of the expected bad high energy behaviour of an effec-
corrections to the constituent quark magg, as a solution tive NJL model. In Appendix B we show the results ob-
of the gap equation. This induces a partial resummation otained using the ordinary propagator of a massive vector
the /N, corrections to the scalar boson mass. TH&/1  field A, = (g, — ku ko /M2)/(k* — MZ). As an exam-
corrections to the gap equation have been already computgule we also studied the results for the scalar-like prop-
in [10] and they cause a positive shift of the constituentagator with softer renormalizable high energy behaviour
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Fig. 6. The squared scalar mass at next-to-leading order/iN.1in the

0.8

1.0

=
1)

caseGy 70 as a function of the ratie = A/ A for the singlet casesplid

curve and the triplet cased@shed curve The effect of using the scalar-like
vector (axial) propagator is also showdof dashed cunje Here A is fixed
atA =116 GeV,g4 = 0.61 andM¢ = 265 MeV according to fit 1 of [8]

A gw/(kz

AME,
_AME [ &
‘1&2{ Iy 20(~2, Ma) +

M2 2 M2
+(3-— I'(0,My)| —274F
( 2M2> ( "‘)] 2 M3

MZ
+<1 2M2>F( 1, M)

1 M2\ [t aM?
+<2—M2)/ daF(O, 2

+( (1) + (2))

S
AME,
_ 4M§ 1 62 2I(—2. M)
T 1672 2 M2 4
M2 M2

+{ 1+ +

(1 28 Y rca g (3 25 ) roany

2

chp M3 MS
- =2 M)+ (1- INCN )

1 M3\ [t aMg
+<2_Mi)/() da F(O, 72
w2 M3

Cy M2 [ZF(—Z, Ma) +A4I'(-1, MA)]

MZ
+2) Mg {2r(—2, My) + 40 (-1, Mv)}

2

b

{F( 2, Ma)

Mg). In the chiral limit and for the non
renormallzable massive vector (axial) propagator the addl
tional corrections to the scalar mass are as follows:

S \P(=1, M
2M1%> ( 9 A)

[ZF( 2 M) + 4 (— 1MA)H (4.2)

(4.3)
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Fig. 7. The squared scalar mass usm@g(/l) corrected at next-to-leading
order in YN, in the caseGy 7 0 as a function of the ratia = A/A

for the singlet casesplid curvg and the triplet cased@shed curve The
effect of using the scalar-like vector (axial) propagator is also shaleh (
dashed curve Here A is fixed atA = 1.16 GeVg4 = 0.61 andMg(x) =
0.265 +.1325¢2 GeV which reproduces a 50% of positive correction to its
leading N, value atz = 1 according to the results in [10]

M, =1 GeV. The first result is shown in Fig. 6. The large-
N, values of the parameters in tkig, # 0 case with proper
time regularization areMg = 265 MeV, A = 1.16 GeV
and gy = 0.61 (see fit 1 in [9, 8]). A few comments are
in order. The singlet-triplet splitting is enhanced respect to
the Gy = 0 case. The singlet mass still receives negative
corrections. The anomalous enhancement of the triplet mass
is sensitively dependent on the form of the propagator. It
is consequence of the presence of positive contributions in
the vector sector which actually dominate in the case of the
ordinary vector propagator form and that are zero in the
singlet case. The partially resummed behaviour is shown in
Fig. 7. Corrections to the singlet state are softened but still
negative. The same anomalous enhancement of the triplet
mass is observed. In both cases the singlet-triplet splitting is
enhanced respect to tli¢,, = 0 case. Again, on the base of
the study of the? dependence of the vector (axial) vertices
we expect that the inclusion of the fujf dependence will
soften the corrections. Within the present approximation the
largeness of the axial and vector corrections prevents from
a fully reliable estimate in the reglon//l ~1.

5 Conclusions

We studied the next-to-leading in/A/. corrections to the
pole mass of the scalar two-point function within the boso-
nized version of the Extended NJL model and away from
the infrared domain. In this context the model is treated as
fully non renormalizable and a new cut-off parameter have
to be introduced for the one boson loop. Within a reliable
zero momenta approximation, which is the leading order of
the Heat Kernel Expansion, we have analytically derived the
next-to-leading 1IN, corrections to the scalar mass in both
the Gy = 0 andGy # 0 (vector and axial fields present)

As in the Gy = 0 case, we studied the pure next to leadingcases and studied their regularization scheme dependence.
1/N. corrected scalar mass and the partially resummed on&he main results are that genuine next to leadijgylcor-

using for the vector and axial massgf, = 0.8 GeV and

rections to the singlet state are negative and relatively large,
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while a partially resummed estimate induces positive anddefined as'(n — 2,¢) = f:o dz1l/ze*z"~2. ['(~2,¢) con-
softened corrections in th€y = 0 case. Remarkably the tains a quartic divergencé,(—1, €) a quadratic one[(0, €)
corrections to the larg@f. degenerate mass for the triplet is logarithmically divergent, whild’(n, ) with n > 0 are
and singlet states induce a splitting which mimics the physHinite.
ical one (octet heavier than the singlet). The splitting effect
is enhanced in thé&'y, # 0 case.
The largeness of the negative pure next to leadiny.1 B The one loop contributions
corrections derived in this framework qualitatively agrees o ]
with the results for the scalar over fermion mass ratio derivediere the contributions of the three classes of diagrams
in the IR limit where the equivalence with renormalizable of Fig.3 are listed for the scalar (S), pseudoscalar (P),
Yukawa-type models is valid by the use of the compositnesgector (V), axial (A) or mixed axial-pseudoscalar (A-P)
condition [6]. This suggests an asymptotic behaviour of thePosons running in the loop. They are the self-energy dia-
1/N, expansion of the mass ratios in four-fermion modelsgrams of Fig.3a, the tadpole diagrams of Fig.3b and the
both at the IR limit and away from the IR limit, where a top diagrams of Fig.3c. In the case of axial and vector
truncation at any finite order fails to be a good estimate ofloops we give the result for the form of the propagator
the real value for useful values o¥.. Ay = (guw — kuko /ME)/(k* — ME) and the softer one
c . .
A5, = guw/(k* — M). The self-energy contributions are
Acknowledgementsl. thank Christophe Bruno, who contributed to the early ertt_en in the formA+Bq_2 with q2 Mml_(OW_Sklan and Where_
stage of this work. | thank also K. Akama for a kind and useful correspon-B gives the wave function renormalization constant which
dence on the subject, J. Bijnens for having called my attention to thisenters the correction to the scalar mass.
problem and for many useful discussions, P. Hasenfratz for a stimulating
discussion and E. de Rafael for reading the manuscript. The work is sup-
ported by the EU Contract Nr. ERBCHBGCT 930442. Self-energy diagrams

Singlet propagator
A The couplings of the bosonized Lagrangian

2

The scalar-pseudoscalar couplings are: S = i1673r2F(0’ Ms)
A3 N. Mg 2 42 2 2
= 4 r - "ra —; " o
3l 1671'2 Zg/z |: (07 6) 3 ( ae):l P= 21671'2 <f72r> |: 2m7r1"( 1, mﬂ—)
A _ N. 1 4 4 2(1 >
4! - 167['2 Zé |:F(07 6) - 4F(1a 6) + 3F(27 6):| +m7rF(07 mﬂ) +q <2m7rF(17 mﬂ)
N, 29?4 2 )}
= M, I'0,¢)—-I(1 —msI'(0,m,
= pgaMa |10 - 1) ©my)
1 N, g2 20 8 4,
@ - c 94 _ A(A) =i, A |2r(-2, M
G = 16n2 7 {F(O, €) 3F(1, €) + 3r(z, e)] (Aw) 11&2{ (=2, M)
2 +F(_17 MA) + SF(Oa MA)
D = 1 ch ga {p(o, €) — 10F(1, €)+ 4F(2, e)]. (A1) 2
2 167% Zs 3 3 + 4 (-1, 000) ~ 10, M)
. . 2M3
The scalar-vector and scalar-axial couplings are: 4(?A
. _1N. My A ) =i, A {4]“(0, MA)}
= ¢ Ar —4r(1 16m2
= e 4100 -aro)
1 N, 1 10 4 8%, 2 [1
@ = — _ .9Cap 2
AT p16n2 797y {F(o, €) 3 I'(le+ 3F(2, e)] A—P(A,) =i 1622 /2 { ZMAF(—Z, My)
1 N, 1 20 8 4
@ - c _ + 3m;
= o ren2 27, {F(o, 9= 3 1L+ I e)] *3 a3 [C2ma)
1 NC gAMQ |: :| 1 2
= —4I'(0,¢) +4I'(1 2 M
CAP T 21612 \/Zo\/ Zy 0.9 +4l'(L,e) +MA(2 - 4M%>F(—l, M)

1 N, 1 2 2 242
0= _ 2= ¢ -r +°r@el. (A2 1 (m7 + M3)
VTV T 21602 292y [ 0.9+ ;19 (A2) = el (=Lme) = (m2 = o

A

All the couplings have been derived within the Heat Kernel 1 (1 — @)m2 +aM?
Expansion with proper time regularizatiod; and Z4 are ></ da F(O, ~; A)
the wave function renormalization constants of the vector 0 A
and axial-vector fieldsZy = Z4 = N./487°I'(0,¢). The 2

1 m
2( o ™ _
partial gamma functiong’(n — 2, ¢), with e = M3 /A?, are "4 < 4F( L Ma)+ aM? F(=1,mz)
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_mfr " ME‘ Top diagrams
2M3 .
[ (o, oA Y] § =i 2,11, M)
: A 2ca 2 1,
P=— m F(fl mﬂ_)
2 f£2 2 ' }
A= P(4],) =i 8125 fzz [MiF(LMA) 1672 f2 M3
_ 2)\3CA MA
/ d F( (1—a)ym? +aM2>] A(Aw) = 62 M2 [ZF(Z,MA)+4F(17MA)}
—m2 o .
AZ 2)\36A MA
@1 A=, M2 [4F(—1,MA)} (B.4)

Notice that no vertexSV'V' is allowed. Contributions are the same for singlet and triplet propagator.

Triplet propagator Pauli Villars regularization

The only possible self-energy diagrams for the triplet prop-
agator contain two different internal lines, one singlet and
one triplet. The contribution is half the contribution to the

For the comparison with the proper time regularization con-
tributions the following substitutions can be performed:

singlet propagator displayed above. m?I(—1,m) — m?[(1 + 2z) In(1 + 2z)
—2(1 +2)In(1 +2)]
Tadpole diagrams (o, m~) — 2In(1 +z) — In(1 + 2x), (B.5)
wherez = Az/m This corresponds to the usual Pauli Vil-
Singlet propagator lars procedure in a scalar theory where two additional fields
with masses\; = m + A and M, = m + 24 and coefficients
A C1 = -2 andC, = 1 are sufficient to make the theory finite.
S=—i 42M§F(—1, Mg), In the case of a non linearly realized symmetry (as in this
1(%7 @ case for the pseudoscalar sector) quartic divergences due to
_ Al e 2y, the non invariance of the measure have to be treated before.
P=i I'(—=1,mg)
16r2  f2
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