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Abstract 

We calculate the divergences of the generating functional of quenched chiral perturbation theory 
at one loop, and renormalize the theory by an appropriate definition of the counterterms. We show 
that the quenched chiral logarithms can be accounted for by defining a renormalized B0 parameter 
which, at lowest order, is proportional to the vacuum expectation value of the scalar quark density. 
Finally, we calculate several quantities at one loop to better analyze the modifications induced by 
quenching in the ultraviolet finite part of the one-loop corrections. We point out that some of the 
finite loop corrections may diverge in the chiral limit. @ 1998 Elsevier Science B.V. 
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1. Introduction 

Most lattice calculations of  QCD in its non-perturbative regime and weak interactions 

use at present the quenched approximation, i.e. neglect the effect of  virtual quark loops. 

Taking them into account considerably increases computing times. This means that 

presumably the quenched approximation will remain with us for quite a long time: 

even with computers much faster than those presently available, it will always offer the 

chance to make a low cost exploratory calculation before embarking on a full QCD 
simulation. 

Simulations of  quenched QCD would be much more useful if we had a real under- 

standing of  the effects o f  this approximation. Investigations in this direction have been 
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made by several authors [ 1-3 ]. At present we see one main approach that has proven 
to be the most systematic, and also to incorporate most of the useful ideas that have 

been proposed on the subject. This method is called quenched chiral perturbation theory 
(qCHPT), and has been originally proposed by Bernard and Golterman in Ref. [3] for 
the purely strong sector (strong interactions in the presence of external fields). It has 
been recently extended to the heavy-light meson sector [4], to vector mesons [5] and 
to the baryon sector [6]. It has been also used in the context of non-leptonic weak 
interactions [2,7]. 

Let us shortly review the main ideas behind this approach. The difficulty to control 
the quenched approximation comes from the fact that one is modifying the theory at 
the non-perturbative level. On the other hand, we know that at low energy it is possible 
to define a perturbative scheme to study the strong interactions: this scheme is known 
as chiral perturbation theory (CHPT). In this framework the expansion parameter is 

given by the energy of the weakly interacting Goldstone bosons of the spontaneously 
broken chiral symmetry: these have a vanishing interaction at zero energy, as symmetry 
dictates. The chiral symmetry imposes also a set of relations between the coefficients of 
this expansion in different amplitudes. Those relations do not fully constrain the theory 
that at each order of the expansion has a number of free constants. These constants 
incorporate the effect of the non-perturbative QCD dynamics. Under the assumption that 
in the quenched approximation the mechanism of spontaneous chiral symmetry breaking 
is preserved, one may attempt to construct a perturbative scheme for the quenched case, 
analogous to the one valid in the full QCD case. In this manner one would be able 
to calculate those effects of quenching that modify the perturbative, calculable part of 
the theory. On the other hand, the changes in the unconstrained low-energy constants 
remain unknown, being due to the modifications which affect the non-perturbative QCD 

dynamics. This method has the advantage of introducing from the start this clear, useful 
separation between the non-perturbative dynamics of the fundamental theory and the 
perturbative, predictable dynamics of the Goldstone bosons. 

A peculiar aspect of the quenched approximation comes from the U(1) axial anomaly 
of QCD. In the fundamental theory the would-be Goldstone boson (the r f )  does not be- 
come massless in the chiral limit, since the axial anomaly generates a singlet component 
(heavy) mass at the level of the effective theory. Thus, in the real world the r f  is heavy 
and decoupled from the octet of the pseudo-Goldstone bosons. In the quenched approx- 
imation this decoupling stops halfway: only one of the diagrams that are responsible for 
the decoupling of the r f  survives. At the level of the effective theory this has important 
consequences: the singlet field remains light (degenerate with the Goldstone bosons) 
and has to be treated on the same footing as the octet fields. However, its two-point 
function develops a double pole and does not admit an interpretation as a propagator. 
Treating the singlet as a dynamical degree of freedom brings in new constants in the 
effective theory. One of them is a new mass scale (the singlet mass rno) that is gen- 
erated by the anomaly, and that does not vanish in the chiral limit. This mass appears 
in the numerator of the double-pole term in the singlet two-point function. As different 
authors have shown [2,3], this double pole is responsible for the presence of a new type 
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of chiral logarithms (we denote them as quenched chiral logs) in loop corrections, of 
the form 2 2 m 0 In M r,  as opposed to the standard ones M~ In M~. This is one of the main 
qualitative differences that arises from the quenched version of CHPT. 

So far, works in quenched CHPT have concentrated on specific processes, analyzing 
the changes induced in Goldstone boson loops and the size of the effect of quenched 
chiral logarithms. The aim of the present work is to perform a complete renormalization 

of the theory at the one-loop level, on the same line as what has been done by Gasser 
and Leutwyler in the ordinary CHPT case [8,9]. This requires a calculation of all the 
ultraviolet divergent pieces of the generating functional and a definition of the Lagrangian 
at order p4, the next-to-leading order. The advantages of the present analysis are the 
following: 
( 1 ) The calculation of the divergences and renormalization can be done for a generic 

number of flavours N. As we have shown in Ref. [ 10], the N dependence of the 
divergences can be used to verify the cancellation of quark loops in the effective 
theory. 

(2) Like in the standard case, the calculation of the divergences at the generating func- 
tional level provides a useful check for single amplitude calculations. This check 
is even more welcome in qCHPT where the number of graphs to be computed 
becomes soon very large. 

(3) This calculation allows us to have full control on the divergences due to singlet 

loops. In particular we will show that quenched chiral logarithms can be accounted 
for via a renormalization of the low-energy constant Bo (which is proportional to 
the ~/q condensate). This constant appears in all other quantities through the pion 
mass squared, with the only exception of ~q matrix elements, that have it as an 
explicit factor. 

After having performed the one-loop renormalization, we will devote our attention to 
the ultraviolet finite part of the one-loop corrections, by computing specific physical 
quantities at one loop. The relevance of the finite part of the loop corrections is in 

the fact that they may contain terms which diverge in the chiral limit like an inverse 
power of the quark mass. One can realize that this may happen by simply looking at the 
standard chiral power counting [ 11 ], and taking into account the fact that in quenched 
CHPT a new vertex appears with chiral order zero (the vertex proportional to m02). 
Power-like chiral divergences and quenched chiral logs are the crucial problem of the 
quenched version of CHPT: the effective theory is defined as an expansion around the 
chiral limit, and this limit is no more well defined in the quenched case. On the other 
hand, these divergences seem to be unavoidable in the present framework and it looks 
plausible that they are a direct consequence of the sicknesses of quenched QCD. To 
clarify this very important point, a direct evidence of these effects in lattice simulations 
of quenched QCD would be most welcome. 

In our analysis of various observables we will give the complete one-loop results. 
Our aim is not just to make predictions, or to compare with numbers produced in lattice 
simulations. Rather, we would like to show in detail how the quenched approximation 
distorts the matrix elements. For this reason we will only work in Minkowski space-time: 
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all the formulae will be given with the idea that one should be able to easily see the 
difference from the corresponding ones calculated in standard CHPT. In particular we 
will stress the presence of terms divergent in the chiral limit and of unphysical threshold 

singularities in Minkowski space-time at infinite volume. These type of singularities 
have been already discussed in the literature [12,18], and have led to the conclusion 
that quenched CHPT makes sense only in Euclidean space-time. Despite this, we still 
prefer to calculate amplitudes in Minkowski space-time, considering them as formal 
expressions. As we just said this will make the comparison to standard CHPT amplitudes 
easier; on the other hand, the modifications needed to go to Euclidean space-time can 
be easily implemented. 

The plan of the paper is as follows. In Section 2 we outline the main steps from 
CHPT to its quenched version. We give the leading order Lagrangian and define our 
notation, both for CHPT and quenched CHPT. In Section 3 we calculate the divergences 
of qCHPT to one loop using the background field method, while Section 4 contains 
the list of counterterms for a generic number of flavours N and for N = 3 and 2. 
This completes the renormalization of the theory at the one-loop level. In Section 5 we 
analyze a few quantities to one loop in the two degenerate flavours case. These are the ~q 
condensate, the pion mass and decay constant, the scalar and vector form factors of the 
pion, and the rr~r scattering amplitude. In Section 6 we state our conclusions. We have 
also three appendices. In Appendix A we give a simple derivation of the divergent term 
proportional to m0 2 in the quenched generating functional. In Appendix B we give the 
explicit N dependence of the divergences in the non-leptonic weak interactions sector, 
and guess the divergences in the quenched case by simply dropping any N dependence. 
Finally, in Appendix C we give the explicit expressions for the one-loop functions which 
enter the calculations. 

2. From CHPT to its quenched version 

In this section we introduce the standard notation of chiral perturbation theory, that 
will be also used in its quenched version. We work in Minkowski space-time in both 
cases for ease of comparison. For any further detail in the derivation of the CHPT 
Lagrangian we refer the reader to the original works by Gasser and Leutwyler [8,9]. 
The construction of the CHPT Lagrangian is based on the identification of the symmetry 
group of the QCD Lagrangian in the chiral limit, which, for N flavours is given by 
U(N)L ® U(N)R, and on the well supported assumption that the symmetry of the 
subgroup SU(N)L ® SU(N)R is spontaneously broken to SU(N)v. The extension of 
this construction to the quenched case was proposed by Bernard and Golterman [3] 
on the basis of an observation made by Morel [ 1 ]. He observed that, formally, a 
Lagrangian corresponding to quenched QCD can be obtained by adding to the QCD 
Lagrangian a term which is totally analogous to that for quark fields, but which contains 
ghost spin-1/2 fields with wrong, i.e. bosonic statistics. The symmetry of the resulting 
Lagrangian in the chiral limit is larger than that of QCD and is given by the graded 
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group: U(NIN)L  ® U(NIN)R,  describing transformations between N physical flavours 
and N ghost flavours. It is then assumed that also in the quenched case a spontaneous 

symmetry breaking down to the diagonal subgroup SU(NI N ) v  occurs. Like in standard 
QCD, the U(1) A symmetry is anomalous. 

2.1. Standard CHPT 

Chiral perturbation theory describes the dynamics of the octet Goldstone bosons fields 
(pions) of the spontaneously broken chiral symmetry of QCD. It is an expansion in 
powers of the energy of the Goldstone bosons and the light quark masses. The lowest 
order CHPT Lagrangian, i.e. at order p2 and linear in the quark masses, can be written 

in the following form: 

F 2 F 2 
C2 = --~-(D~,UD~U t + U~ X + xtU) = --4-(u~u" + X+), (2.1) 

where ( . . . )  stands for the trace over flavour indices, F is the bare pion decay constant 
and the fields are defined as follows: 

U = u2=exp (v/2idp/F) , 

DuU = cg~U - iruU + iUlu, 

x = 2Bo( s + ip ) , 

u~ = iut D~,Uu t = u~, 

X+ = u x  tu + ut x ut. (2.2) 

The Lagrangian contains the external sources s ,p,  vu, a~, r~ = v~, + au, lu = v~ - a~,, 
which are N × N matrices, with N the number of flavours. The field ~b is an N × N 

matrix that contains the Goldstone bosons fields: ~b = l /v /2  ~i~21 - '  ,~i~b i. In that case, 
one may add to ~b a singlet component, so that (~b) = ~bo. In the presence of a singlet 
component the Lagrangian in Eq. (2.1) is invariant under U(N)L  ® U(N)R,  Since in 
QCD the U(1)a  subgroup is anomalous, the breaking pattern U(N)L  @ U(N)R  
SU(N)L  @ SU(N)R  ® U( 1)v is realized. The invariance under the residual unbroken 
group allows for the presence of extra functions of the singlet component ~b0 only. A 
possible choice for this Lagrangian, compatible with P, C, T and chiral invariance, is 
(see also Ref. [9] for a different choice) 

~2 = Vi ( dpo ) ( D gUDgU t) + V2 ( qbo) (Ut x + x t  U) - Vo(~b0) 

+ V5 (qbo) Dgqbo Dg qbo, (2.3) 

where all the functions V/ are even and real functions of q~o. 
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2.2. Quenched CHPT 

The modification needed to construct the quenched version of the CHPT Lagrangian 
in Eq. (2.3) for a generic number of flavours N consists of the extension of the chiral 
symmetry group SU(N)L ® SU(N)R ® U(1)v to the graded group [SU(N[N)~, ® 
SU(NIN)R] ® U( 1)v, which enlarges the spectrum of the theory to include ghost states 
(the ® stands for the semidirect product of U(1)v,  which does not commute with 
transformations that exchange particles with ghosts). In the quenched case there are 

N physical flavours and N ghost flavours. Under the graded extension all the N x N 

matrices representative of the original U(N) group are transformed into graded 2 x 2 
block matrices 

A ~  D ' 

whose components are in turn N x N matrices. The matrices .4 and i) (B and C) have 
bosonic (fermionic) character. The trace is then transformed into supertrace: 

( A  B ) = t r ( A ) - t r ( D ) .  tr(A) --~ str C D 

The leading order Lagrangian of quenched CHPT can be written in full analogy to the 
standard CHPT case 3 

f~2 = Vt( ~o)Str( D~zUsD#Uts ) + V2( ~o)str(X~Us + UtsXs) - Vo(~bo) 

+V5 (~o) Dgq~oD~q~o, (2.4) 

where again V/(qOo) are even and real functions of the generalized singlet field ~0o. The 
graded meson field is defined through the usual exponential representation 

Us = exp( v~iq~/F) , 

where F is the bare quenched pion decay constant and • is now a hermitian non-traceless 
2 x 2 block matrix 

' /~=(~0  ~-T), s t r (q~)= 'P0=q60--~0 ,  

which contains the new ghost states of the quenched spectrum. All the possible quenched 
meson states carry the quantum numbers of a two particle bound state made up with 
quarks q or ghost quarks c~. On the diagonal sites it contains the physical pseudo- 
Goldstone boson matrix ~b (i.e. the physical pions including the singlet component), 
with the quantum numbers of a q~ pair, and the ghost field matrix ~, with the quantum 
numbers of a c7~ pair. They are both of bosonic nature. In the off-diagonal sites are 
the ghost hybrid fields 0 and 0 t, which carry the quantum numbers of a mixed ~ and 

3 To distinguish between a quenched CHPT quantity and its standard counterpart we use either capital letters 
(as in q~ ~ cp) or, when this is not possible, the subscript s (as in U ---+ Us). 
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q~ pair respectively, both of fermionic nature. This spectrum of meson states can be 

found also in the original derivation by Morel [ 1 ]. He calculated the functional integral 
over the quark and ghost-quark fields (in the leading large-d expansion and strong 
gauge coupling limit) and obtained exactly the meson spectrum of quenched CHPT, 
with mesons of composite nature, given by bilinears of quarks/ghost quarks at the same 
lattice site. 

The covariant derivative over the field Us is defined as D~Us = O~Us - ir~Us + 

iUsl~, where r~( l~)  is the right(left)-handed external source of the graded group. 

The field Xs = 2Bo(ss + ips) contains the external scalar (ss) and pseudoscalar (ps) 
sources analogously to the ordinary CHPT case. All the external fields r ~' l ~ s,  s ,  Ss,Ps 
are generalizations of the standard external fields, in order to make the Lagrangian in 

Eq. (2.4) locally invariant under the graded group [SUL(NIN ) ® SUR(NIN)]  63 U(1)  v. 

Since we are not interested in studying matrix elements containing the spurious fields as 
external legs, we will always use the standard external sources only. With this reduction 
a generic graded source reads as follows: 

(:0) 
J~= 0 ' J = p'v~''a~'" 

For the scalar external source we must recall that it is defined to contain the quark mass 
matrix A,4 which has to be the same both for the quarks and the ghosts: 

0) 
s , =  0 M " 

In what follows the quark mass matrix will be taken proportional to the unit matrix: 
.A,4 = mql.  All the Goldstone bosons and their ghost counterparts will have the same 
mass: M 2 = 2Born q. We have adopted the usual CHPT notation and call M: the lowest 

order term in the expansion of the mass of the pions in powers of quark masses, 

M~ = 2Bomq + O(m2q) = M 2 + O(m2q). (2.5) 

Finally, we expand the functions V/(qbo) in powers of q~o, 

m 2 
Vo(q,0) - ,,,o ~2 + o (q ,4 ) ,  

- 2 N c  o 

F 2 1 
v,,2(~o) = T + ~vl,2 ~,~ + o ( ~ ) ,  

Ol 
V5 (~o) = ~ c  + O(~°2)' (2.6) 

and we shall always work with number of colours Ne = 3. 

3. One-loop divergences 

To calculate the ultraviolet divergent part of the quenched generating functional to 
one loop we use the background field method, i.e. expand the action around the classical 
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solution, which is determined by the external sources through the classical equations of 
motion. We write the field Us as 

U s  -~. u s e t ~  U s ,  

2 is the classical solution to the equations of motion. In the absence of where l)s = u s 
spurious external sources it reduces to 

(u01) U s  = 0 " 

We decompose the fluctuation ~ similarly to the field • and write 

(note that with this normalization the go and ~'0 have a proper kinetic term). The matrix 
fields g and ( are decomposed as follows: 

N 2 - 1 N 2 -- 1 

g:  Lg °, ; :  F_, °, (3.1) 
a=0 a=0 

and the fields ~ and ( t  analogously, where '~a = 'Aa/V/'~, a = 1 . . . . .  N 2 -  1, and 
~o = 1/x/-N. Given their special character, it is useful to separate the singlet components 
of the g and ~ fields from the rest, and combine them into one vector, 

(,o) 
X o =  " 

The remaining fields are put into components of the following vectors: 

gT= (~:1, g2 . . . . .  gN2--1), (+ = (~'tO, ~ '1 . . . . .  fftN2--1). 

With this notation the action can be written as 

S[~/'] = S[43] - ~ dx XrDxXo  + grD~g + g0Brg + gTBgo + 2~rtD(( 

--(r(r-q + M2)~ "} + 0(,. ,~3). (3.2) 

The explicit expressions for the various differential operators Dxg,¢ and the matrix B 
will be given below. The matrix B induces a mixing between the singlet and non-singlet 
component of the physical meson field. Notice also that the fields ~ are completely 
decoupled from the rest: the integration over these degrees of freedom produces only an 
irrelevant constant. 

Before deriving the various contributions to the generating functional at one loop 
we shift the field g in order to remove the mixing with the singlet component go. By 
performing the translation 

g = g' _ D~IBgo,  
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one gets 

~T D(~ 4- ~oBT ~ 4- (T B~o = (cr D(~' - ~oBT D-(I B~o . (3.3) 

In this manner the action up to the quadratic fluctuations becomes a sum of quadratic 
differential forms diagonal in the fields X0, (,  (,  (, ( t .  The price to pay is that now the 
differential operator acting on the singlet field X0 has a non-local term. Denoting as 
/)x the new non-local operator acting on Xo after the shift, the quenched generating 
functional to one loop can be formally written as follows: 

izqCHrrr det Dg- 
e Hoop = N" (det Dse) l/2 ( det/)x ) l/2' ( 3.4 ) 

As we will see below, the non-locality o f / ) x  will hardly make the calculation of the 
divergent part more complicated. 

3.1. Integral over the ~ fields 

The differential operator D~ b is defined as follows 4 

D~b ~b ---- d**dJ* ~ a 4- ~'ab ~b , 

d~,~ a = 0 ~  a + Pa~b~b, (3.5) 

where 

f i  b = _(r~t;~o,?~q), ~rab 1 1 = --~([uu,~la][u*' ,~b])+ ({~a,~b}x+),  (3.6) 

and F~, = ½ ( [ u t , Ol, u ] - iu t r ~ u -  iul** u t ) is the vector current connection of the covariant 
derivative over the dynamical fields. 

The ultraviolet divergent part of the integral over the ( fields can be derived in closed 
form by regularizing the determinant in d dimensions and using standard heat-kernel 
techniques. The result reads 

~lndetD~,= ( 4 r r ) 2 ( d _ 4 )  dx -~(F~,~F** } + 7  (u~*u~}(u~*u~) 

+ ~ (u#u'*),,1 2 + ~- ((,,,,u") 2 ) + -£(u,,u'*x+)N + ~(u,,ul '* )(x+) 

+ ( N  2 1 )  (X2) + ( 1  + ~__gN2) (X+)2 

, ]} 2 (u~}(u~ (u~u~ + X+)) + . . . .  (3.7) 

4 We remind the reader that the indices a, b run from 1 to N 2 - 1, The singlet components are treated 
separately. 
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where the ellipsis stands for contributions which are finite in four dimensions. This result 
is the standard CHPT result derived in [9], where now we also keep terms proportional 
to (u~) that are non-zero only in the presence of the singlet component. 

3.2. Integral over the ( f ie lds  

The differential operator D~ b is defined like in Eq. (3.5), but with barred quantities, 
given by 5 

Fs ,-oo = _(F~,~a~b), 6.ab = 41 ((Us, U ~ + X+ + 4BoM)Aa~b), (3.8) 

where we recall that Ad is the quark mass matrix. 
The ultraviolet divergent part of the functional integral over the ( fields can also be 

given in closed form using standard heat-kernel techniques. The result reads 

i lndet  D~ = (4~-)~5  - 4 )  dx ( F ~  F ~ )  + -~((u~ u~ + X+ + 4Bo-M) 2) 

+ . . .  (3.9) 

As we remarked in Ref. [ I0],  the integral over the ( fields completely removes the 
terms linear in N in the divergences of standard CHPT to one loop. This dependence is 
not fully explicit in Eq. (3.7), since a factor N is contained in the trace of X+, when 
we expand this around s = .A4 and for .Ad diagonal, 

(X+) = 2NM2 + O(qb2) • 

This result shows that the qCHPT scheme is coherent: the terms linear in N can only 

be generated by quark loops, and these are supposed to be absent in the quenched 
approximation. 

3.3. Integral over the Xo fields 

After the shift of the s e field the operator acting on X0 can be written as 

X~-DxXo = X~ [Dx - I ( I + T3 ) Br D-~I B] Xo, (3.10) 

where 

Dx = D ° + Ax, 
N 

D° = r3(f -1 + M z) + ~ ( 1  - r l )  ( a  [-q +mo2), 

Ax= ~N(1 + ~'3) (~'+) - U(1 - 7"1) (vl(u~u '~) + v2(,~+)) + O(4~),  

5 Here the singlet component is included, and the indices a, b run from 0 to N 2 - 1. 
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1 
B a -  2x /~ (aaX+) ,  (3.11) 

and )~+ = X+ - 2M21, so that (2+) = (X+) - 2NMZ. The expression of D °, the "free" 
part of the differential operator, clearly shows that the theory has a problem here: it is 
not possible to diagonalize that operator, and we do not have two freely propagating 
normal fields (~0, (0). On the other hand, this problem is welcome in this context, since 
it is thought to be the manifestation of the absence of quark loops in the singlet field 
propagator, at the level of the effective theory. In the language of Feynman diagrams 
this problem shows up as a double pole in the propagator of the singlet field, whose 
consequences on observables have been studied by several authors [2,3,12]. We adopt 
the usual point of view on this problem, i.e. assume that it has to be there, and proceed 
with the calculation of the divergent part of the generating functional. 

In this case we cannot apply straightforwardly the heat-kernel techniques, because 
the differential operator does not reduce to a diagonal Klein-Gordon operator when the 
external fields are put to zero. Therefore we just expand the logarithm of the differential 
operator, and isolate the ultraviolet divergent terms, 

Trln (-Dx/D °) = Tr [D 0-1 (Dx - DO)] 

~ T r [ D ° - I ( - D x - D ° ) D ° - ' ( - D x - D ° ) ] + . . .  (3.12) 

One can easily see that the ellipsis in (3.12) contains ultraviolet finite terms only. We 
postpone a more detailed discussion of the infrared behaviour of Eq. (3.12) to the end 
of this section. The inverse of the "free" operator D ° is 

[ N +m2)Go] , (3.13) D O - I  =Go 7"3 - -  (1 --~- 7-1)-~-(o- I1-'] 

where 

(D + M2)xGo(x - y) = 5(x - y) (3.14) 

and 

- -  1 
Dx - D ° = Ax - 7(1 + 7"3)Br D~l B. (3.15) 

As we anticipated above, the overall effect of the shift made to remove the mixing 
between singlet and non-singlet fields is easily accounted for. Expanding around the 
free part of D~ -1 in the non-local term one gets 

1 2 BrD-~ ' B = - ~  o 1 G [(X2+)--~IX+) ] +O(G2 ) .  (3.16) 

The term proportional to O(G0 2) can only yield ultraviolet finite contributions to (3.12), 
while the Go term yields ultraviolet divergent contributions only to the first term of the 
expansion in Eq. (3.12). This shows that also in the singlet sector the UV divergent 
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part is local and can be given in closed form. The calculation of the ultraviolet divergent 
part of IndetDx is now easy: we simply have to insert back Eqs. (3.13), (3.15) into 
Eq. (3.12) and keep only the UV divergent parts. Having worked out the traces (over 
the r matrices) we obtain 

i --  o 1 / 1 1 2 m2 
~Trln(Dx/Dx)  = (47r )2(d_4)  ,~-~{X~) - ~-g(X+) + ~ { X + )  

0" 2 0'2 1 

+  5(yc+) 2 - + v2(yc+)) + . . . .  

(3.17) 

where the ellipsis contains UV finite terms only. The terms proportional to inverse 
powers of N exactly cancel those contained in Eq. (3.7) giving a result that is totally 
N-independent. The terms proportional to m02 and powers of 0" are the effect of the 
double pole in the singlet propagator, and are also N-independent. Note that no mixed 
terms of the type (m02, 0") x (vl, v2) can be produced in the divergent part. 

The term proportional to mg is a term already present in the O(p 2) Lagrangian. To 
remove that divergence one has to add to the lowest order parameter B0 in the £2 
Lagrangian a d-dependent part proportional to m~ that has a pole at d = 4, 

[ /*a-4 1 2m°2 ] 
B0 ---* Bo 1 + 16------- 5 d-----Z- ~ 3F---- 5 4- b0(/z) . (3.18) 

This feature is completely new with respect to standard CHPT (in dimensional regu- 
larization), and stems from the fact that in the quenched theory we have a new mass 
scale that does not vanish in the chiral limit. After the divergence has been removed, 
we are left with a term of the form mo 2 In M2(X+}. This term contains all the one-loop 
quenched chiral logs that have been discussed at length in the literature. Our calculation 
shows that they can be fully accounted for by defining a renormalized constant Bo, 

( ) B0 ~ Bo = Bo 1 m°2 In + b0(/z) (3.19) 
48¢r2F 2 ~T  

Notice that since Bo is independent from the quark masses, B0 becomes divergent in the 
chiral limit. To find evidence for these quenched chiral logs one should try to extract 
from lattice data this quantity Bo. As we will see the quark condensate and the scalar 
form factor are two excellent candidates for this, since they are the simplest quantities 
which are explicitly proportional to Bo. Other quantities will typically depend on Bo 
through the renormalized pion mass. At one loop this is given by 

M 2 = 2-Bomq 4- O(m2), (3.20) 

and is not divergent in the chiral limit. These other quantities are therefore much less 
suitable to identify the presence of quenched chiral logs. 

Of course, what we have just said is valid in the specific sector we are studying 
here. To extend it to other sectors of the effective theory (like the non-leptonic weak 
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interactions) requires further study. However, we have a rather simple argument that 

shows that what has happened here will happen also in other sectors: the quenched 
chiral logs to one loop contribute to the redefinition of one of the constants appearing 
in the lowest order Lagrangian. In order not to interrupt the discussion here we relegate 
the argument to Appendix A. 

3.4. Complete result 

In this section we put together all the various pieces and give the complete result for 
the ultraviolet divergent part of the generating functional of qCHPT to one loop. The 
explicit expression for Eq. (3.4) is 

1-1oo0 - ( 4 7 r ) 2 ( d -  4) dx (uuu,)(u"u") q" (UlzUlZ) 2 

+ g  (1 - 4vl) (u•u")(,f(+) + (1 - 8v2) (,~+)2 

m 2 0 '2 o~ 2 1 ] 
+ - - ( . . u "  + x+)) + . . .  

J 

(3.21) 

The most striking feature of Eq. (3.21) is the complete flavour independence of the 
result. If we analyze in detail the modifications that the quenched approximation has 
produced to the divergent structure of the effective theory at the one-loop level, we 
arrive at the following list: 
(1) all the terms proportional to N have been dropped; 
(2) all the terms proportional to 1IN and 1IN 2 have been dropped; 
(3) new divergences proportional to the parameters present in the anomalous singlet 

sector have been produced. 
All these new parameters are dimensionless, with the only exception of too. The di- 
mensionless parameters (0" and Vl,2) generate divergences that have the structure of a 
chiral invariant term (since they do not break the chiral symmetry) of order p4, for 
obvious dimensional reasons. For the same reasons m~ generates divergences with the 

structure of a chiral invariant of order p2. As shown in Appendix A, one can very easily 
understand why it is only the mass term (X+) that is generated. 

As it turns out, the modifications listed in points ( 1 ) - (3 )  above find a very simple 
explanation: dropping the terms proportional to N corresponds to dropping virtual quark 
loops. Dropping the terms proportional to 1IN and 1IN 2, is a consequence of having 
a singlet degenerate in mass with the non-singlet pseudoscalars. The new parameters 
in the singlet sector are required by the U(1)A anomaly, and the diseases in that 
sector are generated by the quenched approximation, as is well known. These simple 
conclusions suggest that one could have guessed all these modifications without doing 
any calculation. In fact, we provide an example of how one could try such a guess 
in Appendix B, where we apply the same criteria to the generating functional of the 
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non-leptonic weak interaction sector for the octet on-shell case (the complete analysis 
will be given elsewhere [ 13] ), by going through the three steps we have enumerated 
above. 

3.5. Chiral and threshold divergences 

Quenched chiral logs are not the only problem generated by the presence of the 
double pole in the quenched version of the singlet propagator. As we will see in detail 
in Section 5 through several examples, this double pole generates also other kind of 
divergences inside contributions which are ultraviolet finite. These divergences are of 
two types: powerlike chiral divergences, i.e. inverse powers of M~, and unphysical 
threshold divergences. We find it instructive, before closing this section to identify 
which are the terms in the generating functional which are responsible for them. 

Some of the terms (and in fact an infinite series of them) that we have neglected in 
Eq. (3.17) because they are ultraviolet finite, contain these kind of singularities. They 

can be given in closed form only if one stops at a given order in the expansion in powers 
of the field q~. Since in the following sections we are not going to analyze anything 
beyond the four-point function, we can stop at order q~4, and identify explicitly the 

troublesome terms. They all come from the insertion of the double-pole term of (3.13) 
in the expansion (3.12), and give the following contribution to the generating functional: 

~7qCHPT_ (m 2 --o~M 2) /" 
~l-loop "24 dxdy[l(x-y)( ,~+(y)~(+(x))  

(m°Z - aM2) [ d x d y [ l ( x  y) (,~+ (y) )(~(+ ( x) ) 
- a  72 J 

(m2 -- °tM2)2 l 
--(~-~ s dxdy [2(x - y)(2+(y))(YC+(x)) + 0(~6). 

(3.22) 

The functions [l(Z),[z(z) are defined in Appendix C. At infinite volume and in 
Minkowski space-time their Fourier transforms Ii(q2),12(q 2) develop an imaginary 
part when q2 >~ 4M 2 which diverges at q2 = 4M~ (see Appendix C). Moreover their 
values at q2 = 0 are inversely proportional to M~ (again see Appendix C): this is 
the origin of powerlike chiral divergences that we will find in several observables in 
Section 5. The threshold singularities in particular make the theory meaningless in 
Minkowski space-time at infinite volume. In finite volume and in Euclidean space-time 
the same one-loop functions ll,2(q) have been evaluated at q2 = 4M 2 in Ref. [ 12], and 
it was found that these functions give rise to enhanced finite volume corrections which 
are forbidden in a healthy Hamiltonian theory. As pointed out in Ref. [ 12], this shows 
that qCHPT can only make sense in Euclidean space-time and in finite volume. 
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4. Lagrangian at order p4 

To complete the renormalization of the quenched theory at order p4 one needs to 
add the most general chiral invariant Lagrangian at this order. As in the standard CHPT 

case, some of the couplings appearing in the order p4 Lagrangian have an UV divergent 

part in such a way that all the one-loop divergences are removed. The most general 
chiral invariant Lagrangian at order p4 in standard CHPT has been given by Gasser 

and Leutwyler [9]. The extension to the graded symmetry version is not needed here, 

since we are not going beyond order p4, and are not interested in having the spurious 

degrees of freedom as external particles: 6 we can use the standard CHPT Lagrangian 

right away. 
There is however a slight modification that we have to introduce. As we noted 

before, the trace of X+ starts with a constant term proportional to N in the degenerate 

mass case we are considering here. In the quenched version a linear dependence upon 

N is forbidden, and therefore we must always substitute (X+) --~ ()(+). Apart from 

this modification, we have followed existing notations for the choice of the O(p 4) 
Lagrangian, both in the SU(3) and SU(2) case. The SU(3) choice is the standard 

Gasser and Leutwyler Lagrangian [9], while for SU(2) we choose to use the Gasser- 

Sainio-Svarc Lagrangian [ 14]. 
An important point concerns the value of the counterterms: we observe that in the 

quenched case the counterterms do not depend on the number of flavours. Not only 
the divergent part, as we have explicitly shown in the previous section, but also the 

numerical value of the finite part of the counterterms does not change for different 

values of N. Therefore it is useful to identify, and give names to them in the general N 
case. For the more interesting cases of N = 3 and N = 2, because of trace relations, one 

will be able to access only certain combinations of them, as we will specify below. For 
general N the Lagrangian at order p4 is given by 

10 
= A Pi, (4 .1)  

i=O 

where the eleven operators Pi are listed in Table 1 (we remind the reader that in the 

quenched case it is necessary to change (X+) --~ (~+)) .  These eleven chiral invariant 
operators contain, besides those defined in Eq. (2.2), the following new building blocks: 

f+#~  = ult,~u* ± utrz,~u, 

X -  = u* xu*  - u x  t u. (4.2) 

To derive the results shown in Table 1 the following relation is useful: 

i 
f+~v  = 2i Fu~ - -~ [u~, u~], (4.3) 

6 Moreover we will not consider singlet fields as external particles. They require at least two more counter- 
terms as shown by Eq. (3.21). 
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Table 1 

List of  terms of order p4 for N generic, N = 3 and N = 2. In the second and third columns we give the 
coefficient of  the divergence coming from the one loop in the standard and quenched CHPT case. As we have 
indicated in the table, the invariants containing <X+> have to be changed with (X+) ~ (,,Y+> in the quenched 
case 

1 i P/ Coeff. of - C4---~r) (d_4) SU(3) SU(2) 

for SU(N) CHPT qCHPT 

<x+> ~ <~+> 

0 (u#upu~u p} lv 0 Eq. (4.5) Eq. (4.11) 48 
1__ 1 I l l  1 (UlzU~>2 16 ]'6 LI 

1 1 2 (UuUv)(U'~U v) ~ "~ L2 ll2 

3 (U~U~U~U ~} ,V 0 L 3 Eq. (4.11) 24 
1 l _ v_j_ L4 ½14 4 (u~ut~){X+} 8 8 2 

5 (u~u~x+) ~ 0 L5 Eq. (4.11) 
1 ' a 2 

6 (X+} 2 1 "k- ~ 16 ~ "q- 7"~ L6 113 

7 (x_> ~ o o L~ - ~ t 7  
1 2 N 1 a L8 Eq. ( 4 . 1 1 )  8 ~ <X+ + X2-- ) 16 4N -- 1"'2 

9 --i(f~+UUuUz,) -~ 0 L9 --116 

l< f2  f2_.. N 10 4 -- ) 12 0 LI0 15 

and the identification (X 2) = 1/2 <X2+X2) and (f2+)= 1/2(f2_ f2)can be done up 

to contact terms which contain external sources only. 

4.1. SU(3)  Lagrangian at order p4 

For N = 3 the Lagrangian at order p4 reads as follows: 

10 
(N=3) 
4 = E LqPi' (4.4) 

i=1 

where the operators Pi are defined in Table 1. The P0 operator is linearly dependent on 
the others through the following trace relation: 

1 
P0 = ~e~ + P2 - 2P3, (4.5) 

which implies 

1 q 
L q = a q + ~ a  0, L q = a q + A~, L~ = a~ - 2A~, (4.6) 

In order to reabsorb the divergences at one loop we define the L q in the following 
manner: 

L q = c~ r ( ~ )  + r~a ,  
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/'td-4 I 1 1 (ln47r + F t (1 )  + 1)] (4.7) 
a =  ~ d - 4  2 

wi th /z  the renormalization scale, ,~ contains the divergence at d = 4 and the coefficients 
F q are given by 

1 1 1 
= N '  r~  = g, F4q= (1 - 4 u t ) ,  

/ 'q :- 1 -- 8U2 -]- 0 '2 , /'8 = --~'~, (4.8) 

all the o ther /~/  are zero. 

4.2. SU(2)  Lagrangian at order p4 

For N = 2 the Lagrangian at order p4 reads as follows: 

7 
/2(N=2) = Z lqQi' (4.9) 

i=1 

where 

1 1 ~ 1 2 QI = -~(ulzul~) 2, Q2 = ~(u~u~){u ~u ), Q3 = -(-~()(+) ) 

1 1 2 i ~ 
Q4 = -~(uuu~Z)()(+), Q5 = ~( f+ - f 2 ) ,  Q6 = ~( f+  uuu~), 

1 2 
Q7 = -]--~ ( x - )  • (4.10) 

To reduce the number of  chiral invariants needed we have used the following relations: 

1 1 p  1 1 Po=-~P1+P2, P 3 = ~  " 1, P5 = ~P4, P8=~(P6+P7), (4.11) 

which imply the following relations between the N = 3 and N = 2 counterterms: 

1 q llq zq ' llq_Lq._~_ Lgq l lq = Lq + 2 L3, = 2 

1 
l~lTq = L7 q + 1-Lq. (4.12) 114 q = Lq + 2 Ls,q 2 

Note that the trace relations have been written down using the invariant (X+), and must 
be re-expressed in terms of  (,~+) in the quenched case. This generates a correction 
to the constants appearing in the 122 Lagrangian, see below. In order to reabsorb the 
divergences at one loop we define the l q in the following manner: 

I q : l q r (/.Z) @ '~qz~, (4.13) 

with 
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1 yq 1 2 

= 2 = = l - 8 v 2  - 2 + 

2 
yq = 1 - 4vl, y7 q = ~ a ,  (4.14) 

all the other yq are zero. We find it useful for the analysis of the phenomenology to 
introduce the scale independent constants ~, defined as follows: 

~,. = 327r2 q M 2 

y--Ti li r (tz ) -In/z--- T. (4.15) 

As we mentioned above, a complete renormalization at the one-loop level requires, in 
the quenched case, the renormalization of the order p2 constant B0 due to divergences 
proportional to m 2. In the present case, (X 2) has been eliminated with the use of the 
Cayley-Hamilton relations (4.11 ) in favour of (~+}2 and M z (X+). The divergence pro- 

portional to the latter can also be reabsorbed in the renormalization of the Bo parameter. 
Since P5 = 4Q4 + 2MZ(ul, u I') the constant F 2 receives a finite correction proportional 
to L q. For later convenience, we define here the renormalized constants at order p2 in 
the two-flavour case, in such a way that they include also finite corrections: 

p2 
£2 = T(Up utz q- )(+), 

( -4 Lqw'  pN=2= F 1 .  5 F z } , 

-N=2 [ (m2-2otM2)( M2 ) ( ot ) M2 ] 
B o =Bo 1 a~-q.r-UF ~ l n 7  + l  - 8L q + ~  ~ + b o ( / z )  , 

(4.16) 

where, in an obvious notation, ~+ stands for the analogue of X+ which contains /~o 
instead of Bo. 

5. Analysis of various observables in quenched CHPT 

In this section we make a complete one-loop analysis of several observables in 
quenched CHPT. The main reason for this is to study the problems generated by quench- 
ing in the finite part of the one-loop corrections, which we have not considered in the 
generating functional. As we will see, some of the finite corrections diverge in the chiral 
limit. The origin of these divergences can be traced back to the presence of the double 
pole in the singlet two-point function. The double pole carries in the numerator a new 
mass scale m0 that does not vanish in the chiral limit, and hence modifies the chiral 
power counting valid in CHPT. The standard power counting goes as follows: the chiral 
order of a generic diagram is given by the simple formula 

Dg = 4L - 21 + ~-'~dNd, (5.1) 
d 
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where Dg is the chiral dimension of a graph g that has L loops, I internal lines, and Nd 
vertices of chiral dimension d. The topological relation 

L = I - V + 1, (5.2) 

where V = ~-'~,~ Nd is the total number of vertices, can be used to obtain 

Dg = 2L + Z ( d  - 2)Nd + 2. (5.3) 
d 

Since in standard CHPT the lowest chiral dimension of a vertex is two, the chiral 

dimension of a graph is always greater than two, and increases with the number of 

loops and vertices with chiral dimension greater than two. In quenched CHPT the 

situation changes, and we have to allow for the presence of vertices with chiral order 

zero, i.e. the insertions on the singlet propagators proportional to m~ (that is a constant 

in the chiral limit). In this case Eqs. (5.1) through (5.3) are still valid, but due to the 
presence of terms with d = 0, Dg may now be smaller than two, and even negative. 

Naively one could conclude that Dg could even be unbounded from below. However, 

one has to take into account the fact that virtual quark loops are forbidden: this puts 
a series of constraints on the type of graphs with m 2 insertions that are allowed. For 

example, it is not possible for two m 2 vertices to lie on the same line one after the other, 

or, no standard vertices can have all the outgoing lines that end up on an m~ vertex. 7 

These constraints are such that Dg comes out to be bounded from below, although it 
may be negative. The value of the lower bound depends on the observable - we will 

see explicit examples below. 

In what follows we are going to analyze: the quark condensate, the pion mass and 

decay constant, the vector and scalar form factors of the pion and the 7rTr scattering 

amplitude. Although these quantities (with the exception of the form factors) were 
already analyzed at the one-loop level in previous works [2,3,12], we find it useful to 

present them here again, in view of the renormalization that we have performed at the 
level of the generating functional, and also of our definition of the Lagrangian at order 
p4. We make the analysis in the case of two light flavours with degenerate masses. 

5.1. Quark condensate, pion mass and decay constant 

As anticipated in the previous section the renormalized scalar quark condensate plays 

a crucial role among the quenched observables in the strong sector, since it contains 

an explicit dependence upon the quenched chiral logarithms through the /~0 parame- 
ter (4.16) (everywhere in this section we shall use the /~0 parameter as defined in 
Eq. (4.16), dropping the N = 2 superscript). We shall see later in the case of the scalar 
form factor that all the ~q matrix elements share the same feature. The renormalized 
scalar density to one loop in the two-flavour case is given by 

7 There is one exception to this, given by vertices with physical external sources. In this case disconnected 
quark loops are allowed, since they are not generated by the QCD determinant (see Section 5.2). 
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0 ....... ' "., ~J 

Fig. 1. One-loop diagrams in quenched CHPT that contribute to the squared pion mass M 2. They are the 
meson tadpole, its ghost counterpart and the tadpole with one singlet vertex (x) insertion. 

(Clq)q 2 - [1 -t- O(M2)] , = -F~rBo (5.4) 

where we have not written down explicitly the standard chiral corrections of order M 2. 
The problem with these corrections is that they contain contributions coming from coun- 
terterms of order p4 that contain only external fields (we have not written them down in 

the previous section). These counterterms cannot be determined on a phenomenological 

basis: their presence in the expression of the quark condensate reflects the fact that away 

from the chiral limit, this quantity cannot be defined unambiguously. We refer the reader 

to Ref. [ 8 ] for a detailed discussion of this point. On the other hand, in the chiral limit, 

where this ambiguity disappears, the quark condensate diverges due to the quenched 

chiral logarithms inside/~o. 

The pion decay constant to one loop is renormalized only by a finite amount in 

the quenched two-flavour case: F~ = F, see Eq. (4.16). Notice that in the quenched 
three-flavour case there is no need to define an F, but on the other hand L q directly 
contributes to F~ in such a way that for N = 3 and N --- 2 (as also for any other N) one 

has the same pion decay constant, as expected. 8 The diagrams which renormalize the 

pion mass to one loop are shown in Fig. 1. The meson tadpole and its ghost counterpart 

cancel each other, so that the renormalization of the quenched pion mass at one loop is 

provided by the tadpole with one singlet vertex insertion and its counterterm, 

mZ~ = 2Bomq, (5.5) 

where mq is the light quark mass. As one can see, all the one-loop corrections, in- 

cluding the quenched chiral logarithm have been reabsorbed in B0. Since Bomq 

mq log mq when approaching the chiral limit, the renormalized pion mass tends to zero 
like mq log mq. No divergence is produced by quenching in the behaviour of the renor- 

malized pion mass in the chiral limit, although the way it approaches zero is different 

from that of standard CHPT. Once M~ is fixed to its physical value no residual quenched 
chiral logarithms are left in the strong sector (with the mentioned exception of ~q ma- 

trix elements). In Appendix B it is shown that the same situation occurs in the weak 
AI = 1/2 sector, where additional quenched chiral logarithms can be reabsorbed in the 
renormalization of the weak mass term. 

5.2. Scalar form factor 

The scalar form factor of the pion is defined by the matrix element of the ~q density 
between two pion states 

8 We thank Martin Liischer for pointing out an inconsistency on this point in the first version of the 
manuscript. 
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~ , V 2 V 2 ~  

Fig. 2. One-loop diagrams in quenched CHPT which contribute to Fs(t ) (the box stands for the scalar 
source insertion). They are the "standard" meson loop diagrams (first line) to which one has to add the 
corresponding fermionic ghost loop diagrams, the singlet insertion diagrams (second line) and the diagrams 
with tq, v2 vertex insertions (third line). 

(a) ~b) (el 

Fig, 3. One-loop diagrams which contribute to Fs(t) in the quark-flow diagram picture. Diagram (b) can be 
present in the quenched approximation, while the others disappear. 

(~ri(p')l?lqlcrk(p ) ) = 8ikFs( t), (5.6) 

where t = (p - p,)2. In quenched CHPT the complete list of one-loop diagrams which 
give contribution to Fq(t) are shown in Fig. 2. 

An explicit calculation shows that the fermionic ghost loops do not fully cancel the 
corresponding meson loop diagrams. The reason for this mismatch is best understood 
within the quark-flow diagram picture. Here, the physical scalar source only couples 
to the quark lines and not to the ghost lines. The possible one-loop diagrams are the 
ones listed in Fig. 3. Diagram (b), where the scalar source is coupled to the internal 
disconnected closed quark line, has no correspondent ghost loop diagram: this is correct 
because the loop is not produced by the fermionic determinant, and must therefore be 
present also in the quenched approximation. 

The complete renormalized quenched scalar form factor can be written as follows: 

#(t) 1 q q 2 . ")/4 t iq  Fff(t)=Fff(O) 1+--~--2 ~ /4 ( t -2M~)  +r3M,~ + , ~ t , 4 - 1 )  

i ~ [' (t)(m~ - ceU~) - 
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+ [2 ( t ) (m~-o tM~)  2 +O(t2) ,  (5.7) 

where the coefficients 7 q have been defined in Eq. (4.14) and Fsq(0) is given by 

{ 2 2 (  ) ( m ~ o t M 2 ) 2  (m o - aMr)  2 1 - 
Fq(0) = 2/~0 1 ~-8~2--~ 2 1 - ~ a  + 9 487r2F~M~ 

} q 167r2F ~ [ ~ ( l q - 1 ) - ~ / q ( f q - 1 ) ]  . (5.8) 

Note that we are working in the degenerate mass case, so that no isospin breaking effect 
has been taken into account. In standard CHPT there is no isospin breaking correction 
to the scalar form factor at this order of the expansion. In passing, we state that also 
in the quenched case there is no isospin breaking contribution linear in mu - ma to the 
pion scalar form factor, as it happens in CHPT, while an isospin breaking correction of 
order (mu - ma) 2 is produced via the (~bo, ~b3) mixing for neutral pions by the chiral 
invariant operator P7 in Table 1.9 

The functions ] ( t ) ,  [1 (t) and/2( t )  are finite and they are defined in Appendix C. The 
two functions [l (t)  and 12(t) are peculiar of quenched CHPT. They will also appear 
in the ~r~- scattering amplitude, where we shall analyze in some details the various 
sicknesses of which they suffer. Here we used their low momentum expansion to define 

the scalar form factor at t = 0. 
The scalar form factor is a good example to analyze the modifications produced by 

the quenched approximation to an observable at the one-loop level. First, the pion loops 
have been only partially cancelled, therefore the ordinary chiral logarithms and the one- 
loop function ]( t )  do appear in the same way as in standard CHPT, but with different 
coefficients (these coefficients may even vanish in particular cases, like M,~ and F,~). 
Second, quenched chiral logarithms appear at one loop, but they can be reabsorbed 
in the renormalization of the Bo parameter, as we have demonstrated in the previous 
section. Besides quenched chiral logs, the remaining finite loop corrections arising from 
the anomalous singlet sector and proportional to m02 are even more problematic, since 
they have negative chiral dimension, as anticipated in the general discussion above. It 
is a simple exercise to calculate the chiral dimension of the one-loop diagram with two 
m02 insertions on the two internal singlet lines (this is the central graph in the second 
line of Fig. 2) : with respect to the tree-level graph this has chiral dimension -2 .  These 
corrections diverge in the chiral limit like an inverse pion mass squared, see Eq. (5.8). 
In fact, there is an infinite series of graphs that has the same chiral dimension: these 
graphs are obtained from this one by adding any even number of singlet lines (each 
one with one mo 2 insertion) between the two vertices. Also the insertion of tadpoles and 
sunset diagrams with the maximum allowed number of mo 2 insertions does not change 
the chiral dimension of the starting diagram. As far as we could see this series of 

9 Note that also the neutral pion m a s s  M 2 gets next-to-leading corrections of order O( (mu - m,t)2) from 
7r 0 

/'7 in the quenched case. 
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graphs is also the one with the lowest chiral dimension for the scalar form factor. This 
example shows that despite the general formula (5.3) with d = 0 vertices allowed, in 
the quenched case the chiral dimension of amplitudes is bounded from below. 

It is also interesting to look at the slope of the scalar form factor at low momenta in 
the quenched case. This defines the scalar radius as follows: 

t 2 q O(t2)] Fq(t) = Fq(0) [1 + ~(r  )s + (5.9) 

The scalar radius in the quenched approximation at one loop is given by 

< r2)q = 167r2F21[yq+Yq4(3F4-4)-(1-~°t)(m2°-°~M~)~-~T 

4 (m~ - aM~) 2] 
-~ 45 ~/-~ J" (5.10) 

In standard CHPT the scalar radius diverges in the chiral limit because of the presence 
of t-dependent chiral logarithms. It behaves like 

3 
(r2}s = 8q.r2~ lnM~ + . . .  (5.11) 

In the chiral limit the one-loop contribution to the quenched scalar radius diverges not 
just logarithmically as in the standard case, but like an inverse power of the pion mass, 

1 [ 4 m ~  1 ( ? .  ) mo 2 - 3 y : l o g M ~ ]  (rZ)qlM,~---.0 
167rZF 2 M~ 3 1 - 1 3 a  ~ + ' ' "  

(5.12) 

The origin of this power-like divergence in the chiral limit is the same as that of the 
form factor at t = 0. Here it is more severe, simply because the definition of the radius 
implies a derivative with respect to t. 

It is interesting to note that in quenched CHPT the Feynman-Hellman theorem [ 8,15 ] 
does not hold: 

Fq(O) ~ OM----~2~, (5.13) 
cPmq 

as one can easily verify by comparing Eq. (5.5) and Eq. (5.8). The origin of the 
violation of this theorem is in the presence of diagram (b) of Fig. 3 in the quenched 
scalar form factor. This graph cannot be obtained taking a derivative with respect to 
mq of M 2, since the quark loop is not present in M~ and cannot be resurrected by a 
derivative. 

5.3. Vector form factor 

The vector form factor of the pion is defined in terms of the matrix element of the 
_ ~ k  

vector current V k = qT~ 5-q between two pion states: 
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Fig. 4. One-loop diagrams in quenched CHPT that contribute to Fq(t) (the box stands for the vector source 
insertion). They are the "standard" meson loop diagrams (first line) and the corresponding fermionic ghost 
loop diagrams (second line). No singlet component can run in the loop. 

t F q t  (zri(p ') IV~lqrt(p) )q = ieikl(Pu + P~) v ( ) ,  (5.14) 

where t = (p - p , ) Z .  The divergent contributions to Fq(t) can be derived from the 

expression (3.21) of the quenched generating functional in the usual way. It is an easy 

exercise to show that these contributions are zero. In fact, the only chiral invariant 

which can give corrections at order p4 is the operator number 9 in the list of Table 1, 

which has no divergent term in the quenched limit. In a Feynman diagram approach the 

graphs which contribute to one loop are shown in Fig. 4. The complete calculation gives 
zero, because of the systematic cancellation of each pion loop with the corresponding 

ghost loop. In addition, since no singlet component can run in the loop, there is no 

extra contribution coming from the anomalous singlet sector. The quenched vector form 

factor for N = 2 can be written as follows: 

Fq(t )= 1 -  l~ t + O ( p  4) (5.15) 

where the finite counterterm l~ is defined in Table 1 and Eq. (4.10). Again, no isospin 

breaking effects have been taken into account. In standard CHirr  the Ademollo-Gatto 
theorem [ 16] guarantees that they are absent at this order. In quenched CHPT the 

theorem is also valid. Note that the counterterm P7 cannot contribute at all to the vector 
current matrix element, while the new chiral invariant term (u~)(uUx+) induced by the 
dynamical singlet component gives O ((m~ - rod) 2) corrections to the decay amplitude 

7r + --+ 7r°ev via the (~b0, ~b3) mixing. 
Since the vector form factor does not receive contributions from singlets running 

inside the loop at the one-loop level, it does not show any divergence in the chiral limit. 
The situation however changes at two loops, where we have among others the graphs 
shown in Fig. 5. The most dangerous graph is the fish diagram with two m 2 insertions 
(the last of Fig. 5) which has chiral dimension zero respect to the tree level. Again this 
is only the first example of a full series of graphs which have the same chiral dimension: 
they are obtained from the starting one by inserting any even number of singlet lines 
between the same two vertices as those of the two-loop fish diagram, or tadpoles and 
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Dg =2 ~ Dg =2 ~ Dg =2 g Dg ----0 

Fig. 5. Two-loop diagrams in quenched CHPT with the m 2 singlet vertex (×) insertions that give divergent 
contributions to the e.m. charge radius in the chiml limit. They are tadpoles, which generate quenched chiral 
logs and the fish diagrams that also generate power-like divergences. For each diagram the chiral dimension 
respect to the tree level is given. 

sunset diagrams all with the maximum allowed number of m 2 insertions. In this case 

there are no graphs which are more singular than those in the chiral limit. 

The low-energy representation of Fq(t) also determines the electromagnetic charge 

radius of the pion in the quenched approximation 

Fq(t) = l + 6(r2) q + O(t2). (5.16) 

In standard CHPT the presence of t-dependent chiral logarithms makes the electromag- 
netic charge radius diverge in the chiral limit [ 8 ], 

1 logM 2 + . . .  (5.17)  ( r Z ) v -  16zrZF 2 

The divergence of the electromagnetic charge radius in full QCD can be understood in 

a physically intuitive way. The charge distribution is cut off by the Yukawa potential 

e -M~r at large distances. In the chiral limit M,r goes to zero and the Yukawa potential 
is no more effective, the charge distribution falls off like a power of the distance and the 

charge radius becomes infinite. The charge distribution of the pion cloud surrounding 

any particle gets modified by quenching. As a consequence, the behaviour of the charge 

radius in the chiral limit is modified. In the quenched case the one-loop contribution 
gives 

(r2)q _ 61q 
F2, (5.18) 

which stays finite in the chiral limit. The situation changes at two loops and higher: the 

graphs that we have discussed above, which have chiral dimension zero with respect to 

the tree level (like the two-loop fish diagram), do generate power-like divergences in 
the chiral limit. At two loops we are going to have a behaviour like 

..2xq 2-loop 1 (  (mz/Nc)2 m2 InM2)  (5.19) 
r ?v fM~---*0 "~ ( 16q.rZF2)2 dl M2 + d2 Nc ' 

where presumably also at this order the chiral logs could be reabsorbed in the renor- 
malization of some order p4 constants. 
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(a) (b) 

Fig. 6. Two examples of pion loop graphs contributing to ~'Tr scattering in the quark-flow diagram picture 
(all lines are quark lines). Diagram (a) does not contain quark loops, whereas diagram (b) does. 

s-channel t-,u-channel 

s-channel s-channel 

Vl,2~ 
s-channel 

Fig. 7. One-loop diagrams in quenched CHPT which contribute to the ~r~- scattering amplitude in the two 
degenerate flavour case. They are the "standard" meson loop diagrams (first line) to which one has to add the 
corresponding fermionic ghost loop diagrams, the singlet vertex (x)  insertion diagrams (second line) and 
the diagrams with one vl, v2 vertex insertion (third line). 

5.4. The zmr scattering amplitude 

The 7r~ scattering ampli tude is another example of  an observable where one can find 

all the typical  effects of  quenching. Moreover  it is an interesting quantity by itself since 

a comparison of  the prediction for the two S-wave scattering lengths with existing lattice 

calculations [17] is possible.  

The presence of  "standard" chiral logs even in the quenched theory has to be inter- 

preted as due to diagrams with pion loops that do not contain quark loops. For the 7mr 

scattering ampli tude an example is given in Fig. 6. The one-loop contributions to the 

zmr scattering ampli tude in quenched CHPT come from the diagrams shown in Fig. 7. 

The scattering ampli tude at tree level is the same as in standard CHPT 

s - M 2 
Atree (s ,  t, u) - F2 , (5.20) 

where M and F are the bare pion mass and decay constant. The renormalized scattering 

ampli tude in quenched CHPT and in the two degenerate flavour case can be written as 

follows: 
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S -  m~ +B(s , t , u )  +C(s , t , u )  + O(p6), (5.21) A(s, t ,u)  - F2 

where 

](s) 
B ( s , t , u ) = - ~  {s 2 -  16M~vl(s-  2M 2) + 4 M  4 ( y q -  1)} 

1 
+~F-~ 4 { ] ( t ) ( t -  2M~)2 + ] ( u ) ( u -  2M:) 2} 

2M, (2 ) 
+ l l ( S ) - ~  4 (mo 2 --crM 2) - 1 + ~ce 12(s) ~ £  ~ (mo 2 o t M 2 )  2 , 

1 {s2(21 q + l -q - 3) + ( t -  u)2(/2 q - 1 C(s, t, u) = 1287rZF4 

+8sM~ [ 1 -  l -q + yq ( [ q -  1)] 

[ fq-  1 +  yq ( [ q -  1) -2V4 q (~4- 1)] } (5.22) +8M 4 

For a definition of the functions ](q2), I1 (q2) and I2(q 2) see Appendix C. The functions 
II (s) and 12(s) arise from diagrams with one and two m 2 insertions on the two internal 
singlet lines in the s-channel respectively (see Fig. 7). Note that everything is expressed 
in terms of the renormalized squared pion mass M 2 given by Eq. (5.5) and F~ = F. Note 
also that any dependence upon quenched chiral logarithms has again been reabsorbed 
in the/~0 parameter contained in the renormalized pion mass, as expected. The function 
C (s, t, u) contains only polynomial contributions, while the invariant function B (s, t, u) 
is the quenched analogue of the unitarity correction to the scattering amplitude in 
ordinary CHPT. It is important to note that unitarity is destroyed by the quenched 
approximation: the structure of the cuts in the one-loop amplitude is not related via 
unitarity to the real part of the tree-level amplitude. Moreover, one can easily verify 
that the Fermi-Watson theorem, which relates, e.g., the imaginary part of the vector and 
scalar form factors to those of the corresponding partial waves of ¢rcr scattering, is not 
valid in this case. 

In this particular example the violation of unitarity is also immediately seen in the 
presence of the finite functions ll (q2) and 12(q2), which are not generated in ordinary 
CHPT. They have a non-zero imaginary part for s ~> 4M 2 that has a singularity at 
s = 4M 2 (of the type (s - 4M 2) - 1/2 and (s - 4M 2) -3/2, respectively, see Appendix C), 
which is a pure quenching artifact. These singularities have been already identified 
in [12,18]. Here we have rederived them in the a ¢ 0 case and inserted in the 
complete formula for the amplitude. 

Interesting quantities to be extracted from the ~-rr scattering amplitude are the S-wave 
scattering lengths. In Ref. [ 10] we calculated the coefficients of the chiral logarithms 
which arise in the quenched case and made the comparison with standard CHPT. Here 
we give the complete expression of the S-wave scattering lengths in the isospin I = 0, 2 
channels to one loop and comment on the anomalous behaviour of the isospin amplitude 
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in the I = 0 channel (which was already remarked in Ref. [ 12] ). The I = 0, 2 amplitudes 
are expressed in terms of the invariant amplitude A(s, t, u) as follows: 

T o ( s , t ) = 3 A ( s , t , u )  + A ( t , u , s )  + A ( u , s , t ) ,  

T2(s, t) = A(t ,  u, s) + A(u, s, t). (5.23) 

The pion scattering lengths a[ for a given isospin I and angular momentum l are defined 
by the behaviour of the partial wave amplitudes near threshold, 

Re t[(s) = q2t {a[ ÷ q2b~ + O(q 4) }, (5.24) 

which enter the expansion in partial waves of the isospin amplitude 

o o  

TI(s, t) = 327r ~-'~(2/+ 1)Pl(cosO)t[(s) .  (5.25) 
/--0 

For more details about the notation we refer the reader to Ref. [8]. The scattering 
amplitude in the I = 0 channel contains the amplitude A(s,  t, u) and therefore in the 
quenched case acquires a sick threshold behaviour due to the presence of functions 
l l ( s )  and I2(s). These functions do not contribute to the I = 2 amplitude. On the 
other hand, the divergences at threshold present in the infinite volume case show up 
as "enhanced" finite volume corrections to the Liischer formula [ 19], that is used on 
the lattice to extract the scattering lengths; these finite volume corrections have been 
studied in Ref. [12]. We can formally define the quenched I = 0 S-wave scattering 
length a0 ° as the coefficient of the (q2)0 term in the expansion of the real part of the 
isospin amplitude T°(s, t) in partial waves. This gives us an idea of the size of normal 
one-loop corrections to the scattering length. The present definition is also equivalent 
to the one adopted in Ref. [ 12] in the analysis of the finite volume corrections. The 
quenched S-wave scattering length in the I = 2 channel a02 is defined in the usual way. 
For the complete renormalized S-wave "quenched scattering lengths" at one loop we 
find 

32rrF~ a o M~ { 7 + 5 ( [ q + z [ q ) + y q ( 5 [ q + l ) + Z y q ( [ q  l ) _ 4 8 v l  } 
M---~ o = 7 + 167r2----~ 2 

(m2o-aMZ~) ( 2  ) 5 (m02 - aM~) 2 
48~rZF ~ ~ a -  1 + 9 48~r2MZFZ~ ' (5.26) 

327rF~Z a2 M 2 {2(/q + 2~ _ 1) + 2yq (~ _ 1) _ 4yq (~4 _ 1) } 
M--~ 0 = - 2  + 16~r2----~ 2 

2 2 ( ) (m2 otM2)2 (m o - aM~) 2 2 - 
q- -~-~F2 ~ a -  1 + 9 487r2MZ~F~ " (5.27) 

The renormalized quenched scattering lengths depend upon four counterterms i q . . . . .  [q 
and the parameters of the anomalous singlet sector at leading order, rag, a, vl and oz. 
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Table 2 
Numerical values of the leading contributions to a ° quenched up to one loop for Mrr = 140, 300, 600 MeV, 
according to Eq. (5.29) 

Mr (MeV) tree t$ ~2/E e In M 2 

140  7 0 . 0 9  2 .5  1.2 

300 7 0.08 0.47 3.5 
600 7 0.06 0.06 5.9 

The counterterms r q carry the chiral logarithms /,.q = - l o g  m + . . .  In ordinary CHPT 
the chiral logarithms are largely dominant in the one-loop corrections to the S-wave 
scattering lengths at the renormalization scale/z = 1 GeV [20]. Here the main unknown 

is the value of the parameters Vl, v2 of the singlet sector. The singlet parameters mo and 
ce can be extracted from lattice calculations. Favoured values are listed e.g. in Ref. [21 ]. 

With these values at hand we can do the following numerical exercise. Let us disregard 

for the moment the parameters Vl and v2 and limit the analysis to the contributions that 

are reasonably expected to be the dominant ones: (1) the singlet corrections in m0 and 

a and (2) the standard chiral logarithms. With the definitions 

= m~ e - M------~2~ ~ _ m~ - o~M~ _ 6 - a e ,  (5.28) 
487r2F2 ' 48rr2F2 ' 48rr2F 2 

the leading contributions to the scattering lengths are as follows: 

 2<o (2 2 
- -  66e In M,~ M2 a o - 7 -  ~ a - 1  ~ + 9 e  "~ - T +  . . . .  

327rF2 2 ( 2  ) 262 M~ 
- -  - 12eln + .  (5.29) a 0 = - 2 +  ~ a ~ - I  2 a + ~ e  7 '" 

For the numerical calculations we use F,~ = 93 MeV, a = 0.15 and a = 0.6 and vary the 
pion mass between its physical value M~ = 140 MeV, and M~ = 600 MeV, which is 

presumably already outside a reasonable range of validity for ordinary CHPT. The chiral 
log is evaluated a t /x  = 1 GeV. The numerical results are given in Tables 2 and 3 for 
the I -- 0 and I = 2 scattering lengths, respectively. We note that at the physical value 
of the pion mass the 62/e term is largely dominant in both cases: the divergence in the 
chiral limit produced by quenching is already felt at the physical pion mass. This also 

means that the whole framework is not very reliable in this range, since also higher loop 

effects may produce modifications of the same chiral order (higher powers of ~ with the 

same 1/e in front). At larger values of the pion mass, which are those typically used 
in lattice calculations, the situation changes and the standard chiral logarithms become 
dominant, as it happens in standard CHPT. 

This picture, although at a semiquantitative level, suggests that quenched lattice cal- 
culations of the S-wave scattering lengths with a moderately high pion mass (like the 
ones in Ref. [17]) ,  should not be too far from those predicted by full CHPT. This 
conclusion is based on two observations: first the standard chiral logarithms start soon 



462 G. Colangelo, E. Pallante/Nuclear Physics B 520 (1998) 433~168 

Table 3 
Numerical values of the leading contributions to a 2 quenched up to one loop for Mr = 140, 300, 600 MeV 
according to Eq. (5.29) 

M~r (MeV) tree 8 B2/E ~ln M~ 

140 -2 -0.18 1.0 0.23 
300 -2 -0.16 0.19 0.63 
600 -2 -0.12 0.02 1.I 

to be dominant with respect to the dangerous quenching effects, and second their co- 
efficient happens not to be substantially changed by quenching [ 10]. The comparison 
between the standard CHPT prediction at one [8] and two loops [22], and the lattice 
calculation [17], has been made in Ref. [23]. 

6. Summary and conclusions 

In this paper we have analyzed the quenched version of chiral perturbation theory at 
the one-loop level. We have calculated the one-loop ultraviolet divergences of the theory 
at the level of the generating functional, and shown how one can reabsorb all those 
divergences by a proper definition of the counterterms. We have shown that even in the 
presence of the anomalous singlet sector the ultraviolet divergent part of the quenched 
generating functional can be calculated in closed form. We have closely followed the 
notation and methods of standard CHPT [ 8] in order to identify as clearly as possible 

the changes produced by the quenched approximation in the formulation of the effective 

theory. 
We have found a systematic cancellation of the flavour-number dependent terms 

inside the divergent part of the generating functional to one loop. As we anticipated in 
Ref. [ 10] the complete N independence of quenched CHPT is welcome, since it shows 
that we understand the differences between standard CHPT and its quenched version. 
Let us recall that the calculation of the divergences to one loop in CHPT produces 
explicit N dependence, in three different powers: N, 1/N and 1/N 2. The terms linear 
in N must be generated at the quark level by virtual quark loops: therefore they must 
be absent in the quenched theory. The terms with inverse powers of N are generated 
by the decoupling of the singlet field from the octet of the Goldstone bosons. Since the 
decoupling does not take place in the quenched theory, also the inverse powers of N 
disappear in qCHPT to one loop. A posteriori one could say that the changes that lead 
from standard CHPT to its quenched version could have been guessed by simply looking 
at the N dependence of the generating functional to one loop. In fact this can still be 
done in other sectors of the effective theory that have not been fully analyzed yet. We 
give one example of this in Appendix B, where we study the one-loop divergences in 
the sector of the on-shell non-leptonic weak interactions. 

The quenched approximation produces a double pole in the singlet two-point function, 
which however is not allowed in a consistent quantum field theory, and is therefore the 
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source of many sicknesses of quenched CHPT. As was shown already in Refs. [2,3], 
one of the consequences of this double pole is the appearance of a new kind of chiral 

logarithms in the one-loop corrections. Together with the standard M 2 In M 2 chiral log- 
arithms, qCHPT has corrections of the form m 2 In M 2, which diverge in the chiral limit. 
The complete calculation of all the ultraviolet one-loop divergences in the generating 
functional, has shown that the quenched chiral logs can be accounted for via a renormal- 
ization of the lowest order constant B0 (which is proportional to the quark condensate). 
As a consequence, the renormalized/~o parameter diverges in the chiral limit, while the 
renormalized pion mass M 2 = 2Bomq does not. The use of the renormalized pion mass 
to express any other observable makes the quenched chiral logs disappear at one loop, 
with the only exception of glq matrix elements, that are proportional to the renormalized 
/~0 parameter alone. Hence, ~q matrix elements remain the unique place for discovering 

the presence of quenched chiral logs in quenched lattice calculations within the strong 
sector. 

The double pole in the singlet two-point function also changes the standard chiral 
power counting for which diagrams with a higher number of loops are of higher chiral 
order. In the quenched case one may have graphs with any number of loops with the 

same chiral dimension, and the chiral order of an amplitude is no more constrained to 
be positive: as a consequence, quenched CHPT has power-like divergences in the chiral 
limit. These divergences are in principle a very serious problem of the theory, although 

they seem to be a unavoidable consequence of the quenched approximation. Since the 
graphs that have negative chiral dimension are also ultraviolet finite, their study requires 
the calculation of the UV finite part of the loop corrections. We have shown how they 
arise within the generating functional approach; at one loop and at order ~4 they are 
given in Eq. (3.22). We have therefore analyzed some physical quantities at one loop 

in the case of two degenerate light flavours: the scalar quark condensate, the pion mass, 
the scalar and vector form factors of the pion and the 7rTr scattering amplitude. This has 
given us the possibility to discuss in detail the changes induced by quenching in the UV 
finite part of the one-loop corrections. The main changes can be summarized by saying 
that unitarity is not satisfied anymore, and that the double pole in the singlet two-point 
function produces singularities in the chiral limit, and also unphysical singularities at 
threshold. 

The differences between CHPT and its quenched version are rather well understood, 
as the study of the flavour-number dependence of the generating functional at one 
loop also shows. The presence of the double pole in the singlet two-point function 
is also a rather direct consequence of the quenched approximation. This double pole 
has dramatic effects on the effective theory. However, it looks plausible that despite 
all these inconsistencies (or maybe because of them) quenched CHPT is the right tool 
to understand the effects of quenching in actual lattice calculations. The crucial check 
will be a detailed comparison of qCHPT predictions with the quark mass dependence 
of various quenched quantities on the lattice, and especially of the way they approach 
the chiral limit. We expect that further investigations in this direction will answer these 
questions. 
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Appendix A. Divergences proportional to m 2 

In this appendix we try to explain in a simple way why the divergence proportional 
to m~ is given by the chiral invariant term (X+)- We start from the observation that the 
double pole in the singlet propagator can be expressed with a derivative of a normal 
propagator, 

1 
m2 = - m2 0 -~v/"-"5 M 2 _ p 2 (A. 1 ) (M2_p2)2 

In fact, in the quenched case one is keeping only the first two terms in a Taylor series, 

1 _ 1 ( M ~ ,  - M 2)  1 
2 _ p 2  M 2 _ 192 . . . .  Mr/, ( M2 __ p2)2 q- (A.2) 

2 _ M 2. The divergences proportional to mo 2 arise from this Taylor where mo 2 = Mr/, 
expansion of the propagator. Before the expansion, singlet loops give two types of 
divergent contributions: 

I f  dap 1 I f __ddp _ _ 1  1 
(A.3) 

Y 2 Y 2 _p2  M 2, _ (p _ q)2" i (27r) a Mr/, - p2 and ~- (2~r) d Mr~, 

The divergence proportional to m 2 is obtained by expanding the singlet propagator inside 
the loop integrals and taking only the second term in the expansion. It is clear that only 
the tadpole produces a divergence, 

I f  ddp 1 l [  ddp _--__m~ 
~ m~ J ~ O ) q (A.4) 

7 J  ( ~ a M  2 , - p 2  ~ 7 J  (2--~d(M 2_p2)2  

The chiral structure of the term proportional to the tadpole is very easily identified, and 
is given by the term proportional to (5 after expanding the action in fluctuations around 
the classical solution, 

F 2 F 2 
£2 = --~-(uu uu + X+)--~ ~ { - ( o (  l--l+ M2')~o-( 2 ( ( X + ) -  2NM2) } • (A.5) 

Obviously, the tadpole is generated by the contraction of the two (o's in the last term 
of Eq. (A.5), and therefore the divergence is proportional to (X+)- 

In summary, the divergence proportional to m0 z must be, for dimensional reasons, a 
chiral term of order p2. This divergence comes from a tadpole through a derivative 
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with respect to MS,. In the tadpole the vertex is a chiral invariant of order p2. The 
simplified recipe to derive the form of the divergent term proportional to mo 2 amounts 

to determining the chiral invariant that is proportional to ~02 after expanding the CHPT 
Lagrangian in fluctuations around the classical solution. 

The recipe applies in the same way to other sectors. We will give an example below 

for the non-leptonic weak interactions sector. 

Appendix B. Non-leptonic weak interactions 

In this appendix we show how one can derive the structure of the divergences in the 

quenched case just by looking at the N dependence of the divergences of the standard 

CHPT case. We will consider the weak octet Lagrangian which contributes to the non- 
leptonic weak interactions with AI = 1/2. The structure of the divergences in standard 

CHPT has been given by Kambor, Missimer and Wyler [24], and then expressed in 
terms of a minimal basis by Ecker, Kambor and Wyler [25 ] for on-shell processes. We 

will use the basis given in Ref. [25]. 
Let us recall here some basic notation. In this sector the lowest order Lagrangian is 

given by 

~_~8W2 = C2( glUlzU I~) + c5(A¥+) , (B.1) 

where A = ua6u t,  and c2,5 are low-energy constants. The c5 term can be omitted for 

on-shell processes, as it can be transformed away by a field redefinition. We will not 
consider it anymore in what follows. Since the above-mentioned calculations of the 

divergences were made for N = 3 we have redone the calculation of the divergences for 

N generic. Our result for the divergent part of the one-loop generating functional reads 

as follows: 

].L d-4 1 C 2 f 
Z8-1°°P - 16~ 2 d - 4 F 2 a dx  L8v + finite terms, 

1 3 1 1 
L8div = W4 q- ~W6 - ~W7 + ~W8 - "~Wll 

l[ + ~  2Wlo + W12 - 2W21 - 2W22 + W36 - W11 

[2 1 1 1 1 1 W  1 1 
+N gWl - gW2 + ~W5 + ~W9 - ~W12 + ~5 14 + gW15 - Wl6 

1 ~ 1 1W 1 1 1 
24W18 - __ W19 -~- ~W20 -}- ~ 21 -[- ~W22 q- ~W25 - ~W26 

1 1 1 ] 
-+-~'~W27 -- ~W36 - I W 3 7  - ~W38 • (B.2) 

.I 

With Wi we have indicated the operators of order p4 given in Ref. [25]. Here we have 
one more, 
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W38 = {Auux+uU) ,  (B.3) 

that for N = 3 is linearly dependent on the other operators thanks to the trace identity 
coming from the Cayley-Hamilton theorem: W38 = -14"5 + W6 + 1/2 W7 + Ws. 

According to the rules we have found in the strong sector, the divergences of the octet 
weak sector for on-shell processes in the quenched case become 

8q l 3 1 1 
tdi v = W4 -{- ~W6 - ~W7 -I- ~W8 - ~Wll. (B.4) 

For the sake of clarity we list the definitions of the Wi terms needed here: 

W4 -- (hulz}(ulXu~,uU) , W6 = {/lu#){,¥+ulZ) , W7 = {Ax+}(ulzulZ) , 

W 8  = , W .  = ( A X + ) { X + )  . (B.5) 

We have verified that the contribution of the singlet sector to the divergences indeed 
cancels the terms with a negative power of N. It would remain to be checked by an 
explicit calculation that the inclusion of the fermionic ghosts removes the terms with 
the linear flavour dependence [13], as one expects. 

Finally, we derive the contribution of quenched chiral logs in this sector, according 
to the simple recipe given in Appendix A. The answer is very simple: there are no 
quenched chiral logarithms in the on-shell octet weak sector at one loop. The reason is 
that if one expands the term proportional to c2 in the lowest order Lagrangian around 
the background field, there are no terms with s~. The situation would be different 
considering also off-shell processes, since the expansion of the c5 weak mass term 
generates the singlet term Cs(o2(Ay+). The conclusion here is that the quenched chiral 
logs can be reabsorbed in a redefinition of c5. 

Appendix C. One-loop functions 

Here we list the functions j(q2),  11 (q2), 12(q2) which appear in the one-loop cor- 
rections to the quenched observables analyzed in this paper. Ii (q2) and 12(q 2) are not 
generated in standard CHPT and arise from the insertion of the a and m~ vertices in 
any internal singlet line. 

The one-loop function j(q2) in Minkowski space-time is given by 

1 f ddl 1 
j(q2) = 7 ~ (27r)d (M 2 _/2)  (M 2 _ (1 - q)2) (C.I) 

and 

j(q2) = J(0) + ](q2),  (C.2) 

where J(0)  contains the divergent part 

J ( 0 ) = - 2 , ~ - ~  l n - ~ - + l  + O ( d - 4 ) ,  



G. Colangelo, E. Pallante/Nuclear Physics B 520 (1998) 433--468 467 

/.zd-4 [ l 1 (ln4~.+ r,(1) + 1)] (C.3) 
A = 1--~2 d - 4  2 

and ](q2) is finite. The explicit expression of aV(q 2) for d = 4 is 

y(q2) = ~ o-In + 2  (C.4) 
o - + 1  

where Or = x/'l - 4M2/q 2. The UV finite functions I1 (q2) and/2(q  2) are given by 

l l ( q 2 ) = l f  dal 1 
i (27r) a (M 2 - / 2 )  2 (M 2 - ( 1 -  q)2) '  

12(q2) = 1 f dal 1 (C.5) 
i (2~') d (M 2 - 12) 2 (M 2 - ( 1 -  q)2) 2" 

They are the ET. of the functions [l(Z) and/2(z) :  

1 f eiqz IFI(Z) ' 11 (q2) = ~ ddz 

12(q2) = ~1 / da z e iqz /2(Z)- (C.6) 

The explicit expression of I i (q  2) and I2(q 2) for d = 4 is as follows: 

1 I 1 l n o r -  1 
11 (q2) _ 16¢r 2 q2 Or Or + 7 '  

1 1 [ q 2 -  2M2 in o - -  1 ] (C.7) 
12(q2)--- 8~-2q4or2 1 +  q2o. Or+l  " 

In the text we have also used these functions subtracted at q2 = 0: 

Ii,2(q 2) = 11,2(0) +/1,2(q2), (C.8) 

with 

1 1 
11 (0) - 327r2M2, /2(0) - 96,n.2M4. (C.9) 

When q2 > 4M 2 both functions develop an imaginary part, which is given by 

I m l l ( q 2 ) =  1 1 1 
167r q2 Or' 

Im /2(q 2)=  1 2(q 2 - 2 M  2) 
16~" q30"3 (C.10) 

Notice that they diverge at q2 = 4M 2. 
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