View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Groningen Digital Archive

Pure Appl. Opt6 (1997) 503-526. Printed in the UK PII: S0963-9659(97)80153-5

Calculation of the radiance distribution at the boundary of
an isotropically scattering slab

M Doosjer§, B J Hoenderfg| and K Rinzemaq

T Institute for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen,
The Netherlands

i Laboratory for Materia Technica, University of Groningen, Bloemsingel 10, 9712 KZ
Groningen, The Netherlands

Received 6 December 1996, in final form 24 April 1997

Abstract. The radiance arising from an anisotropically scattering illuminated staekstdbs
is calculated using the equation of radiative transfer. It appears to be unnecessary to calculate the
radiance inside the material; including only the radiance at the boundary surfaces is sufficient
to obtain the desired result. The novel method used for the solution of this problem leads
immediately in a straightforward and systematic way to the known appropriate basic equations
valid for the problem at hand, otherwise derivedda/hocmethods. A new simple set of linear
equations for the radiance at the boundary surfaces is derived. This method applies equally well
to similar problems with other geometries.

Apart from this analytical derivation, this paper presents the results of the numerical solution
of the set of equations that we obtained from the equation of radiative transfer=fdr. The
results of the numerical calculations are compared with what is found in the literature and are
found to give very good agreement.

1. Introduction

There are several different ways to describe the radiance distribution of a beam of light
scattered from a slab-shaped isotropic medium; the one we have used is based upon the
well known equation of radiative transfer, which can be found in many textbooks, e.g.
Ishimaru [1]. Other ways of describing the problem include diffusion theory [2], the Monte
Carlo method [3] and the random-walk method [4]. Also, a stochastic approach to light
diffusion in layered media, applicable to, for example, biological tissues, can be found in
[5].

The deceptively innocent looking equation of radiative transfer has only been exactly
solved for a few simple cases. Among these are the semi-infinite half-space and the single
slab—a plane with a certain thickness [6, 7]. For example, the scattering problem for the
semi-infinite half-space is treated by Van de Hulst [7], using the solution of the Milne
equation. Then the intensity distribution along the boundary surface is obtained, using an
integral transformation method. The case of the single slab is then treated, using an iterative
procedure: when theth iteration step is taken, arth-order correction term emerges in the
theory. Also, a number of tables with numerical results are provided in [7].
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The calculation by Van de Hulst can be classified under the traditional method of solving
the scattering problem by expressing the radiance in terms of generdiizedhctions,
introduced in great detail by Chandrasekhar [8]. In this context we also mention solutions
published by Williams [9] and Rybicki [10]. Rybicki's publication deals with the so-called
searchlight problem, which was already introduced by Chandrasekhar in [11]. The transport
equation is solved using a Fourier transform method and the solution is expressed in terms
of the Bessel function. In the end the calculation boils down to a representation in terms
of Chandrasekhar’'é/-, X- and Y-functions, which are approximated numerically.

A solution of the reduced transport equation for the half-space problem, by means of
the singular eigenfunction method, was also constructed by Case [12] and Kaper [13]. For
the slab problem, a technique using Green'’s functions is treated by Garretson and Leonard
[14]. They also give a numerical solution obtained by iteration.

Another calculation for the single-slab problem was found in [15], where the set of
equations needed to describe the radiance distribution was derived analytically and where
some numerical calculations were performed, again using an iterative scheme.

The method that is outlined in this paper, is quite different from, and much less complex
than the above-mentioned traditional methods and it forms a much more straightforward
alternative to them. In our method we do not need to express our results in terms of
H-functions.

In section 2, we will first treat the problem analytically, starting with the equation of
radiative transfer [1]. Using a Fourier—Laplace integral transformation we will first calculate
the radiance at the boundary surface of the half-space, then at the boundary surfaces of two
adjacent slabs, made of different materials and thus characterized by different material
constants, as will be shown diagrammatically in figure 1. The configuration of two slabs is
illuminated by a beam, the intensity of which™™, is known.

z =20

Lin¢(z = b)
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p(b)7 Ugb)’ rffb)

Figure 1. Double-slab geometry.

The geometry is as shown in figure 1: one slab is situated betweef andx = «, its
y- andz-coordinates extend to infinity and its scattering properties are characterized by the
particle densityp@, the scattering cross sectie” and the total cross sectia”. The
other slab is situated between= a andx = b, with scattering properties characterized by
p®, o and ©,

In the analytical calculation, the objective is to calculate the radiance at the boundary
planes, above and below the slabs. Also the radiance at the boundary plane between the
two slabs will be calculated. The solution is obtained using the analytical technique of
Fourier transforms combined with finite Laplace transforms: the integrations iry-the
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and z-directions involve the Fourier transform, whereas the integration invtdeection
involves the Laplace transform—where the integration is performed over a finite interval,
in the present case over the thickness of the slabs. The integration can be split into two
integrals, one over each slab separately. This procedure leads to a linear set of integral
equations, which is sufficient to determine all initially unknown quantities. The radiance at
the boundaries can be calculated in a very natural way, whereby it is even unnecessary to
calculate the field inside the slabs (!), which means that the quantity we are interested in
can be determinedithout actually solving the problem

The results that we obtain for the double-slab geometry are easily generalized for a
configuration ofn slabs.

In section 3 we will study the numerical solution of this set of integral equations. We will
compare the results for the isotropic scattering single slab, which we obtained in section 2,
by means of solving the equation of radiative transfer, with some numerical results available
in the literature, namely those obtained by Van de Hulst [7]. This comparison is done by
solving the integral equations we obtained analytically in section 2, using numerical methods.
This numerical calculation consists of a discretized, matrix equation-like, one-dimensional
representation of the set of integral equations to be solved and a quite straightforward routine
to solve this.

It will become clear that it is sufficient to treat the numerical solution for only one layer.
The generalization of the results to the case: &labs piled on top of each other is easily
made, because we will see in the analytical calculation that for all layers we have similar
equations, only differing in the quantities characterizing the slabs (i.e. thickness, density
and scattering constants).

The objective of section 3, is to obtain values for the outward-directed radiance at the
boundary planes, above and below the slab. The incoming radiance is treated as a known
guantity—we will take a plane wave to enter the slab from above, from various directions,
and zero radiance to enter the slab from below.

We have also derived a set of integral equations, based on the equation of radiative
transfer, and using a similar mathematical technique, for the radiance distribution problem
for cylindrical and spherical geometries. In addition, we have performed the calculation
for the multiple-layered sphere (a configuration of several concentric spheres) and likewise
the multiple-layered cylinder. We also expect it to be possible to use this method for the
solution of the radiance distribution problem for more general, arbitrary shapes. This will
be the subject of a future publication by the authors.

2. Analytical solution of the problem for n layers
The basic equation of our theory is the time-independent equation of radiative transfer,

which in the constant cross section approximation in three dimensions reads as follows [1]:

Q- V)L(z, Q) = —porL(zx, Q) + %f £(Q, Q) L(z, ¥)dY + E(z, Q). (1)
A

and which applies inside the medium. In this equation= (x, y,z) denotes a point
in a Cartesian coordinate systef?, = (., Q,, ;) a direction in the same system and
V = (d/dx, d/dy, d/3z). L denotes the radiance,the number of particles per unit volume
andoy the total cross section of the scattering process:

Ot = 05+ 03
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whereos is the scattering cross section asmgthe absorption cross sectiofi; denotes the
so-called phase function, which is normalized as

[ o)==

A Jor Ot
and &£ denotes the source function. We will actually consider the source-free equation of
radiative transfer with€ (z, ) = 0.

For the sake of mathematical simplicity we will apply our method&ull detail to the
relatively ‘simple’ cases of an infinite half-space £ 0) and a double slab. In the end we
will generalize the results for a stack efslabs.

Although we will now first treat the case of the infinite half-space, we will already give
all the boundary conditions needed for the double-slab geometry -At0 we have, for
known incident radiance distributioh™,

L0, y,z,Q) =L"0,y,z,Q) for Q. >0 (2)
and atx = » we have
L, y,z,Q) =L"0b,y,z,Q) for Q, <0. ©)

The boundary conditions for the infinite half-space are (2) together with the requirement
that

L(x,y,z, ) is regular vQ forx — oo. 4

By regular we mean the following: the radiance must be a regular function of the spatial
coordinatesx, y, z), which is to say that the function must at least be of the orddy %)
for r — oo. At x = a we have

L(x,y,z, Q) is continuous vVQ atx =a. (5)

2.1. Calculation for the infinite half-space

Now we take the Fourier—Laplace transformigfe, ©2) and€ (x, Q). The integral transform
meant here is the Fourier transform with respectytand z, combined with the Laplace
transform with respect to:

L(s, k, Q) = / dx/ dy / dz L(x, Q)e > hy—iks (6)
0 —00 —00

e(s,k,n)=/ dx/ dy / dz (e, Q)e s hy-ikz )
0 —00 —00

Further, letL® (x, k, Q) denote the Fourier transform—uwith respectytand z—of the
radianceL (x, 2):

L®(x, k, Q) =/ dy/ dz L(z, Q)ehy—ikz (8)

We will use L® (0) as a shorthand notation fdr® (0, k, Q).
We will now use these expressions, when we take the Fourier—Laplace transform of (1).
Making use of partial integration, we find

Qu(sL(s, k, Q) — L) + ik - wL(s, k, Q)

= —poiLis. k. Q) + ? £ QLG K, ) A + (s, k, ) ©)
T Jan
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wherek = (k,, k;) andw = (R, 2,). We want to solve this equation fdl(s, k, €2) and
therefore we rewrite this as

00t [ L, Q)VL(s, k, Q) dQY + Q,LD(0) + e(s, k, Q)

L(s, k, Q) = : 10
(s ) 47 sQ + 1k - w + poy (10)
Suppose that the phase function is degenerate:
N
O
f(Q,Q) = f > an ()b, () (11)
t =1

whereos denotes the scattering cross section. The summationsreni—N in (11) should
not be confused with the summation over the indieesandm, which are normally used
for labelling the Legendre polynomials and the spherical harmonics. The labelling is quite
general, making it clear that we haweterms.

The next step is to multiply the left- and right-hand sides of this expressiah), (§3)
and to integrate over{d. The goal that we want to achieve by doing so, is to obtain a
linear set of equations for the ‘momeng&’n b,(Q)L(s, k, Q) dQ.

It appears to be convenient to have the following definitions:

C: Enzf b () L(s, K, ) dQ
47

e - / b;(§2)
: jn = .
A7 J4r $Q2 + 1k - w + poy
LW o / b, (), L®(0)
' " $Qy + ik - w + poy
o / by (Q)e(s, k, )
o = -
4 S + i1k - w + poy

The procedure described above is now carried out and the result can be written as a matrix
equation in which these definitions appear.

a, (£2) dQ
(12)

de2.

L=F-L+LY +e. (13)

This matrix equation must now be solved #0r In the general case of anisotropic scattering,
this calculation is quite a tough job; things are a lot simpler, mathematically, when we
assumaesotropic scatteringand takeN = 1. The matrixF' then degenerates into a scalar:

1
F—>—"C’S/ : do
A7 J4r 52 + 1k - w + poy

namely £ (€2, ) = o5/0t. We can now work out (13) further. Define

POs 1
\ =1--— Q 14
(s, &) A An st+ik-w+patd (14)
and
e(s, k, Q)

E(s, k) = - daQ 15
(s, k) ANSQX+Ik-w+pat (15)

then (13) yields

1 Q' L®(0)

k, Q)dQ = 2 dQ’' + E(s, k) ) . 16
4nﬁ(s, , € Yo R ([m Tk w T pon + E(s, )) (16)
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From equations (10) and (16) we derive (takifigf2, ') = os/ot in the case of isotropic
scattering)

L(s, k, Q) = (sQ, +ik-w+ po)t

1 Q LM
x| 2 / X © dQ' + E(s, k)
dr W(s, k) \Jar sQ, +ik - w' + poy

+9,L®(0) + e(s, k, m]. (17)

We see now that(s, k, 2) is expressed in terms af® (0, k, ), which for Q, > 0
is the Fourier transform of the known radiance distributioff(0, y, z, ) and which for
Q, < 0 is the Fourier transform of the still unknown scattered component of the radiance.
The radiancel(x, 2) now has to be aegular function in the half-space > 0. We
therefore require that the Laplace transfofiy, k, Q) of L(x, ©2) has no singularities for
values ofs with Res > 0, because such singularities lead to exponentially growing solutions
if x > 0. Singularities could occur for values ofuch thatQ2, +ik-w+ poy = 0 and also
for values ofs such that¥ (s, k) = 0. This leads to the following conditions fdl(s, k, €2).
(i) The requirement that (s, k, Q) is nonsingular fors such that¥ (s, k) = 0 leads to
the condition

Q2. L%(0)
. dQ + E(s,k) =0 18
Aﬂst+lk-w+pm +E@, k) (18)
for s such that¥ (s, k) = 0 and Re > 0. The left-hand side of this equation must be a
holomorphic function ofs compensating the branch points bt
(ii) The requirement that (s, k, ) is nonsingular fors = —(ik - w + poy)/ 2, leads
to the condition

Z—(’S L(s, K, ) dQ + Q. LD 0) + e(s, k, Q) = 0 (19)
T Jax
for s = —(ik - w + poy)/ 2, and Re > 0. The condition we have found here is a linear

equation of the Fredholm type of the second kind.

This is the point where in ‘traditional’ calculations, e.g. Rybicki [10], one continues
reducing the results to Chandrasekhai's X- andY-functions. Our statement is however,
that equation (19) in combination with condition (18), is already enough to be able to
calculate the desired radiance distribution as the solution to the scattering problem
2.2. Calculation fom = 2 slabs

We now want to apply the procedure presented above to the geometry of two slabs. We
redefine the integral transforms éf(x, ) and £(x, ), i.e. we replace (6) and (7) by
(20)—(25):
b [e9) o ) )
L(s, k, Q) = / dx / dy / dz L(x, Q)e s hy-ikz (20)
0 —00 —00
or, splitting it into the two separate slas) and (b):

LD, k, Q) = / dx f dy / dz L(x, Q)e s hy-iks (21)
0 —00 —00

b 00 e} ) .
LO (s, k, Q) = / dx / dy / dz L(zx, Q)e s> hyiks (22)
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(so thatL@ (s, k, Q) + LO (s, k, Q) = L(s, k, Q)) and

e(s k. Q) = /0 e / " dy / " e, ek (23)
or, splitting this into the two separate slafgg and (b):

D (s, k. ) = /Oa dr /oo dy /Oo Az & (@, Q)esx—ikn-iks (24)

eP (s, k, Q) = /b dx /OO dy /‘00 dz E(x, Qe ¥ ky—ikz (25)

(so thate@ (s) +e® (s) = e(s, k, ©2)). The transform@ (s, k, ) andL® (s, k, ) occur
if we apply this integral transform on the equation of radiative transfer (1).
In the forthcoming calculation we will use the following shorthand notatidt{$:(a) for
L®(q, k, ), LO®) for LO B, k, Q), e@(s) for e@ (s, k, ) ande® (s) for e® (s, k, ).
Multiplying (1) by e**~-k»-ikz and performing the various integrations yields,
successively

QLD (s, k, Q) + LP(@)e™** — LD(0)) + ik - wLD (s, k, Q)

(a) (@)
= L5, ke, W)+ 2 [ (@, @)L (s, K, ) A + ¢ 9s)
4
(26)
and
QLD s, k, Q) + LOBYe™? — LP(@)e ™) + ik - wLP (s, k, Q)
(b) ~(b)
= —pPo® (s, k, @) + 22 / FQ, )L (s, k, ) dY + @ ()
4
(27)
which, as we want to solve fof @ and £®, will be rewritten as, respectively,
(a) ~ (@) 1
L@ Kk, Q) =22 _ @ [ (2, Q)L (s, k, Q) dOY
Ar sQ +ik-w+ p@o L Jax
+Q,(LP(0) — LY (a)e™) + ¢ (s)} (28)
and
) ~(b) 1
Lo k) =22 . - [ / £, )L (s, k, ) dY
A 5Q +ik-w+ p®o; 4
+Q,(L® (@)™ — LP(b)e™?) + @ (s):|. (29)

LD(s, k, Q) and LP (s, k, ©2) must be entire functions of, because they are finite
integrals overx of e** (which is an entire function of for all x) with an £* integrable
weight function. Therefore the numerator of either of these solutions must be zero in cases
where the denominator is zero:

0 (a) Gt(a)

4 F(, Q)LD (s, k, Q) dQ + Q(LP(0) — LY (@)e™) +e@(s) =0  (30)
TT 4
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whensQ, = —ik - w — p@o® and
p(b)a(b)
e QLY (s, k, ) dQ + Q (LD @€ — LP (b)e™?) + ¢ (s) = 0
T 4
(31)
whensQ, = —ik - w — p®a?.

These two equations are linked to each other by the #f#ia), which must have the
same value in both equations because of continuity, and in this way the Vafié® and
L® () are connected.

We assume once again

N
F@.) =23 a,(0b,9)
Ot n=1

and we define, similarly as in (12)

LY LW = / by (D)LY (s, k, Q) dQ
4

Lo L= / b, (LD (s, k, Q) dQ
4

@ ¢ @) b (Q)
F@ - j(’trll) = P 0og / . j( ) — o, () A9
4 4 §Q + ik - w + p@Do
) g B b ()
PO = p"oyg / _ () @ dn
g 4 $Q + ik - w + p®oy
k (a)e™s 32
I, ka) L;k’a) E/ bn(ﬂ)Qx(L-( )(O) — L )(a))e say . ( )
4 SQX+|k.w+p(a)O_t(a

L&D Lk =

(k) —sa __ 7 (k) —sb
/' by ()2, (L™ (a)e L™ (b)e )dﬂ
4

sQ + ik - w4 p®o”
@ . L@ :/ b, (D) e@ (s)
ar s + ik - w4 p@o Y
e® - LB — f by (S)e® (s) _
" 4 5Q +ik-w~+ p®o?
Multiplying (28) by b, (€2) and integrating over@ leads to
LO =@, @ ka4 @ (33)

and, carrying out the same operation on (29),
LO=F®.c® 4 L*D 1 e® (34)

For the sake of mathematical simplicity we will treat the isotropic case only, namely
f(2, ) = os/or. We will also work out (33) and (34). In addition to (14) and (15) we
define

(@) 5 (@) 1

WO (s, ky=1- 2 / : @ a6 (35)
4z 4 $Q +ik - w + p@a“
b) g B) 1

WO (s k) =1 20 / : o 462 (36)
4 4z 5Q, +ik - w + pBoy
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(a)
ED (s, k) :/ ' e'(s) _ (37)
4 sQy +ik - w+ p@o”
)
E® (s, k) :/ . e (s) - (38)
47 5 + ik - w + pPoy
and we obtain the result
1 Q,(L®0) — L (a)ee
/ LD (s, k, Q) dQ = / x ( ) (a)e( )) dQ + E9(s, k)
4 VO, k) \Jar sQ, +ik-w+ p@o®
(39)

® (gyese — L& (pya—sb
LG5, k, Q) d = — ( / Q. (L®@)e — L® (heb)
4

dQ+ E@ (s, k) | .
4x V®)(s, k) sQ +ik-w+ p®a?
(40)

We must now require that neithé® (s, k, ) nor L (s, k, Q) have singularities for
any s, so that we have the following conditions:

/ QL) — LY (a)e )
a s+ ik w4 p@o@

dQ+ E@(s, k) =0 (41)

for values ofs wherew@(s, k) = 0, and

/ Q, (L (a)e™* — L® (h)e—sP)
A

dQ+ EP s, k) =0 (42)
sQy +ik-w+ p®a?

for values ofs wherew® (s, k) = 0.

For the case of isotropic scattering we will takgQ2, Q') = os(“)/at(“) for the slab
labelled(a) and £ (2, ') = 02 /o” for the slab labelledb). Then from (30) and (39) it
follows that

p Dol 1 2, (L) — LW (a)e™)
4t W@(s, k) |:\/4n sQ +ik-w+ p@a @
+Q. (LY — LD (@) + ¢ (s) =0 (43)
for s = (—ik - w — p@a{*)/Q,. From equations (31) and (40) it follows that

p(h)as(b) 1 / QX(L(")(a)e‘” _ L(k)(b)e—sb)
4 WO(s, k) [ Jar sQ, +ik w4+ ,o(”)at(b)
+Q,(LP@e* — LOB)e") + P (s) =0 (44)

fors = (—ik-w — p®o")/Q,.

We now have two linear equations (43) and (44) of the Fredholm type of the second
kind, with, as the reader might think, three unknown quantiti¢$:(0), L® (a) andL® (b).
However, in the case th&, > 0, L® (0, k, Q) is known (becausé& (0, y, z, ) is known,
see the boundary condition in (2)) and in the case fhat< 0, L® (b, k, ©2) is known
(becauseL (b, y, z, §2) is known, see the boundary condition in (3)). In both cases we
have two equations with two unknowns, which can be solved in general. In addition, the
conditions (41) and (42) must be satisfied.

There is no need to go on with the derivation, as in, for example, Rybicki’s publication
[10], and try to reduce the results to ChandrasekhAr&inctions, as the above-mentioned
equations and conditions are already enough to obtain the desired radiance distribution. In
section 3 we present the numerical solution of the problem for the single-slab case. The

dQ + E@¢s, k)]

dQ + E® (s, k):|
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results agree very well with numerical results that have been obtained with methods that
use H-functions [7].

2.3. Generalization to the case ofslabs

The derivation of this set of equations can easily be extended to a derivation of a linear set of
n equations for a similar scattering problem for a stack sfabs. If we label the slabs that

are present in such a stack by), (b), (¢), ..., (m), (n), with the constants characterizing

the scattering properties labelled accordingly, as shown diagrammatically in figure 2, and
if we impose similar boundary conditions as in the double-slab case, we can extend the set
of equations found in (43) and (44) to a set consisting of

p @l 1 [ / Q. (L) — LB (q)e—2)
dr WO, k) [ Jar sQ +ik-w+ p@a®
+Q(LPO) - LY @e ) + e (s) =0 (45)

dQ + E@¢s, k:)]

for s = (—ik - w — p @)/ Qy;
p(b)o-s(b) 1 /‘ Q_X(L(k)(a)e‘” _ L(k)(b)e—sb)
dr VO, k)| Jar  sQ +ik-w+ p®o”
+Q2, (LP@)e ™ — LOBye?) + e®(s) =0 (46)

dQ + E@s, k)}

for s = (—ik - w — p@o )/ Q,;

pPog? 1 [ / QLY e — LO (e )
dr WO, k) L Jar  5Q +ik-w+ p©o”
+2(LO B — LY ()e™) +“(s) = 0 (47)

\L‘inc (q. — 0)

dQ + E©¢s, k:)]

x =0
€T 0(0)7 Uga) OI(,;I>
o, o, oV
Tz =b
P, ot af?
p(m)70.(m>, Ufm)
T = m
p(n)’ U(n)) o™
r=n

/Linc<x — n)

Figure 2. Geometry of a stack of slabs.
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for s = (—ik-w — p©90l?)/Q, and this continues in the same way until finally we have
p(n)o,s(n) 1 |:/ QX(L(k)(m)efsm _L(k)(n)efsn)

dr VO, k) [ Jar  sQ +ik-w+ p0o”

+Q2,(L® mye™™ — LO(m)e™") + e (s) =0 (48)

for s = (—ik-w — p™o{M)/Q,. Equations (45)—(48) are then a set of coupled
inhomogeneous linear integral equations, which can be solved for the unknown radiances
L®©), L®(a), LO®b), ..., L®@). Note that for every layer, an auxiliary condition
similar to (41) and (42) has to be satisfied.

For the case of only a single layer of thicknesswhich will be focused on in the
numerical calculation in section 3, we just have to solve one Fredholm-type equation:

pos 1 Q(LP(0) — LV (a)e)
E\Il(s,k:)[/‘;n sQ +ik-w + poy
4+, (L®0) — LP(@)e™ ) +e(s) =0 (49)
for s = (—ik - w — poy)/ 2., where an extra condition has to be imposed:
(LY ©0) — LY (a)e )
,/4,T sQ +ik-w + poy
for the values ofy such that¥ (s, k) = 0.

dQ + E™ s, k)}

dQ + Es, k)i|

dQ + E(s, k) =0 (50)

3. The numerical calculation

3.1. Analytical preparation of the numerical work

In section 2 we derived analytically the equations that must be satisfied by the radiance
distributions at the boundaries of a stacknaflabs. Here we will work out numerically the
theory for a single slab, using the results obtained previously.

The geometry is as shown in figure 3: the slab is situated betweerD andx = a,
its y- and z-coordinates extend to infinity and its scattering properties are characterized by
the constant®, o5 and oy, which were defined at the beginning of section 2.

Let us repeat here the basic equation of our theory, i.e. the time-independent source-free
(E(x, 2) = 0) equation of radiative transfer [1]:

Q- V)L(@. Q) = —pol @ Q) + 1 / F@Q.Q) L@ Q)d  (51)
T Jag
which applies inside the medium.

Tz =10

P O Oy

Li"(z = a)

Figure 3. Single-slab geometry.
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For any known incoming radiance distributidii"®, the boundary conditions of our
problem are stated as follows. At= 0 we have

L0, y,z, ) = L0, y, z, Q) for @, >0 (52)
and atx = a we have
La,y,z, Q) = L™, y,z,Q) for Q, <0. (53)

In order to avoid problems with the numerical representation of delta functions, we will
split the radiancd. into two parts:

L=0Ly+ Lg (54)

where L,; is called the reduced incident radiance dnglis called the diffuse radiance [1].
The reduced incident radiance is given by

Ly (.X, Qx) = e_pUtX/QX(S(Qx - QXO) (55)
which satisfies the equation
-V + pop)Lii(x, ) =0. (56)

This form of L, is a plane wave, propagating in the direction denotedShy, with
exponentially decreasing intensity due to the absorption and scattering by the particles
in the medium.

The equation of radiative transfer will now be restated and solved fof~urthermore,
we assume isotropic scattering, takifig2, ') = os/oy = &g (the albedo). This makes
the calculations a lot simpler. We write

(@ V)Late, ) = —poilo(@, @) + 2 / Lo(@, ) dY +T()  (57)
4

with

T@) =% | A Lz, Q). (58)
4r 4
The analytical method to find the solution to the equation of radiative transfer for our
slab geometry started with the combined Fourier—Laplace transform of the radianc®),
where the Laplace transform is taken with respect tand the Fourier transform is taken
with respect toy andz:

L(s, k, Q) = / dx / dy / dz L(z, Q)e s hy—ikz (59)
0 —00 —00
In addition, we define the combined Fourier—Laplace transforth: of
Li(s, k) = / dx / dy / dz Z(x)e s hyikz (60)
0 —00 —00

FurthermoreL® is the Fourier transform, with respect faandz, of the radiancd. (z, 2):
LOx, k, Q) = / dy / dz L(z, Q)e ko —ikz (61)
—00 —00

Going through the derivation analogously as we did in section 2 (see also [6]), leads to
the following integral equation for the diffuse radiantg The analogy with the calculation
in section 2 tells us to treat the term in (57) in the same way as the source function
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in (1) for the total radiancel() case. The integral equation obtained in this manner is a
Fredholm equation of the second kind, similar to (49):

pos 1 2 (Lg' Ok, @) — Ly (@, b, D)) + LG, B) o,
A7 W(s, k) Jar sQ, +ik W' + poy
+Q. (L0, k, @) — LY (a, k, 2)e™) + L;(s,k) =0 (62)

with s = (—ik - w — poy)/ Q.. Here we have used
k= (ky,k;) and w = (2, 2,)
and the functionV is defined as

00s aqy’
U(s,k)y=1— — - . 63
(s, ) 4 /;7, sQ +ik W' + poy (63)

Rewriting (62) slightly, yields

pos / Q(Lg' Ok, ) — L' (@, k, D)) + LiGs, K)o
A A SQ;—Fik'w,-i—,OO't

+QW (s, k) (L0, k, Q) — LY (a, k, 2)e™) + W(s, k)Li(s, k) = 0.
(64)

For convenience in the following calculations we introduce a new symbdefined as
w=.
We also introduce the function
LY (x, k, Q) = LY 0.k, Q) — LY (x, k, )et/m koo (65)

in order to achieve a more compact notation and finally we will use a shorthand notation
Ly for £;(s, k) for just a while.

Working out the expression fob, substituting the value = (—ik - w — poy)/ 2, and
multiplying out the denominators, we find

~ /L(k) k Q/ 1 E
ﬂf dey'- whp @k +—(L§§)(a,k,n)+_f>
A7 Jar k- (W' — pw) + por(n — W) pot 2

e B
4 1k - (W' — p/'w) + por(u — ')

We see that we can expect difficulties in the numerical analysig ferO, mainly because
of the u in the denominator of the exponent

W0
—EL(L’;)(a,k:,Q) 0. (66)

e(a/u)(ik-w+p<n)

see (65). When we have = 0, the direction of the radiance is parallel to the surface of
the slab, which is a case that is of no interest. We will examine the situation f010 on
one side of the slab and fa@r > 0 on the other.

To this end we split the quantity.’(x) into two parts, namely.} (x) for u < 0
and L) (x) for & > 0. The functionsLy) (x, k, Q) are introduced analogously to (65).
Equation (66) then turns into the following equations.
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For © < 0 we have

2 LY (a,k, Q) = uLy) (a,k, Q)
4 Ja, <o ik (pw' — p'w) + por(pn — 1)
dQ’
_po PRLY @ k. )

Q>0 1k - (W' — p'w) + por(u — ')

3 + 200 k)
npor  pox T
@o ) WL (a, k, )

= —-— dQ’: (67)
4r Jo-0 ik (uw' — p'w) 4 por(u — 1)

and foru > 0 we have

2 dﬂ,u/L‘ﬁL(a, k. Q) — Ly (a, k. Q)
4 Jo,-0 ik- (uw/ — Ww) + por(u — ')
195
L“" (a, k, ) .
4 Q,<0 1k - (pw' — Ww) + por(pn — w')
c 1
ot — LY (a.k, Q)
Hpot Ot
~ /L(k) , k, Q
) e - why @ ) . (68)

At Jo,c0 k- (uw' — p'w) + por(pn — p')

In our numerical analysis we will treat the one-dimensional case, which means that
we take the radiance depending only ©n (in our new notation onu) rather than on
(2, 2y, ;). Thus we will simplify the above equations to the one-dimensional case,
leaving out thew dependence. Also thé) superscript, denoting the Fourier transform
over they- andz-coordinates, has now lost its meaning and can be left out.

Furthermore, we introduce the optical thickness paranieterapoy.

For the functionsL p+(a, ) one must now read

Lpi(a, ) = Las(0, ) — Las(a, p)e’*. (69)
Then the one-dimensional equivalent of (67) is, fok 0,

2 Ja W=
'L
Ly . M)——=—w0/ iG] p+(a, 1) (70)
w—=p
whereas the one-dimensional equivalent of (68) is,for O,

B 'L —uL B -
@o d/“ p—(a, ') — uLp_(a, jn) “;UOLD,(a,M)Iog“

n+1
——Lpy(a,p)log

o /ldM,M’Lm(a, W) —puLpi(a, p)  pixo

W= 2
L @y [° "Lp_(a, w
+Lpi(a,m+ 2L =22 du/MD,—(M)- (71)
u 2 ) W=

As these equations look rather complicated, we will now introduce some simplifications
related to our specific choice fat'¢. In the introduction we already announced that we
would choose a plane wave to enter the slab from above, from various diregtjons

me(x, w) = Li(x, u) = _p""‘/“(S(u — o) for u<0O (72)
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and zero radiance to enter the slab from below:
L™(x,u) =0 for u>0. (73)

Forx = 0 andu > O the reduced incident radiance equals the total radiance, which
means that.,, (0, ) = 0. Forx = a andu < 0 the incident radiance equals zero because
the direction of incidence igg > 0! Therefore we also have,_(a, ) = 0. This implies
the following replacements in equations (70) and (71):

Lp_(a, ) = Lq—(0, 11) and  Lpi(a,p) > —Lai(a, we'*. (74)

We can now also evaluate the integral
a
L(s) = %/0(75/ dx e—sx—po:x/#o (75)
0

which fors = —poy/u yields

oo @/ n=1po) _ 1
Li(s) = M,U«OEO— . (76)
Mo — M
Note that foru = wo, £; = @ob/2.
Further, we multiply equations (70) and (71) by and define the functions
f(uw) = pLa—(0, ) and g(n) = play(a, p). (77)

For —1 < u < 0 we then have

~ 0 ’ ~
7o) LS W) = f(w) @ -1
Tofldﬂ%—%f(ﬂ)bgﬂ — f(w
oo e@&/n=1uo) _ 1 ~ 1 ’
_ Aodo _ B0 gy / du’ g/(u«) (78)
2 Mo — [ 2 0 W=
and for 0< u < 1 we have
@o (1 g —g(w) | pad +1
Mf du—gu/ B log B — g
2 Jo W= 2 w
Do &b/ _ g=b/n 5 0 /
| Hro®0 _ D0 / du’ f/ W) (79)
2 Mo — [ 2 1 W

3.1.1. Auxiliary conditions. When working on the numerical solution of the set of
equations, consisting of (78) and (79), we found that the results were fairly unstable and that
they did not yet exactly match the data in the literature. The cause of this problem turned
out to be that the matrices, representing the set of equations in the computer program, were
extremely ill-conditioned.

This problem was solved by imposing tveaxiliary conditions as already introduced
in (18) for the case of the half-space and stated in (50) for the single slab. We will come
to a physical interpretation of this procedure at the end of this subsection. First we will
present the way in which these conditions are obtained.

In equation (62) we must require that no singularities occur in the complaane.
Therefore we need to investigate (62) in the situation whieee 0. We obtain our auxiliary
condition, which is similar to (50):

4 Q. (LY O, k. ) — LY (a, k, e + L;(s. k)
p sQ +ik-w + poy B

0 (80)
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for the values ofs such that
1
P% | an .
A Jar sQ, +ik-w+ pot
Rewriting this into a one-dimensional form, substitutikig= s/ ot in order to keep the
notation simple, and using = apo; as before, we obtain

—1. (81)

1 L4(0 —L —s'b /
/ dM“( d(0, ) d(a, We—*?) + L;(s") _0 (82)
1 us'+1
for the values of’ such that
~ 1 1
“o -1 (83)

2 J_1 M,us’—l— 1
(@0 is the albedo).
From equation (83) we obtain the solutieg that satisfies

“0 arctanhip = 1 (84)
Ko

and if kg satisfies this equation, it is easily seen thaf satisfies it as well.

This valueq is often called thecritical exponent 1/xo and —1/«o form the set of
discrete eigenvaluegs explained later on in this subsection. New is inserted into
equation (82), yielding

! Lq(0, ) — Ly(a, p)e ™) + L
/ du“( d(0, ) — La(a, n) ) + L (ko) _o0. (85)
-1 ko +1
The expression foL; (ko) is easily calculated from (75),
oo 1 — @ b(o+1/10)
L(kg) = 86
1(k0) 5 oo+ 1 (86)
and, as it does not depend pnwe transfer it to the right-hand side of the equation. Thus
1 L4(0, w) — Ly(a, p)e *ob @ bko+1/wo) _ 1
/ dMM( d(0, ) — La(a, n) ) — 1o . (87)
-1 ko + 1 Hoko + 1

Equation (87) must now be used as an auxiliary condition in the numerical calculation.
The other auxiliary condition that is needed is simply equation (87) wgtheplaced by
—ko, becausey and —«q are both solutions of (83):

/1 gy MO ) — La(a, pe”) ehlo—t/ko) — 1
I = ko .
-1 pko — 1 toko — 1

It appeared that we could make the numerical solution of the set of equations (78) and
(79) stable and unique by imposing the extra conditions (87) and (88). Now we need to
ask ourselves the question of how these extra conditions can be interpreted physically.

In the case of the semi-infinite half-space [16] one needs to exclude all solutions
corresponding to radiance from deeply buried sources (see [8] sections 12 and 88) so as to
retain only the solution that vanishes for— oco. For the present case of the slab having
finite thickness, the interpretation of the auxiliary conditions cannot be based upon the
concept of deeply buried sources. We can, however, explain the necessity of the auxiliary
conditions otherwise.

First, we remark that the auxiliary conditions simpigive to be satisfiedThere is no
reason to assumepriori that these conditions follow in a logical way from the continuous
set of equations (78) and (79). However, thdeyfollow logically from the restriction that

(88)
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there may be no singularities in the compleyplane in equation (62). This is why we
cannot just ignore the conditions (87) and (88).

Secondly, we can give an explanation in terms of the completeness of orthogonal sets,
namely by showing that these conditions are in fact necessary for the determination of the
radiance distribution, i.e. the desired solution to (78) and (79). We will start this discussion
with some results obtained by Case and Zweifel [17]:

(i) The eigenfunctionsy (x, u) of the operator

u—+1——/ du (89)
can be written in the separated form
¥(x, p) = g (e (90)

where we call thep, eigenfunctions and the correspondin@igenvalues.

(i) The eigenvalue spectrum of the operator (89) has a discrete part (in our case
v = +1/kg Where £« are the solutions tol = 0, equation (80)) and a continuous part
—1 < v < 1. For the half-space problem the real part of the spectrum has to be positive
for 0 < u < 1 and negative for-1 < u < 0.

(iii) The eigenfunctionsp, (1) form a complete and orthogonal set in the half-spaces
—1<pu<0andO< u <1,

(iv) For both of these half-spaces the eigenfunctions are expressed as

1
(1) = %P— A — 1) (91)
V-

whereP denotes the principal value angv) denotes a normalization constant.

Now, by comparing equation (91) with equations (78) and (79), it can be seen that the
latter are, in fact, a (continuous) system of equations in the expansion coefficiefita of
andg(u), but for the continuous part of the spectrum only. The delta-function part of (91)
does not manifest itself in (78) and (79), as there the numerators and denominators of the
integrands

f(u)/ J () and g(u)/ 8(w)
) W=
both approach zero in the first order in if «' — w«, so that in fact the derivativeg’ (i)
andg’(u) appear.

Because we know that a complete and orthogonal set is necessarilpimal one
[18], this means that such a set becomes incomplete if only one of its members is omitted.
Therefore, we must have knowledge of all the expansion coefficients, that is, we must
consider the full spectrum.

As was pointed out above, this spectrum has a continuous part, given by (78) and (79),
as well as a discrete part, which is given by our auxiliary conditions (87) and (88). Hence
the introduction of these auxiliary conditions is indispensable if one wants to obtain a fully
determined problem.

3.2. Numerical representation

Let us now first take a closer look at the specific numerical representation of some of the
terms in equations (78) and (79). We will use the same method that was used previously
by Rinzemaet al [16]. In particular, we will focus our attention on the integral
/ du &) — g(n) —8w
W=

(92)
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The interval [Q1] is divided inton sub-intervals, each having lengtth 2= 1/n. We
associate this partition with a collection &f = 22+ 1 nodes at equal distancksincluding

w = 0 as the first node and = 1 as the last one. On each sub-interval, the integral (92)
is approximated using Simpson’s rule:

/“f”h qy8H) — 8w hg(u) — g | 4hg(ui +h) — ()
i ~ 5 + =
i W= 3 wi—p 3 uith—p
h g(pi + 2h) — g(w)
3 wit2h—p
This approximation holds fairly well ifx does not coincide with one of the nodes in the
interval [u;, u; + 2h], but if it does, we have to apply a different method [19]. Essentially
the method we use is to approximate the functiowith polynomials of at most degree
p —1, and to find a set op equations for the weights_, (see e.g. (94)).
Here we use an approximation with polynomials of at most degree 2 and with the ansatz
ni+2h no_
/ du’g(t),—gw ~ wig(ui) + wag (i + h) + wag (i +2h) (94)
i
we form a set of three equations for the three weights 3, using three linearly independent
polynomials forg. Then we obtain

(93)

(w1, wa, w3) = (—2,2,0) if =
(w1, w2, w3) = (=1,0,1) if w=mw+h (95)

The approximation by Simpson’s rule (93) is also useful for the integral that we have
in the right-hand side of (78):

f“"”" g8 L h g 4 gGuth) | h g t2h)
s w—pu 3ui—p 3uith—pn 3u+2h—pu
and these approximations (93) and (96) can in the same way be used for the integrals
containing f (1) that are present in (78) and (79), where now the intervdl D] is divided
into the same number of subintervals

The auxiliary conditions (87) and (88) can also be approximated numerically, using
Simpson’s rule. For example, the left-hand side of equation (87) is first split into a part for
u < 0 and one foru > O:

/0 g La=Op) ~ La-(a, e o)
1 uko+1
b (Lay (0, ) — Ly (a, p)e™”) g Plottiio) 1
+ [ du = lo
0 ko + 1 oko + 1
As we are working with theeduced incident radian¢eve now setl,, (0, u) = 0 and
Ly_(a, n) = 0. Using the previously introduced functions
f(pw) = puLa—(0, ) and g(w) = pulay(a, p)
we can rewrite (97) as

0 1 —Kob —b(ko+1/10) _
f () / gwe™ e 1
/_1d ko +1 0 d K ' 8)

(96)

(97)

MMK0+1 ° toko + 1

The integrals appearing in the left-hand side of (98) can be discretized using Simpson’s
rule. The same procedure is applied on (88), leading to a similar resultdginstead of

KQ.
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As in [16], we use the method of Lagrange’s multipliers to incorporate these discretized
auxiliary conditions, numerically into our set of equations to be solved, equations (78) and
(79).

Suppose we regard the set of equations (78) and (79) as a matrix equation

Af=b (99)

where A is the coefficient matrixf is the unknown vector, containing the valugg:) and
g(w) in all ‘nodes’, andb is the known vector. The ‘error’ in the solution is denoted by
r=Af—b.

The auxiliary constraints that have to be satisfied by the solution we look for, are written
in vector notation as

@ bko+1/1o) _ 9

Te— 100
v' f = o o1 (100)
ebo—1/no) _ 1
w'f=po—— (101)
toko — 1

We now have to find the vectgf which minimizesr'r, and which must satisfy (100) and
(101). Lagrange’s multiplier method [20] tells us that the solutfowe look for, satisfies
the equation

VirTr) + 20V f) + 20,V (w' f) =0 (102)
where the gradients are given by
Viw'f) =v (103)
Viw'f) = w (104)
Vi(rTr) =Vi(Af —b)T(Af —b)
=Vi(fTATAf — fTATb—b"Af +b'b)
=2ATAf —2A7b. (105)
Thus, from (102) it is clear that the solution we look for must obey
ATAf + v+ 2w =ATb. (106)

This equation, together with (100) and (101), constitutes a systemn¥ din2ar equations for
2N variables: f(0) andg(0) are not included as variables as we already know fit@f = 0O
and g(0) = 0; A1, are the extra variables. This system is no longer ill-conditioned and can
be solved straightforwardly.

To obtain the radiance, which is the quantity we are actually interested in, we must
divide our solution forf (1) andg(u) by u. This can be done without any trouble, except
for u = 0. From equation (70) it follows that, for 1 0, we have to take

0
Ly_(0,0) = %d)o(lJr / du' L, (0, M’)) (107)
-1
whereas from (71) it follows fop | O

1
Ly (a,0) = 30 (eb/m + / du’ Lav(a, u’)) : (108)
0
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3.3. Numerical results and their comparison with literature

In order to be able to compare the numerical solution of our set of equations with the
numerical values given by Van de Hulst [7], we first need to investigate what the numbers
in the tables really represent. They are not, as one might conclude from the titles above
table 12, thentensities(i.e. radiances) leaving the slab at the top 0) or bottom § = «)
boundary surface, but, as can be found in chapter 9, they are realtyathe@mission and
reflection coefficientsdefined by Van de Hulst in terms &f- and Y-functions:

T (@0, b, ., [10) = ﬁaw)wo) — Y ()X (10)) (109)
R(@o, b, 11, o) = ﬁmmxwo) — Y ()Y (10)) - (110)

These reflection and transmission coefficients turn out to differ from the corresponding
definitions of Chandrasekhar [8], chapter 9, by a factor @ft4 Furthermore, in [8] we
encounter an expression for the intensities at the top and bottom surfaces, stated here in
terms of Van de Hulst’s transmission and reflection coefficients,

L(b, —p) = poF T (o, b, 11, j10) and L(0, ) = uoF R(éo, b, i, no)  (111)
where F is expressed in chapter 1 of [8] as twice the flux integral,

1
F = 2/ I(t, w)u du = constant (112)
-1
where I is the radiance or specific intensity andis the optical thickness parameter in
Chandrasekhar’s notation. If we take the flux to be equal to unity, so that the constant
F = 2, the results obtained numerically show good agreement with the literature.
Summarizing, we see from (111) that we need to divide the solution of the radiance
from our set of equations by a factor oftg, thus obtaining a useful comparison with the
values in the literature [7].

3.4. Discussion of the numerical results

In this section we will present some results of the numerical solution and its comparison
with the literature. The software package that we have used to obtain our solution is
Mathematica The reason for this choice lies in the fact that the equations we wanted to
solve were easily and straightforwardly implemented and hathematicais a powerful
tool for solving (large) sets of linear equations.

Note that the plots that are shown in this section are, in fact, two different plots in one
single diagram. In the top right-hand part the transmission coeffi¢ieaee equation (109),
is plotted as a function of the angle between the normal ta then surface and the viewing
direction. In the bottom left-hand part the reflection coeffici®tsee equation (110), is
plotted as a function of the angle between the normal tortke0 surface and the viewing
direction.

In each plot, the full curve shows the numerical results obtained/lhthematicaas
the solution of (78) and (79), together with the auxiliary conditions (87) and (88). The full
circles, located at positiors= + arccosu), © = 0.0, « = 0.1,0.3,...,0.9 and 1.0, show
the corresponding values provided by Van de Hulst, table 12 [7].

We have calculated the radiance distribution, and the corresponding transmission and
reflection coefficients, for various optical thicknesskes=(0.031255 = 0.25,» = 2.0 and
b = 4.0). We also varied the albedad = 0.8, @y = 1.0) and the direction of incidence
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Figure 4. Numerical results folg = 0.80, b = 4.0, 1o = 1.0 andn = 10. The top right-hand
part of the plot shows the transmission coeffici#ghfis a function of the viewing angle. The
bottom left-hand part shows the reflection coeffici@nas a function of the viewing angle.
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Figure 5. Numerical results fofog = 1.0, b = 4.0, uo = 0.7 andn = 10.

(ko = 0.7, up = 1.0, the latter corresponding to normal incidence). A few examples
of our results are shown in figures 4-6. Comparing our results with the data by Van de
Hulst [7], we observe that the agreement is very good, the differences are of the order of
0.001%-0.01%, which is roughly the error in Van de Hulst’'s results.

We would like to make a few remarks about some other numerical methods to solve the
scattering problem for a slab geometry. Chandrasekhar was one of the first to tackle this
problem. He devised hidiscrete-ordinates methoth which all appearing integrals were
approximated by discrete sums (using Gauss—Legendre integration). It then appeared that the
solution to the problem could be written in terms of the so-calledunction, independent
of the order of the approximation. Thus, it was shown thatAh&inction played a central
role in the theory and that this role had to be traced back to the so-called principle of
invariance, i.e. the fact that the emergent radiation from a scattering half-space does not
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15 30 45 60 75 90

Figure 6. Numerical results fofog = 0.80, b = 0.25, o = 0.7 andn = 10.

change if a layer of arbitrary thickness is added to the half-space. Analogous functions
can be defined for finite slabs of scattering material, the so-callednd Y -functions [8].

The discrete-ordinates method was elaborated further by Stashaéf21], who dealt with
numerical problems such as the fact that the method gives rise to ill-conditioned linear
systems. They also incorporated anisotropic scattering, vertical inhomogeneity and heat
transfer and, in collaboration with Jin [22], differences in refractive index. Not included in
his method is transverse variation of the incident radiance distribution, and incorporating
it is not easy either. See also, for example, Truelove [23] for another application of the
discrete-ordinates method for the case of heat transfer.

Neither our numerical calculations nor those of Stametes, make use of thé?-, X-
or Y-functions, and are in that sense much less complicated than those of Chandrasekhar
and Van de Hulst [7, 8]. The major practical difference between our method and that of
Stamnes is that in our method we are, in principle, able to handle transverse variations of
the incident radiance distribution, something which, in the method used by Stamnes, would
give rise to very substantial complications.

Another numerical method we would like to mention here is the adding and doubling
method, which is used by Wiscombe [24, 25] and by Evans and Stephens [26]. They start
by writing the equation of radiative transfer as a matrix equation, which is then solved
numerically. This means that they also have to calculate the field inside the medium,
which is done by applying the adding and doubling method: starting with a suitably chosen
initialization for an (almost infinitely) thin slab, and then successively doubling the slab
thickness, they obtain the radiance distribution throughout the slab, until they finally reach
the desired finite slab thickness and the radiance distribution at its boundary surfaces. In our
method, however, we first derived a suitable set of equations (49) and (50) analytically, so
that weonly had to calculate the radiance distributatthe boundary surfacesumerically.

The knowledge of the radiance inside the medium appeared to be unnecessary. Another
striking difference is that the adding and doubling method is, like the discrete-ordinates
method, unsuitable for handling transversal variations of the incident radiance distribution.

The adding and doubling method is also mentioned in Van de Hulst [7], section 4.5.
There, this method is described as just a trivial extension to the case of a single layer. Once
the solution of the radiance problem for a single layer has been obtained, i.e. the reflection
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and transmission coefficienf® and 7 have been calculated either by using our method or
by using theH-function procedure, the concept of the adding or doubling method can be
applied to treat the case of multiple layers.

4. Discussion

We have shown that the solution of the scattering problem for the equation of radiative
transfer with a half-space-, slab- or double-slab geometry can be obtained from a set of linear
inhomogeneous integral equations, i.e. a set of Fredholm integral equations of the second
kind, for the radiance distribution at the boundary surfaces of the double-slab geometry.

To derive these equations, we have used the technique of integral transforms with
suitably chosen kernel functions, i.e. combined Fourier and Laplace transforms. This kernel
consists of eigenfunctions of the partial differential operator part of the equation of radiative
transfer, adapted to the slab geometry.

The numerical evaluation of the pertinent equations showed good agreement with the
results of traditional solution methods.

In the calculation we have presented in this paper, we have, for convenience, assumed
isotropic scattering, so that the equations looked a lot simpler. This was achieved by
taking f (€2, Q) = os/0t. Of course, when we want to do the calculation émisotropic
scattering, we have to keep the genef&f2, Q) in our derivation. In that case, working
out the matrix equation (13) leads to a setMfequations for the components &f© at
the boundary of the half-plane. Similarly, in the case of the double slab, by working out
the matrix equations (33) and (34) leads to a set Bf&juations for the components of
L*® and L*» at the boundaries of the double-slab geometry. Generalizing this to the
stack geometry, we obtain from a set:ofmatrix equations, a set efN equations for the
components o, *% through L&,

The method presented here can also be applied to similar problems like scattering at
a cylindrical or spherical boundary. Also for those cases an extension of the calculation
for multiple-layered cylinders and spheres is possible. The type of integral transforms to
be used for such problems is, however, different from the one used here, because we have
to use an appropriate kernel for the integral transform adapted for the special shape of the
boundary.
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