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Abstract. The radiance arising from an anisotropically scattering illuminated stack ofn slabs
is calculated using the equation of radiative transfer. It appears to be unnecessary to calculate the
radiance inside the material; including only the radiance at the boundary surfaces is sufficient
to obtain the desired result. The novel method used for the solution of this problem leads
immediately in a straightforward and systematic way to the known appropriate basic equations
valid for the problem at hand, otherwise derived byad hocmethods. A new simple set of linear
equations for the radiance at the boundary surfaces is derived. This method applies equally well
to similar problems with other geometries.

Apart from this analytical derivation, this paper presents the results of the numerical solution
of the set of equations that we obtained from the equation of radiative transfer, forn = 1. The
results of the numerical calculations are compared with what is found in the literature and are
found to give very good agreement.

1. Introduction

There are several different ways to describe the radiance distribution of a beam of light
scattered from a slab-shaped isotropic medium; the one we have used is based upon the
well known equation of radiative transfer, which can be found in many textbooks, e.g.
Ishimaru [1]. Other ways of describing the problem include diffusion theory [2], the Monte
Carlo method [3] and the random-walk method [4]. Also, a stochastic approach to light
diffusion in layered media, applicable to, for example, biological tissues, can be found in
[5].

The deceptively innocent looking equation of radiative transfer has only been exactly
solved for a few simple cases. Among these are the semi-infinite half-space and the single
slab—a plane with a certain thickness [6, 7]. For example, the scattering problem for the
semi-infinite half-space is treated by Van de Hulst [7], using the solution of the Milne
equation. Then the intensity distribution along the boundary surface is obtained, using an
integral transformation method. The case of the single slab is then treated, using an iterative
procedure: when thenth iteration step is taken, annth-order correction term emerges in the
theory. Also, a number of tables with numerical results are provided in [7].
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The calculation by Van de Hulst can be classified under the traditional method of solving
the scattering problem by expressing the radiance in terms of generalizedH -functions,
introduced in great detail by Chandrasekhar [8]. In this context we also mention solutions
published by Williams [9] and Rybicki [10]. Rybicki’s publication deals with the so-called
searchlight problem, which was already introduced by Chandrasekhar in [11]. The transport
equation is solved using a Fourier transform method and the solution is expressed in terms
of the Bessel functionJ0. In the end the calculation boils down to a representation in terms
of Chandrasekhar’sH -, X- andY -functions, which are approximated numerically.

A solution of the reduced transport equation for the half-space problem, by means of
the singular eigenfunction method, was also constructed by Case [12] and Kaper [13]. For
the slab problem, a technique using Green’s functions is treated by Garretson and Leonard
[14]. They also give a numerical solution obtained by iteration.

Another calculation for the single-slab problem was found in [15], where the set of
equations needed to describe the radiance distribution was derived analytically and where
some numerical calculations were performed, again using an iterative scheme.

The method that is outlined in this paper, is quite different from, and much less complex
than the above-mentioned traditional methods and it forms a much more straightforward
alternative to them. In our method we do not need to express our results in terms of
H -functions.

In section 2, we will first treat the problem analytically, starting with the equation of
radiative transfer [1]. Using a Fourier–Laplace integral transformation we will first calculate
the radiance at the boundary surface of the half-space, then at the boundary surfaces of two
adjacent slabs, made of different materials and thus characterized by different material
constants, as will be shown diagrammatically in figure 1. The configuration of two slabs is
illuminated by a beam, the intensity of which,Linc, is known.

Figure 1. Double-slab geometry.

The geometry is as shown in figure 1: one slab is situated betweenx = 0 andx = a, its
y- andz-coordinates extend to infinity and its scattering properties are characterized by the
particle densityρ(a), the scattering cross sectionσ (a)s and the total cross sectionσ (a)t . The
other slab is situated betweenx = a andx = b, with scattering properties characterized by
ρ(b), σ (b)s andσ (b)t .

In the analytical calculation, the objective is to calculate the radiance at the boundary
planes, above and below the slabs. Also the radiance at the boundary plane between the
two slabs will be calculated. The solution is obtained using the analytical technique of
Fourier transforms combined with finite Laplace transforms: the integrations in they-
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and z-directions involve the Fourier transform, whereas the integration in thex-direction
involves the Laplace transform—where the integration is performed over a finite interval,
in the present case over the thickness of the slabs. The integration can be split into two
integrals, one over each slab separately. This procedure leads to a linear set of integral
equations, which is sufficient to determine all initially unknown quantities. The radiance at
the boundaries can be calculated in a very natural way, whereby it is even unnecessary to
calculate the field inside the slabs (!), which means that the quantity we are interested in
can be determinedwithout actually solving the problem.

The results that we obtain for the double-slab geometry are easily generalized for a
configuration ofn slabs.

In section 3 we will study the numerical solution of this set of integral equations. We will
compare the results for the isotropic scattering single slab, which we obtained in section 2,
by means of solving the equation of radiative transfer, with some numerical results available
in the literature, namely those obtained by Van de Hulst [7]. This comparison is done by
solving the integral equations we obtained analytically in section 2, using numerical methods.
This numerical calculation consists of a discretized, matrix equation-like, one-dimensional
representation of the set of integral equations to be solved and a quite straightforward routine
to solve this.

It will become clear that it is sufficient to treat the numerical solution for only one layer.
The generalization of the results to the case ofn slabs piled on top of each other is easily
made, because we will see in the analytical calculation that for all layers we have similar
equations, only differing in the quantities characterizing the slabs (i.e. thickness, density
and scattering constants).

The objective of section 3, is to obtain values for the outward-directed radiance at the
boundary planes, above and below the slab. The incoming radiance is treated as a known
quantity—we will take a plane wave to enter the slab from above, from various directions,
and zero radiance to enter the slab from below.

We have also derived a set of integral equations, based on the equation of radiative
transfer, and using a similar mathematical technique, for the radiance distribution problem
for cylindrical and spherical geometries. In addition, we have performed the calculation
for the multiple-layered sphere (a configuration of several concentric spheres) and likewise
the multiple-layered cylinder. We also expect it to be possible to use this method for the
solution of the radiance distribution problem for more general, arbitrary shapes. This will
be the subject of a future publication by the authors.

2. Analytical solution of the problem for n layers

The basic equation of our theory is the time-independent equation of radiative transfer,
which in the constant cross section approximation in three dimensions reads as follows [1]:

(Ω · ∇)L(x,Ω) = −ρσtL(x,Ω)+ ρσt

4π

∫
4π
f (Ω,Ω′)L(x,Ω′) dΩ′ + E(x,Ω) . (1)

and which applies inside the medium. In this equationx = (x, y, z) denotes a point
in a Cartesian coordinate system,Ω = (�x,�y,�z) a direction in the same system and
∇ = (∂/∂x, ∂/∂y, ∂/∂z). L denotes the radiance,ρ the number of particles per unit volume
andσt the total cross section of the scattering process:

σt = σs+ σa
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whereσs is the scattering cross section andσa the absorption cross section;f denotes the
so-called phase function, which is normalized as

1

4π

∫
4π
f (Ω,Ω′) dΩ = σs

σt

and E denotes the source function. We will actually consider the source-free equation of
radiative transfer withE(x,Ω) = 0.

For the sake of mathematical simplicity we will apply our methodsin full detail to the
relatively ‘simple’ cases of an infinite half-space (x > 0) and a double slab. In the end we
will generalize the results for a stack ofn slabs.

Although we will now first treat the case of the infinite half-space, we will already give
all the boundary conditions needed for the double-slab geometry. Atx = 0 we have, for
known incident radiance distributionLinc,

L(0, y, z,Ω) = Linc(0, y, z,Ω) for �x > 0 (2)

and atx = b we have

L(b, y, z,Ω) = Linc(b, y, z,Ω) for �x < 0 . (3)

The boundary conditions for the infinite half-space are (2) together with the requirement
that

L(x, y, z,Ω) is regular ∀Ω for x →∞ . (4)

By regular we mean the following: the radiance must be a regular function of the spatial
coordinates(x, y, z), which is to say that the function must at least be of the order O(1/r2)

for r →∞. At x = a we have

L(x, y, z,Ω) is continuous ∀Ω at x = a . (5)

2.1. Calculation for the infinite half-space

Now we take the Fourier–Laplace transform ofL(x,Ω) andE(x,Ω). The integral transform
meant here is the Fourier transform with respect toy and z, combined with the Laplace
transform with respect tox:

L(s,k,Ω) =
∫ ∞

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−sx−ikyy−ikzz (6)

e(s,k,Ω) =
∫ ∞

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz E(x,Ω)e−sx−ikyy−ikzz . (7)

Further, letL(k)(x,k,Ω) denote the Fourier transform—with respect toy and z—of the
radianceL(x,Ω):

L(k)(x,k,Ω) =
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−ikyy−ikzz . (8)

We will useL(k)(0) as a shorthand notation forL(k)(0,k,Ω).
We will now use these expressions, when we take the Fourier–Laplace transform of (1).

Making use of partial integration, we find

�x(sL(s,k,Ω)− L(k)(0))+ ik · ωL(s,k,Ω)

= −ρσtL(s,k,Ω)+ ρσt

4π

∫
4π
f (Ω,Ω′)L(s,k,Ω′) dΩ′ + e(s,k,Ω) (9)
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wherek = (ky, kz) andω = (�y,�z). We want to solve this equation forL(s,k,Ω) and
therefore we rewrite this as

L(s,k,Ω) = ρσt

4π

∫
4π f (Ω,Ω

′)L(s,k,Ω′) dΩ′ +�xL(k)(0)+ e(s,k,Ω)
s�x + ik · ω + ρσt

. (10)

Suppose that the phase function is degenerate:

f (Ω,Ω′) = σs

σt

N∑
n=1

an(Ω)bn(Ω′) (11)

whereσs denotes the scattering cross section. The summation fromn = 1–N in (11) should
not be confused with the summation over the indicesn, l andm, which are normally used
for labelling the Legendre polynomials and the spherical harmonics. The labelling is quite
general, making it clear that we haveN terms.

The next step is to multiply the left- and right-hand sides of this expression bybn(Ω)
and to integrate over dΩ. The goal that we want to achieve by doing so, is to obtain a
linear set of equations for the ‘moments’

∫
4π bn(Ω)L(s,k,Ω) dΩ.

It appears to be convenient to have the following definitions:

L : Ln ≡
∫

4π
bn(Ω)L(s,k,Ω) dΩ

F : fj,n ≡ ρσs

4π

∫
4π

bj (Ω)
s�x + ik · ω + ρσt

an(Ω) dΩ

L(k) : L(k)n ≡
∫

4π

bn(Ω)�xL(k)(0)
s�x + ik · ω + ρσt

dΩ

e : en ≡
∫

4π

bn(Ω)e(s,k,Ω)
s�x + ik · ω + ρσt

dΩ .

(12)

The procedure described above is now carried out and the result can be written as a matrix
equation in which these definitions appear.

L = F · L+L(k) + e . (13)

This matrix equation must now be solved forL. In the general case of anisotropic scattering,
this calculation is quite a tough job; things are a lot simpler, mathematically, when we
assumeisotropic scatteringand takeN = 1. The matrixF then degenerates into a scalar:

F −→ ρσs

4π

∫
4π

1

s�x + ik · ω + ρσt
dΩ

namelyf (Ω,Ω′) = σs/σt. We can now work out (13) further. Define

9(s,k) = 1− ρσs

4π

∫
4π

1

s�x + ik · ω + ρσt
dΩ (14)

and

E(s,k) =
∫

4π

e(s,k,Ω)
s�x + ik · ω + ρσt

dΩ (15)

then (13) yields∫
4π
L(s,k,Ω) dΩ = 1

9(s,k)

(∫
4π

�′xL
(k)(0)

s�′x + ik · ω′ + ρσt
dΩ′ + E(s,k)

)
. (16)



508 M Doosje et al

From equations (10) and (16) we derive (takingf (Ω,Ω′) = σs/σt in the case of isotropic
scattering)

L(s,k,Ω) = (s�x + ik · ω + ρσt)
−1

×
[
ρσs

4π

1

9(s,k)

(∫
4π

�′xL
(k)(0)

s�′x + ik · ω′ + ρσt
dΩ′ + E(s,k)

)
+�xL(k)(0)+ e(s,k,Ω)

]
. (17)

We see now thatL(s,k,Ω) is expressed in terms ofL(k)(0,k,Ω), which for�x > 0
is the Fourier transform of the known radiance distributionLinc(0, y, z,Ω) and which for
�x < 0 is the Fourier transform of the still unknown scattered component of the radiance.

The radianceL(x,Ω) now has to be aregular function in the half-spacex > 0. We
therefore require that the Laplace transformL(s,k,Ω) of L(x,Ω) has no singularities for
values ofs with Res > 0, because such singularities lead to exponentially growing solutions
if x > 0. Singularities could occur for values ofs such thats�x+ ik ·ω+ρσt = 0 and also
for values ofs such that9(s,k) = 0. This leads to the following conditions forL(s,k,Ω).

(i) The requirement thatL(s,k,Ω) is nonsingular fors such that9(s,k) = 0 leads to
the condition ∫

4π

�xL
(k)(0)

s�x + ik · ω + ρσt
dΩ+ E(s,k) = 0 (18)

for s such that9(s,k) = 0 and Res > 0. The left-hand side of this equation must be a
holomorphic function ofs compensating the branch points of9.

(ii) The requirement thatL(s,k,Ω) is nonsingular fors = −(ik · ω + ρσt)/�x leads
to the condition

ρσs

4π

∫
4π
L(s,k,Ω) dΩ+�xL(k)(0)+ e(s,k,Ω) = 0 (19)

for s = −(ik · ω + ρσt)/�x and Res > 0. The condition we have found here is a linear
equation of the Fredholm type of the second kind.

This is the point where in ‘traditional’ calculations, e.g. Rybicki [10], one continues
reducing the results to Chandrasekhar’sH -, X- andY -functions.Our statement is however,
that equation (19) in combination with condition (18), is already enough to be able to
calculate the desired radiance distribution as the solution to the scattering problem.

2.2. Calculation forn = 2 slabs

We now want to apply the procedure presented above to the geometry of two slabs. We
redefine the integral transforms ofL(x,Ω) and E(x,Ω), i.e. we replace (6) and (7) by
(20)–(25):

L(s,k,Ω) =
∫ b

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−sx−ikyy−ikzz (20)

or, splitting it into the two separate slabs(a) and(b):

L(a)(s,k,Ω) =
∫ a

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−sx−ikyy−ikzz (21)

L(b)(s,k,Ω) =
∫ b

a

dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−sx−ikyy−ikzz (22)
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(so thatL(a)(s,k,Ω)+ L(b)(s,k,Ω) = L(s,k,Ω)) and

e(s,k,Ω) =
∫ b

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz E(x,Ω)e−sx−ikyy−ikzz (23)

or, splitting this into the two separate slabs(a) and(b):

e(a)(s,k,Ω) =
∫ a

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz E(x,Ω)e−sx−ikyy−ikzz (24)

e(b)(s,k,Ω) =
∫ b

a

dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz E(x,Ω)e−sx−ikyy−ikzz (25)

(so thate(a)(s)+e(b)(s) = e(s,k,Ω)). The transformsL(a)(s,k,Ω) andL(b)(s,k,Ω) occur
if we apply this integral transform on the equation of radiative transfer (1).

In the forthcoming calculation we will use the following shorthand notations:L(k)(a) for
L(k)(a,k,Ω), L(k)(b) for L(k)(b,k,Ω), e(a)(s) for e(a)(s,k,Ω) ande(b)(s) for e(b)(s,k,Ω).

Multiplying (1) by e−sx−ikyy−ikzz and performing the various integrations yields,
successively

�x(sL(a)(s,k,Ω)+ L(k)(a)e−sa − L(k)(0))+ ik · ωL(a)(s,k,Ω)

= −ρ(a)σ (a)t L(a)(s,k,Ω)+
ρ(a)σ

(a)
t

4π

∫
4π
f (Ω,Ω′)L(a)(s,k,Ω′) dΩ′ + e(a)(s)

(26)

and

�x(sL(b)(s,k,Ω)+ L(k)(b)e−sb − L(k)(a)e−sa)+ ik · ωL(b)(s,k,Ω)

= −ρ(b)σ (b)t L(b)(s,k,Ω)+
ρ(b)σ

(b)
t

4π

∫
4π
f (Ω,Ω′)L(b)(s,k,Ω′) dΩ′ + e(b)(s)

(27)

which, as we want to solve forL(a) andL(b), will be rewritten as, respectively,

L(a)(s,k,Ω) = ρ(a)σ
(a)
t

4π

1

s�x + ik · ω + ρ(a)σ (a)t

[ ∫
4π
f (Ω,Ω′)L(a)(s,k,Ω′) dΩ′

+�x(L(k)(0)− L(k)(a)e−sa)+ e(a)(s)
]

(28)

and

L(b)(s,k,Ω) = ρ(b)σ
(b)
t

4π

1

s�x + ik · ω + ρ(b)σ (b)t

[ ∫
4π
f (Ω,Ω′)L(b)(s,k,Ω′) dΩ′

+�x(L(k)(a)e−sa − L(k)(b)e−sb)+ e(b)(s)
]
. (29)

L(a)(s,k,Ω) andL(b)(s,k,Ω) must be entire functions ofs, because they are finite
integrals overx of e−sx (which is an entire function ofs for all x) with anL1 integrable
weight function. Therefore the numerator of either of these solutions must be zero in cases
where the denominator is zero:

ρ(a)σ
(a)
t

4π

∫
4π
f (Ω,Ω′)L(a)(s,k,Ω′) dΩ′ +�x(L(k)(0)− L(k)(a)e−sa)+ e(a)(s) = 0 (30)
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whens�x = −ik · ω − ρ(a)σ (a)t and

ρ(b)σ
(b)
t

4π

∫
4π
f (Ω,Ω′)L(b)(s,k,Ω′) dΩ′ +�x(L(k)(a)e−sa − L(k)(b)e−sb)+ e(b)(s) = 0

(31)

whens�x = −ik · ω − ρ(b)σ (b)t .
These two equations are linked to each other by the termL(k)(a), which must have the

same value in both equations because of continuity, and in this way the valuesL(k)(0) and
L(k)(b) are connected.

We assume once again

f (Ω,Ω′) = σs

σt

N∑
n=1

an(Ω)bn(Ω′)

and we define, similarly as in (12)

L(a) : L(a)n ≡
∫

4π
bn(Ω)L(a)(s,k,Ω) dΩ

L(b) : L(b)n ≡
∫

4π
bn(Ω)L(b)(s,k,Ω) dΩ

F (a) : f
(a)
j,n ≡

ρ(a)σ (a)s

4π

∫
4π

bj (Ω)

s�x + ik · ω + ρ(a)σ (a)t

an(Ω) dΩ

F (b) : f
(b)
j,n ≡

ρ(b)σ (b)s

4π

∫
4π

bj (Ω)

s�x + ik · ω + ρ(b)σ (b)t

an(Ω) dΩ

L(k,a) : L(k,a)n ≡
∫

4π

bn(Ω)�x(L(k)(0)− L(k)(a)e−sa)
s�x + ik · ω + ρ(a)σ (a)t

dΩ

L(k,b) : L(k,b)n ≡
∫

4π

bn(Ω)�x(L(k)(a)e−sa − L(k)(b)e−sb)
s�x + ik · ω + ρ(b)σ (b)t

dΩ

e(a) : e(a)n ≡
∫

4π

bn(Ω)e(a)(s)

s�x + ik · ω + ρ(a)σ (a)t

dΩ

e(b) : e(b)n ≡
∫

4π

bn(Ω)e(b)(s)

s�x + ik · ω + ρ(b)σ (b)t

dΩ .

(32)

Multiplying (28) by bn(Ω) and integrating over dΩ leads to

L(a) = F (a) · L(a) +L(k,a) + e(a) (33)

and, carrying out the same operation on (29),

L(b) = F (b) · L(b) +L(k,b) + e(b) . (34)

For the sake of mathematical simplicity we will treat the isotropic case only, namely
f (Ω,Ω′) = σs/σt. We will also work out (33) and (34). In addition to (14) and (15) we
define

9(a)(s,k) = 1− ρ
(a)σ (a)s

4π

∫
4π

1

s�x + ik · ω + ρ(a)σ (a)t

dΩ (35)

9(b)(s,k) = 1− ρ
(b)σ (b)s

4π

∫
4π

1

s�x + ik · ω + ρ(b)σ (b)t

dΩ (36)
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E(a)(s,k) =
∫

4π

e(a)(s)

s�x + ik · ω + ρ(a)σ (a)t

dΩ (37)

E(b)(s,k) =
∫

4π

e(b)(s)

s�x + ik · ω + ρ(b)σ (b)t

dΩ (38)

and we obtain the result∫
4π
L(a)(s,k,Ω) dΩ = 1

9(a)(s,k)

(∫
4π

�x(L
(k)(0)− L(k)(a)e−sa)

s�x + ik · ω + ρ(a)σ (a)t

dΩ+ E(a)(s,k)
)

(39)∫
4π
L(b)(s,k,Ω) dΩ = 1

9(b)(s,k)

(∫
4π

�x(L
(k)(a)e−sa − L(k)(b)e−sb)

s�x + ik · ω + ρ(b)σ (b)t

dΩ+ E(b)(s,k)
)
.

(40)

We must now require that neitherL(a)(s,k,Ω) nor L(b)(s,k,Ω) have singularities for
any s, so that we have the following conditions:∫

4π

�x(L
(k)(0)− L(k)(a)e−sa)

s�x + ik · ω + ρ(a)σ (a)t

dΩ+ E(a)(s,k) = 0 (41)

for values ofs where9(a)(s,k) = 0, and∫
4π

�x(L
(k)(a)e−sa − L(k)(b)e−sb)

s�x + ik · ω + ρ(b)σ (b)t

dΩ+ E(b)(s,k) = 0 (42)

for values ofs where9(b)(s,k) = 0.
For the case of isotropic scattering we will takef (Ω,Ω′) = σ (a)s /σ

(a)
t for the slab

labelled(a) andf (Ω,Ω′) = σ (b)s /σ
(b)
t for the slab labelled(b). Then from (30) and (39) it

follows that

ρ(a)σ (a)s

4π

1

9(a)(s,k)

[ ∫
4π

�x(L
(k)(0)− L(k)(a)e−sa)

s�x + ik · ω + ρ(a)σ (a)t

dΩ+ E(a)(s,k)
]

+�x(L(k)(0)− L(k)(a)e−sa)+ e(a)(s) = 0 (43)

for s = (−ik · ω − ρ(a)σ (a)t )/�x . From equations (31) and (40) it follows that

ρ(b)σ (b)s

4π

1

9(b)(s,k)

[ ∫
4π

�x(L
(k)(a)e−sa − L(k)(b)e−sb)

s�x + ik · ω + ρ(b)σ (b)t

dΩ+ E(b)(s,k)
]

+�x(L(k)(a)e−sa − L(k)(b)e−sb)+ e(b)(s) = 0 (44)

for s = (−ik · ω − ρ(b)σ (b)t )/�x .
We now have two linear equations (43) and (44) of the Fredholm type of the second

kind, with, as the reader might think, three unknown quantities:L(k)(0), L(k)(a) andL(k)(b).
However, in the case that�x > 0, L(k)(0,k,Ω) is known (becauseL(0, y, z,Ω) is known,
see the boundary condition in (2)) and in the case that�x < 0, L(k)(b,k,Ω) is known
(becauseL(b, y, z,Ω) is known, see the boundary condition in (3)). In both cases we
have two equations with two unknowns, which can be solved in general. In addition, the
conditions (41) and (42) must be satisfied.

There is no need to go on with the derivation, as in, for example, Rybicki’s publication
[10], and try to reduce the results to Chandrasekhar’sH -functions, as the above-mentioned
equations and conditions are already enough to obtain the desired radiance distribution. In
section 3 we present the numerical solution of the problem for the single-slab case. The
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results agree very well with numerical results that have been obtained with methods thatdo
useH -functions [7].

2.3. Generalization to the case ofn slabs

The derivation of this set of equations can easily be extended to a derivation of a linear set of
n equations for a similar scattering problem for a stack ofn slabs. If we label the slabs that
are present in such a stack by(a), (b), (c), . . . , (m), (n), with the constants characterizing
the scattering properties labelled accordingly, as shown diagrammatically in figure 2, and
if we impose similar boundary conditions as in the double-slab case, we can extend the set
of equations found in (43) and (44) to a set consisting of

ρ(a)σ (a)s

4π

1

9(a)(s,k)

[ ∫
4π

�x(L
(k)(0)− L(k)(a)e−sa)

s�x + ik · ω + ρ(a)σ (a)t

dΩ+ E(a)(s,k)
]

+�x(L(k)(0)− L(k)(a)e−sa)+ e(a)(s) = 0 (45)

for s = (−ik · ω − ρ(a)σ (a)t )/�x ;

ρ(b)σ (b)s

4π

1

9(b)(s,k)

[ ∫
4π

�x(L
(k)(a)e−sa − L(k)(b)e−sb)

s�x + ik · ω + ρ(b)σ (b)t

dΩ+ E(b)(s,k)
]

+�x(L(k)(a)e−sa − L(k)(b)e−sb)+ e(b)(s) = 0 (46)

for s = (−ik · ω − ρ(b)σ (b)t )/�x ;

ρ(c)σ (c)s

4π

1

9(c)(s,k)

[ ∫
4π

�x(L
(k)(b)e−sb − L(k)(c)e−sc)

s�x + ik · ω + ρ(c)σ (c)t

dΩ+ E(c)(s,k)
]

+�x(L(k)(b)e−sb − L(k)(c)e−sc)+ e(c)(s) = 0 (47)

Figure 2. Geometry of a stack ofn slabs.
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for s = (−ik · ω − ρ(c)σ (c)s )/�x and this continues in the same way until finally we have

ρ(n)σ (n)s

4π

1

9(n)(s,k)

[ ∫
4π

�x(L
(k)(m)e−sm − L(k)(n)e−sn)
s�x + ik · ω + ρ(n)σ (n)t

dΩ+ E(n)(s,k)
]

+�x(L(k)(m)e−sm − L(k)(n)e−sn)+ e(n)(s) = 0 (48)

for s = (−ik · ω − ρ(n)σ (n)s )/�x . Equations (45)–(48) are then a set of coupled
inhomogeneous linear integral equations, which can be solved for the unknown radiances
L(k)(0), L(k)(a), L(k)(b), . . . , L(k)(n). Note that for every layer, an auxiliary condition
similar to (41) and (42) has to be satisfied.

For the case of only a single layer of thicknessa, which will be focused on in the
numerical calculation in section 3, we just have to solve one Fredholm-type equation:

ρσs

4π

1

9(s,k)

[ ∫
4π

�x(L
(k)(0)− L(k)(a)e−sa)

s�x + ik · ω + ρσt
dΩ+ E(s,k)

]
+�x(L(k)(0)− L(k)(a)e−sa)+ e(s) = 0 (49)

for s = (−ik · ω − ρσt)/�x , where an extra condition has to be imposed:∫
4π

�x(L
(k)(0)− L(k)(a)e−sa)

s�x + ik · ω + ρσt
dΩ+ E(s,k) = 0 (50)

for the values ofs such that9(s,k) = 0.

3. The numerical calculation

3.1. Analytical preparation of the numerical work

In section 2 we derived analytically the equations that must be satisfied by the radiance
distributions at the boundaries of a stack ofn slabs. Here we will work out numerically the
theory for a single slab, using the results obtained previously.

The geometry is as shown in figure 3: the slab is situated betweenx = 0 andx = a,
its y- andz-coordinates extend to infinity and its scattering properties are characterized by
the constantsρ, σs andσt, which were defined at the beginning of section 2.

Let us repeat here the basic equation of our theory, i.e. the time-independent source-free
(E(x,Ω) = 0) equation of radiative transfer [1]:

(Ω · ∇)L(x,Ω) = −ρσtL(x,Ω)+ ρσt

4π

∫
4π
f (Ω,Ω′)L(x,Ω′) dΩ′ (51)

which applies inside the medium.

Figure 3. Single-slab geometry.
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For any known incoming radiance distributionLinc, the boundary conditions of our
problem are stated as follows. Atx = 0 we have

L(0, y, z,Ω) = Linc(0, y, z,Ω) for �x > 0 (52)

and atx = a we have

L(a, y, z,Ω) = Linc(a, y, z,Ω) for �x < 0 . (53)

In order to avoid problems with the numerical representation of delta functions, we will
split the radianceL into two parts:

L = Lri + Ld (54)

whereLri is called the reduced incident radiance andLd is called the diffuse radiance [1].
The reduced incident radiance is given by

Lri(x,�x) = e−ρσtx/�x δ(�x −�x0) (55)

which satisfies the equation

(Ω · ∇ + ρσt)Lri(x,Ω) = 0 . (56)

This form of Lri is a plane wave, propagating in the direction denoted by�x0, with
exponentially decreasing intensity due to the absorption and scattering by the particles
in the medium.

The equation of radiative transfer will now be restated and solved forLd. Furthermore,
we assume isotropic scattering, takingf (Ω,Ω′) = σs/σt = ω̃0 (the albedo). This makes
the calculations a lot simpler. We write

(Ω · ∇)Ld(x,Ω) = −ρσtLd(x,Ω)+ ρσs

4π

∫
4π
Ld(x,Ω′) dΩ′ + I(x) (57)

with

I(x) = ρσs

4π

∫
4π

dΩ′ Lri(x,Ω′) . (58)

The analytical method to find the solution to the equation of radiative transfer for our
slab geometry started with the combined Fourier–Laplace transform of the radianceL(x,Ω),
where the Laplace transform is taken with respect tox and the Fourier transform is taken
with respect toy andz:

L(s,k,Ω) =
∫ a

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−sx−ikyy−ikzz . (59)

In addition, we define the combined Fourier–Laplace transform ofI:

LI (s,k) =
∫ a

0
dx
∫ ∞
−∞

dy
∫ ∞
−∞

dz I(x)e−sx−ikyy−ikzz . (60)

Furthermore,L(k) is the Fourier transform, with respect toy andz, of the radianceL(x,Ω):

L(k)(x,k,Ω) =
∫ ∞
−∞

dy
∫ ∞
−∞

dz L(x,Ω)e−ikyy−ikzz . (61)

Going through the derivation analogously as we did in section 2 (see also [6]), leads to
the following integral equation for the diffuse radianceLd. The analogy with the calculation
in section 2 tells us to treat theI term in (57) in the same way as the source functionE
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in (1) for the total radiance (L) case. The integral equation obtained in this manner is a
Fredholm equation of the second kind, similar to (49):

ρσs

4π

1

9(s,k)

∫
4π

�′x
(
L
(k)

d (0,k,Ω′)− L(k)d (a,k,Ω′)e−sa
)+ LI (s,k)

s�′x + ik · ω′ + ρσt
dΩ′

+�x
(
L
(k)

d (0,k,Ω)− L(k)d (a,k,Ω)e−sa
)+ LI (s,k) = 0 (62)

with s = (−ik · ω − ρσt)/�x . Here we have used

k = (ky, kz) and ω = (�y,�z)
and the function9 is defined as

9(s,k) = 1− ρσs

4π

∫
4π

dΩ′

s�′x + ik · ω′ + ρσt
. (63)

Rewriting (62) slightly, yields

ρσs

4π

∫
4π

�′x
(
L
(k)

d (0,k,Ω′)− L(k)d (a,k,Ω′)e−sa
)+ LI (s,k)

s�′x + ik · ω′ + ρσt
dΩ′

+�x9(s,k)
(
L
(k)

d (0,k,Ω)− L(k)d (a,k,Ω)e−sa
)+9(s,k)LI (s,k) = 0 .

(64)

For convenience in the following calculations we introduce a new symbolµ, defined as

µ = �x .
We also introduce the function

L
(k)
D (x,k,Ω) ≡ L(k)d (0,k,Ω)− L(k)d (x,k,Ω)e(x/µ)(ik·ω+ρσt) (65)

in order to achieve a more compact notation and finally we will use a shorthand notation
LI for LI (s,k) for just a while.

Working out the expression for9, substituting the values = (−ik · ω − ρσt)/�x and
multiplying out the denominators, we find

ω̃0

4π

∫
4π

dΩ′
µ′L(k)D (a,k,Ω

′)
ik · (µω′ − µ′ω)+ ρσt(µ− µ′) +

1

ρσt

(
L
(k)
D (a,k,Ω)+

LI
µ

)
−µω̃0

4π
L
(k)
D (a,k,Ω)

∫
4π

dΩ′

ik · (µω′ − µ′ω)+ ρσt(µ− µ′) = 0 . (66)

We see that we can expect difficulties in the numerical analysis forµ = 0, mainly because
of theµ in the denominator of the exponent

e(a/µ)(ik·ω+ρσt)

see (65). When we haveµ = 0, the direction of the radiance is parallel to the surface of
the slab, which is a case that is of no interest. We will examine the situation forµ < 0 on
one side of the slab and forµ > 0 on the other.

To this end we split the quantityL(k)d (x) into two parts, namelyL(k)d−(x) for µ < 0

andL(k)d+(x) for µ > 0. The functionsL(k)D±(x,k,Ω) are introduced analogously to (65).
Equation (66) then turns into the following equations.
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For µ < 0 we have

ω̃0

4π

∫
�x<0

dΩ′
µ′L(k)D−(a,k,Ω

′)− µL(k)D−(a,k,Ω)
ik · (µω′ − µ′ω)+ ρσt(µ− µ′)
−µω̃0

4π
L
(k)
D−(a,k,Ω)

∫
�x>0

dΩ′

ik · (µω′ − µ′ω)+ ρσt(µ− µ′)
+ LI
µρσt

+ 1

ρσt
L
(k)
D−(a,k,Ω)

= − ω̃0

4π

∫
�x>0

dΩ′
µ′L(k)D+(a,k,Ω

′)
ik · (µω′ − µ′ω)+ ρσt(µ− µ′) (67)

and forµ > 0 we have

ω̃0

4π

∫
�x>0

dΩ′
µ′L(k)D+(a,k,Ω

′)− µL(k)D+(a,k,Ω)
ik · (µω′ − µ′ω)+ ρσt(µ− µ′)
−µω̃0

4π
L
(k)
D+(a,k,Ω)

∫
�x<0

dΩ′

ik · (µω′ − µ′ω)+ ρσt(µ− µ′)
+ LI
µρσt

+ 1

ρσt
L
(k)
D+(a,k,Ω)

= − ω̃0

4π

∫
�x<0

dΩ′
µ′L(k)D−(a,k,Ω

′)
ik · (µω′ − µ′ω)+ ρσt(µ− µ′) . (68)

In our numerical analysis we will treat the one-dimensional case, which means that
we take the radiance depending only on�x (in our new notation onµ) rather than on
(�x,�y,�z). Thus we will simplify the above equations to the one-dimensional case,
leaving out theω dependence. Also the(k) superscript, denoting the Fourier transform
over they- andz-coordinates, has now lost its meaning and can be left out.

Furthermore, we introduce the optical thickness parameterb = aρσt.
For the functionsLD±(a, µ) one must now read

LD±(a, µ) = Ld±(0, µ)− Ld±(a, µ)eb/µ . (69)

Then the one-dimensional equivalent of (67) is, forµ < 0,

ω̃0

2

∫ 0

−1
dµ′

µ′LD−(a, µ′)− µLD−(a, µ)
µ′ − µ − µω̃0

2
LD−(a, µ) log

µ− 1

µ

−LD−(a, µ)− LI
µ
= − ω̃0

2

∫ 1

0
dµ′

µ′LD+(a, µ′)
µ′ − µ (70)

whereas the one-dimensional equivalent of (68) is, forµ > 0,

− ω̃0

2

∫ 1

0
dµ′

µ′LD+(a, µ′)− µLD+(a, µ)
µ′ − µ − µω̃0

2
LD+(a, µ) log

µ+ 1

µ

+LD+(a, µ)+ LI
µ
= ω̃0

2

∫ 0

−1
dµ′

µ′LD−(a, µ′)
µ′ − µ . (71)

As these equations look rather complicated, we will now introduce some simplifications
related to our specific choice forLinc. In the introduction we already announced that we
would choose a plane wave to enter the slab from above, from various directionsµ0:

Linc(x, µ) = Lri(x, µ) = e−ρσtx/µδ(µ− µ0) for µ < 0 (72)
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and zero radiance to enter the slab from below:

Linc(x, µ) = 0 for µ > 0 . (73)

For x = 0 andµ > 0 the reduced incident radiance equals the total radiance, which
means thatLd+(0, µ) = 0. Forx = a andµ < 0 the incident radiance equals zero because
the direction of incidence isµ0 > 0! Therefore we also haveLd−(a, µ) = 0. This implies
the following replacements in equations (70) and (71):

LD−(a, µ)→ Ld−(0, µ) and LD+(a, µ)→−Ld+(a, µ)eb/µ . (74)

We can now also evaluate the integral

LI (s) = 1
2ρσs

∫ a

0
dx e−sx−ρσtx/µ0 (75)

which for s = −ρσt/µ yields

LI (s) = µµ0
ω̃0

2

eb(1/µ−1/µ0) − 1

µ0− µ . (76)

Note that forµ = µ0,LI = ω̃0b/2.
Further, we multiply equations (70) and (71) byµ, and define the functions

f (µ) ≡ µLd−(0, µ) and g(µ) ≡ µLd+(a, µ) . (77)

For−16 µ < 0 we then have

µω̃0

2

∫ 0

−1
dµ′

f (µ′)− f (µ)
µ′ − µ − µω̃0

2
f (µ) log

µ− 1

µ
− f (µ)

−µµ0ω̃0

2

eb(1/µ−1/µ0) − 1

µ0− µ = µω̃0

2
eb/µ

∫ 1

0
dµ′

g(µ′)
µ′ − µ (78)

and for 0< µ 6 1 we have

µω̃0

2

∫ 1

0
dµ′

g(µ′)− g(µ)
µ′ − µ + µω̃0

2
g(µ) log

µ+ 1

µ
− g(µ)

+µµ0ω̃0

2

e−b/µ0 − e−b/µ

µ0− µ = µω̃0

2
e−b/µ

∫ 0

−1
dµ′

f (µ′)
µ′ − µ . (79)

3.1.1. Auxiliary conditions. When working on the numerical solution of the set of
equations, consisting of (78) and (79), we found that the results were fairly unstable and that
they did not yet exactly match the data in the literature. The cause of this problem turned
out to be that the matrices, representing the set of equations in the computer program, were
extremely ill-conditioned.

This problem was solved by imposing twoauxiliary conditions, as already introduced
in (18) for the case of the half-space and stated in (50) for the single slab. We will come
to a physical interpretation of this procedure at the end of this subsection. First we will
present the way in which these conditions are obtained.

In equation (62) we must require that no singularities occur in the complexs-plane.
Therefore we need to investigate (62) in the situation where9 = 0. We obtain our auxiliary
condition, which is similar to (50):∫

4π
dΩ

�x(L
(k)

d (0,k,Ω)− L(k)d (a,k,Ω)e−sa)+ LI (s,k)
s�x + ik · ω + ρσt

= 0 (80)
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for the values ofs such that
ρσs

4π

∫
4π

dΩ
1

s�x + ik · ω + ρσt
= 1 . (81)

Rewriting this into a one-dimensional form, substitutings ′ = s/ρσt in order to keep the
notation simple, and usingb = aρσt as before, we obtain∫ 1

−1
dµ
µ(Ld(0, µ)− Ld(a, µ)e−s

′b)+ LI (s ′)
µs ′ + 1

= 0 (82)

for the values ofs ′ such that

ω̃0

2

∫ 1

−1
dµ

1

µs ′ + 1
= 1 (83)

(ω̃0 is the albedo).
From equation (83) we obtain the solutionκ0 that satisfies

ω̃0

κ0
arctanhκ0 = 1 (84)

and if κ0 satisfies this equation, it is easily seen that−κ0 satisfies it as well.
This valueκ0 is often called thecritical exponent; 1/κ0 and−1/κ0 form the set of

discrete eigenvaluesas explained later on in this subsection. Nowκ0 is inserted into
equation (82), yielding∫ 1

−1
dµ
µ(Ld(0, µ)− Ld(a, µ)e−κ0b)+ LI (κ0)

µκ0+ 1
= 0 . (85)

The expression forLI (κ0) is easily calculated from (75),

LI (κ0) = µ0ω̃0

2

1− e−b(κ0+1/µ0)

µ0κ0+ 1
(86)

and, as it does not depend onµ, we transfer it to the right-hand side of the equation. Thus∫ 1

−1
dµ
µ(Ld(0, µ)− Ld(a, µ)e−κ0b)

µκ0+ 1
= µ0

e−b(κ0+1/µ0) − 1

µ0κ0+ 1
. (87)

Equation (87) must now be used as an auxiliary condition in the numerical calculation.
The other auxiliary condition that is needed is simply equation (87) withκ0 replaced by
−κ0, becauseκ0 and−κ0 are both solutions of (83):∫ 1

−1
dµ
µ(Ld(0, µ)− Ld(a, µ)eκ0b)

µκ0− 1
= µ0

eb(κ0−1/µ0) − 1

µ0κ0− 1
. (88)

It appeared that we could make the numerical solution of the set of equations (78) and
(79) stable and unique by imposing the extra conditions (87) and (88). Now we need to
ask ourselves the question of how these extra conditions can be interpreted physically.

In the case of the semi-infinite half-space [16] one needs to exclude all solutions
corresponding to radiance from deeply buried sources (see [8] sections 12 and 88) so as to
retain only the solution that vanishes forx →∞. For the present case of the slab having
finite thickness, the interpretation of the auxiliary conditions cannot be based upon the
concept of deeply buried sources. We can, however, explain the necessity of the auxiliary
conditions otherwise.

First, we remark that the auxiliary conditions simplyhave to be satisfied. There is no
reason to assumea priori that these conditions follow in a logical way from the continuous
set of equations (78) and (79). However, theydo follow logically from the restriction that
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there may be no singularities in the complexs-plane in equation (62). This is why we
cannot just ignore the conditions (87) and (88).

Secondly, we can give an explanation in terms of the completeness of orthogonal sets,
namely by showing that these conditions are in fact necessary for the determination of the
radiance distribution, i.e. the desired solution to (78) and (79). We will start this discussion
with some results obtained by Case and Zweifel [17]:

(i) The eigenfunctionsψ(x, µ) of the operator

µ
∂

∂x
+ 1− c

2

∫ 1

−1
dµ (89)

can be written in the separated form

ψ(x, µ) = φν(µ)e−x/ν (90)

where we call theφν eigenfunctions and the correspondingν eigenvalues.
(ii) The eigenvalue spectrum of the operator (89) has a discrete part (in our case

ν = ±1/κ0 where±κ0 are the solutions to9 = 0, equation (80)) and a continuous part
−1 6 ν 6 1. For the half-space problem the real part of the spectrum has to be positive
for 0< µ 6 1 and negative for−16 µ < 0.

(iii) The eigenfunctionsφν(µ) form a complete and orthogonal set in the half-spaces
−16 µ < 0 and 0< µ 6 1.

(iv) For both of these half-spaces the eigenfunctions are expressed as

φν(µ) = cν

2
P 1

ν − µ + λ(ν)δ(ν − µ) (91)

whereP denotes the principal value andλ(ν) denotes a normalization constant.
Now, by comparing equation (91) with equations (78) and (79), it can be seen that the

latter are, in fact, a (continuous) system of equations in the expansion coefficients off (µ)

andg(µ), but for the continuous part of the spectrum only. The delta-function part of (91)
does not manifest itself in (78) and (79), as there the numerators and denominators of the
integrands

f (µ′)− f (µ)
µ′ − µ and

g(µ′)− g(µ)
µ′ − µ

both approach zero in the first order inµ, if µ′ → µ, so that in fact the derivativesf ′(µ)
andg′(µ) appear.

Because we know that a complete and orthogonal set is necessarily aminimal one
[18], this means that such a set becomes incomplete if only one of its members is omitted.
Therefore, we must have knowledge of all the expansion coefficients, that is, we must
consider the full spectrum.

As was pointed out above, this spectrum has a continuous part, given by (78) and (79),
as well as a discrete part, which is given by our auxiliary conditions (87) and (88). Hence
the introduction of these auxiliary conditions is indispensable if one wants to obtain a fully
determined problem.

3.2. Numerical representation

Let us now first take a closer look at the specific numerical representation of some of the
terms in equations (78) and (79). We will use the same method that was used previously
by Rinzemaet al [16]. In particular, we will focus our attention on the integral∫ 1

0
dµ′

g(µ′)− g(µ)
µ′ − µ . (92)
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The interval [0, 1] is divided into n sub-intervals, each having length 2h = 1/n. We
associate this partition with a collection ofN = 2n+1 nodes at equal distancesh, including
µ = 0 as the first node andµ = 1 as the last one. On each sub-interval, the integral (92)
is approximated using Simpson’s rule:∫ µi+2h

µi

dµ′
g(µ′)− g(µ)
µ′ − µ ≈ h

3

g(µi)− g(µ)
µi − µ + 4h

3

g(µi + h)− g(µ)
µi + h− µ

+h
3

g(µi + 2h)− g(µ)
µi + 2h− µ . (93)

This approximation holds fairly well ifµ does not coincide with one of the nodes in the
interval [µi, µi + 2h], but if it does, we have to apply a different method [19]. Essentially
the method we use is to approximate the functiong with polynomials of at most degree
p − 1, and to find a set ofp equations for the weightsw1...p (see e.g. (94)).

Here we use an approximation with polynomials of at most degree 2 and with the ansatz∫ µi+2h

µi

dµ′
g(µ′)− g(µ)
µ′ − µ ≈ w1g(µi)+ w2g(µi + h)+ w3g(µi + 2h) (94)

we form a set of three equations for the three weightsw1,2,3, using three linearly independent
polynomials forg. Then we obtain

(w1, w2, w3) = (−2, 2, 0) if µ = µi
(w1, w2, w3) = (−1, 0, 1) if µ = µi + h
(w1, w2, w3) = (0,−2, 2) if µ = µi + 2h .

(95)

The approximation by Simpson’s rule (93) is also useful for the integral that we have
in the right-hand side of (78):∫ µi+2h

µi

dµ′
g(µ′)
µ′ − µ ≈

h

3

g(µi)

µi − µ +
4h

3

g(µi + h)
µi + h− µ +

h

3

g(µi + 2h)

µi + 2h− µ (96)

and these approximations (93) and (96) can in the same way be used for the integrals
containingf (µ) that are present in (78) and (79), where now the interval [−1, 0] is divided
into the same number of subintervalsn.

The auxiliary conditions (87) and (88) can also be approximated numerically, using
Simpson’s rule. For example, the left-hand side of equation (87) is first split into a part for
µ < 0 and one forµ > 0:∫ 0

−1
dµ
µ(Ld−(0, µ)− Ld−(a, µ)e−κ0b)

µκ0+ 1

+
∫ 1

0
dµ
µ(Ld+(0, µ)− Ld+(a, µ)e−κ0b)

µκ0+ 1
= µ0

e−b(κ0+1/µ0) − 1

µ0κ0+ 1
. (97)

As we are working with thereduced incident radiance, we now setLd+(0, µ) = 0 and
Ld−(a, µ) = 0. Using the previously introduced functions

f (µ) ≡ µLd−(0, µ) and g(µ) ≡ µLd+(a, µ)
we can rewrite (97) as∫ 0

−1
dµ

f (µ)

µκ0+ 1
−
∫ 1

0
dµ
g(µ)e−κ0b

µκ0+ 1
= µ0

e−b(κ0+1/µ0) − 1

µ0κ0+ 1
. (98)

The integrals appearing in the left-hand side of (98) can be discretized using Simpson’s
rule. The same procedure is applied on (88), leading to a similar result for−κ0 instead of
κ0.
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As in [16], we use the method of Lagrange’s multipliers to incorporate these discretized
auxiliary conditions, numerically into our set of equations to be solved, equations (78) and
(79).

Suppose we regard the set of equations (78) and (79) as a matrix equation

Af = b (99)

whereA is the coefficient matrix,f is the unknown vector, containing the valuesf (µ) and
g(µ) in all ‘nodes’, andb is the known vector. The ‘error’ in the solution is denoted by
r = Af − b.

The auxiliary constraints that have to be satisfied by the solution we look for, are written
in vector notation as

vTf = µ0
e−b(κ0+1/µ0) − 1

µ0κ0+ 1
(100)

wTf = µ0
eb(κ0−1/µ0) − 1

µ0κ0− 1
. (101)

We now have to find the vectorf which minimizesrTr, and which must satisfy (100) and
(101). Lagrange’s multiplier method [20] tells us that the solutionf we look for, satisfies
the equation

∇f (rTr)+ 2λ1∇f (vTf)+ 2λ2∇f (wTf) = 0 (102)

where the gradients are given by

∇f (vTf) = v (103)

∇f (wTf) = w (104)

∇f (rTr) = ∇f (Af − b)T(Af − b)
= ∇f (fTATAf − fTATb− bTAf + bTb)

= 2ATAf − 2ATb . (105)

Thus, from (102) it is clear that the solution we look for must obey

ATAf + λ1v + λ2w = ATb . (106)

This equation, together with (100) and (101), constitutes a system of 2N linear equations for
2N variables:f (0) andg(0) are not included as variables as we already know thatf (0) = 0
andg(0) = 0; λ1,2 are the extra variables. This system is no longer ill-conditioned and can
be solved straightforwardly.

To obtain the radiance, which is the quantity we are actually interested in, we must
divide our solution forf (µ) andg(µ) by µ. This can be done without any trouble, except
for µ = 0. From equation (70) it follows that, forµ ↑ 0, we have to take

Ld−(0, 0) = 1
2ω̃0

(
1+

∫ 0

−1
dµ′ Ld−(0, µ′)

)
(107)

whereas from (71) it follows forµ ↓ 0

Ld+(a, 0) = 1
2ω̃0

(
e−b/µ0 +

∫ 1

0
dµ′ Ld+(a, µ′)

)
. (108)
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3.3. Numerical results and their comparison with literature

In order to be able to compare the numerical solution of our set of equations with the
numerical values given by Van de Hulst [7], we first need to investigate what the numbers
in the tables really represent. They are not, as one might conclude from the titles above
table 12, theintensities(i.e. radiances) leaving the slab at the top (x = 0) or bottom (x = a)
boundary surface, but, as can be found in chapter 9, they are really thetransmission and
reflection coefficients, defined by Van de Hulst in terms ofX- andY -functions:

T (ω̃0, b, µ,µ0) = ω̃0

4(µ0− µ)(X(µ)Y (µ0)− Y (µ)X(µ0)) (109)

R(ω̃0, b, µ,µ0) = ω̃0

4(µ+ µ0)
(X(µ)X(µ0)− Y (µ)Y (µ0)) . (110)

These reflection and transmission coefficients turn out to differ from the corresponding
definitions of Chandrasekhar [8], chapter 9, by a factor of 4µµ0. Furthermore, in [8] we
encounter an expression for the intensities at the top and bottom surfaces, stated here in
terms of Van de Hulst’s transmission and reflection coefficients,

L(b,−µ) = µ0F T (ω̃0, b, µ,µ0) and L(0, µ) = µ0F R(ω̃0, b, µ,µ0) (111)

whereF is expressed in chapter 1 of [8] as twice the flux integral,

F = 2
∫ 1

−1
I (τ, µ)µdµ = constant (112)

where I is the radiance or specific intensity andτ is the optical thickness parameter in
Chandrasekhar’s notation. If we take the flux to be equal to unity, so that the constant
F = 2, the results obtained numerically show good agreement with the literature.

Summarizing, we see from (111) that we need to divide the solution of the radiance
from our set of equations by a factor of 2µ0, thus obtaining a useful comparison with the
values in the literature [7].

3.4. Discussion of the numerical results

In this section we will present some results of the numerical solution and its comparison
with the literature. The software package that we have used to obtain our solution is
Mathematica. The reason for this choice lies in the fact that the equations we wanted to
solve were easily and straightforwardly implemented and thatMathematicais a powerful
tool for solving (large) sets of linear equations.

Note that the plots that are shown in this section are, in fact, two different plots in one
single diagram. In the top right-hand part the transmission coefficientT , see equation (109),
is plotted as a function of the angle between the normal to thex = a surface and the viewing
direction. In the bottom left-hand part the reflection coefficientR, see equation (110), is
plotted as a function of the angle between the normal to thex = 0 surface and the viewing
direction.

In each plot, the full curve shows the numerical results obtained byMathematicaas
the solution of (78) and (79), together with the auxiliary conditions (87) and (88). The full
circles, located at positionsθ = ±arccos(µ), µ = 0.0, µ = 0.1, 0.3, . . . ,0.9 and 1.0, show
the corresponding values provided by Van de Hulst, table 12 [7].

We have calculated the radiance distribution, and the corresponding transmission and
reflection coefficients, for various optical thicknesses (b = 0.031 25, b = 0.25, b = 2.0 and
b = 4.0). We also varied the albedo (ω̃0 = 0.8, ω̃0 = 1.0) and the direction of incidence
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Figure 4. Numerical results for̃ω0 = 0.80, b = 4.0, µ0 = 1.0 andn = 10. The top right-hand
part of the plot shows the transmission coefficientT as a function of the viewing angle. The
bottom left-hand part shows the reflection coefficientR as a function of the viewing angle.

Figure 5. Numerical results for̃ω0 = 1.0, b = 4.0, µ0 = 0.7 andn = 10.

(µ0 = 0.7, µ0 = 1.0, the latter corresponding to normal incidence). A few examples
of our results are shown in figures 4–6. Comparing our results with the data by Van de
Hulst [7], we observe that the agreement is very good, the differences are of the order of
0.001%–0.01%, which is roughly the error in Van de Hulst’s results.

We would like to make a few remarks about some other numerical methods to solve the
scattering problem for a slab geometry. Chandrasekhar was one of the first to tackle this
problem. He devised hisdiscrete-ordinates methodin which all appearing integrals were
approximated by discrete sums (using Gauss–Legendre integration). It then appeared that the
solution to the problem could be written in terms of the so-calledH -function, independent
of the order of the approximation. Thus, it was shown that theH -function played a central
role in the theory and that this role had to be traced back to the so-called principle of
invariance, i.e. the fact that the emergent radiation from a scattering half-space does not
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Figure 6. Numerical results for̃ω0 = 0.80, b = 0.25, µ0 = 0.7 andn = 10.

change if a layer of arbitrary thickness is added to the half-space. Analogous functions
can be defined for finite slabs of scattering material, the so-calledX- andY -functions [8].
The discrete-ordinates method was elaborated further by Stamneset al [21], who dealt with
numerical problems such as the fact that the method gives rise to ill-conditioned linear
systems. They also incorporated anisotropic scattering, vertical inhomogeneity and heat
transfer and, in collaboration with Jin [22], differences in refractive index. Not included in
his method is transverse variation of the incident radiance distribution, and incorporating
it is not easy either. See also, for example, Truelove [23] for another application of the
discrete-ordinates method for the case of heat transfer.

Neither our numerical calculations nor those of Stamneset al, make use of theH -, X-
or Y -functions, and are in that sense much less complicated than those of Chandrasekhar
and Van de Hulst [7, 8]. The major practical difference between our method and that of
Stamnes is that in our method we are, in principle, able to handle transverse variations of
the incident radiance distribution, something which, in the method used by Stamnes, would
give rise to very substantial complications.

Another numerical method we would like to mention here is the adding and doubling
method, which is used by Wiscombe [24, 25] and by Evans and Stephens [26]. They start
by writing the equation of radiative transfer as a matrix equation, which is then solved
numerically. This means that they also have to calculate the field inside the medium,
which is done by applying the adding and doubling method: starting with a suitably chosen
initialization for an (almost infinitely) thin slab, and then successively doubling the slab
thickness, they obtain the radiance distribution throughout the slab, until they finally reach
the desired finite slab thickness and the radiance distribution at its boundary surfaces. In our
method, however, we first derived a suitable set of equations (49) and (50) analytically, so
that weonly had to calculate the radiance distributionat the boundary surfacesnumerically.
The knowledge of the radiance inside the medium appeared to be unnecessary. Another
striking difference is that the adding and doubling method is, like the discrete-ordinates
method, unsuitable for handling transversal variations of the incident radiance distribution.

The adding and doubling method is also mentioned in Van de Hulst [7], section 4.5.
There, this method is described as just a trivial extension to the case of a single layer. Once
the solution of the radiance problem for a single layer has been obtained, i.e. the reflection
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and transmission coefficientsR andT have been calculated either by using our method or
by using theH -function procedure, the concept of the adding or doubling method can be
applied to treat the case of multiple layers.

4. Discussion

We have shown that the solution of the scattering problem for the equation of radiative
transfer with a half-space-, slab- or double-slab geometry can be obtained from a set of linear
inhomogeneous integral equations, i.e. a set of Fredholm integral equations of the second
kind, for the radiance distribution at the boundary surfaces of the double-slab geometry.

To derive these equations, we have used the technique of integral transforms with
suitably chosen kernel functions, i.e. combined Fourier and Laplace transforms. This kernel
consists of eigenfunctions of the partial differential operator part of the equation of radiative
transfer, adapted to the slab geometry.

The numerical evaluation of the pertinent equations showed good agreement with the
results of traditional solution methods.

In the calculation we have presented in this paper, we have, for convenience, assumed
isotropic scattering, so that the equations looked a lot simpler. This was achieved by
taking f (Ω,Ω′) = σs/σt. Of course, when we want to do the calculation foranisotropic
scattering, we have to keep the generalf (Ω,Ω′) in our derivation. In that case, working
out the matrix equation (13) leads to a set ofN equations for the components ofL(k) at
the boundary of the half-plane. Similarly, in the case of the double slab, by working out
the matrix equations (33) and (34) leads to a set of 2N equations for the components of
L(k,a) andL(k,b) at the boundaries of the double-slab geometry. Generalizing this to the
stack geometry, we obtain from a set ofn matrix equations, a set ofnN equations for the
components ofL(k,a) throughL(k,n).

The method presented here can also be applied to similar problems like scattering at
a cylindrical or spherical boundary. Also for those cases an extension of the calculation
for multiple-layered cylinders and spheres is possible. The type of integral transforms to
be used for such problems is, however, different from the one used here, because we have
to use an appropriate kernel for the integral transform adapted for the special shape of the
boundary.
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