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Scope and outline of the thesis

The RET proto-oncogene encodes a receptor tyrosine kinase involved in the normal
development and the neoplastic growth of neural crest lineages. The ligand of the receptor
is as yet unidentified. During embryogene&&T expression is high in neuroectodermal
tissues, suggesting a function of RET in the proliferation, the migration and the
differentiation of these cell types. In adult tissues the gene is hardly expressed. Expression
is high in several tumor types derived from neural crest cells.

Transfection studies with DNA from different tumors revealed focal proliferation
due to the presence of different DNA sequences that, however, shared a common part
called RET. The original RET gene turned out to be rearranged in such a way that the
sequences coding for the extracellular part of its protein product were replaced by
sequences from elsewhere, resulting in a rearranged protein with a constitutive tyrosine
kinase activity. The same rearrangement occurs in papillary thyroid carcinoma (PTC).

After the genes involved in multiple endocrine neoplasia types 2A (MEN 2A) and
2B (MEN 2B) and in Hirschsprung disease (HSCR) had been mapped to the centromeric
region of chromosome 10 by linkage analysis, mutationRBT, a gene which lies in this
very region, appeared responsible for the development of these diseases. For MEN 2A and
MEN 2B the mutations were activating the protein translated, for HSCR the mutations
resulted in a functional loss of the protein translated.

Much is known about thdRET gene, its protein product and its involvement in at
least four different diseases (PTC, MEN 2A, MEN 2B, HSCR) as briefly summarized
above. In this thesis on thRET gene and its associated diseases, an overview of the
relevant RET literature will be given and our own data as well as those obtained in
collaborative efforts with other groups is presented in the appendices. Appendix 1 displays
the RET sequence of both the long and the short isoforms. Appendix 2 shows the genomic
structure, i.e. the intron-exon junctions of all 20 exons of REET gene. It is followed by
a paper giving SSCP conditions for mutation detection of RS gene [Appendix 3]. Our
finding that a single mutation is uniquely associated with MEN 2B is presented in
appendix 4. Appendix 5 shows that sporadic medullary thyroid carcinoma and sporadic
pheochromocytoma can only partly be explained RET mutations. A paper on the
possible involvement oRET in neuroblastoma and a paper concerning the involvement of
RET in families with MEN 2A and cutaneous lichen amyloidosis (CLA) and in families
with hereditary "CLA only" are presented in appendices 6 and 7, respectively.
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Protein Kinases

Protein kinases

The protein kinases are a large family of enzymes, many of which mediate external
stimuli of eukaryotic cells, that are involved in cell growth, proliferation and
differentiation. The enzymes respond to stimuli by becoming activated (see 1.3) and
thereby able to phosphorylate target proteins (substrate molecules) in the cytoplasm.

1.1 Classification of protein kinases

Some protein kinases add phosphate to serine or threonine residues
(serine/threonine kinases), whereas others only phosphorylate tyrosine (tyrosine kinases).
Although the serine/threonine kinases and the tyrosine kinases phosphorylate different
amino acids their catalytic domain is similar. Of the two classes, yeasts have only the
serine/threonine kinases, whereas tyrosine kinases are observed in multicellular organisms
that also have serine/threonine kinases. This difference and the observation that many
tyrosine kinases are growth factor receptors suggest that tyrosine kinases play a role in the
cell to cell communication in multicellular organisms.

The kinase family can also be classified in two groups dependent on their location
in the cell. Some of the protein kinases, both serine/threonine and tyrosine kinases, are
located entirely within the cytoplasm, although often in association with other proteins
integrated in the cell membrane that act as an intermediate between external stimuli and
the protein kinase. The other group consists of the receptor protein kinases, again
containing both serine/threonine and tyrosine kinases. The receptor proteins extend their
amino terminus through the cell membrane, the carboxyl terminus being intracellular.
Their external domain recognizes the presence of extracellular factors and transmit
external signals to the cytoplasmic domain which contains the kinase domain.

Within the two classes, serine/threonine kinases and tyrosine kinases, many
subfamilies can be distinguished (Table 1) according to similarities in primary structure
and to the deduced catalytic domain phylogeny ( Hastkal., 1988; Hunteret al., 1992).

1.2  Structure of protein kinases

As mentioned, protein kinases can be subdivided into families according to similarities
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Chapter 1

within their respective defined catalytic domains. However, the amino acid sequences
outside the catalytic domain also show striking similarities within the different subfamilies.
Structural motifs and cysteine residues present in the external domain are usually
conserved within the different subfamilies and the same holds for the spacing between the
transmembrane domain and the catalytic domain and between the catalytic domain and the
carboxyl-terminal tail.

The kinase catalytic domain is usually located near the carboxyl terminus of the
protein and ranges from 250 to 300 amino acids, the boundaries being determined through
an analysis of conserved sequences (see, Hatkal, 1988). Eleven major conserved
subdomains are present in the catalytic domain. They are separated by less conserved
regions which in some cases contain relative large inserts or gaps. These conserved
subdomains are part of the active domain and contribute to the necessary tertiary structure.
Certain short amino acid stretches in subdomains VI and VIl indicate whether the protein
IS a putative tyrosine or serine/threonine kinase (Hanks, 1988). Probable functions of the
different subdomains are reviewed in Hardtsal. (1988).

Table 1. Subfamilies of protein serine/threonine and tyrosine kinase (Hanks et al.
1988; Hunter et al., 1992).

Protein-serine/threonine kinase subfamiliBsotein-tyrosine kinase subfamilies

1. Cyclic nucleotide-dependent subfamily 1. SCR subfamily
2. Calcium-phospholipase-dependent subfamily 2. ABL subfamily
3. Calcium-calmodulin-dependent subfamily 3. Epidermal Growth Factor Receptor subfamily
4. SNF1 subfamily 4. Insulin Receptor subfamily
5. CDC28-CDC2 subfamily 5. Platelet Derived Growth Factor subfamily
6. Casein kinase subfamily 6. Fibroblast Growth Factor Receptors
7. RAF-MOS proto-oncogene subfamily 7. Nerve Growth Factor Receptors
8. STE7 subfamily 8. ECK protein kinase like Receptors
9. Others 9. ARK protein kinase like Receptors
10. Others
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Protein Kinases

1.3 Activation of receptor protein kinases

Receptor protein kinases are activated by ligands which bind to the external domain of the
receptor. The most plausible explanation for this activation is that ligand binding either
stabilizes or induces receptor dimerization. Dimerization juxtaposes the two catalytic
domains, which then leads to a conformational change allowing phosphorylation of
specific tyrosine or serine/threonine residues in the cytoplasmic domain irrespective of
their location within or outside the catalytic domain. Only when the ligand-bound receptor
dimer becomes autophosphorylated it is able to phosphorylate substrate proteins. The
ligands and substrates involved in this process have not yet been found for all protein
kinases. The signal pathways activated by protein kinases may be common in most cases,
specificity being provided by the ligand-binding domain and the availability of the ligand.
The spectrum of substrates that bind to the protein kinase and subsequently are
phoshorylated can differ based upon the binding properties and expression of the
substrates in each cell type. Protein kinases are not involved in one specific process, as
they are found in all kinds of tissue and at different stages of development and
differentiation during embryogenesis (for review see Hueteal., 1992).

1.4 Protein kinase genes as oncogenes

Since the growth of malignant cells in contrast to normal cells seems to have
escaped normal control mechanisms, it was hypothesized that such cells could produce
"abnormal” growth factors or respond to growth factors in an "abnormal® way. They
would miss certain feedback mechanisms or simply be irreversibly committed to growth.

Among the oncogenes known to date, the genes coding for the family of protein
kinases play a prominent role. Most of them were identified following transfection of
NIH3T3 mouse cells with human or rodent tumour DNA. Analysis of the transfected
genes showed that activation of the protein kinases is due to different mechanisms. One
type of alteration often found is a DNA rearrangement resulting in a fusion gene whose
product shows an exchange of amino terminal sequences between the protein kinase and
the product of another gene. Examples of such rearrangements involve the tyrosine kinases
genesRET (Takahashi & Cooper, 1985MET (Chanet al, 1987), TRK (Martin-Zancaet
al. 1986), and ROS (Birchmeier et al, 1986), and the serine/threonine kinaB&AF
(Shimizu et al, 1985). These findings suggest the presence of regulatory domains in the
lost amino terminal region, which, when abnormally replaced, could result in abnormal
catalytic activity, eventually leading to tumor formation.

13



Chapter 1

In tumors, amplification of genes coding for protein kinases has also been found,
usually associated with tumor progression. Thus, amplificatio@-®&RB-2has prognostic
implications in mammary and ovarian (Slameh al, 1989; Tsudaet al, 1989), and in
gastric tumors (Davidet al, 1992). Although the gene products are not mutated,
amplification of the gene causes a dosage effect, resulting in tumor progression.

C-ERB-2also illustrated that somatic point mutations can be found associated with
neoplasia as well. Point mutations in this gene have been found in human brain tumors
(Kamitani et al, 1992). Another example of a protein kinase gene in which point
mutations can lead to neoplasmsRE&T, which will be more extensively discussed in the
next chapter.

1.5 Protein kinase genes involved in hereditary disease

Protein kinases can also be involved in the development of hereditary diseases. The way in
which they are genetically altered varies. In myotonic dystrophy (DM), one of the most
prevalent dominant hereditary diseases in adults (1/8000), a "dynamic mutation" has been
found in theDM-PK gene (Aslanidist al, 1992; Brooket al, 1992; Buxtonet al., 1992;

Fu et al, 1992; Harleyet al, 1992; Janseret al, 1992; Mahadevaret al., 1992). This
dynamic mutation affects the length of a trinucleotide repeat (CTG) in the 3’ non-coding
region of this putative serine-threonine protein kinase (Brebkl, 1992; Fuet al, 1992;
Jansenet al, 1992). It remains to be clarified how this repeat expansion alters the
transcription or splicing of this and/or neighbouring genes or affects the functioning of the
protein (for review see Wieringa, 1994).

The most common alterations of protein kinases associated with hereditary disease,
however, are missense mutations, nonsense mutations, or frameshifts, affecting the
function or expression of the protein in different ways. GermIRET mutations, as will
be discussed in chapter 3, are not only found associated with the neoplastic syndromes
MEN 2A and MEN 2B, but also in the non-neoplastic congenital disorder called
Hirschsprung disease (for more details see chapter 3). Further examples are insulin
resistance, caused by point mutations in the insulin receptor gene (for review see étaylor
al., 1992), piebaldism, caused by mutationscHKIT (Giebel & Spritz 1991; Spritzt al.,

1992), and X-linked agammaglobulinaemia caused by alteration&TiK (Vetrie et al,
1993). As most of the mutations found give rise to truncated proteins, a non-functioning of
gene-products is likely causing the development of the hereditary diseases mentioned.
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The human protein kinase RET

The human protein kinase RET

Transfection studies using DNA from human T cell lymphoma led to the isolation of a
transforming gene, designat&ET (REarranged during fnsfection), which consisted of
two sequences linkedn vitro, due to cointegration during transfection (Takahashi &
Cooper, 1985). Similar results were obtained when DNA from human colon caRE&dF (

II) (Ishizakaet al, 1988) and stomach cancer (Kuneielaal, 1991) was used. The 3’ half

of these transforming genes were identical, whereas the 5’ parts were different.

2.1 RET sequence and gene structure

Using the 3’ part of the rearrangdRET genes as a probe, cDNAs of tiRET gene could
be isolated and their sequences could be determined (Takadtaghi 1988; Takahashet
al., 1989; Itohet al, 1992). As the reports published show only parts of the sequence,
confusion about the correct numbering of nucleotides and amino acids has occurred. In
Appendix 1 the respective sequences have been combined to represent the full length
cDNA sequence of both isoforms. The derived amino acid sequence of RERERgene
protein product, is also given. The indicated numbering is used throughout this thesis.
Several approaches have been applied to determine the genomic structureeKwok
al. (1993) used exon trapping. Ceccheregti al. (1993) sequenced cloned PCR products
and cosmid subclones. The cDNA sequences turned out to be spread over 20 exons
(Figure 1). Appendix 2 shows the intron-exon junctions found. Expression studies,
however, showed that the gene is expressed in at least two different isoforms, coding for
proteins of 1072 and 1114 amino acids, respectively. They differ in their last exon, which
in the short form codes for 9 amino acids, in the long form for 51 amino acids. These
isoforms are the result of alternative splicing involving the last two exons (Tai.,
1990). A recent report (Xingt al, 1994) showed that alternative splicing can also occur
in intron 4, as demonstrated by the detection of two different splice forms, one with an
insertion of 62 base pairs, the other with an insertion of 69 base pairs between the exons 4
and 5. These two isoform transcripts are present in lower amounts than the transcript
without an insertion between exons 4 and 5. Whether these isoforms are also translated
remains to be determined.
The RET gene was localized on chromosome 10 (Donghal., 1989; Ishizakaet
al., 1989). Further genetic and physical mapping refined the location oREiEgene and
its linked markers (Norunet al, 1990; Brook-Wilsoret al, 1993; Gardneet al., 1993;
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Figure 1. Map of the centromeric region of chromosome 10 giving the order of a

number of loci including RET (Hofstra et al., in press), the subregion
where the RET gene is located and a diagram of the intron-exon structure
of RET (Ceccherini et al., 1993, Pasini et al., submitted).
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The human protein kinase RET

Mole et al, 1993, Lairmoreet al,, 1993; Hofstraet al, in press). In a collaborative effort

we cloned and physically characterized a 150 kb region aroR&d (Pasini et al.,
submitted). It could be demonstrated that the gene is spread over a minimum distance of
55 kb, in EcoRI fragments of 68 kb. The gene contains a putative CA repeat in intron 5
and is flanked by two other CA repeats (Pashial., submitted) (Figure 1).

2.2 RET protein structure

From the cDNA sequence it could be inferred that RET gene product, RET, is a cell
surface protein belonging to the family of protein kinases, more specifically to the receptor
tyrosine kinases (Takahaskt al, 1985; Takahashi & Cooper, 1987). The extracellular
domain of RET has no homology with other receptor tyrosine kinases (Takabgsih)

1988; Takahashet al, 1989).

CYS RICH REGION
CADHBRIN-LIKE DOMAIN
SIGNAL PEP 1 DE
v
TRANSMLS
EXTRACILLUI AR
Figure 2. Schematic representation of the RET protein.
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Chapter 2

It contains a cleavable signal sequence of 28 amino acids, as well as a conserved
cysteine-rich region close to the cell membrane and a cadherin-like region more toward
the amino terminus (Schneider, 1992; lwametoal, 1993; Kumaet al, 1993). A single
transmembrane domain is followed by an evolutionary conserved tyrosine kinase domain
(Takahashiet al, 1988) interrupted by an inter-tyrosine kinase region of 27 amino acids.
Similarities have been found between the tyrosine kinase domaiR&®fand those of the
subfamily of platelet-derived growth factor receptors (Hanks, 1988).

2.3 Expression of theRET gene

As already mentioned, the RET protein is expressed in two isoforms of 1072 and 1114
amino acids, differing from each other in their 9 and 51 carboxy-terminal amino acids,
respectively, due to alternative splicing involving the last two exonRET (Tahiraet al,
1990). Upon Northern blot analysis, this causes five different bands representing transcript
sizes of 7.0, 6.0, 4.6, 4.5 and 3.9 kb (Tahataal,, 1990).

Expression studies oRET in normal adult rat tissue showed very low levels of
expression in lung, heart, spleen, and small intestine, whereas high lev&lEToivere
observed in brain, thymus, and testis (Tahatial, 1988). In developing mice it was
shown thatRET is expressed during specific phases and in specific tissues. In the early
stages of embryonic developmeRET was found expressed in the excretory system, and
in the peripheral and central nervous systems (Packinimsl, 1993; Avantaggiatcet al.,

1994; Schuchardet al, 1994). In agreement with this analysis, homozygous knock-out
mouse showed intestinal aganglionosis and renal agenesis (Schuehafdt1994). Until
now little is known about the expression of tRET gene in adult human tissues. Only in
the thyroid a low expression of th&RET gene was detected (Santcebal, 1990), due to
expression in some but not all C cells (Fabienal, 1994). Studies of human neoplasia
showed thatRET expression is mainly limited to some solid tumor types which derive
from migrating neural crest cells, such as neuroblastoma (lkédd, 1990; Nagacet al,
1990; Tahiraet al., 1991; Takahashet al, 1991; Hofstraet al, submitted [Appendix 6]),
medullary thyroid carcinoma and pheochromocytoma (San&tral, 1990; Itohet al,
1992; Miyaet al, 1992).
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The human protein kinase RET

2.4  Function of the RET protein

The RET protein, being a tyrosine kinase receptor for a yet unidentified ligand, is thought
to be involved in the signal transduction required for proliferation, migration,
differentiation, and survival of neural crest cells as well as for kidney organogenesis
(Pachniset al, 1994; Schuchardet al., 1994). It is not clear whether the RET protein can
also function as an adhesion protein (Takaha&shal., 1993).

Preliminary studies on thRET signal transduction pathway revealed that the RET
intracellular domain is able to bind and phosphorylate SHC adaptor, PLC-gamma, and
possibly RAS-GAP associated proteins, and suggest the existence of a RET-specific
mitogenic pathway (Borrell@t al, 1994; Santoroet al, 1994a).

Whether the different isoforms differ in function is presently unclear, although
preliminary data suggests that the expression of the two isoforms could be tissue-specific
(Pachniset al, 1993). Furthermore, they differ in their ability to bind certain factors (e.g
the GRB2adaptor) of the signal transduction pathway (Borreital., 1994).
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Chapter 3

The RET gene and its associated diseases

3.1 Papillary thyroid carcinoma

Although the first RET rearrangements were founid vitro (Takahashiet al, 1985;
Takahashi & Cooper, 1987), reports onvivo rearrangements of this gene soon followed
(Fuscoet al, 1987). They were named PTC, as they were found in papillary thyroid
carcinoma.

Three different rearranged forms &ET have been identified so faRET-PTQ
(Fuscoet al, 1987),RET-PTQ (Bongarzoneet al, 1993), andRET-PTC3 (Bongarzoneet
al., 1994; Santoroet al, 1994). In all three situations genomic rearrangements between
RET and another gene were found, resulting in the exchange of amino terminal sequences
between the protein kinase and another protBBET-PTQ is composed oH4 (D10S170)
and RET, RET-PT@ of Rla and RET and RET-PT@ of ELE 1 and RET The
rearrangements have only been observed in tumors. Together they account for not more
than 35% of PTC (Bongarzonet al, 1994). The rearranged proteins (PTCs) share some
common features: (1) the genes to which RET is translocated are all expressed in the
thyrocytes. These cells do not express wildty®ET As a consequence of the
translocation, however, the tyrosine kinase domain of RET becomes expressed. (2) the
rearrangements always take place in intron 11 of RE€l gene; (3) the genes with which
RET is rearranged confer to the RET intracellular domain a novel amino-terminal portion
which enables the chimeric proteins to dimerize in the cytoplasm. This results in a
constitutive catalytic activity of the RET-PTC protein which is ligand-independent
(Bongarzoneet al., 1989; Ishizakaet al., 1992; Lanziet al., 1992).

3.2 Multiple endocrine neoplasia Type 2A -
Familial medullary thyroid carcinoma

Multiple endocrine neoplasia type 2 (MEN 2) comprises at least two clinically distinct
dominantly inherited cancer syndromes. MEN 2A patients develop medullary thyroid
carcinoma (MTC), pheochromocytoma and parathyroid hyperplasia. MEN 2B patients do
not have hyperplasia of the parathyroid, but in addition to MTC and pheochromocytoma
show ganglioneuromas of the gastro-intestinal tract, and skeletal abnormalities. Familial
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RET associated diseases

MTC (FMTC), usually considered a distinct third type of the MEN 2 syndromes, is
characterized by MTC only. Most cases of MTC are sporadic. Approximately 25% of
cases appear in the context of inherited diseaseMEN 2 and FMTC (Saaet al., 1984;

Raue et al, 1993). For pheochromocytoma, the percentage of cases belonging to an
inherited neoplastic syndrome is similar to that found in MTC (Neumahml., 1993).

The remaining pheochromocytoma cases are sporadic.

Linkage analysis suggested that either one gene or a few closely linked genes in
the pericentromeric region of chromosome 10 could be involved in all three hereditary
diseases (Mathewt al, 1987; Simpsoret al, 1987; Norumet al, 1990; Lairmoreet al.,

1991; Moleet al, 1993). Involvement of a single gene was confirmed by the finding of
germline RET mutations in patients of all three inherited diseases (Donis-Kelteal.,
1993; Mulliganet al, 1993; Carlsoret al, 1994; Enget al., 1994; Hofstraet al, 1994)
(see Table 2 for an overview).

All RET mutations found in MEN 2A occur in one of five codons specifying
cysteine residues in the transition of the RET extracellular and transmembrane domains.
They are present in a conserved region containing a total of 20 cysteine residues. FMTC is
found associated with mutations in the same codons, with one exception where a mutation
was found in codon 768 (Glu768Asp) (Enget al, 1995), which has not been detected,
sofar, in MEN 2A patients.

Table 2. RET mutations found in MEN 2A, MEN 2B, FMTC, MEN 2A associated
with CLA, MEN 2A associated with HSCR and sporadic MTC and pheochromocytoma.
MEN 2A and FMTC data come from Donis-Keller et al., 1993; Eng et al., 1995; Kommi-
noth et al., 1994; Marsh et al 1994; Maruyama et al., 1994; McMahon et al.,, 1994;
Mulligan et al., 1994; Schuffenecker et al., 1994; Tsai et al., 1994; Xue et al., 1994,
Zedenius et al., 1994, Takiguchi et al., 1995; Landsvater et al., in press. Data on MEN 2B
from Blaugrund et al., 1994; Carlson et al., 1994; Eng et al., 1994; Hofstra et al., 1994
[Appendix 5]; Maruyama et al., 1994. MEN 2A associated with CLA from Ceccherini et
al, 1994; Hofstra et al., submitted [Appendix 7]. MEN 2A associated with HSCR from
Hofstra et al., 1994a; Mulligan et al., 1994a. Sporadic MTC and pheochromocytoma from
Blaugrund et al., 1994; Eng et al., 1994, 1995 & 1995a; Hofstra et al., 1994 & submitted
[Appendices 4 & 5]; Lindor et al., 1994; Zedenius et al., 1994. Figures between brackets
are the absolute numbers of cases. * The somatic nature of the mutation found was proven
in some or all cases. ** The case described by Lindor et al., (1994) having two exon 16
mutations in one tumor sample (see chapter 3.5).
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RET associated diseases

Using site-directed mutagenesis it was shown RBIT constructs having mutations
leading to (RET/MENZ2A)proteins with Cys634Tyr, Cys634-Arg or Cys634-Trp
amino acid changes, act as dominant transforming genes in NIH3T3 cells as a result of a
constitutive activation of the RET protein (Santoet al, 1994). This constitutive
activation was caused by a ligand-independent dimerization of the protein. Furthermore,
Santoroet al. (1994) suggested that the mutant RET-MENZ2A protein interacts with the
same substrates as the wildtype protein, suggesting a change of only the catalytic
properties of the RET-MENZ2A protein.

A positive correlation between a specific mutation (Cysé3¥g) and the presence
of parathyroid disease in MEN 2A families has been suggested (Mullggazl., 1994).
Schuffeneckeret al. (1994) found a correlation between the presence of parathyroid
disease and codon 634 mutations rather than a specific amino acid substitution. This
finding of Schuffeneckeet al. (1994), was confirmed by the data of the InternatidREIT
Mutation Consortium (Mulliganet al, in press). Furthermore, a positive correlation
between the presence of pheochromocytoma and codon 634 mutations was detected
(Mulligan et al, 1994; Schuffeneckeet al., 1994; Mulliganet al, in press). Again, no
correlation with a specific amino acid substitution of this codon could be shown. Codon
634 mutations occur in approximately 87% of all MEN 2A kindreds screened to date
(Mulligan et al., in press). Based on the above correlations, it cannot be excluded that
codon 634 mutations are associated with a higher risk for pheochromocytoma and
parathyroid disease. Despite such a possible genotype-phenotype correlation, different
germline mutations do exist that lead to similar disease phenotypes and different disease
phenotypes exist that are associated with a single specific mutation (for review see
Goodfellow, 1994). Conceivably, some mutations result in a higher or lower catalytic
function as compared with others. This, in combination with a diffeRBT sensitivity of
progenitor cells of the different cancers, may account for the differences found.

Not all MEN 2A and FMTC cases exhibit detectaRET mutations. These are
found in over 90% and in 87% of cases, respectively (Mulligaral, in press). A full
scale mutation scanning &®ET in those families which did not show any of the known
RET mutations sofar, might, however, reveal additional MEN 2A or FMTC mutations.

3.3 MEN 2A associated with cutaneous lichen amyloidosis

In some families MEN 2A has also been found associated with cutaneous lichen
amyloidosis (CLA). (Gagelet al, 1989; Nunziataet al., 1989; Ferreret al, 1991,
Kousseffet al, 1991; Chabreet al, 1992; Robinsoret al, 1992; Paciniet al., 1993).
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Chapter 3

CLA is a rare skin disorder, characterized by deposits of amyloid in the papillary dermis.
We screened 2 families in which both MEN 2A and CLA occurred. A mutation was
detected in codon 634, namely Cys63Arg (Hofstra et al, submitted [Appendix 7]).
The mutations were present in both MEN 2A and MEN 2A/CLA patieRET mutation
screening has been reported for another MEN 2A family with CLA-like lesions
(Ceccheriniet al, 1994a) in which a Cys634->Tyr mutation was found.

3.4 MEN 2B

For MEN 2B, a single mutation in théRET proto-oncogene has been found
uniquely associated (Carlsat al, 1994; Enget al., 1994; Hofstraet al, 1994 [Appendix
4]; see Table 2). This is a FC transition in codon 918 of thRET gene, resulting in the
substitution of a threonine for a methionine. Two cases have been reported that do not
harbour this codon 918 mutation (Eeg al., 1994). In those cases no otRET mutations
have been detected.

It has been shown that the MEN 2B mutation, present in the catalytic domain of
the protein, gives rise to a constitutively activated protein, in this case, however, with an
alteration of both the catalytic function and the substrate specificity of the protein (Santoro
et al, 1994). Another study arrived at the same conclusion by using a degenerated peptide
library to show that theRET mutation causing MEN 2B results in a shift in the peptide
substrate specificity of the translated RET protein (Songyeingl., 1995). In contrast to
EGFR-RET and RET-MENZ2A proteins, RET-MEN2B proteins did not form dimers
(Santoroet al,, 1994).

In 25 out of 25de novoMEN 2B cases analyzed the new mutation was of paternal
origin (Carlsonet al, 1994). There was no indication of an imprinting phenomenon.
Possibly, spermatogenesis may be more susceptible to mutations than oogenesis. In both
de novoMEN 2B patients and in the affected offspring of MEN 2B transmitting males
also a distortion of the sex ratio was observed (Carksoal., 1994).

3.5 Sporadic MTC and pheochromocytoma

RET mutations have also been reported to occur in sporadic MTC and
pheochromocytoma. The mutation which occurs constitutively in MEN 2B (MetIlli&)
is also found somatically in one third of sporadic MTC (Blaugrwtdal, 1994; Enget al,
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1994; Enget al, 1995a; Hofstraet al, 1994 & submitted [Appendice4 & 5]; Zedeniuset

al., 1994). Three otheRET mutations have been described in sporadic MTC, namely a 6
base pair deletion in exon 11 encompassing codon 630 (Donis-Kelleal, 1993), a
mutation affecting codon 768 (Glu768Asp) of exon 13 in four sporadic MTC (Engt

al., 1995), and a somatic mutation in exon 15 in several cases €Ealj 1995a).

In sporadic pheochromocytom&ET mutations have been described to occur in
three exons. In exon 16, a mutation like the one found in MEN 2B was detected in two
cases (Enget al, 1994; Lindoret al, 1995). In one of these, an additional second exon 16
mutation (a G- C transversion affecting codon 925) was found (Lin@bral, 1995). In
exon 11, a 6 base pair deletion encompassing codons 632 and 633 was detected in the
tumor only (Lindoret al, 1995). For the mutations that are different from those found in
MEN 2A and MEN 2B, it can only be speculated that they also lead to a constitutive
activation of the protein product. In exon 10, a mutation affecting codon 609 was found
somatically in one pheochromocytoma (Lindetr al, 1995). This mutation has previously
been reported in MEN 2A. In two sporadic pheochromocytoma reported by eEraj.

(1994) mutations were found in codon 620 of exon 10, a codon also known to be mutated
in MEN 2A. A somatic nature could not be proven, since constitutional DNA was not
available. Although we did find somatRET mutations in some sporadic MTC, we failed

to detect them in the majority of the sporadic cases (Hofstral. submitted [Appendix

5)).

The mutation data from the sporadic tumors might shed some light on the genetic
basis of phenotype diversity. We and others never found somatic mutations such as those
described for MEN 2A (Blaugruncet al, 1994; Enget al, 1994; Enget al, 1995a;
Hofstraet al, 1994 & submitted [Appendices 4 & 5]; Zedenies$ al, 1994). The likely
absence in MTC of somatic mutations identical to the constitutional mutations observed in
MEN 2A patients, suggests that MEN 2A mutatioper secannot cause MTC, implying
that constitutionaRET mutations are probably a necessary but not sufficient condition for
the development of this tumor. In pheochromocytoma, the situation seems to be somewhat
different. As mentioned above, a codon 609 mutation found by Liredaal. (1995) as a
somatic event, may also rarely occur in MEN 2A (Mulligat al, 1994). There is,
however, a notable difference in tumor behaviour between pheochromocytoma and MTC.
Whereas the latter may metastasize to the lungs, liver and bones, pheochromocytoma
frequently remains unnoticed, since many individuals with pheochromocytoma are
asymptomatic. These arguments suggest that pheochromocytoma and parathyroid disease
might be a direct result of some speciRET mutations, whereas MTC might be the result
of a multiple step process.
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3.6 Hirschsprung disease

Besides the MEN 2 syndromes also Hirschsprung disease (HSCR) was found to be
linked to the centromeric region of chromosome 10 (Angestal, 1993; Lyonettet al.,

1993). HSCR is a congenital disorder characterized by the absence of parasympathic
intrinsic ganglion cells in the submucosal and myenteric plexuses of the hindgut, resulting
in intestinal obstruction in neonates and in severe obstipation in infants. HSCR is regarded
to be the consequence of a premature arrest of the craniocaudal migration of neural crest
cells toward the anal end of the rectum during early embryonic development. A further
reduction of the region for the HSCR gene strongly indical®ddT as a candidate for
HSCR (Yin et al, 1994). A mutation analysis oRET was carried out and proved that
RET was indeed involved in HSCR (Edest al, 1994; Romeocet al, 1994). TheRET
mutations observed do not seem to be restricted to certain codons and are scattered all
over the gene. They can be divided in three groups, namely those leading to truncated
proteins (nonsense mutations, deletions and insertions), those consisting of missense
mutations, and those including deletions of the entRET gene, thereby causing
haploinsufficiency. Table 3 summarizes the mutations reported by efiral. (1994a),
Angrist et al. (in press) and Attiest al. (submitted).

Mutations leading to truncated proteins obviously have a major deleterious effect
on the protein and its function. The effects of missense mutations are more difficult to
predict. Some seem to inactivate the protein, as demonstrated by site-directed mutagenesis
carried out on PTC2 constructs (Pasit al, 1995). Introduction of HSCR missense
mutations in theRET part of PTC2 causes a complete loss of transforming capacity of the
mutated PTC2 proteins. This suggests that loss of function of the RET protein translated
from the mutantRET allele could be the cause of the aganglionosis found in HSCR
patients. This idea is supported by the finding that mice homozygous for a null mutant at
the RET locus, have total intestinal aganglionosis (Schuchatdtl, 1994). Although
heterozygous mice did not show an abnormal phenotype, in man HSCR cases have been
described with heterozygous deletions of 10qll1.2, implying that, in man,
haploinsufficiency forRET s critical for the development of the disease.

Mutations are found in both short and long segment HSCR, as well as in cases
with total colonic aganglionosis, suggesting that if there is a difference between these
forms of HSCR it should be allelic (Edergt al, 1994a; Angristet al, in press). No
specific mutation pattern could, however, be distinguished.
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Table 3. RET mutations found in HSCR patients. Data from Yin et al., 1994, Angrist et al.,
in press and Attie et al., submitted.

3.7 Hirschsprung disease associated with MEN 2A

The rare occurrence of both MEN 2A and HSCR in some families, has been described. To
our knowledge mutation analysis BET has been reported in 5 families, one described by
us (Hofstraet al., 1994a) and four reported by Mulligaet al. (1994a). In our family and

in three of Mulligan’s families a Cys620Arg mutation was found. The remaining family
had a Cys618 Arg mutation. In all cases a arginine is substituted for a cysteine in either
codon 618 or 620. These codons account for only 16 % of all MEN 2A mutations found
(Table 2). It might well be that only the specific mutations mentioned account for the
combined HSCR/MEN 2A phenotype. It should be noted that genetically HSCR is very
heterogeneous. Puffenbergaral (1994) showed linkage to chromosome 13922 in a large
consanguineous Mennonite family. Mutations associated with HSCR occurred in a gene,
the endothelin B receptor gene, present in this region (Puffenbetgat, 1994a). They
further found evidence for a modifier gene on chromosome 21 and for a possible
involvement of RET on the expression of the HSCR phenotype in this family
(Puffenbergeret al., 1994). In mice four loci are known for congenital megacolon based
on aganglionosis, namely lethal spotted),( piebald lethal €), and dominant spotting
(DOM) (for overview see Kapur, 1993), arRRET (Schuchardtet al, 1994). In families
showing both HSCR and MEN 2A a modifier gene might well modulate the expression of
the HSCR phenotype. On the other hand, since MEN 2/HSCR patients occur in different
branches of the families described, it is unlikely that a rare unlinked modifying locus
would co-segregate with ET mutation through multiple sibships in the same kindred
(Mulligan et al., 1994a). Consequently, the mutations found would indeed be responsible
for the combined phenotype.

3.8 Possible involvement oRET in other neurocristopathies

Based on the involvement &RET in the development of neural-crest derived tissues and
on the association ofRET mutations with neurocristopathies such as the MEN 2
syndromes and HSCR, a search fRET mutations in other neurocristopathies seems
justified. Neuroblastoma occasionally occurs in diseases associated with abnormal
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neurocrest differentiation, e.g. Hirschsprung disease. Furthermore, neuroblastomas express
RET We therefore scanned the entRET gene in a neuroblastoma patient belonging to a
family in which different neurocrestopathies occurred, including Hirschsprung disease and
ganglioneuroma, as well as in 16 neuroblastoma cell linesRE® mutations were found.
Therefore expression dRET in neuroblastoma might just reflect the differentiation status

of the tumor cells, rather than indicating an involvement in the tumorigenesis of
neuroblastoma (Hofstrat al. submitted [Appendix 6]) .
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Summary

Protein kinases can be classified in two main classes serine/threonine and tyrosine kinases.
They show auto-phosphorylation in response to stimuli (ligands) and can thereby
phosphorylate substrate proteins. For many protein kinases the signalling pathways and
also the ligands or stimuli which activate them, are still unknown.

The RET proto-oncogene encodes a receptor tyrosine kinase involved in the normal
development and the neoplastic growth of neural crest cell lineages. The ligand of the
receptor is as yet unidentified. During embryogeneRET expression is high in
neuroectodermal tissues, suggesting a function of RET in the proliferation, the migration
and the differentiation of these cell types. In adult tissues the gene is hardly expressed.
Expression is high in several tumor types derived from neural crest cells.

Transfection studies with DNA from different tumors revealed focal proliferation
due to the presence of different DNA sequences that, however, shared a common part
called RET. The original RET gene turned out to be rearranged in such a way that the
sequences coding for the extracellular part of its protein product were replaced by
sequences from elsewhere, resulting in a rearranged protein with a constitutive tyrosine
kinase activity. The same rearrangement occurs in papillary thyroid carcinoma (PTC).

Protein kinases can be involved in various ways in neoplastic syndromes and
tumors, and in non-neoplastic hereditary diseases. This also holds trirEforAfter the
genes involved in both MEN 2A and MEN 2B and in HSCR had been mapped to the
centromeric region of chromosome 10 by linkage analysis, mutationREl, a gene
present in this very region, were found responsible for the development of these diseases.
MEN 2A and MEN 2B are associated with specific mutations in REET gene resulting in
an activation of the protein translated, whereas HSCR is associated with mutations
resulting in a functional loss of the translated protein.
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The RET sequence
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Sequence of the long and short isoforms of the RET gene (according to, Takahashi et al.,
1988, Takahashi et al., 1989, Itoh et al., 1989). Base pair numbering starts from the first
amino acid.

-648 CCG CGG GGT CGC ACC CCG AGC CAG TCG GCC AGA CCT GCA TCC CGC GTA GCA TCC CTG ccC -589
-588 TCT CTG TGC AGC GGA AAG GGC AAA AGG CAG GGA CTG CAA GCG GGC GCG CAC CGG GTA GGA -529

-528 AGA GCG GCT CTG CGT AGG TGC GCG GAC CCG GGC TCC TGG GTT CCA TCC CCG CCG CGC AcCC -469
-468 TCG GGG TCC GCA CCC GGC TCC TGC CGG GCC CTT TTC GGC CGC ACC CCG CTC CCG CAC cccC -409
-408 GCT CCT CCC CAA GCC CCA CCC GGC CCA AGC CGC CGT CCC GCA CTG AGC TCC TAC ACG CGC -349
-348 CGG CCC CGG CCG CAC CCC GCG CAC GCA GAG CAA GCA CTG GAG CCC CGC CCC TTC CCG CAC -289
-288 CCC ACC CGC CTC CGG CCC CGC CTG GCC CAC CCC TGG ACC GCC CCC GCC CCG CccC cGC ccc -229
-228 TAC CCG CTC CTC GGC GCA GCC GGC GCT TGC CTA GCT TCA GTC CCG CGA CCG AAG CAG GGC -169
-168 GCG CAG CAG CGC TGA GTG CCC CGG AAC GTG CGT CGC GCC CCC AGT GTC CGT CGC GTC CGC -109
-108 CGC GCC CCG GGC GGG GAT GGG GCG GCC AGA CTG AGC GCC GCA CCC GCC ATC CAG ACC cGC -49
1 Met Ala Lys Ala 4
-48 CGG CCC TAG CCG CAG TCC CTC CAG CCG TGG CCC CAG CGC GCA CGG GCG ATG GCG AAG GCG 12
5 Thr Ser Gly Ala Ala Gly Leu Arg Leu Leu Leu Leu Leu Leu Leu Pro Leu Leu Gly Lys 24
13 ACG TCC GGT GCC GCG GGG CTG CGT CTG CTG TTG CTG CTG CTG CTG CCG CTG CTA GGC AAA 72
25 Val Ala Leu Gly Leu Tyr Phe Ser Arg Asp Ala Tyr Trp Glu Lys Leu Tyr Val Asp Gin 44
73 GTG GCA TTG GGC CTC TAC TTC TCG AGG GAT GCT TAC TGG GAG AAG CTG TAT GTG GAC CAG 132
45 Ala Ala Gly Thr Pro Leu Leu Tyr Val His Ala Leu Arg Asp Ala Pro Glu Glu Val Pro 64
133 GCG GCC GGC ACG CCC TTG CTG TAC GTC CAT GCC CTG CGG GAC GCC CCT GAG GAG GTG CcCC 192
65 Ser Phe Arg Leu Gly GIn His Leu Tyr Gly Thr Tyr Arg Thr Arg Leu His Glu Asn Asn 84
193 AGC TTC CGC CTG GGC CAG CAT CTC TAC GGC ACG TAC CGC ACA CGG CTG CAT GAG AAC AAC 252
85 Trp lle Cys lle GIn Glu Asp Thr Gly Leu Leu Tyr Leu Asn Arg Ser Leu Asp His Ser 104
253 TGG ATC TGC ATC CAG GAG GAC ACC GGC CTC CTC TAC CTT AAC CGG AGC CTG GAC CAT AGC 312
105 Ser Trp Glu Lys Leu Ser Val Arg Asn Arg Gly Phe Pro Leu Leu Thr Val Tyr Leu Lys 124
313 TCC TGG GAG AAG CTC AGT GTC CGC AAC CGC GGC TTT CCC CTG CTC ACC GTC TAC CTC AAG 372
125 Val Phe Leu Ser Pro Thr Ser Leu Arg Glu Gly Glu Cys GIn Trp Pro Gly Cys Ala Arg 144
373 GTC TTC CTG TCA CCC ACA TCC CTT CGT GAG GGC GAG TGC CAG TGG CCA GGC TGT GCC CGC 432
145 Val Tyr Phe Ser Phe Phe Asn Thr Ser Phe Pro Ala Cys Ser Ser Leu Lys Pro Arg Glu 164
433 GTA TAC TTC TCC TTC TTC AAC ACC TCC TTT CCA GCC TGC AGC TCC CTC AAG CCC CGG GAG 492
165 Leu Cys Phe Pro Glu Thr Arg Pro Ser Phe Arg lle Arg Glu Asn Arg Pro Pro Gly Thr 184
493 CTC TGC TTC CCA GAG ACA AGG CCC TCC TTC CGC ATT CGG GAG AAC CGA CCC CCA GGC AcC 552
185 Phe His GIn Phe Arg Leu Leu Pro Val GIn Phe Leu Cys Pro Asn lle Ser Val Ala Tyr 204
553 TTC CAC CAG TTC CGC CTG CTG CCT GTG CAG TTC TTG TGC CCC AAC ATC AGC GTG GCC TAC 612
205 Arg Leu Leu Glu Gly Glu Gly Leu Pro Phe Arg Cys Ala Pro Asp Ser Leu Glu Val Ser 224
613 AGG CTC CTG GAG GGT GAG GGT CTG CCC TTC CGC TGC GCC CCG GAC AGC CTG GAG GTG AGC 672
225 Thr Arg Trp Ala Leu Asp Arg Glu GIn Arg Glu Lys Tyr Glu Leu Val Ala Val Cys Thr 244
673 ACG CGC TGG GCC CTG GAC CGC GAG CAG CGG GAG AAG TAC GAG CTG GTG GCC GTG TGC ACC 732
245 Val His Ala Gly Ala Arg Glu Glu Val Val Met Val Pro Phe Pro Val Thr Val Tyr Asp 264
733 GTG CAC GCC GGC GCG CGC GAG GAG GTG GTG ATG GTG CCC TTC CCG GTG ACC GTG TAC GAC 792
265 Glu Asp Asp Ser Ala Pro Thr Phe Pro Ala Gly Val Asp Thr Ala Ser Ala Val Val Glu 284
793 GAG GAC GAC TCG GCG CCC ACC TTC CCC GCG GGC GTC GAC ACC GCC AGC GCC GTG GTG GAG 852
285 Phe Lys Arg Lys Glu Asp Thr Val Val Ala Thr Leu Arg Val Phe Asp Ala Asp Val Val 304
853 TTC AAG CGG AAG GAG GAC ACC GTG GTG GCC ACG CTG CGT GTC TTC GAT GCA GAC GTG GTA 912
305 Pro Ala Ser Gly Glu Leu Val Arg Arg Tyr Thr Ser Thr Leu Leu Pro Gly Asp Thr Trp 324
913 CCT GCA TCA GGG GAG CTG GTG AGG CGG TAC ACA AGC ACG CTG CTC CCC GGG GAC ACC TGG 972
325 Ala GIn GIn Thr Phe Arg Val Glu His Trp Pro Asn Glu Thr Ser Val GIn Ala Asn Gly 344

973 GCC CAG CAG ACC TTC CGG GTG GAA CAC TGG CCC AAC GAG ACC TCG GTC CAG GCC AAC GGC 1032
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345 Ser Phe Val Arg Ala Thr Val His Asp Tyr Arg Leu Val Leu Asn Arg Asn Leu Ser lle 364
1033 AGC TTC GTG CGG GCG ACC GTA CAT GAC TAT AGG CTG GTT CTC AAC CGG AAC CTC TCC ATC 1092

365 Ser Glu Asn Arg Thr Met GIn Leu Ala Val Leu Val Asn Asp Ser Asp Phe GIn Gly Pro 384
1093 TCG GAG AAC CGC ACC ATG CAG CTG GCG GTG CTG GTC AAT GAC TCA GAC TTC CAG GGC CCA 1152

385 Gly Ala Gly Val Leu Leu Leu His Phe Asn Val Ser Val Leu Pro Val Ser Leu His Leu 404
1153 GGA GCG GGC GTC CTC TTG CTC CAC TTC AAC GTG TCG GTG CTG CCG GTC AGC CTG CAC CTG 1212

405 Pro Ser Thr Tyr Ser Leu Ser Val Ser Arg Arg Ala Arg Arg Phe Ala GIn lle Gly Lys 424
1213 CCC AGT ACC TAC TCC CTC TCC GTG AGC AGG AGG GCT CGC CGA TTT GCC CAG ATC GGG AAA 1272

425 Val Cys Val Glu Asn Cys GIn Ala Phe Ser Gly lle Asn Val GIn Tyr Lys Leu His Ser 444
1273 GTC TGT GTG GAA AAC TGC CAG GCG TTC AGT GGC ATC AAC GTC CAG TAC AAG CTG CAT TCC 1332

445 Ser Gly Ala Asn Cys Ser Thr Leu Gly Val Val Thr Ser Ala Glu Asp Thr Ser Gly lle 464
1333 TCT GGT GCC AAC TGC AGC ACG CTA GGG GTG GTC ACC TCA GCC GAG GAC ACC TCG GGG ATC 1392

465 Leu Phe Val Asn Asp Thr Lys Ala Leu Arg Arg Pro Lys Cys Ala Glu Leu His Tyr Met 484
1393 CTG TTT GTG AAT GAC ACC AAG GCC CTG CGG CGG CCC AAG TGT GCC GAA CTT CAC TAC ATG 1452

485 Val Val Ala Thr Asp GIn GIn Thr Ser Arg GIn Ala GIn Ala GIn Leu Leu Val Thr Val 504
1453 GTG GTG GCC ACC GAC CAG CAG ACC TCT AGG CAG GCC CAG GCC CAG CTG CTT GTA ACA GTG 1512

505 Glu Gly Ser Tyr Val Ala Glu Glu Ala Gly Cys Pro Leu Ser Cys Ala Val Ser Lys Arg 524
1513 GAG GGG TCA TAT GTG GCC GAG GAG GCG GGC TGC CCC CTG TCC TGT GCA GTC AGC AAG AGA 1572

525 Arg Leu Glu Cys Glu Glu Cys Gly Gly Leu Gly Ser Pro Thr Gly Arg Cys Glu Trp Arg 544
1573 CGG CTG GAG TGT GAG GAG TGT GGC GGC CTG GGC TCC CCA ACA GGC AGG TGT GAG TGG AGG 1632

545 GIn Gly Asp Gly Lys Gly lle Thr Arg Asn Phe Ser Thr Cys Ser Pro Ser Thr Lys Thr 564
1633 CAA GGA GAT GGC AAA GGG ATC ACC AGG AAC TTC TCC ACC TGC TCT CCC AGC ACC AAG ACC 1692

565 Cys Pro Asp Gly His Cys Asp Val Val Glu Thr GIn Asp lle Asn lle Cys Pro GIn Asp 584
1693 TGC CCC GAC GGC CAC TGC GAT GTT GTG GAG ACC CAA GAC ATC AAC ATT TGC CCT CAG GAC 1752

585 Cys Leu Arg Gly Ser lle Val Gly Gly His Glu Pro Gly Glu Pro Arg Gly lle Lys Ala 604
1753 TGC CTC CGG GGC AGC ATT GTT GGG GGA CAC GAG CCT GGG GAG CCC CGG GGG ATT AAA GCT 1812

605 Gly Tyr Gly Thr Cys Asn Cys Phe Pro Glu Glu Glu Lys Cys Phe Cys Glu Pro Glu Asp 624
1813 GGC TAT GGC ACC TGC AAC TGC TTC CCT GAG GAG GAG AAG TGC TTC TGC GAG CCC GAA GAC 1872

625 lle GIn Asp Pro Leu Cys Asp Glu Leu Cys Arg Thr Val lle Ala Ala Ala Val Leu Phe 644
1873 ATC CAG GAT CCA CTG TGC GAC GAG CTG TGC CGC ACG GTG ATC GCA GCC GCT GTC CTC TTC 1932

645 Ser Phe lle Val Ser Val Leu Leu Ser Ala Phe Cys lle His Cys Tyr His Lys Phe Ala 664
1933 TCC TTC ATC GTC TCG GTG CTG CTG TCT GCC TTC TGC ATC CAC TGC TAC CAC AAG TTT GCC 1992

665 His Lys Pro Pro lle Ser Ser Ala Glu Met Thr Phe Arg Arg Pro Ala GIn Ala Phe Pro 684
1993 CAC AAG CCA CCC ATC TCC TCA GCT GAG ATG ACC TTC CGG AGG CCC GCC CAG GCC TTC CCG 2052

685 Val Ser Tyr Ser Ser Ser Gly Ala Arg Arg Pro Ser Leu Asp Ser Met Glu Asn Gin Val 704
2053 GTC AGC TAC TCC TCT TCC GGT GCC CGC CGG CCC TCG CTG GAC TCC ATG GAG AAC CAG GTC 2112

705 Ser Val Asp Ala Phe Lys lle Leu Glu Asp Pro Lys Trp Glu Phe Pro Arg Lys Asn Leu 724
2113 TCC GTG GAT GCC TTC AAG ATC CTG GAG GAT CCA AAG TGG GAA TTC CCT CGG AAG AAC TTG 2172

725 Val Leu Gly Lys Thr Leu Gly Glu Gly Glu Phe Gly Lys Val Val Lys Ala Thr Ala Phe 744
2173 GTT CTT GGA AAA ACT CTA GGA GAA GGC GAA TTT GGA AAA GTG GTC AAG GCA ACG GCC TTC 2232

745 His Leu Lys Gly Arg Ala Gly Tyr Thr Thr Val Ala Val Lys Met Leu Lys Glu Asn Ala 764
2233 CAT CTG AAA GGC AGA GCA GGG TAC ACC ACG GTG GCC GTG AAG ATG CTG AAA GAG AAC GCC 2292

765 Ser Pro Ser Glu Leu Arg Asp Leu Leu Ser Glu Phe Asn Val Leu Lys GIn Val Asn His 784
2293 TCC CCG AGT GAG CTT CGA GAC CTG CTG TCA GAG TTC AAC GTC CTG AAG CAG GTC AAC CAC 2352

785 Pro His Val lle Lys Leu Tyr Gly Ala Cys Ser GIn Asp Gly Pro Leu Leu Leu lle Val 804
2353 CCA CAT GTC ATC AAA TTG TAT GGG GCC TGC AGC CAG GAT GGC CCG CTC CTC CTC ATC GTG 2412

805 Glu Tyr Ala Lys Tyr Gly Ser Leu Arg Gly Phe Leu Arg Glu Ser Arg Lys Val Gly Pro 824
2413 GAG TAC GCC AAA TAC GGC TCC CTG CGG GGC TTC CTC CGC GAG AGC CGC AAA GTG GGG cCCT 2472
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825
2473

845
2533

865
2593

885
2653

905
2713

925
2773

945
2833

965
2893

985
2953

1005
3013

1025
3073

1045
3133

1065
3193

1085
3253

1105
3313

3373
3433
3493
3553
3613
3673
3733
3793
3853
3913
3973
4033
4093
4153
4213
4273
4333
4393
4453
4513
4573

1063
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Gly Tyr Leu Gly Ser Gly Gly Ser Arg Asn Ser Ser Ser Leu Asp His Pro Asp Glu Arg 844
GGC TAC CTG GGC AGT GGA GGC AGC CGC AAC TCC AGC TCC CTG GAC CAC CCG GAT GAG CGG 2532

Ala Leu Thr Met Gly Asp Leu lle Ser Phe Ala Trp GIn lle Ser GIn Gly Met GIn Tyr 864
GCC CTC ACC ATG GGC GAC CTC ATC TCA TTT GCC TGG CAG ATC TCA CAG GGG ATG CAG TAT 2592

Leu Ala Glu Met Lys Leu Val His Arg Asp Leu Ala Ala Arg Asn lle Leu Val Ala Glu 884
CTG GCC GAG ATG AAG CTC GTT CAT CGG GAC TTG GCA GCC AGA AAC ATC CTG GTA GCT GAG 2652

Gly Arg Lys Met Lys lle Ser Asp Phe Gly Leu Ser Arg Asp Val Tyr Glu Glu Asp Ser 904
GGG CGG AAG ATG AAG ATT TCG GAT TTC GGC TTG TCC CGA GAT GTT TAT GAA GAG GAT TCC 2712

Tyr Val Lys Arg Ser GIn Gly Arg lle Pro Val Lys Trp Met Ala lle Glu Ser Leu Phe 924
TAC GTG AAG AGG AGC CAG GGT CGG ATT CCA GTT AAA TGG ATG GCA ATT GAA TCC CTT TTT 2772

Asp His lle Tyr Thr Thr GIn Ser Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu lle 944
GAT CAT ATC TAC ACC ACG CAA AGT GAT GTA TGG TCT TTT GGT GTC CTG CTG TGG GAG ATC 2832

Val Thr Leu Gly Gly Asn Pro Tyr Pro Gly lle Pro Pro Glu Arg Leu Phe Asn Leu Leu 964
GTG ACC CTA GGG GGA AAC CCC TAT CCT GGG ATT CCT CCT GAG CGG CTC TTC AAC CTT CTG 2892

Lys Thr Gly His Arg Met Glu Arg Pro Asp Asn Cys Ser Glu Glu Met Tyr Arg Leu Met 984
AAG ACC GGC CAC CGG ATG GAG AGG CCA GAC AAC TGC AGC GAG GAG ATG TAC CGC CTG ATG 2952

Leu GIn Cys Trp Lys GIn Glu Pro Asp Lys Arg Pro Val Phe Ala Asp lle Ser Lys Asp 1004
CTG CAA TGC TGG AAG CAG GAG CCG GAC AAA AGG CCG GTG TTT GCG GAC ATC AGC AAA GAC 3012

Leu Glu Lys Met Met Val Lys Arg Arg Asp Tyr Leu Asp Leu Ala Ala Ser Thr Pro Ser 1024
CTG GAG AAG ATG ATG GTT AAG AGG AGA GAC TAC TTG GAC CTT GCG GCG TCC ACT CCA TCT 3072

Asp Ser Leu lle Tyr Asp Asp Gly Leu Ser Glu Glu Glu Thr Pro Leu Val Asp Cys Asn 1044
GAC TCC CTG ATT TAT GAC GAC GGC CTC TCA GAG GAG GAG ACA CCG CTG GTG GAC TGT AAT 3132

Asn Ala Pro Leu Pro Arg Ala Leu Pro Ser Thr Trp lle Glu Asn Lys Leu Tyr Gly Met 1064
AAT GCC CCC CTC CCT CGA GCC CTC CCT TCC ACA TGG ATT GAA AAC AAA CTEC TWIGGG 3192
N
Ser Asp Pro Asn Trp Pro Gly Glu Ser Pro Val Pro Leu Thr Arg Ala Asp Gly Thr Asn 1084
TCA GAC CCG AAC TGG CCT GGA GAG AGT CCT GTA CCA CTC ACG AGA GCT GAT GGC ACT AAC 3252

Thr Gly Phe Pro Arg Tyr Pro Asn Asp Ser Val Tyr Ala Asn Trp Met Leu Ser Pro Ser 1104
ACT GGG TTT CCA AGA TAT CCA AAT GAT AGT GTA TAT GCT AAC TGG ATG CTT TCA CCC TCA 3312

Ala Ala Lys Leu Met Asp Thr Phe Asp Ser *** 1114
GCG GCA AAA TTA ATG GAC ACG TTT GAT AGT TAA CAT TTC TTT GTG AAA GGT AAT GGA CTC 3372

ACA AGG GGA AGA AAC ATG CTG AGA ATG GAA AGT CTA CCG GCC CTT TCT TTG TGA ACG TCA 3432
CAT TGG CCG AGC CGT GTT CAG TTC CCA GGT GGC AGA CTC GTT TTT GGT AGT TTG TTT TAA 3492
CTT CCA AGG TGG TTT TAC TTC TGA TAG CCG GTG ATT TTC CCT CCT AGC AGA CAT GCC ACA 3552
CCG GGT AAG AGC TCT GAG TCT TAG TGG TTA ACC ATT CCT TTC TCT TCA GTG CCC AGC AGC 3612
ACC CAG TGT TGG TCT GTG TCC ATC AGT GAC CAC CAA CAT TCT GTG TTC ACA TGT GTG GGT 3672
CCA ACA CTT ACT ACC TGG TGT ATG AAA TTG GAC CTG AAC TGT TGG ATT TTT CTA GTT GCC 3732
GCC AAA CAA GGC AAA AAA ATT TAA ACA TGA AGC ACA CAC ACA AAA AAG GCA GTA GGA AAA 3792
ATG CTG GCC CTG ATG ACC TGT CCT TAT TCA GAA TGA GAG ACT GCG GGG GGG GCC TGG GGG 3852
TAG TGT CAA TGC CCC TCC AGG GCT GGA GGG GAA GAG GGG CCC CGA GGA TGG GCC TGG GCT 3912
CAG CAT TCG AGA TCT TGA GAA TGA TTT TTT TTT AAT CAT GCA ACC TTT CCT TAG GAA GAC 3972
ATT TGG TTT TCA TCA TGA TTA AGA TGA TTC CTA GAT TTA GCA CAA TGG AGA GAT TCC ATG 4032
CCA TCT TTA CTA TGT GGA TGG TGG TAT CAG GGA AGA GGG CTC ACA AGA CAC ATT TGT CCC 4092
CCG GGC CCA CCA CAT CAT CCT CAC GTG TTC GGT ACT GAG CAG CCA CTA CCC CTG ATG AGA 4152
ACA GTG TGA AGA AAG GGG GCT GTT GGA GTC CCA GAA TTG CTG ACA GCA GAG GCT TTG CTG 4212
CTG TGA ATC CCA CCT GCC ACC AGC CTG CAG CAC ACC CCA CAG CCA AGT AGA GGC GAA AGC 4272
AGT GGC TCA TCC TAC CTG TTA GGA GCA GGT AGG GCT TGT ACT CAC TTT AAT TTG AAT CTT 4332
ATC AAC TTA CTC ATA AAG GGA CAG GCT AGC TAG CTG TGT TAG AAG TAG CAA TGA CAA TGA 4392
CCA AGG ACT GCT ACA CCT CTG ATT ACA ATT CTG ATG TGA AAA AGA TGG TGT TTG GCT CTT 4452
ATA GAG CCT GTG TGA AAG GCC CAT GGA TCA GCT CTT CCT GTG TTT GTA ATT TAA TGC TGC 4512
TAC AAG GTG TTT CTG TTT CTT AGA TTC TGA CCA TGA CTC ATA AGC TTC TTG TCA TTC TTC 4572
ATT GC 4577

ly Arg lle Ser Tyr Ala Phe Thr Arg Phe *** 1072



3188

3247
3307
3367

GT AGA ATT TCC CAT GCA TTT ACT AGA TTC TAG CAC CGC TGT CCC CTC TGC ACT ATC CTT

CCT CTC TGT GAT GCT TTT TAA AAA TGT TTC TGG TCT GAA CAA AAC CAA AGT CTG TGC TCT
GAA CCT TTT TAT TTG TAA ATG TCT GAC TTT TGC ATC CAG TTT ACA TTT AGG CAT TAT TGC

AAC TAG TTT TCT AAA AGG T

3385

45

3246

3306
3366
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The intron-exon junctions of RET



The table is showing all intron-exon junctions of the RET gene. Between parentheses the number
of the first basepair of each exon is mentioned according to the sequence presented in appendix
1. The size of the exons, the approximate size of the introns and 10 flanking intronic basepairs
are given according to Ceccherini et al., 1993, Pasini et al. submitted (for references see page

32)

Appendl x

3" end 5" end EXON 3' end S' end Intron
intron exon number exon intron size

(bp pos. and size

RET
gcacgggcgATGGCGAAGG exon 1 CTAGGCAAAGgtgagttctg

D 73 bp 24000 bp
cttcccacagTGGCATTGGG exon 2 AGTGT CCGCAgtaagggagc

74D 264 bp 1650 bp
ctctctgcagACCGCGGCTT exon 3 CTCCTGGAGGgtgagtgccg

338D 288 bp 2350 bp
tggtgcgcagGTGAGGGTCT exon 4 AGCGGAAGGAgtgcttgtcc

(626) 242 bp 800 bp
catcctgcagGACACCGTGG exon S CATGACTATAgtaagagggg

868) 196 bp 2400 bp
ctacctgcagGGCTGGTTCT exon B ATTTGCCCAGgtgagcccat

(1064) 200 bp 2000 bp
gcccccctagATCGGGAAAG exon 7 GAGGGGTCATgtgagtgcct

(1264) 259 bp 680 bp
ccacctgcagATGTGGCCGA exon 8 GATGGCAAAGgtaagccctg

1523 126 bp 620 bp
tcctgtgcagGGATCACCAG exon 9 GACTGCCTCCgtaagcaggg

(1649) 111 bp 610 bp
tctgecctcagGGGGCAGCAT exon 10 GACATCCAGGgtgagtggagt

(1760) 120 bp 850 bp
ccacccacagATCCACTGTG exon 11 CAAGATCCTGgtgagggtcc

(1880) 257 bp 1650 bp
tccaacatagGAGGATCCAA exon 12 GATGCTGAAAgtacctgcca

2137 148 bp 1600 bp
tgcatttcagGAGAACGCCT exon 13 AGCCAGGATGgtaaggccag

(2285) 108 bp 1100 bp
ccgecccccagGCCCGCTCCT exon 14 CGAGATGAAGgtgcgtgcat

(2393 215 bp 350 bp
ttcctcacagCTCGTTCATC exon 15 GAGGAGCCAGgtgcccagtc

(2608) 123 bp 1700 bp
ttctctttagGGTCGGATTC exon 1B AAAGTGATGTgtaagtgtgg

2731) 71 bp 1650 bp
ctctctgcagATGGTCTTTT exon 17 GCGAGGAGATgtgagcggagg

2802) 138 bp 1100 bp
ttcccaccagGTACCGCCTG exon 18 TAAGAGGAGAgtgagtgcct

(23940) 100 bp 1600 bp
togtcttccagGACTACTTGG exon 18 AAACTCTATATG

(3040) 148 bp 0 bp

GTAGAATTTCCCATGCATTTACTAGATTCtagcaccgct

(3188) 29 bp 1350 bp 47
tcatttttagGCATGTCAGA exon 20b CTTTGATAGTtaacatttct

(3188) 154 bp
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Abstract

Recently identified mutations affecting different domains of the RET proto-oncogene are
associated with multiple endocrine neoplasia type 2A (MEN 2A) and type 2B (MEN 2B), familial
and sporadic medullary thyroid carcinoma (MTC) and Hirschsprung disease (HSCR). In order
to facilitate the screening for RET mutations and to study possible genotype-phenotype
correlations we established exon-intron junctions and extended the intronic sequences flanking
the 20 exons of this gene. This made it possible to design primers and develop PCR conditions
useful for SSCP analysis of the whole RET coding sequence. Nine conformational variants were
observed which after sequencing turned out to be 8 silent mutations and a conservative amino
acid substitution. Restriction analysis performed on DNA samples from unrelated controls
confirmed the polymorphic nature of six of these nucleotide changes and made it possible to
estimate the frequency of the corresponding alleles.

The recent identification of mutations in different domains of tR&T proto-oncogene in
inherited human disease, namely multiple endocrine neoplasia type 2A (MEN 2A) (Donis-Keller
et al, 1993; Mulliganet al, 1993) and type 2B (MEN 2B) (Carlsoet al, 1994; Enget al,

1994; Hofstraet al,, 1994), familial and sporadic medullary thyroid carcinoma (FMTC or MTC)
(Donis-Keller et al., 1993; Enget al., 1994; Hofstraet al., 1994; Mulliganet al, 1994), MEN

2A with associated cutaneous lichen amyloidosis (CLA) (Ceccheenial, 1994) and
Hirschsprung disease (HSCR) (Edezyal., 1994; Romecet al, 1994), suggests th&ET plays

a critical role in the differentiation of specific cell lineages of neural crest origin and in the
maintenance of their differentiated state.

In order to facilitate the detection of point mutations responsible for these disorders we
report in table 1 the intronic sequences flanking the 20 exons oRtEE proto-oncogene. The
intronic sequences flanking the 3’ end of exon 19 which encodes the last 9 amino acids of the
short form of the RET protein are also shown in the same Table. The latter amino acids are
alternative to the 51 encoded by exon 20 in the long form of the RET protein (Tahigd,

1990). An 'N’ within a sequence indicates a nucleotide which could not be precisely identified.

One hundred and twenty three DNA samples from unrelated HSCR, MEN 2A, MEN 2B
and MTC patients have been screened by PCR-SSCP analysis for the 20 exonsR#EThe
proto-oncogene, during a study aimed at the detection of causative mutations which in part have
already been reported (Ceccheratial, 1994; Hofstraet al., 1994; Romecet al, 1994), using
oligonucleotide primers which are underlined in Table 1. Seven additional, equally efficient sets
of primers, partially or totally located externally to the previous ones, are printed in capitals in
the same Table for exons 5, 6, 12, 13, 15, 16 and
19, respectively. Forward and reverse primers specific for exons 6, 10, 11, 13 15, 16 and 17
were already reported (Ceccherigi al, 1994; Hofstraet al, 1994; Romecet al., 1994). The
forward primer used for exon 11 was previously described by Donis-Kelleal. 1993 (8AF
primer).
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The PCR conditions we used for the SSCP analysis (annealing temperature and
magnesium concentration) are reported in Table 2 together with the expected size of the
fragments. In order to improve the resolution of the SSCP analysis, restriction cleavage with the
enzymes indicated was also carried out in all those cases where the amplification product was
longer than 300 bp (Glavac & Dean, 1993; Hayashi & Yandell, 1993). Several gel compositions
and running conditions were applied for each of the 20 exons in order to increase the probability
of detecting SSCP variant bands (Glavac & Dean, 1993; Hayashi & Yandell, 1993). In particular
6-8 pl of either restricted or non-restricted PCR product were loaded on nondenaturating
polyacrylamide gel containing 6% acrylamide prepared with a 49:1 ratio between acrylamide and
bisacrylamide and alternatively without glycerol or with 5 and 10% glycerol, either in 1X TBE
or 0.5X TBE buffer. Gels were run both at room temperature (overnight at 6W with 10%
glycerol and in a cold room 1-6 h at 50 W without glycerol and with 5 and 10% glycerol). In a
non radioactive PCR, DNA bands on the gel were visualized by silver staining according to a
protocol already described (Budowé¢ al., 1991).

After SSCP analysis, every PCR product showing a conformation variant was sequenced
as already reported (Hofstet al, 1994; Romecet al,, 1994) and the corresponding nucleotide
change thus assessed. Table 3 reports the nucleotide change changes and the corresponding
amino acid changes associated with each of 9 mutations found after PCR-SSCP analysis and
direct sequencing. Eight of these are silent mutations while one represents a conservative amino
acid change, namely in exonll where in our control sample we could detect either a glycine
residue (79%) or a serine residue (21%) at codon 691 of the RET protein.

In order to make possible the screening of a large set of unrelated individuals for those
variants which were observed by SSCP analysis in more than one sample (namely in exons 2, 3,
7, 11, 13 and 15), the DNA sequence surrounding each nucleotide change was analyzed and
restriction sites generated or destroyed by the mutation were identified. The restriction sites are
reported in Table 3 together with the expected sizes of the restricted fragments (constant bands
are not shown). Such a restriction analysis allowed us to assess the polymorphic nature of 6 out
of 9 SSCP variants and to estimate the frequency of the corresponding alleles (Table 3). No
genotype frequency for each of the 6 polymorphic loci was found to deviate from the expected
value calculated according to Hardy Weinberg equilibrium. PIC values have also been calculated
according to Hearneet al. (1992) and are shown in the same Table. Despite their low
information content these polymorphisms may be useful for population genetic studies. The
study of a possible linkage
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Table 1. Sequences flanking the 20 exons of the RET proto-oncogene and couples of
primers designed for their amplification (indicated as underlined or in capital
letters)

gctgagtgcecececggaacgtgegtcgegeccccagtgteegtegegtecegecgegeccecgggeggggatggggeggecagactgagegecgeaccee-
gccatccagacgreggecctagecgeagtece tccagecgtggecccagegegeacgggeg(l)
EXON1gtgagttctgccggecgecggaiegcagggccagggegaagttggegecgagcageggacggcegcgticagaagegcectttetgtttgec
gtgggcacgcgggcetgtgcggtccccggeccggecacccggectcggctgggagecgcagtggetgecggegggc-
gggggcggegggeaggacgectcgggecgggegectcgggecgggactgggegggtetcgggegggagegga

tccntgaagaagccatattctcaccatcactcacatccctacttcccaday ON2gtaagggagccgcecccaacacccaccccgtgeccce-
accccaccccttcctcaagecgeccttatcacagcecgcetggaagettggcatggcettcececccccaccgetggtgtggaaggegtenaggg-
gttaagtgaggctggcectgectetgtgtcecmgecyggagagaagcecaggacaagcttcagggcetgegtgaggetgtaggagtttggagacacacg:
ggantcatccgggtacactcttcctgccagancccgaatccctettccag

ttgtggaccttggtggggaccagggtttacaccagccctggagctcctgecctcnneccccattcccgactgecctggcagatgtggcecgatgecccce-
acagacaacttctctctgcagXON3gtgagtgccgaccttgtggggccgcecccacagtgectgctactgctggtetigcgagcecctt-
gacacaagccatctggtttattcttcaccttcatgccatcagttcattcaatattccagagtacctctgacatactgcagg

tctgaccgcagagcccccttcccgaggaaagcggctggeccggteccggetggtgatcacgeggggeccctgtageagot@N4gt-
gcttgtccgegegtgcetgtggtetacceagtgtetgtcetccggecacagttegtttctcggteggtitagigarcacccaacceg

tggctctacaacacacatctggtccacctatgggctgtgtggacgtgcagcatCCTAAGGTCTCTGGTTTTGGggggtctgaggggnce-
catctcgcctgcactgaccaacgccctcagectgcag XONSgtaagaggggcetggtggcacggcectggctaggccccca-
gGAAATGAGGTGCTCGCTCTTcatgggcaagcagcaccctacacacatgcacacctggcatggccctctgt

tgcgtacacatgcacacacacaggctgcctcaaattgagaagggttccttggactttcagttcagtaaatcccaacgtttgaacattggtgctaa
cttaggaccagccccaggcctgttgcatggcactgtatgtgtgaaagtgcgtgtttgcaccagtgtgagtgcggggctgtgtct-
gggaagaggtgtgctacaCATGAGGAAGCAGCCAGAGCagcttggtggtcattgttgtgcccctaagtg
EXONG6gtgagcccatacctattgcctgtctggapattgaaaggccaagggacatgggggcACAGGGAGGCAGGTGACACTgC
ctcttggcccaaccagcacagagtagactg

tctaccctcaggccattaggccggtccagetgectggcetaaggtgttcecctgtgecccdE¥@N 7gtgagtgectgctccagggaggga-
gggtcggggtctgggadictggagectgggect

atccgtgggcagntcagctggtgctgttccctgtgggcactagectggacgctgggeccaggcecagccccctgtgaccctgcttgtctgeca-
cctgcad XON8gtaagccctggaaacgcccaagggaggcctgcaggggcegatggcaaamtggggtect

tctgcctagagtgtggggtgtggcggggctcccacatgggtgacagtctgetgtgtgicatgigON9gtaagcagggtitaatcagggca-
tgggaacaggtaggagatagtaggggaaacctggatcccacaggcacttcagccagaggttgccagggcetgtcagttctatgcatcangctgagce
tctgtgcattgcatcctgcat

gcgccccaggagagctgagtgggctactgecctcade XON10gtgagtgggtggcggecgggaccaccaccacctcecag
ccccacagaggtctcaacagcacatctgaggt

cctctgcggtgccaagccacaccacccccacccacB¥ON1lgtgagggtccctgcgggcagggaagatcccctgecct-
ccccagctgecttccagggagggaggccagctggggagacagaggccatcctgtgaggggctgccaacgcectgggcagacgagg
cctgtgttctgcccccatttccatagggegcetgtgtggggacagtctgtggggtgggactatgatgaggtgccgttcccatctaggtgagaggcagtg-

gtcagggtcacagcatcgggenggggagcagceagtgtggatngaggggeaccgaagtc

tcagatgacagccggttctctgcacattggaacttgtccatggggcctcctttaagggtcttGCCTTCTTCCTCCCCTGTCAT cctcacactt-
ttccececctctictcccccticcctdatcaacatag X ON12gtacctgccaggcacaggcACAGTGCCCCTGGGGGAGTCte-

€0g99ggggggcgggtgaggeccctectgeccageatgggaccctgaaga
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tgatgagcccctgtccactgatcccaaaggctgggagaagcectcaagcagceatcgtctttgcaggcectctctgtctgAACIHASGG
GGCGATGCAggtccatcctcacctggtatggtcatggaaggggcttccaggagcgatcgtttgcaacctgctctgtgctgecatttcag
EXON13gtaaggccagctgcagggiggtgggcagccactgcacccaggctggggGCTCCATACAGCCCTGTTCTcecctcttt-
ctcect

cctggctcctggaagacccaagctgecctgagcacgcccagggcccctectctccgeccccExgON14gtgegtgeatat-
ggctctgcacccagccagccccggcecaggcecacaccctgaccgaccac

catgtcacaccctgactccaccacgcccctgccatgccacacccccggceccaggtctcaccaggcecgctacccgggceccacacacc-
acccctctgctggtcacaccaggctgagccagTGACCGCTGCTGCCTGGCCAT(ggcectgacgactcgtgctaittigcie
ON15gtgcccagtcccggggatgaggcecggggctcccagggatcccaggtgcaccatgggGCAGGCAGTCCTTGGGAAGC-

ctaggaaagatazgaagattagtggagctctaagc

AGGGATAGGGCCTGGGCTTCtcenttacccctccttcctagagagttagagtaacttcaatgtctttattccatcttcte-
tttageE XON16gtaagtgtggotgttgCTCTCTTGGGGTGGAGGTTAcageacccttatacatgtagtggggccacgacncc-
cgtctgtgcagcttggccagggaattgcactgg

tctgtgagggccaggtggagccactcactggtccttcacptagEXON17gtgagcggggactggctttggcccagcecte-
acttgggaaggaaggggacatctgtgtgcattccctatccagagcagccccaggagaaaccaggagaagtggggggtggg-

gagtgggcagggcagaggttagagag

ccccagtcccacgaggctcagagatgtcagcgatgcagaaatagctttggagttggagacagagcacactgggcccagggtacag
ggcagggtgcgatggetgtggtgggctgtectamacctggecctgettggatcatattggectgtctgetcttcccaccag
EXON18gtgagtgcctgggtccaattcccacaagctgaaagtggcttggggagactccagectcaggcaggagt-
tttagccctcagagttcccagtgtggggecacagtgggattgtgcagagagagagagtcatgctctcecctgcatgcatacagcagatt

ctgagttgtatcTAGTTGTGGCACATGGCTTGgagtgaccggccatctectgtccage XON19GTA-
GAATTTCCCATGCATTTACTAGATTC @tagcaccgctgtccccTCTGCACTAITTTCCTCtetgtgatgcttttt-
aaaaatgtttctggtctgaacaaaaccaaagtctgtgctctgaacctttttatttgtaaatgtctgacttttgcatccagtttacatttaggcattattgcaactagtt
ttctaaaaggt

tgccgaccagtggtttgaacatcaaagggagttttgccaaggccttactgtctgcacttgaagttttggtictigagigraatga-
tctgttttcatttttage XON20taacatttctttgtgaaaggtaatggactcacaaggggaagaaacatgctgagaatggaaag-
tc®taccggecctttctttgt

(1)The 5 and 3’ transcribed untranslated sequences had been already reported together with
those corresponding to each exon (not shown) (see Takahashi et al., 1988, 1989 & Ceccherini et
al., 1993). (2) The bold sequence downstream exon 19 encodes for the last nine amino acids of
the short form of the RET protein. Alternatively 51 amino acids encoded by exon 20 are
incorporated in the long form of the RET protein.
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Table 2

oncogene

PCR conditions for the amplification of each of the 20 exons of the RET proto-

PCR conditions

Exon Annealing Mg conc. Product Restrictiolize of the
temp . (C)  CmM) size (bp) cleavage fragments

1o 68 1 166

2 57 1.5 387 Sau3Al 163+224
3 65 1 375 Sac | 182+192
4 61 1 342 Hinf | 145+197
S 60 1 275

Se S0 1.5 3289 Ava | 151+178
6 60 1.2 251

Be S6 1.5 333 Hael || 138+184
7 62 1.2 367 BamH | 176+191
8 63 1.2 262

9 60 1.2 160

10 68 1.5 187

11 65 1.5 416 Stul 204+212
12 61 1.5 225

12< 58 1.5 267

13 60 1.2 238

13 57 1.5 277

14 65 1.5 328 Sty | 127+201
15 60 1.2 234

15¢ 60 1.5 251

16 53 1.2 135

16¢ 58 1.5 192

17 60 1.2 231

18 60 1.2 234

19 59 1.2 229

19¢ 55 1.5 260

20 55 1 266

All reactions were set up at 30 cycles following previously described general conditions (Romeo
et al., 1994).’10% DMSO and a 1:100 ratio between forward and reverse primer were also
neccessary’PCR condition to be applied when the corresponding primers printed in capitals in
Table 1 are used.

disequilibrium between these polymorphic alleles and the most common causative mutations of

the RET gene observed in some neurocristopathies might be of interest.

Since each of the remaining 3 SSCP variants was observed in only one chromosome out
of the 246 alleles screened, the corresponding nucleotides changes have been considered as

private variants (Table 3).
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The presence of silent mutations found in exons 13 and 15 oRIB€ proto-oncogene
was already reported (Mulligaet al, 1993), although the frequency of the corresponding
polymorphisms had not been investigated.

The PCR products used in this study for the SSCP analysis dRElegene may be also
used efficiently with either modified SSCP protocols, like RNA-SSCP (Danenéesrd, 1992),
dideoxy fingerprinting (Sarkaet al., 1992), amplification refractory mutation system (ARMS)-
SSCP (Loet al, 1992), or other procedures, suitable for the screening of point mutations, like
denaturing gradient gel electrophoresis (DDGE) (Myetsal., 1985a), mismatch cleavage by
RNAse or chemical agents (Myerst al, 1985b; Cottonet al, 1988), electrophoresis of
heteroduplex (Whitet al., 1992).

The intronic sequences and the 27 sets of primers reported here together with the PCR
conditions suitable to amplify the corresponding DNA fragments, represent therefore a valuable
tool for the overall screening of the coding sequence of REET proto-oncogene. Moreover
mutations affecting both the consensus sequences for the RNA splicing and the sequences coding
the last 9 amino acids of the short form of the RET protein can also be detected.

Table 3 Nucleotide changes (polymorphisms and private variants) detected in the coding
sequence of RET

EXON Nuc leotide Amino acid Restriction Size of the alleles controls Allele 1 PICo
change substitution sitechanged (1 2» tested CN) frequency

polymorphic nucleotide changes

2 GCG GCA Ala 45 Eagl 104+283 387 52 0,71 0.41
3 GTC GTA Val 125 Mbo | | 64+72 136 43 0.98 0.04
7 GCG GCA Ala 432 Bsml 32497 129 45 0.298 0.41
11 GGT AGT Gly 6391 Ser Banl 185+223 408 53 0.79 0.33
13 CTT CTG Leu 768 Taql 106+133 239 46 0.74 0.38
15 TCC TCG Ser 904 Rsal 81+130 211 48 0.21 0.33

Private nucleotide changes

6 TCG TCA Ser 386 123
7 TCG TCA Ser 462 123
11 ATC ATT lle 647 123

®Allele 1 is always defined as the one with the restriction site present, allele 2 with the
restriction site absentPIC: polymorphism information content calculated as described by
Hearne et al.(1992)

The point mutation analysis of tHRET gene, now feasible for its whole coding sequence
and exon-intron junctions, will contribute to the identification of genotype-phenotype correlations
in MEN 2A, MEN 2B, MTC and HSCR patients, thus improving the comprehension of the
biological role of RET in differentiation and the maintenance of the differentiated state of cells
of neural crest origin. To the same end patients with other neurocristopathies and families
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showing recurrence of HSCR and MEN 2 cosegregating in the same members (@teadly
1982; Mahaffeyet al., 1990) should also be considered for mutation screening oREEgene.
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Abstract

Multiple endocrine neoplasia type 2 (MEN 2) comprises three clinically distinct dominantly
inherited cancer syndromes. MEN 2A patients develop medullary thyroid carcinoma (MTC) and
phaeochromocytoma. MEN 2B patients show in addition ganglioneuromas of the gastro-
intestinal tract and skeletal abnormalities. In familial MTC, only the thyroid is affected. Germ-
line mutations of the RET proto-oncogene have recently been reported in association with MEN
2A and familial MTC2 All mutations occurred within codons specifying cysteine residues in the
transition point between the RET protein extracellular and transmembrane domains. We now
show that MEN 2B is also associated with mutation of the RET proto-oncogene. A mutation in
codon 918, causing the substitution of a threonine for a methionine in the tyrosine kinase
domain of the protein, was found in all nine unrelated MEN 2B patients studied. The same
mutation was found in six out of 18 sporadic tumours.

As the MEN 2 syndromes resemble several other hereditary cancers in occurring both in a
familial form, characterised by a dominant pattern of inheritance, and in a sporadic form,
involvement of tumour-suppressor genes seemed fkdlge disease locus for both MEN 2A

and MEN 2B has been assigned to chromosome 10 (refs 4-6). Still, MTCs and phaeochromocyt-
omas seldom show allelic losses for this chromosome, although these would be expected in the
case of a tumour-suppressor mecharfsrRecently, mutations in thRET proto-oncogene were
described in association with MEN 2A If these mutations underlie the MEN 2A phenotype, a
dominant or dominant-negative mechanism is a more probable explanation for this syndrome.
Thusfar, no mutations have been reported to be associated with MEN 2B.

Determination of the gene structure RET allowed us to design specific intronic primer
pairs for almost all exons. When these were used in a single-strand conformational
polymorphism (SSCP) analysis on constitutive DNA from MEN 2B patients, a variant pattern for
exon 16 was found in the DNA from all 9 MEN 2B patients, but not in DNA from 70 indepen-
dent persons, nor in DNA available from the parents of three of the MEN 2B patients (Fig. 1).
Sequence analysis of the polymerase chain reaction (PCR) products of exon 16 reveal&l a T
transition at position 2753 (appendix 1) in one of the alleles of all the MEN 2B patients. A
threonine (ACG) is thereby substituted for a methionine (ATG) at codon 918. As the mutation
eliminates aFok restriction site (GGATG(N)9/13 GGACG(N)9/13), digestion of the PCR
products of exon 16 by this restriction enzyme was used to confirm the presence of the mutation
in all MEN 2B patients (Fig. 2). As the MEN 2B patients analysed originated from The
Netherlands, Italy and North America, our 12345678

9

60



RET, MEN 2B and Sporadic MTC
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FIG. 1 Single-strand conformational polymorphism (SSCP) analysis” of RET. The
adoradiogram shows SSCP patterns of PCR-amplified products of exon 16 of the RET
gene. MEN 2B patients are indicated as 1-4 and 7-9, the parents of 4 are indicated as 5
and 6. Arrows indicate the positions of the SSCP variant bands.

METHODS.

The PCR primers designed were fRET 16 (5-AGGGATAGGGCCTGGGCTTC-37) and
rRET 16 (5 -TAACCTCCACCCCAAGAGAG-3"). They give a PCR product of 192 hase
pairs (hp) containing the entire exon 16 and part of the flanking intronic sequences.
Radioactive PCR amplification was carried owt on 150 ng of DNA in a total volume of 30
wl for 25 cveles at 92°C for 35 5, 58°C for 35 s and 72°C for 60 s using (c-"P)dCTP.
SSCP analvsiy was carried out under three different sets of conditions. The variant pattern
could be detected in all The figure shows an autoradiogram of a 6% acrylamide gel
containing 10 % gleerol. DNA was electrophoresed in 45 mM Tris-Borate, 45 mM Boric
acid, | mM EDTA, pH 8.0, at 20°C,
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Appendix 4

results suggest that a single RET mutation may underlie most, if not all, of the MEN 2B
Cases,

When analysing tumour DNA from 18 sporadic MTC patients for this mutation, we
detected in six cases the same SSCP variant, Fokl restriction pattern and sequence as
found in the MEN 2B patients. No indication for an exon 16 mutation was obtained for
five sporadic phaeochromocytomas. The same held true for 15 independent MEN 2A

patients.
1 B! Pl Mi B 512 SI3 SI4
8 r wr ar N F ¥ Fr ur
192bp —
119 bp —
73 bp —

FIG. 2 Restriction patterns of PCR products of exon [6 with Fokl The described
muiation eliminates a Fokl restriction site. Whereas normally both alleles are restricred, in
the presence of the mutation the mutated allele will not be restricted. A, B, The undigested
fw) and the restricted (r) PCR products of constitutive DNA from a MEN 2B patient,
designated Bl, and from his parents designated P1 and M1 (4), and tumour DNA from 3
sporadic MTC patients, S12-514. As can be sean, 812 has the mutation whereas 813 and
8i4 do not (B).

METHODS, A non radioactive PCR was carried owt described in Fig. | legend The PCR
products were purified in low-melting-point agarose, isolated (Sephaglas BandPrep kit
Pharmacia) and digested for | h wsing 2 U Fokl (Boehringer) in the restriction huffer
recommended by the manufacturer. The samples were run in a | % normal agarose/2 %

low-melting-poini agarose gel,
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The codon 918 mutation affects the intracellular tyrosine kinase domain of'*°RET
whereas the mutations associated with MEN 2A are all in the extracellular region, close to the
transmembrane domain. This may account for the different phenotypes of MEN 2A and MEN
2B. Occurrence of a somatic mutation of tRE&ET proto-oncogene may lead to neoplasia of the
tissue involved. This explains the finding in sporadic MTC of mutations affecting the same
codons as in MEN 2Aand in MEN 2B (the present study). No constitutive DNA was available
for our patients with sporadic MTC. However, the absence of additional MEN 2B symptoms
makes a germ-line mutation unlikely.

The T- C transition in codon 918 of thRET gene affects the protein kinase domain of
the gene product in subdomain VIII, one of the major conserved subdomains of the protein
kinases. In some of the subfamilies of protein tyrosine kinases, including the platelet-derived
growth-factor receptor subfamily to which the RET protein belongs, there is a methionine at the
relevant peptide position in the kinase domainn the remaining subfamilies, this position is
occupied by a threonine in the large majority of cases. The protein serine/threonine kinase class
shows a substantial diversity at this position, but no occurrence of thrébniemarkably, the
RET mutation in MEN 2B leads to the substitution of a threonine, mainly found in the other set
of protein tyrosine kinases, for a methionine, normally found in the set to which RET belongs.
We therefore, expect that the mutation causes some change in substrate specificity or perhaps in
mode of regulation rather than in catalytic function.

As protein tyrosine kinases do not occur in yeast and as a protein tyrosine kinase
catalytic domain is part of many growth factor receptors, tyrosine specificity may have evolved
in multicellular eukaryotes to play a role in cell-to-cell communicafiorFor RET, this
suggestion is corroborated by similarities between its extracellular receptor domain and
cadherins, transmembrane proteins that mediate cell-cell adiedoeritical role in mammalian
embryogenesis, notably in migrating neural crest cells of the developing peripheral nervous and
excretory system, is suggested by the resultsR&T expression studies and gene targeting
experiments in micé®. From these observations we are now beginning to understand the various
clinical symptoms of the syndromes in which RET plays a role.
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Abstract

Sporadic medullary thyroid carcinoma (MTC) and pheochromocytoma (PC) have been reported
to be associated with some specific RET gene mutations. A complete mutation analysis of the
whole coding sequence, including the intron-exon junctions, has only recently become possible.
In order to assess the role of RET in the development of MTC and PC we have screened 15
sporadic MTC and 5 sporadic PC cases for RET mutations by a systematic analysis of all exons.
Apart from the Met918 Thr mutation which we had detected earlier in 6 of the MTC cases, we
found a Cys634 Trp mutation in only one additional MTC, the claimed sporadic nature of
which could not be confirmed. We conclude that; (i) a somatic Met9I& mutation of Ret is
sufficient for MTC development; (ii) the majority of sporadic MTC is likely due to mutations in
(an) unidentified gene(s) other than RET. Since PC is a frequent complication in families
suffering from von Hippel Lindau disease, for which mutations of the VHL gene are responsible,
we screened the 5 sporadic PC cases also for VHL mutations. This revealed a GIg&64
mutation in one specimen. Thus in PC, most tumors are presumably due to mutations in (an)
unidentified gene(s) other than RET and VHL.

Introduction

An estimated 20-25% of medullary thyroid carcinomas (MTC) appear in the context of inherited
disease, i.e. in the multiple endocrine neoplasia type 2 (MEN 2) syndromes and the familial
form of medullary thyroid carcinoma. (Saa@t al, 1984; Raueet al, 1993). For
pheochromocytomas (PC), the percentage of cases being part of an inherited neoplastic
syndrome is similar as for MTC (Neumarat al., 1993). They occur as the only type of tumor
in familial PC (Calkins & Howard, 1947; Kaufman & Franklin, 1979), in addition to MTC in the
MEN 2 syndromes, or as one of several types of tumors in Von Hippel Lindau disease. Their
occurrence, albeit at a very low frequency, is also known in neurofibromatosis type I. The large
majority of PC, however, consists of sporadic cases.

MEN 2A, familial MTC (Mulligan et al, 1993a; Donis-Kellert al., 1993; Mulliganet
al, 1994; Enget al., 1995a), and MEN 2B (Hofstrat al., 1994; Carlsoret al., 1994; Enget al,,
1994) are associated with specific constitutiRET mutations in exons 10, 11, 13 and 16,
respectively. By examining only exon 16 for mutations we detected the mutation which
constitutively occurs in MEN 2B (Met918Thr) somatically in one third of sporadic MTC
(Hofstraet al, 1994). Comparable results have been reported by othersdEalg1994; Enget
al., 1995b; Zedeniugt al., 1994; Blaugruncet al., 1994). Sofar, three othdRET mutations in
sporadic MTC have been described, namely in onee cas6 base pair deletion in exon 11
encompassing codon 630 (Donis-Kellat al, 1993), a mutation affecting codon 768
(Glu768- Asp) of exon 13, found in several sporadic MTC (Eeigal., 1995a), and according to
preliminary data of Enget al (1995b) a somatic mutation in exon 15 also in several cases.
Constitutive mutations of codon 630 in exon 11 or of exon 15 have never been reported to occur
in MEN 2 or familial MTC patients, whereas the exon 13 mutation has also been found in one
family with familial MTC (Eng et al, 1995a). Several studies describe an analysis of sporadic
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MTC cases (Mulligaret al.,1993a; Donis-Kelleet al,, 1993; Zedeniugt al., 1994; Blaugrundet

al., 1994; Enget al, 1995a). No somatiRET mutations like those found in MEN 2A patients
are presented in these reports, but results from a recent studyetEalg 1995b) include two
sporadic MTC with exon 10 mutations affecting codons 611 and 620, respectively, known to
occur in MEN 2A families. However, in the first case constitutive DNA was not available,
whereas in the second it was, but turned out to also contain the mutation. Therefore, it is still
doubtful whether there do exist sporadic MTC with soma&iET mutations like those in MEN

2A. It may be noted that in several of these reports mutation analysis had been restriete@d to
exons 10, 11, 13 and 16.

Reports on mutation analysis &ET in sporadic PC revealed mutations in three exons.
In exon 16 a mutation like the one found in MEN 2B, was detected in two PC ¢Emd), 1994;
Lindor et al, 1995). One of these was accompanied by a second mutation in exon 16Ga G
transversion affecting codon 925 (Lindet al, 1995). In exon 11 a 6 base pair deletion was
detected, in the tumor only. The deletion encompassed codons 632 and 633 (kindby
1995). In exon 10 a mutation affecting codon 609 was found somatically in one PC (Letdor
al., 1995). The codon has previously been reported to be mutated in MEN 2A. For the two
sporadic PC that Engt al.,(1994) reported to have mutations in codon 620 of exon 10, a codon
also known to be mutated in MEN 2A as mentioned before, a somatic nature could not be
proven, as constitutive DNA was not available.

Pheochromocytoma (PC) is a frequent complication in families suffering from von Hippel
Lindau disease. Therefore, in sporadic PC, somatic mutations of VHL, the gene responsible for
this hereditary disease (La#t al., 1993), should not be excluded .

In order to assess the role BET in the development of sporadic MTC and PC we have
carried out a systematic scanning for mutations of all exon®kEBT in 15 sporadic cases of
MTC, i.e. 13 primary tumors and two cell lines, and in 5 sporadic cases of PC. In the latter all
VHL exons have also been scanned for mutations. Our results are reported here.

Materials and Methods

Patients

High molecular weight DNA was prepared according to standard methods from tumor tissue and,
when available matched blood samples from 13 patients with MTC and from 5 patients with PC
only. In none of these cases there was a family history of familial MTC, MEN 2A, MEN 2B,
Von Hippel Lindau disease or neurofibromatosis type I. One of the patients with MTC had a
diffuse C cell hyperplasia and another patient had bilateral MTC. Furthermore two cell lines
were investigated: TT, a cell line reported to derive from a sporadic MTC (Ledbrag., 1981)

and MZ-CRC-1, a cell line derived from a malignant pleural effusion from a patient with
metastatic sporadic MTC (Taylat al., 1989).
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SSCP analysis

DNA amplification was carried out on 150 ng of DNA in a total volume of 30 ul 1x Super Taq
reaction buffer containing 0.125 unit Super Taq (HT Biotechnology LTD, Cambridge, UK),
20uM dCTP, 200uM dATP/TTP/GTP and 1u@i-f?P]JdCTP. The PCR consisted of 30 cycles of
92°C for 40 s, 60 s, at the appropriate annealing temperature and another 60 SCaflfi@
primers (100ng of each primer) used for each exon ofRES gene, the annealing temperature,
and the specific conditions were as previously described (Cecchedrial, 1994). Electropho-

resis was carried out in a 6% PAA gel using at least two different conditions. Glycerol con-
centrations used were 0%, 5%, or 10%, & 420°C, or 30C, respectively. We also used MDE

gel solution (AT Biochem, Malvern, USA) as a replacement for acrylamide and glycerol,
running the gels at 3C. All gels were run in 0.5xTBE buffer at max. 1750 volts and max. 60
Watts, in a temperature- regulating LKB 2010 Macrophore electrophoresis unit.

Sequence analysis of RET

Sequence analysis was carried out on exons 10, 11, 15, and 16 for all MTC and
pheochromocytoma cases. Furthermore, all SSCP variants observed have been sequenced. For
SSCP and sequence analysis the same primer pairs were used, but for sequence analysis one of
the primers from each primer pair was biotinylated. DNA amplification was carried out as
described above. PCR products were separated in a 2% low melting point agarose gel. After
ethidium bromide staining, bands were cut out and isolated using the SepgHagtasdiPrep kit
(Pharmacia, Biotech). With Dynal beads (DYNAL AS, Oslo, Norway) the two single strands
could be separated. They were sequenced with the T7 sequencing kit (Pharmacia, Biotech) and
[a-*?P]dCTP. For electrophoresis, a 6% sequencing gel was used.

Restriction analysis of the Gly768Asp mutation

As this exon 13 mutation eliminates an Alul site, restriction analysis of the PCR product with
this enzyme was used to detect possible mutations.

SSCP and sequence analysis of VHL

SSCP and sequence analyses were carried out as described above using earlier Yéflorted
primers and conditions (Crossey al., 1994).

RNA isolation and cDNA synthesis of the TT cell line

RNAzol™B (Cinna/Biotecx laboratories, Houston, USA) was used to isolate RNA from the cell
line TT. cDNA synthesis was performed using the Ready to go, T-primed first strand kit
(Pharmacia, Biotech).

Cloning of PCR products

PCR products were cloned using the TA cloning kit (InVitrogen, San Diego, USA).

Results
Mutation analysis of the RET gene
Single strand conformation polymorphism (SSCP) analysis of REd gene performed on all

sporadic MTC and PC revealed 6 identical SSCP variants in exon 16, one in exon 11, and one
in exon 18, besides already known polymorphisms (Cecchetiril., 1994). Sequence analysis
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of the variants showed that all cases with an exon 16 variant had the same mutation, a
T2753- C transition substituting a threonine for a methionine (Met9I&r). The exon 11
variant found in the cell line TT was a C19035 transversion causing Cys634rp, while the
exon 18 variant present in the same cell line was a C29B4transition resulting in
Arg982-.Cys (Table 1). Exon 10 and exon 19 primers were used in a PCR reaction on first
strand cDNA of the TT cell line to make a PCR product that spanned both mutations in this cell
line. Sequence analysis of these cloned PCR products showed that both mutations are present on
the same allele. In ninety control DNA samples from the Centre d’Etude du Polymorphisme
Humain (CEPH) screened for the Arg9i&ys mutation two persons proved to be heterozygous
for this mutation.
Exons 10, 11, and 16, known to harbour the MEN 2A and MEN 2B mutations, and exon
15 preliminary suggested to contain somatic mutations in sporadic MTC, have been sequenced in
all samples. No mutations were detected other than those already found by SSCP analysis.
Screening for the exon 13 mutation found in codon 768 (GuvA8p) by an Alul
restriction analysis did not reveal the presence of this mutation in any of the cases.

Mutation analysis of the VHL gene

SSCP analysis of the VHL gene for the PC cases revealed in one case a variant in exon 1 which
was caused by a transition G49@ in codon 164 substituting a serine for a glycine (Table 1).
The mutation was not present in constitutive DNA from the patient nor in 30 control DNA
samples (CEPH).

To look for a possible loss of the other allele in the tumor we used microsatellites
markers in a loss of heterozygosity analysis of the tumor and matched normal tissue. Allelic
losses were found in the VHL region (D3S1317) and in 3p21 (D3S1029 and D3S1235).

tumor "MEN 2A" "MEN 2B" any other VHL

mutation mutation RET mutation mutation
sporadic MTC Q713 5/13 0713 nd
cell 1in&T C634W - R982C nd
cell 1indZ-CRC-1 - N918T - nd
sporadic pheochromocytoma 0/5 0/5 0/5 1/5 (G1648)

Mutations found using SSCP and sequence analysis of VHL and/or RET. Occurrence of
mutations found to date in MEN 2A and MEN 2B is indicated, as are other possibly causative
RET and VHL mutations. (C=cysteine, W=tryptophan, R= arginine, M= methionine, T=
threonine, G= glycine, S= serine, nd=not determined).
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Discussion

We have investigated sporadic MTC and PC for the presence of causative mutationsRéiTthe
gene by three approaches: (1) sequencing those exons that have been reported to contain
mutations in MEN 2A (exons 10 and 11), MEN 2B (exon 16) and sporadic MTC (exons 11, 15
and 16); (2) Alul restriction analysis for the exon 13 (Gly768sp) mutation; (3) SSCP
analysis of all exons for all samples using at least two different conditions.

Our screening of 13 sporadic primary MTC and 5 sporadic PC cases revealed in 5 MTC
tumors the heterozygous mutation reported to be associated with MEN 2B, Mef918 In
three cases we could confirm the somatic nature of the mutation, in the remaining two cases
constitutive DNA was not available. In these 5 cases no dRteF mutation could be found by
DNA sequencing or SSCP analysis. In the remaining 8 MTC and 5 PC cases, no caR&five
mutations could be detected apart from several already known polymorphisms (Cecehetini
1994). All mutations found by sequence analysis were also found by SSCP analysis.

Among the 13 sporadic MTC patients, two were considered to be at risk for MEN 2, as
they had bilateral MTC and a diffuse C cell hyperplasia, respectively. The patient with bilateral
MTC showed a Met918 Thr mutation in the tumor. This mutation did not occur constitutively.

We therefore concluded that this patient had a sporadic MTC. Bilateral occurrence of the tumor
could be due to metastases. The patient with diffuse C cell hyperplasia together with MTC did
not show anyRET mutation and is therefore also not considered to be a MEN 2 patient. This
illustrates, as we have shown previously (Landsvateal., 1993; Lipset al, 1994), that C cell
hyperplasia cannot always be considered as an indication of MEN 2.

We also screened two reportedly sporadic MTC cell lines, named MZ-CRC-1 and TRE®r
mutations. MZ-CRC-1 contained the Met918hr mutation. TT appeared to contain two
mutations, a Cys634 Trp mutation, previously also found in several MEN 2A patients, and an
Arg982-, Cys. Constitutive DNA of the patients from whom the cell lines were derived was not
available. Therefore, the sporadic nature of these cases cannot be confirmed. We investigated
whether both mutations were on the same allele and found that to be the case. When we checked
whether the amino acid substitution at codon 982 also occurs in the normal population, two out
of ninety normal individuals (CEPH) showed the same heterozygous pattern as present in the TT
cell line. This and our finding that both mutations are on the same allele, point to the
noncausative polymorphic nature of the Arg382ys mutation.

MEN 2B is the more aggressive of the two hereditary neoplastic syndromes MEN 2A
and MEN 2B. The Met918 Thr mutation, found constitutively in almost all MEN 2B patients
(Hofstra et al,, 1994; Carlsonet al, 1994; Enget al, 1994), is present in one third of the
sporadic MTC’s. Its occurrence in a single cell in the thyroid gland may be sufficient to cause
development of an MTC. The likely absence of somatic mutations identical to constitutive
mutations of MEN 2A patients, suggests that the MEN 2A mutations cannot directly cause MTC
development. In MEN 2A patients a constituthRET mutation may be a necessary but not
sufficient condition for the development of a malignant tumor. An additional mutation at a
second locus may be necessary. This idea is supported by loss of heterozygosity (LOH) studies.
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Analysis of MTCs from MEN 2 families, showed losses of the short arm of chromosome 1 in
6/18 cases (Mulligaret al, 1993b). In PC the situation seems to be somewhat different. A
codon 609 mutation found by Lindat al.(1995) as a somatic event, may also rarely occur in
MEN 2A (Mulligan et al, 1994). There is, however, a notable difference in malignancy between
PC and MTC. Whereas the latter may metastasize to the lungs, to the liver and to bones, PC
may easily remain unnoticed since many PC patients are asymptomatic. LOH analysis of PC
suggests that also in this tumor additional mutations occur, as PC from MEN 2A (14 cases) and
MEN 2B patients (5 cases) showed allelic losses at 1p and at 3q in all cases @iaky1994;

Dou et al., 1994).

Scanning all VHL exons by SSCP analysis revealed in one of five PC a single missense
mutation in codon 164 substituting a serine for a glycine (GGXIGC). This mutation was not
present in constitutive DNA of this patient nor in 30 control samples (CEPH). As the VHL gene
is a tumor suppressor gene, a mutation of the other allele should also have occurred. Our
finding of LOH of the VHL region therefore supports the idea that the observed VHL missense
mutation may be a tumorigenic one. It has already been reported that notably missense mutations
of VHL seem to be associated with the occurrence of pheochromocytoma in von Hippel Lindau
families (Crosseyet al., 1994; Cheret al.,, 1995).

In summary,RET seems to be involved only in a minority of sporadic MTC and sporadic
PC. The same holds true for the involvement of the VHL gene in sporadic PC. Other genes, as
yet unidentified, must be responsible for development of the large majority of these tumors.
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Abstract

Neuroblastoma occasionally occurs in diseases associated with abnormal neurocrest
differentiation, e.g. Hirschsprung disease. According to expression studies in developing mice
the proto-oncogene RET may play a role in neurocrest differentiation. In humans RET
expression is limited to some tumor types, including neuroblastoma, that derive from migrating
neural crest cells. Mutations of RET are found associated with Hirschsprung disease. This data
prompted us to an investigation of expression of RET and a search for gene mutations in
neuroblastoma. Out of 16 neuroblastoma cell lines analyzed, 9 show a clear expression of RET
in a Northern blot analysis. In an SSCP analysis of all exons, ho mutations were detected other
than neutral polymorphisms, including a new one, Arg9&ys. In a patient with
neuroblastoma from a family in which different neurocristopathies occurred, including
neuroblastoma and Hirschsprng disease, we also failed to detect RET mutations. Possibly,
expression of RET in neuroblastoma just reflects the differentiation status of the tumor cells. The
absence of mutations suggests that RET does not play a crucial role in the tumorigenesis of
neuroblastoma.

Neuroblastoma, a tumor from the sympathetic nervous system, is the most common extracranial
solid tumor in children. Multiple genetic events seem to be involved in the development and
progression of neuroblastomas. Deletions of 1p with a smallest region of overlap at 1p36 (Fong
et al, 1989; Weithet al, 1989; Caronet al, 1993) and N-myc amplification (Seeget al.,

1985) are found in particular in advanced disease. Additional 17q material is also frequently
present (Caroret al, 1994; Savelyevat al, 1994). Most cases are sporadic, but rare familial
cases do occur. Occasionally neuroblastoma occurs in diseases associated with abnormal
neurocrest differentiation such as neurofibromatosis type | and Hirschsprung disease (€lausen
al., 1992; Verloeset al, 1993; van Dommeleret al 1994). Genetic alterations underlying the
abnormal neural crest differentiation may therefore also be involved in neuroblastoma
developmentRET, a gene coding for a tyrosine kinase receptor, may according to expression
studies in mice (Pachnist al, 1993), play a role in neuronal cell differentiation. Studies of
human neoplasia show thRET expression is limited to some tumor types that also derive from
migrating cells of the neural crest such as neuroblastomas (lkedd, 1990; Nagaoet al.,

1990; Tahiraet al., 1991; Takahashet al, 1991), medullary thyroid carcinoma and pheoc-
hromocytoma (Santoret al, 1990; Itohet al, 1992; Miyaet al, 1992). These latter tumor
types are known to occur in the hereditary cancer syndromes multiple endocrine neoplasia
(MEN) types 2A and 2B that are associated WRIET mutations ( Donis-Kelleret al., 1993;
Mulligan et al.,, 1993; Hofstraet al., 1994; Carlsoret al,, 1994; Enget al,, 1994).
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RET and neuroblastoma

Mutations of RET are also found associated with Hirschsprung disease (Edery ef al., 1994,

Romeo e al, 1994) which is a congenital disorder characterized by the absence of

intramural ganglion cells along the hindgut. This is most likely a consequence of a

disturbance of the migration of hindbrain neural crest cells during early embryonic life.

Furthermore, mice that carricd a metallothionein/RET fusion gene were found to develop

neuroblastoma (lwamoto ef al., 1993). Therefore, we have carried out expression studies

and mutation analysis of RET in a number of neuroblastoma cell lines to investigate a

possible role of RET in the development of neuroblastoma.

Figure |

RET

"1y

GAPDH

Northern blot analysis of RET expression in human newroblastoma cell lines
with RET (cell lines have been described in Biedler ef al,, 1973, Brodeur el
al, 1977, Cheng et al, 1995). RNA was extracted as described previously
fAuffravy & Rougeon, 1980). Total RNA (15 pgl was size-fractioned in a
denatwrating  formaldehvde-  agarose  pgel,  blotied  onto Hybond-N
(Amersham) and hybridized with a 504 bp PCR product containing exons
{i-14 of RET. A human GAPDH probe was wsed as a conirol for RNA
quantification. Hyvbridization was carried owt as described before (Cheng et
al, 1993),
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Detection of human RET transcripts in neuroblastoma cell lines.

Total RNA was extracted from 16 neuroblastoma cell lines and analyzed by Northern blot
analysis using as a probe a 504 bp long PCR product contaRiEigexons 11, 12, 13 and 14.
This product was obtained by amplifying by PCR reverse-transcribed RNA from TT, an MTC-
derived cell line, which express@&ET. Due to the alternative splicing ®ET the Northern blot
showed four different bands (Fig. 1). The sizes of the transcripts (7.0, 6.0, 4.5 and 3,9 kb) were
consistent with those reported previously (Takahahal, 1987). As shown in figure 1, nine

out of sixteen cell lines have tHRET gene expressed. This finding differs from those published
earlier, where expression was reported to occur in all cell lines and tumors examined tkeda
al., 1990; Nagacet al,, 1990; Tahiraet al., 1991). RET expression as assessed by Northern blot
analysis is apparently not a consistent feature of neuroblastom®&EASs expressed in normal
differentiating neuroblasts, the variable expression in our neuroblastoma cell lines could also
reflect different stages of neuroblast differentiation.

Systematic Single Strand Conformation Polymorphism (SSCP) analysis of the whole RET gene in
neuroblastomas cell lines.

High molecular weight DNA from 16 neuroblastoma cell lines was used for a radioactive
amplification of all exons of thRET gene. PCR products were electrophoresed in a 6% PAA
gel under at least two different conditions, i.e. with glycerol in concentrations of 5% or 10 %
and in an MDE gel (AT Biochem, Malvern, USA) replacing acrylamide and glycerol. All gels
were run in 0.5XxTBE at 3@ using maximally 1750 volts and 60 Watts in a temperature-
regulating LKB 2010 Macrophore electrophoresis unit. Primers for €RER exon, annealing
temperatures and specific conditions were as previously described (Cecaobierdhi 1994).
Several already known polymorphisms (Ceccheahial., 1994) were found, but also one new
variant, leading to the substitution of a cysteine for a arginine in codon 982 (exon 18). This
variant occurred in two cell lines (SK-N-BE and Gi-MEN) that did not expieES. Analysis of

120 primary neuroblastoma tumors for the presence of this variant revealed two additional
heterozygous cases. Both tumor and constitutive DNA of these patients, as well as DNA from
both parents of one patient showed this variant. Therefore, this polymorphism can not be
considered as a causative one.

It might be that the neuroblastoma situation is comparable with that of medullary thyroid
carcinoma (MTC), where the large majority of sporadic cases do not REE mutations
(Hofstraet al, submitted), but inherited MTC have (Mulligaat al., 1993; Donis-Kelleret al.,

1993). We had available DNA from a patient with neuroblastoma, whose sister also had
neuroblastoma, while her brother had neurofiboromatosis and their mother ganglioneuroma
(Clausenet al.,, 1992). In other branches of this kindred Hirschsprung disease occurred. DNA
from our neuroblastoma patient was also subjected to the same systematic SSCP analysis as the
16 cell lines of sporadic cases.

We did not detect anyRET mutations responsible for the development of the hereditary
neuroblastoma. The same result was obtained for the sporadic cases. As we were unable to
detect any mutation it could be argued that mutations are missed, as SSCP does not detect all
mutations. The maximal fraction of mutations detectable by this technique was estimated to be
80% (Sarkaret al., 1992). However, in an analysis &ET mutations in sporadic MTC none of
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the mutations detected by sequence analysis was missed by SSCP analysis (etofsitra
submitted).
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In several families multiple endocrine neoplasia type 2A (MEN 2A) has been found in
association with cutaneous lichen amyloidosis (CLA). It has, however, been debated whether the
skin amyloidosis found in MEN 2A families, localised exclusively in the interscapular area,
represents the same anomaly as that found in autosomal dominant familial CLA (FCLA), which
is more generalized. We screened 2 MEN 2A families with associated skin amyloidosis for
germline RET mutations and found only a mutation characteristic for MEN 2A. We also
screened probands from three pedigrees with FCLA for RET mutations. In none of the RET
coding and flanking intronic sequences a mutation was detected. This most likely indicates that
skin amyloidosis found in some MEN 2A families and FCLA are different conditions.
Consequently, apparent FCLA patients do not appear to be at risk for MEN 2A.

Introduction

Cutaneous lichen amyloidosis (CLA) is a rare disorder, characterised by deposit of amyloid in
the papillary dermis. Sporadic as well as autosomal dominant hereditary forms have been
documented. Gagel et al. (1) reviewed 63 of these hereditary cases. Here we refer to the
hereditary form as familial cutaneous lichen amyloidosis (FCLA).

CLA-like skin lesions have also been found in patients with multiple endocrine neoplasia,
type 2A (MEN 2A) (1-7). MEN 2A is a neoplastic syndrome characterized by C-cell
hyperplasia, medullary thyroid carcinoma, pheochromocytoma and parathyroid hyperplasia. The
disorder is caused by specific germline mutations in REET proto-oncogene (8,9). This gene
encodes a transmembrane tyrosine kinase receptor which is involved in the differentiation of
neural crest cell-derived tissues, including parts of the nervous system.

Since in several MEN 2A families patients have been found with CLA lesions, it has
been suggested that patients having sporadic or familial CLA should be considered at risk for the
MEN 2A syndrome, and therefore be tested for MEN 2A mutations. Based upon the association
of both these condition®RET gene mutations have been thought responsible for the skin
amyloidosis found in MEN 2A patients. A limiteBET mutation screening has been reported in
a single MEN 2A family with CLA-like lesions (10). A Cys634Tyr mutation, as found in
several MEN 2A families, is co-segregating with both the MEN 2A and the MEN 2A/CLA
phenotype in that family.

Since RET mutations have been reported to cause a variety of phenotypes, namely MEN
2A and FMTC, (9-11), MEN 2B (12-14), MEN 2A/Hirschsprung disease (15,16) and Hirschs-
prung disease (17,18), it is possible that sped®iET mutations cause MEN 2A/CLA and/or
FCLA. We therefore screened two MEN 2A/CLA families and three FCLA families R&T
germline mutations.

Materials and Methods
FCLA families

The three families participating in this study featured CLA in at least 2 generations (Fig.
1). All affected family members were examined by a dermatologist. Light microscopic and
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electron microscopic evidence for amyloid was found in skin biopsies from at least two
individuals in each of the families CLA2 and CLA3. Although no EM analysis was performed
on patient material from family CLA1, the diagnosis in this family was based on a characteristic
clinical picture and on histopathologic and immunofluorescence examination of skin biopsies. In
all three families the CLA lesions were found mainly on arms and legs.

Figure 1. Pedigrees of families featuring CLA and participating in this study. Symbols
are squares for males, circles for females, solid symbols for individuals affected with
CLA and open symbols for unaffected individuals.

SEE NEXT PAGE

MEN 2A/CLA families

Families MEN2A/CLAL1 and 2 have been described before. Fig. 2 shows the relevant
parts of the pedigrees. Family MEN2A/CLAL has been reported by Kousseff et al. (4,19), who
gave a detailed description of the CLA lesions. Family MEN2A/CLA2 has been described as
family B by Lips et al. (20). Some of the patients in this family appeared with lesions in the
interscapular region only and were clinically diagnosed as CLA patients upon examination by a
dermatologist. Light microscopic evaluation of biopsies of the lesions failed, however, to detect
amyloid.
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Figure 2. Pedigrees of families featuring MEN 2A and CLA and patrticipating in this study.
Symbols as in Fig. 1 with the exception of solid symbols representing individuals
affected with MEN 2A and hatched symbols for individuals affected with both
MEN 2A and CLA.

SEE PREVIOUS PAGE

Single strand conformation polymorphism (SSCP) analysis

High molecular weight DNA from patients from families MEN2A/CLA1, CLAL, CLA2
and CLA3 was used for an SSCP analysis of allRIBET exons. DNA amplification was carried
out on 150 ng of DNA in 1x Super Taq reaction buffer using 1/8 unit Super Taq (HT
Biotechnology LTD, Cambridge, UK) in a total volume of 30ul containing 20uM dCTP, 200uM
dATP/TTP/GTP and 1uCio-**P)dCTP. The PCR consisted of 30 cycles of®Zor 40 s, 72C
for 60 s and another and 60 s for annealing at the appropriate temperature. The primers used
(100ng of each primer) for each exon of tRET gene, the annealing temperature and the
specific conditions were as previously described (21). Electrophoresis was carried out in a 6%
PAA gel using at least two different conditions. Glycerol concentrations used were 0%, 5%,
or 10%, at 4C, 20°C or 30C, respectively. We also used MDE gel solution (At Biochem,
Malvern, USA) as a replacement for acryl-amide and glycerol, running the gels°@t 2l
gels were run in 0.5xTBE buffer at max. 1750 volts and max. 60 Watts. in a temperature
regulating LKB 2010 Macrophore electrophoresis unit.
Sequence analysis

For all families sequence analysis was carried out on exons 10 and 11 that are known to
contain all mutations found sofar for MEN 2A. In addition, all SSCP variants observed have
been sequenced. For SSCP and sequence analysis the same primer sets were used. For sequenc
analysis, however, one of the primers from each set was biotinylated. DNA amplification was
carried out as described above. PCR products were separated in a 2% low melting point agarose
gel. After ethidium bromide staining, bands were cut out and isolated using the Sephaglas
BandPrep kit (Pharmacia, Biotech). The two single strands were separated with the use of Dynal
beads (DYNAL AS, Oslo, Norway) . They were sequenced using the T7 sequencing Kit
(Pharmacia, Biotech) ana@i{**P)dCTP. For electrophoresis a 6% sequencing gel was used.

Results

RET mutation screening in MEN2A/CLA families

A search for mutations throughout the entRET gene by means of SSCP revealed in
one family (MEN2A/CLA1) a conformation variant in exon 11 in all affected family members
(MEN 2A and MEN 2A/CLA patients). Upon sequence analysis this appeared to be caused by a
transition T1900- C, resulting in the substitution of a arginine for a cysteine at codon 634
(Cys634- Arqg).
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Sequence analysis of exon 10 and 11 of RET gene showed the same mutation, a
T1900-C, in family MEN2A/CLA2 in all affected family members (MEN 2A and MEN
2A/CLA patients).

RET mutation screening in CLA families

SSCP analysis of all exons of tHRET gene did not show any causatiRET mutation

nor did sequence analysis of exons 10 and 11.

Discussion

Phenotypic diversity due to mutations affecting different domains of a gene product is a
frequent phenomenon, genetically known as allelic heterogeneity REiggene is a well known
example. Base pair substitutions affecting one of five highly conserved cysteine residues in the
extracellular part of the protein are associated with MEN 2A and familial medullary thyroid
carcinoma (9-11). Substitution of one of these five codons, codon 634, strongly correlates with
parathyroid hyperplasia and occurrence of pheochromocytoma in MEN 2A families (22,23).
Furthermore, a missense mutation substituting threonine for methionine at codon 918 in the
tyrosine kinase domain of the protein has been found uniquely associated with MEN 2B (12-14).
Mutations of one of the two alleles presumably leading to inactivation of the protein have been
found responsible for a proportion of patients suffering from Hirschsprung disease (17,18). These
mutations have been found all over the gene (17,18,24,25). Patients suffering from both MEN
2A and Hirschsprung disease haR&T mutations in the exon 10 codons 618 and 620 (15,16).
The combined occurrence of both MEN 2A and CLA in some families and patients might also
be associated with specifiRET mutations. We therefore analyzed two families. In patients of
one of these, MEN2A/CLAL, presence of amyloid could be clearly demonstrated. The
MEN2A/CLA patients in the other family showed the same clinical symptoms, comparable to
those described for a number of such families that have fully been published earlier (1-7).
Presence of amyloid could not be demonstrated in biopsies from the lesions, but is also not a
consistent feature of presumed CLA patients in the previously reported MEN2A/CLA families
(1-7). Because all lesions were limited to the interscapular region, which is generally considered
characteristic for the association of MEN 2A and CLA, family MEN2A/CLA2 was included in
this study. In the two families we found the saiRET mutation in codon 634 (Cys634Arg).

The mutation was present in all MEN 2A patients some of which also had CLA. A
Cys634- Tyr mutation (G190L. A) has been reported previously in another family with MEN
2A and CLA (10). Although all the mutations affect codon 634, different amino acid
substitutions result. The mutations found also occur in MEN 2A families without CLA lesion. In
fact, mutations of codon 634 and the amino acid substitution arginine for cysteine, which is
found in both families, are the most frequent changes occurring in MEN 2A patients (22,23).
Although an association between MEN 2A/CLA and mutations in codon 634 may be postulated,
the above-mentioned arguments make it hard to suggest a correlation between a §teTific
mutation and the MEN 2A/CLA phenotype.

It might be suggested that the joint occurrence of both MEN 2A and CLA would be due
to the interaction of an apparently non-causative polymorphism and a disease- causing mutation,

86



as has been described for the prion gene (26). In REET gene several non-causative
polymorphisms have been found (21, Hofstra et al., submitted), two of these, in exons 11 and
18, leading to amino acid substitutions. A haplotype analysis of all intragenic polymorphisms
was made. None of the polymorphisms, however, seemed to co-segregate with the MEN
2A/CLA phenotype.

Thus, for the intrafamilair phenotypic variability there might be a need to look beyond
the mutational-polymorphic genotype. A differential handling of the gene product by the
paracrine growth mechanism of a particular individual may alter the pathogenesis of the
condition and cause the pleiotropy of the phenotype (4,19,27)

A search forRET mutations in patients from three "CLA only" families did not reveal
any mutation other than already known non-causative polymorphisms. Also in these families we
looked for possible co-segregation of these intragenic polymorphisms with the cutaneous
phenotype, but did not find that. We, therefore, conclude Ri&T is not involved in these cases
of FCLA.

Our findings raise the question whether or not CLA found in MEN 2A and FCLA are
similar conditions from an etiological point of view. Clinically, there is a distinction in the
affected sites. In MEN 2A patients skin lesions are always found in the interscapular region,
whereas in FCLA patients skin lesions are more generalized (6). Dysfunction of the RET gene,
which in developing mice is expressed in the peripheral nervous system (28) might lead to
pruritus, and subsequently to scratching and degeneration of keratinocytes. It has been suggested
that prolonged mechanical friction may produce a macular amyloidosis, "friction amyloidosis"
(6,29). However, since many chronic pruritic skin conditions do not feature skin amyloidosis,
this etiological model might be an oversimplification.

The present results lend support to the idea that skin lesions in FCLA and MEN 2A/CLA
patients, respectively, are different from a genetic, a clinical, and an etiological point of view.
Consequently, FCLA patients do not appear to be at risk for MEN 2A. In order to settle this
issue definitely, however, more data are welcome. Mainly for this reason, physicians of
(apparent) FCLA patients may still consider to have their patients screen®&Efbmutations.
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Summary

This thesis starts with a brief description of protein kinases, a large family of proteins involved
in cell proliferation and differentiation and also in a number of cancer types and hereditary
diseases (chapter 1), and subsequently discusses in greater detail the receptor protein kinase RET
(chapter 2) and its involvement in several diseases (chapter 3). Furthermore, our own data on the
RET gene and its role in diseases as well as results obtained in collaborative efforts with other
groups are presented in the appendices 2-7.

The RET protein is involved in the normal development and the neoplastic growth of
neural crest lineages. The ligand of the receptor is as yet unidentified. During embryogenesis,
RET expression is high in neuroectodermal tissues, suggesting a function of RET in the
proliferation, the migration and the differentiation of these cell types. In adult tissues the gene is
hardly expressed. Expression is high in several tumor types derived from neural crest cells
(chapter 2).

Transfection studies with DNA from different tumors revealed focal proliferation due to
the presence of different DNA sequences that, however, shared a common partRtzllethe
original RET gene turned out to be rearranged in such a way that the sequences coding for the
extracellular part of its protein product were replaced by sequences from elsewhere, resulting in
a rearranged protein with a steady tyrosine kinase activity. The same rearrangement occurs in
papillary thyroid carcinoma (PTC) (chapter 3).

After the genes involved in multiple endocrine neoplasia types 2A (MEN 2A) and 2B
(MEN 2B) had been mapped to the centromeric region of chromosome 10 by linkage analysis,
mutations ofRET, a gene present in this very region, appeared responsible for the development
of MEN 2A. The establishment of the intron-exon junctions of tRET gene and the
determination of the flanking intronic sequences in a collaborative effort with the group of
professor Romeo (Genua, Italy), made it possible to design primers and to develop PCR
conditions for SSCP analysis (Appendices 2 and 3). Using this mutation detection system
(Appendix 3) we found that a singl®RET mutation is uniquely associated with MEN 2B
(Chapter 3 and Appendix 5).

In some families, MEN 2A is also found associated with cutaneous lichen amyloidosis
(CLA), a rare skin disorder. We screened two of these familiesRfiél mutations to determine
whether specific mutations are involved in these families. A Cys68Ay mutation was found.
Though the same codon was affected in an earlier described family, the mutation in that family
was different. This makes it hard to suggest a correlation between MEN 2A associated with
CLA and a specificRET mutation. Because of the association of CLA with MEN 2RET
might also be involved in hereditary "CLA only". We, therefore, screeR&d in three families
with hereditary CLA, but did not find any mutation. We concluded that the CLA lesions found
in MEN 2A patients and those found in inherited CLA without MEN 2A must be caused by
different genes. (chapter 3 and appendix 7).

An estimated 25% of medullary thyroid carcinomas (MTC) appear in the context of
inherited disease (MEN 2 syndromes and familial MTC). For pheochromocytoma, the percentage
of cases being part of an inherited neoplastic syndrome (MEN 2A, von Hippel Lindau,
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neurofibromatosis 1) is similar to that in MTC. The large majority of MTC and
pheochromocytoma, however, consists of sporadic cases. We andy&Edh sporadic MTC
and RET and the von Hippel Lindau gene/KIL) in pheochromocytoma for the presence of
mutations. In sporadic MTC and in sporadic pheochromocytd®EA mutations appeared to
account for only a proportion of cases. The same could be concluded fovHthegene in
pheochromocytoma (chapter 3 and appendix 5).

Besides the gene for the neoplastic syndromes MEN 2A and MEN 2B, the gene for
Hirschsprung disease could also be mapped by linkage analysis to the same small region of
chromosome 10. Using thRET mutation detection system described in appendix 3, the Romeo
group was one of two research groups who demonstrated that HSCR was also associated with
RET mutations. The mutations appeared to be scattered all over the gene (chapter 3).

Publications in the recent literature &RET explain how these different diseases can be
caused by one single gene. These are discussed in chapter 3. Mutations causing MEN 2A and
MEN 2B activate the protein product, whereas mutations for HSCR result in a loss of function
of the translated protein (chapter 3).

Based on the involvement &RET in the development of neural crest-derived tissues and
on the association dRET mutations with neurocristopathies such as the MEN 2 syndromes and
HSCR, a search foRET mutations in other neurocristopathies seems justified. Neuroblastoma
occasionally occurs in diseases associated with abnormal neurocrest differentiation, e.g.
Hirschsprung disease. Furthermore, neuroblastomas ex®E3s We therefore scanned the
entire RET gene in 16 neuroblastoma cell lines and in a neuroblastoma patient belonging to a
family in which different neurocristopathies occurred, including Hirschsprung disease and
ganglioneuroma. We did not find arfiET mutation. Therefore, expression BET in neurobla-
stoma might just reflect the differentiation status of the tumor cells, rather than indicating an
involvement in the tumorigenesis of neuroblastoma (chapter 3 and appendix 7).

We may conclude thaRET, as a gene in which different mutations lead to different
diseases, is a good example of allelic heterogeneity. On the other hand, in some dried@ses
plays a role in only a proportion of the cases and other, yet unidentified, genes account for the
remaining cases. ThereforRETIs also a good example of non-allelic heterogeneity.
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De erfelijke eigenschappen van de mens worden bepaald door genen. Genen bestaan uit DNA.
DNA is een lange aaneenschakeling van bepaalde bouwstenen, basenparen genoemd, waarvan 4
verschillende typen bestaan. In totaal bevat elke cel van de mens twee sets van 3 miljard
basenparen. De genen, waarvan wij er naar schatting 60.000-70.000 hebben vormen maar een
paar procent van ons DNA. Dat DNA is opgedeeld in verschillende stukken, de chromosomen.
In elke menselijke cel bevinden zich 22 chromosomen (autosomen) in tweevoud, plus 2
geslachtschromosomen. Deze laatste zijn verschillend bij mannen en bij vrouwen. Mannen
hebben één X chromosoom en één Y chromosoom, terwijl vrouwen twee X chromosomen
hebben. In totaal heeft de mens dus 46 chromosomen in iedere cel. De helft daarvan, nl. één van
elk van de autosomen plus één X is van moederlijke oorsprong, de andere helft, eveneens 22
autosomen plus één X of één Y chromosoom is van vaderlijke oorsprong.

Bepaalde veranderingen in de base volgorde van de genen kunnen erfelijke ziekten of
kanker tot gevolg hebben. Wanneer een dergelijke verandering optreedt in een voortplantingscel
en wordt doorgegeven aan de volgende generatie, dan spreken we van een erfelijke ziekte.
Treedt zo'n verandering op in een van onze gewone lichaamscellen, dan kan dat tot kanker
leiden. Er bestaan ook erfelijke kankers. Erfelijke ziekten kunnen op verschillende manieren
overerven. Bij de zogenoemde recessieve overerving ontstaat de ziekte, wanneer beide ouders
een verandering in hetzelfde gen hebben en zij beiden de gen copie met de verandering aan een
nakomeling doorgeven. De kans daarop is 1 op 4. Met één veranderde gen copie is men niet
ziek, maar wordt men drager/draagster genoemd. Een dominante aandoening berust op één gen
copie met een verandering. Het doorgeven daarvan heeft dus een kans van 1 op 2. In een familie
waarin een erfelijke ziekte voorkomt, kan op grond van kennis van wie (een) veranderde gen
copie(én) draagt, voorspeld worden wie de ziekte wel en wie de ziekte niet gaat krijgen.

Dit proefschrift gaat over een gen d&ET genoemd wordt en dat betrokken is bij het
ontstaan van bepaalde erfelijke ziekten en kankers. Het gen dient als blauwdruk voor een eiwit
(RET), een zogenaamde "protein kinase", dat andere eiwitten kan activeren. Het RET eiwit
steekt door de celwand heen zodat een deel zich in de cel bevindt (het intracellulaire gedeelte)
en een deel door de celwand heen naar buiten steekt (het extracellulaire gedeelte). Op deze
manier kan het eiwit signalen van buiten de cel opvangen en daar vervolgens op reageren. Dit
reageren gebeurt in eerste instantie door een zogenoemde zelfactivatie. Het geactiveerde RET
eiwit zorgt er vervolgens weer voor, dat in de cel allerlei processen in gang worden gezet. Men
denkt, dat RET onder andere betrokken is bij de celdeling en de celdifferentiatie. Een en ander
komt aan de orde in de eerste twee hoofdstukken van het proefschrift.

De betrokkenheid vamRET in bepaalde erfelijke ziekten en kankers wordt behandeld in
hoofdstuk drie en bijbehorende appendices. RET blijkt betrokken in de betrekkelijk zeldzame
erfelijke kankersyndromen die worden samengevat als multiple endocriene neoplasie type 2
(MEN 2). Hierbij treden meerdere (multiple) gezwelachtige woekeringen (neoplasieén), goed- of
kwaadaardig, op in endocriene Klieren. Type 2 wordt onderverdeeld in twee subtypen, type 2A
(MEN 2A) en type 2B (MEN 2B). Beide typen worden gekarakteriseerd door tumoren in de
schildklier en bijnieren. MEN 2A kan als extra complicatie een bovenmatige groei van cellen
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van de bijschildklier hebben, terwijl bij MEN 2B patiénten karakteristieke gezwellen optreden
aan het uiteinde van de zenuwen op de tong en in en rond de mond. Deze erfelijke kankers
hebben een dominante overerving. Onderzoek naar de lokalisatie van de genen voor zowel MEN
2A als MEN 2B gaf aan, dat deze in een bepaald stuk van chromosoom 10 zouden moeten
liggen. In dat stuk ligt nu juist heRET gen. In een samenwerking met de groep van professor
Romeo in Genua, hebben we HRET gen in kaart gebracht (Appendix 2) en hebben we een
systeem opgezet om genetische veranderingen (mutaties) op te kunnen sporen in het gen.
(Appendix 3). In 1993 toonde de groep van professor Ponder in Cambridge aan, dat specifieke
mutaties in dit gen het MEN 2A kanker syndroom veroorzaken. De gevonden veranderingen
bevinden zich allemaal in het extracellulaire gedeelte dat betrokken is bij het ontvangen van de
signalen van buiten de cel. Wij zelf hebben kunnen aantonen dat ook MEN 2B wordt
veroorzaakt door een verandering in RET gen. Hierbij ging het echter om slechts één enkele
specifieke mutatie. Deze zorgt voor een verandering van het intracellulaire gedeelte van het RET
eiwit (Appendix 4).

Voor de MEN 2 families is het belang van deze bevindingen groot. Immers nu kan met
zekerheid gezegd worden, wie de kanker zal ontwikkelen en wie niet. Op basis van de
genetische analyse wordt nu presymptomatisch op jeugdige leeftijld de schildklier verwijderd,
zodat volgroeide schildkliertumoren en uitzaaiingen van de tumor voorkomen worden. Wie geen
mutaties heeft, hoeft nu ook niet meer het vroeger periodiek uitgevoerde belastende onderzoek te
ondergaan, dat diende om tumoren in een vroeg stadium op te sporen.

Welke effecten deze mutaties hebben op het eiwitprodukt waar het gen voor codeert, is
door andere onderzoeksgroepen aangetoond. Zij konden laten zien dat de veranderingen er bij
zowel MEN 2A als MEN 2B voor zorgen, dat het RET eiwit zelfs zonder een stimulatie van
buiten af al actief is, waardoor de normale regulatie ontbreekt en wildgroei kan optreden. De
ontregeling van de functie van het RET eiwit verschilt bijf MEN 2A en MEN 2B en leidt tot de
verschillende ziektebeelden.

Schildklier- en bijniertumoren komen echter vaker op zich zelf voor, dan als onderdeel
van de erfelijke MEN 2 syndromen. Het gaat dan om zogenoemde sporadische tumoren. Dat
betekent echter niet, dat de cellen waaruit de tumoren ontstaan zijn, geen genetische
veranderingen hebben ondergaan. Wij hebben gekeken of die sporadische schildklier- en
bijschildkliertumoren ook veroorzaakt kunnen worden door mutaties irREdtgen. We vonden,
dat alleen dezelfde verandering als gevonden bij MEN 2B patiénten, is terug te vinden in deze
tumoren. Omdat dit echter slechts bij een minderheid van de sporadische tumoren het geval is,
concluderen wij dat de meeste tumoren ontstaan door mutaties in een ander gen(en) (Appendix
5).

Verder hebben we gekeken naar MEN 2A patiénten die naast de bekende kenmerken
(schildklier en bijnier tumoren) ook een huidaandoening hebben (cutaneous lichen amyloidosis).
De vraag was of een specifieke verandering in R&T gen de oorzaak zou kunnen zijn van
deze associatie. We vonden dat de onderzochte families een mutatie hadden in één bepaald
"codon”. Een codon is een drietal opeenvolgende basenparen dat codeert voor een bouwsteen
van een eiwit, een aminozuur. Ook hebben we gekekeRT mutaties misschien aanwezig
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zijn in families met alleen de huidaandoening. Dit bleek niet het geval. Er zijn dus meerdere
genen die kunnen leiden tot de cutaneous lichen amyloidosis (Appendix 7).

Behalve bij het ontstaan van kanker RET ook betrokken bij een erfelijke aangeboren
aandoening, de ziekte van Hirschsprung. De ziekte kenmerkt zich door het ontbreken van
zenuwknopen over een variabele lengte in de darmwand. Daardoor kan de darm de normale
peristaltische bewegingen niet maken en ontstaat ernstige obstipatie. Lokalisatie van het gen
voor deze ziekte wees hetzelfde gebied aan als voor de MEN 2 syndromen. Screening van het
RET gen leverde mutaties op die geassocieerd konden worden met de ziekte van Hirschsprung.
Terwijl bij MEN 2 een activatie van het RET eiwit wordt gevonden, blijken bij de ziekte van
Hirschsprung mutaties te worden gevonden die zorgen voor de aanmaak van een incompleet
RET eiwit, wat dus eerder wijst op een inactivatie. Voor een aantal mutaties is aangetoond, dat
ze de activiteit van het eiwit naar nul brengen.

Het RET eiwit is dus op verschillende manieren betrokken bij het ontstaan van een aantal
erfelijke aandoeningen. Het effect v&RET mutaties is daarbij specifiek zichtbaar in bepaalde
weefsels. Al deze weefsels komen voort uit cellen die embryonaal afkomstig zijn van de neurale
liist. RET zou daarom ook betrokken kunnen zijn bij andere ziektebeelden waarbij weefsel
afkomstig van de neurale lijst is aangedaan, zoals bijvoorbeeld bij neuroblastoom.
Neuroblastomen zijn kwaadaardige woekeringen van cellen afkomstig van de neurale lijst en
komen vooral voor op jeugdige leeftijdRET mutaties komen voor dit type tumor verder in
aanmerking om een aantal andere redenen. Eén daarvan is het aanwezig zijn van RET eiwitten in
neuroblastoom cellen. In het algemeen geldt, dat lang niet alle genen altijd en overal tot
expressie komerRET komt maar in heel weinig weefsels en tumoren tot expressie. Met name
betreft het de weefsels waaruit schildklier- en bijniertumoren ontstaan en de tumoren zelf. Een
ander argument voor de mogelijke betrokkenheid il in neuroblastomen is het voorkomen
van de ziekte van Hirschsprung in families waarin ook neuroblastomen voorkomen. Wij hebben
daarom gekeken of mutaties in h&ET gen een rol spelen in de ontwikkeling van deze
neuroblastoom. We konden aantonen, dat er expressidRins, maar in de tumoren die we
hebben onderzocht, bleken geen mutaties aanwezig. Het lijkt dus waarschijnlijk, dat RET niet
direct betrokken is bij het ontwikkelen van deze tumoren van de kinderleeftijd (Appendix 6).

Samengevat kan gezegd worden, &ET een mooi voorbeeld is van een gen waarbij
verschillende mutaties tot heel verschillende ziekten kunnen leiden. Anderzijds blijken aan
ziektebeelden waarbiRET een rol speelt, ook nog andere, nader te identificeren, genen ten
grondslag te kunnen liggen.
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Samenvatting

Maar ook buiten 'de stad’ waren er de nodige contacten zoals te zien is in de appendices.
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