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Chapter 1

Introduction

This doctoral thesis is cumulative, consisting of three parts: robust estimation of the autocor-
relation function, the spatial sign correlation, and robust change point detection in panel data.
Albeit covering quite different statistical branches like time series analysis, multivariate analysis
and change point detection, there is a common issue in all the three sections and this is robust-
ness. Robustness is in the sense that the statistical analysis should stay reliable if there is a
small fraction of observations which do not follow the chosen model.

The term ”robustness” was coined by Box (1953), who originally used it to express insensitiv-
ity to non-normality, but the roots of robust statistics are much older. Already Bernoulli (1777)
discusses rules to reject outliers and mentions that it is common practice for astronomers to ig-
nore ”observations which they judge to be too wide of the truth.” Even earlier in 1757 Boscovich
estimates the ellipticity of the earth by a trimmed mean due to implausible values (see for
example chapter 1 in Koenker, 2005). An extensive and diverting overview about the early
stage of robust estimation can be found in Stigler (1973). In the 1960s, several very significant
articles appeared, which continue to have strong influence still on today’s research. Therefore
one can maybe call this decade the starting point of modern robust statistics. It started with
the contribution of Tukey (1960), who advocates to focus more on ”robustness of efficiency”.
This was a reaction to a number of articles investigating and eventually confirming the validity
of some Gaussian procedures under non-normality (see, e.g., Pearson, 1931; Eden and Yates,
1933; Hey, 1938), which is often caused by the central limit theorem. Tukey on the other hand
using the example of variance estimation showed that the efficiency of the empirical variance de-
creases drastically even under ”mild” deviations from normality. Four years later Huber (1964)
introduced the concept of M-estimation. Originally proposed for the location problem the un-
derlying concept spread over all kinds of statistical applications and is also a key ingredient in
this thesis. Two of the most fundamental measurements of robustness were also derived, the
influence function in the PhD thesis of Hampel (1968) and the breakdown point in Hodges Jr
(1967) respectively Hampel (1971).
In the following robust methods for more complex data structures were developed, like regression
problems (Huber, 1973; Mallows, 1975; Hampel, 1975; Siegel, 1982), multivariate data (Maronna
and Yohai, 1976; Stahel, 1981; Donoho, 1982; Rousseeuw, 1985), time series (Fox, 1972; Mas-
reliez, 1975; Denby and Martin, 1979; Martin and Yohai, 1986) and infinite dimensional data
(Locantore et al., 1999; Fraiman and Muniz, 2001; Bramati and Croux, 2007; Bali et al., 2011),
to name only a few. This thesis covers problems of the last three topics.

The first part of this thesis is a review study comparing different proposals for robust estim-
ation of the autocorrelation function. Over the years many estimators have been proposed but
thorough comparisons are missing, resulting in a lack of knowledge which estimator is preferable
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in which situation. We treat this problem, though we mainly concentrate on a special but non-
etheless very popular case where the bulk of observations is generated from a linear Gaussian
process. This part of the thesis nearly coincides with Dürre, Fried and Liboschik (2015a).
The origin of this work goes back to an IASC summer school in Leuven 2011 where I was yet
studying for my masters degree. Motivated by the the time series and robust statistics courses
in Dortmund I was interested in the question: ”How can one robustly estimate the fundamental
autocorrelation function?” When I asked my later doctoral advisor Roland Fried for whom I
was working as student assistant at this time, he smiled since he asked himself the self question
some years ago. He even had started some very elementary research on this question and gave
me notes about it. At the same time my friend Tobias Liboschik, already a PhD student at this
time, and I wanted to take part at the summer school and were asked to present something we
were working on. Since Tobias’ work was barely robust at this time, we decided to talk about ro-
bust estimation of the autocorrelation function, searching together for literature, implementing
procedures and doing some rudimental simulations just finishing in time for the workshop. The
talk was received very well but none of us had time to write an article about it. This changed
when I become a PhD student. We originally believed it would require an overseeable effort, but
in the end it took us nearly two years to collect more estimators for our comparison and multiple
times improve and change our simulations. Tobias deserves special credit for implementations
of some estimators and Roland earns recognition for writing the introductory subsection about
background and notation. Both of course gave many valuable suggestions and improvement sug-
gestions. Together with the article we also provide an R-package sscor (Dürre, Fried, Liboschik
and Rathjens, 2016) containing all considered methods and meanwhile also robust procedures
for AR fits, spectrum estimation and change point estimation. Jonathan Rathjens deserves a
special mention for the implementation of spectrum functions and Tobias made such a great
effort to get the functions easy to use. Up to date the package is only available at R-forge, but
it will be available on CRAN soon.

The second chapter deals with something congeneric, namely measuring dependence through
the spatial sign correlation, a robust and within the elliptic model distribution-free estimator for
the correlation based on the spatial sign covariance matrix. We derive its asymptotic distribu-
tion and robustness properties like influence function and gross error sensitivity. Furthermore we
propose a two stage version which improves both efficiency under normality and robustness. The
surprisingly simple formula of its asymptotic variance is used to construct a variance stabilising
transformation, which enables us to calculate very accurate confidence intervals, which are also
distribution-free within the elliptic model. We also propose a positive semi-definite multivariate
spatial sign correlation, which is more efficient but less robust than its bivariate counterpart.
Theoretical results regarding the properties of this matrix-valued estimator are challenging and
yet largely open problems.
This chapter is based on the articles Dürre, Vogel and Fried (2015b), Dürre and Vogel (2016a),
Dürre, Tyler and Vogel (2016) and Dürre, Fried and Vogel (2017). Basically there are two types
of changes compared to the referred papers. First I have removed results which arose in collab-
oration with David E. Tyler and Daniel Vogel which I have not proved myself. Likewise I have
excluded parts which derive from research during my bachelor- and master studies. Second, I
have streamlined the order of presentation when merging the publications. Not seldom open
questions in one article were answered in the following papers.
Also the origins here date back a long time. After I raved about a magnificent analysis lec-
ture where we determined the dimension of the unit sphere with the largest volume, Daniel
Vogel, also a PhD student of Roland at this time, gave me the task to solve an integral, which
describes the covariance of the bivariate spatial sign covariance matrix. I was able to calcu-
late it by the residue theorem from complex analysis, my favourite mathematical branch. The
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result is part of my bachelor thesis
”
Über die theoretischen Eigenschaften der Spatial-Sign-

Kovarianzmatrix im elliptischen Modell.“ After writing my master-thesis (
”
Konsistenzaussagen

zur Spatial-Sign-Kovarianzmatrix “) which we published subsequently (Dürre, Vogel and Tyler,
2014) and becoming a PhD student we continued to study the spatial sign covariance matrix.
Daniel proposed to devise a correlation estimator, the spatial sign correlation, and found an
explicit formula of the estimator based on the empirical spatial sign covariance. I was able to
calculate a closed form expression of its asymptotic variance by the inverse function theorem and
derived influence function and gross error sensitivity. Results were published in Dürre, Vogel
and Fried (2015b).
Since the estimator tends to be inefficient under heteroscedasticity we proposed a two step
procedure where the data is first standardized marginally by a robust scale estimator. Both
referees of Dürre, Vogel and Fried (2015b) suggested calculation of the influence function of the
two step procedure. We complied with this request and it inspired us to a subsequent article
about the theoretical properties of the two step spatial sign correlation. With Daniels guidance
I was able to prove the asymptotic negligibility of the scale estimation of the pre standardiza-
tion. Motivated by the result that the variance of the two step procedure only depends on the
correlation itself, I remembered Daniels idea to use the spatial sign correlation for testing, which
was practically not possible for the one step version, and derived following Fishers z-transform
a variance stabilising transformation for the estimator. Daniel did the main part of writing the
actual article Dürre and Vogel (2016a).
Daniel then proposed to investigate the symmetrized spatial sign covariance matrix. While
looking for some helpful formulas to derive its asymptotic variance in Gradshteyn and Ryzhik
(2000) I accidentally stumbled upon a formula which permits to describe the eigenvalues of the
spatial sign covariance matrix for arbitrary dimension as one dimensional integrals. These, can
be determined fast and accurately by a Gauss-Jacobi quadrature, which is by the way imple-
mented in the R-package Dürre and Vogel (2016b). We published the result together with two
Propositions of David E. Tyler in the article Dürre, Tyler and Vogel (2016).
To derive a multivariate spatial sign correlation it remains to invert the relationship between
the eigenvalues. I first experimented with a Newton type algorithm before finding a fixed-point
procedure which is fast and accurate. Based on that we introduced the multivariate spatial sign
correlation which turned out to be very efficient in high dimensions. First we wanted to simulate
the sensivity curve to evaluate its robustness, but results indicated a very simple relationship
which arouse my interest and I could indeed calculate the influence function for a special case by
using the inverse function theorem. These results can be found in Dürre, Fried and Vogel (2017).

The third chapter deals with a robust test for a location change in panel data under serial
dependence. Robustness is achieved by using robust scores, which are calculated by applying
Ψ−functions. The main focus here is to derive asymptotics under the null hypothesis of a
stationary panel, if both the number of individuals and time points tend to infinity. We can
show under some regularity assumptions that the limiting distribution does not depend on the
underlying distribution of the panel as long as we have short range dependence in the time
dimension and independence in the cross sectional dimension.
The work was mainly motivated by the article Horváth and Hušková (2012) and extends their
work in several directions. I originally studied this article to learn how to prove asymptotics for
change-point procedures in the panel context. We wanted to find an easy robustification and
hoped that only slight changes in the proofs would be necessary. Actually it turned out that one
needs quite different dependence assumptions and only the ideas of the proof could be adopted.
Furthermore, the use of Ψ−functions necessitates additional rather technical calculations for
nuisance parameters. The article has been submitted to the Journal of Time Series Analysis.
The preprint Dürre and Fried (2016) is available on arxiv.org.
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Chapter 2

Robust estimation of the
autocorrelation function

The autocorrelation function (acf) and the partial autocorrelation function (pacf) are elementary
tools of linear time series analysis. The graphical presentation as a correlogram gives an idea of
the linear dependencies between pairs of observations in different time lags. A sinusoidal shape
indicates a seasonality, whereas a slow decay suggests possible long range dependence or non-
stationarity. Besides descriptive purposes, the autocorrelation and the autocovariance function
can be used for model identification (see Box et al., 1994, pp. 184–188), for fitting autoregressive
models using the Yule-Walker equations, for determining the periodogram (see e.g. Brockwell
and Davis, 2006; Wei, 1990, pp. 234–238 respectively pp. 265–267), for detecting periodicities
(Vecchia and Ballerini, 1991), for clustering or classifying time series (Caiado et al., 2006), and
for predicting future values of the time series (Brockwell, 2009).

The sensitivity of the conventional estimators, the sample acf and pacf, to outliers is well
known (see Chan, 1992; Deutsch et al., 1990; Maronna et al., 2006, pp. 247–257). A single
outlier can drive the sample autocorrelation at every time lag h towards zero, whereas h + 1
or more successive outliers can make it arbitrarily close to one, both making the estimation
worthless. Several robust alternatives have been proposed in the literature to overcome this
problem. We review such approaches and evaluate their performances to provide some guidance
on which estimator to apply in which data situation.

The first part introduces some notation and background which will be used to describe the
robust procedures for estimating the acf and pacf thereafter. It is followed by a simulation
study to assess the accuracy and robustness of these estimators. In the final part we draw some
conclusions.

2.1 Background and Notation

Let (Xt)t∈Z denote a real-valued time series. We assume (Xt)t∈Z to be second order stationary,
meaning that the mean and the variance are constant and do not depend on the observation time
t, i.e. E(Xt) = µ and Var(Xt) = σ2 < ∞ for all t ∈ Z, while the autocovariance and hence the
autocorrelation depend on the time lag only, i.e. Cov(Xt+h, Xt) = γ(h) and Cor(Xt+h, Xt) =
ρ(h) for all t, h ∈ Z. Because ρ(h) = ρ(−h), only positive time lags h ∈ N0 need to be considered.
Both the autocovariance and the autocorrelation functions of a stationary process are always
positive-semidefinite, i.e., for every k ∈ N the matrix

Γ(k) = (Γ
(k)
i,j )i,j=1,...,k+1 with Γ

(k)
i,j = γ(i− j) (2.1)
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is positive-semidefinite. For a stationary time series the usual relation

Cor(Xt+h, Xt) =
Cov(Xt+h, Xt)√

Var(Xt+h) ·Var(Xt)
implies ρ(h) =

γ(h)

γ(0)
. (2.2)

This allows us to translate estimators of the autocovariances into estimators of the autocorrel-
ations and vice versa, if an estimate of the variance γ(0) is available.

For a vector of observations X = (X1, . . . , Xn), let X be the arithmetic mean, X(1), . . . , X(n)

denote the ordered sample in ascending order and Rt the rank of Xt, t = 1, . . . , n.
The sample analogues of γ(h) and ρ(h) are the empirical or sample autocovariances and

autocorrelations γ̂(h) and ρ̂(h) (in the simulation study abbreviated as: Emp. acf), which are
given by

γ̂(h) =
1

n

n−h∑
t=1

(Xt −X)(Xt+h −X), (2.3)

ρ̂(h) =
γ̂(h)

γ̂(0)
, h ∈ N .

The denominator n is used in the formula for γ̂(h) instead of the more intuitive number of
cross-products n− h, since this guarantees positive-semidefiniteness of the resulting functions γ̂
and ρ̂ for the price of a larger bias. In Schlittgen and Streitberg (2001) p. 244 an asymptotic
formula for the bias of the sample acf of Gaussian processes is derived:

Bias(ρ̂(h)) = − 1

n

(
hρ(h) + (1− ρ(h))

∞∑
i=−∞

ρ(i) + 2ζ(h)− 2ρ(h)ζ(0)

)
+O(n−2), (2.4)

where ζ(h) =
∑∞

i=−∞ ρ(i)ρ(i + h). Equation (2.4) indicates a large negative bias in case of a
small n and a large positive, slowly decaying acf. The estimator is asymptotically unbiased for
fixed h as n goes to infinity. The asymptotic distribution of the sample autocorrelation can be
found for example in Brockwell and Davis (2006) Theorems 7.2.1 & 7.2.2. Calculation of the
empirical acf is recommended only for n ≥ 50 and h ≤ n/4 (Box et al., 1994, p. 32).

The sample acf can also be derived from a multivariate covariance estimation. This approach
has some desirable features when carried out robustly, as will be seen later on. The matrix Γ(k)

of the first autocovariances (see (2.1)) can be estimated by building a data matrix from the
lagged observations. Let X̃t, t ∈ Z, denote the centered observations. We use the sample mean
X for centering, if not stated otherwise. Defining

Z ′
k =

⎡⎢⎢⎢⎢⎣
X̃1 X̃2 · · · X̃k+1 · · · X̃n 0 · · · 0

0 X̃1 · · · X̃k · · · X̃n−1 X̃n
. . .

...
...

. . .
. . .

...
...

...
. . . 0

0 · · · 0 X̃1 · · · X̃n−k X̃n−k+1 · · · X̃n

⎤⎥⎥⎥⎥⎦ ∈ R(k+1)×(n+k), (2.5)

the ordinary positive-semidefinite sample autocovariance matrix is obtained from Pearson’s
product moment covariance estimator

Γ̂(k) = Z′
kZk/n. (2.6)

Application of the well known identity for correlation matrices,

Ξ
(k)
i,j = Γ

(k)
i,j /

√
Γ
(k)
i,i · Γ(k)

j,j , (2.7)

yields the estimation Ξ̂(k).
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Amodel for stationary autocorrelation functions is the autoregressive moving average (ARMA)
process, which is defined by

Xt = ϕ0 +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiat−i + at, (2.8)

with parameters ϕ0, ϕ1, . . . , ϕp, θ1, . . . , θq ∈ R, and innovations (at)t∈Z forming white noise, that
is a stationary sequence of uncorrelated random variables with mean zero and variance σ2.
Of special interest are AR processes where q = 0 (Brockwell, 2011), since from them another
identity for ρ can be derived. If all solutions z of 1−ϕ1z− . . .−ϕpzp = 0 are outside the complex
unit circle, then (2.8) models a stationary process with marginal mean

µ =
ϕ0

1− ϕ1 − . . .− ϕp
. (2.9)

The Yule-Walker equations relate the coefficients ϕ1, . . . , ϕp of an AR(p) model to the first
p autocorrelations ρ(1), . . . , ρ(p). To shorten notation we assume ϕ0 = 0. Then the equations
are obtained by multiplying (2.8) with Xt−h, h = 1, . . . , p, taking expectations and dividing by
γ(0),

ρ(1) = ϕ1 + ϕ2ρ(1) + . . .+ ϕpρ(p− 1) (2.10)

ρ(2) = ϕ1ρ(1) + ϕ2 + . . .+ ϕpρ(p− 2)

...

ρ(p) = ϕ1ρ(p− 1) + ϕ2ρ(p− 2) + . . .+ ϕp.

Autocorrelations of higher order can be extrapolated using the recursion

ρ(h) = ϕ1ρ(h− 1) + ϕ2ρ(h− 2) + . . .+ ϕpρ(h− p), h = p+ 1, p+ 2, . . . (2.11)

Even if (Xt) is not an AR process of order p, fitting such a model can still be beneficial. Let
πp,0 +

∑p
i=1 πp,iXt−i denote the best approximation of Xt by an AR(p) model in the sense of

mean squared error for any p ∈ N. Then

X̂t = πh−1,0 +

h−1∑
i=1

πh−1,iXt−i (2.12)

is the best linear prediction of Xt given the past and analogously

X̂t−h = πh−1,0 +

h−1∑
i=1

πh−1,iXt−h+i (2.13)

is the best linear prediction of Xt−h given the future up to time t. The resulting residuals

Uh,t = Xt − X̂t and Vh,t = Xt−h − X̂t−h (2.14)

are called forward respectively backward residuals. They define the partial autocorrelation
function (pacf)

π(h) = πh,h =

{
Cor(Xt+1, Xt), h = 1

Cor(Uh,t, Vh,t), h ≥ 2
, (2.15)

which is another important tool for model building. It measures the correlation of Xt and Xt+h

after eliminating the linear effects of all intermediate observations Xt+1, . . . , Xt+h−1. Unlike the
acf, the pacf only needs to be bounded between -1 and 1 to be valid (Ramsey, 1974).
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A connection between the acf and pacf is given by the Durbin-Levinson algorithm. For a
stationary process with µ = 0, γ(0) > 0 and γ(h) → 0 for h→ ∞ it reads

π(h) =

(
ρ(h)−

h−1∑
i=1

πh−1,iρ(h− i)

)
v−1
h−1, h ≥ 2,

where

⎛⎜⎝ πh,1
...

πh,h−1

⎞⎟⎠ =

⎛⎜⎝ πh−1,1
...

πh−1,h−1

⎞⎟⎠− π(h)

⎛⎜⎝πh−1,h−1
...

πh−1,1

⎞⎟⎠
and vh = vh−1(1− π(h)2), (2.16)

with πh,h = π(h). The recursion starts with π(1) = ρ(1) and v0 = 1. Conversely, the acf can be
derived from the pacf using the relationship given by Masarotto (1987)

ρ(h) =

h−1∑
i=1

πh−1,iρ(h− i) + π(h)

(
1−

h−1∑
i=1

πh−1,iρ(i)

)
. (2.17)

Instead of estimating the partial autocorrelations (2.15) from the sample acf, Burg proposed
an alternative estimator (see Makhoul, 1981) for π(h) as

π̂(h) = 2

∑n
t=h+1 Uh,tVh,t∑n

t=h+1[U
2
h,t + V 2

h,t]
. (2.18)

It can be interpreted as a correlation estimator for the forward and backward residuals as the
denominator estimates the sum of their variances.

In summary, the above equations allow construction of (robust) autocorrelation estimators
by estimating ρ either directly, or by estimating the pacf π and using (2.17), or by fitting an
AR model of sufficiently large order p and applying (2.10) and (2.11).

2.2 Robust autocorrelation estimators

Different proposals for robust estimation of autocorrelations and partial autocorrelations have
been derived using different ideas. We review such approaches in the following.

2.2.1 Estimation based on univariate transformations

An intuitive idea of limiting the influence of outliers is rejecting or at least downweighting very
large and small values of the time series, where outlyingness will be relative to the marginal
distribution of Xt, ignoring the serial dependence. Such transformations reduce the effects
of outliers on the sample acf, but produce a bias which does not vanish asymptotically. An
exact bias correction is often not available, so we need to rely on asymptotic approximations or
simulations for this. For more details see the section on implementation.
A robust estimator of autocovariances and autocorrelations can be constructed using univariate
trimming (abbr.: Trim), that is omitting terms in the sum in (2.3) which correspond to the
most extreme observations,

γ̂(α)(h) =
1∑n−h

t=1 L
(α)
t L

(α)
t+h

{
n−h∑
t=1

(
Xt − X̄(α)

)(
Xt+h − X̄(α)

)
L
(α)
t L

(α)
t+h

}
,

where X̄(α) =
1∑n

t=1 L
(α)
t

n∑
t=1

XtL
(α)
t

and L
(α)
t =

{
1, X(g) < Xt < X(n−g+1)

0, otherwise
with g = ⌊α · n⌋ for 0 ≤ α < 0.5.
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Chan and Wei (1992) propose trimming constants α between 0.01 and 0.1, depending on the
suspected percentage of outliers. As usually, larger fractions α increase robustness but decrease
the efficiency of the estimator at clean samples without outliers. The acf is estimated by dividing
the trimmed autocovariance through the trimmed variance γ̂(α)(0). Simulations indicate that
without a bias correction the estimator is significantly biased for n = 50 (see also Chan and
Wei, 1992), and it may be easily seen that the bias does not vanish asymptotically if α is fixed.

To obtain high robustness, Chakhchoukh (2010) suggests substituting the sum in the sample
acf by the median, calculating

ρ̂(h) =
med(X̃1X̃1+h, . . . , X̃n−hX̃n)

med(X̃2
1 , . . . , X̃

2
n)

,

where X̃t is the centered time series, for example using the median. This estimator (abbr.:
Mediancor) can be seen as a limiting case of the above trimming based estimator, with α =
0.5. For an asymptotically consistent estimation of ρ(h) a nonlinear transformation of ρ̂(h) is
necessary, which needs to be determined numerically.

With the aim of robustly fitting time series models, Bustos and Yohai (1986) introduces the
so called residual autocovariances (RA-estimators), which can also be used to estimate the acf.
Albeit being defined more generally, this approach boils down to a more sophisticated trans-
formation of the time series (see Bustos and Yohai, 1986, for the general definition). Instead of
trimming a constant amount of the largest and smallest observations, observations are down-
weighted only if being unusually large or small. Note that the amount of rejected observations
depends on the sample itself. For the transformed time series Yt, t = 1, . . . , n, one gets

Yt = ψ

(
Xt −m

s

)
(2.19)

where m and s are suitable estimators for µ and
√
γ(0). The median and the median absolute

deviation about the median (MAD) are common robust choices for these quantities. Conven-
tional choices of the transformation function ψ with tuning parameters cj are the Huber function

ψ(x) = ψc1(x) = sign(x)min(|x|, c1) (2.20)

and Tukey’s bisquare function

ψ(x) = ψc2(x) =

{
x(1− x2/c22)

2, 0 ≤ |x| ≤ c2

0, |x| > c2.
(2.21)

The resulting estimators are abbreviated by RA-Huber and RA-Tukey. The objective of
Bustos and Yohai (1986) was not estimation of the acf, so a bias correction was not proposed.
However, tuning parameters like c1 = 1.37 for the Huber function and c2 = 4.68 for Tukey’s
function modify a Gaussian time series only slightly in the absence of outliers, so that the
resulting bias is small.

2.2.2 Estimation based on signs and ranks

For the purpose of model selection Garel and Hallin (1999) introduces rank based statistics,
which can also be applied for acf estimation. Construction of ranks means a special data trans-
formation as treated in the previous subsection. Nevertheless we present this approach separately
together with sign based estimators since both are popular utilities from nonparametric stat-
istics and often mentioned together. Additionally, bias corrections are known explicitly at least
for Gaussian processes.
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Since we are more interested in estimation than in testing, we use a definition slightly different
from Garel and Hallin (1999), namely

ρ̂(h) = c
n−h∑
i=1

J(Ri/(n+ 1)) · J(Ri+h/(n+ 1)) (2.22)

with c = 1/
∑n

i=1 J(Ri/(n+1))2 and J a score function. Van der Waerden or normal scores are
obtained by

J(x) = Φ−1(x), x ∈ (0, 1),

where Φ(x) is the cumulative distribution function of a standard normal, and lead to asymp-
totically optimal tests under normality (Garel and Hallin, 1999). The asymptotical Gaussian
efficiency of the resulting estimator is higher than those of other rank based estimators (Ferretti
et al., 1991). However, the related Gaussian rank correlation (abbr.: GRCor) is not very robust
against outliers (Boudt et al., 2012).

More widely used is the Spearman score function J(x) = x − (n + 1)/2, which result in an
autocorrelation estimator based on the popular Spearman’s ρ (abbr.: Spearman). Whereas van
der Waerden scores yield an asymptotically unbiased estimation in the normal case, Spearman’s
ρ needs to be transformed by g(ρ) = 2 sin (πρ/6), see for example Croux and Dehon (2010).

Further popular nonparametric correlation estimators are Kendall’s τ (abbr.: Kendall)

ρ̂(h) =
2

(n− h)(n− h− 1)

∑
i>j

sign ((Xi −Xj)(Xi+h −Xj+h))

and the quadrant correlation (abbr.: Quadrant)

ρ̂(h) =
1

n− h

n−h∑
i=1

sign ((Xi − µ̂)(Xi+h − µ̂)) ,

where the center µ̂ is estimated by the median of the time series. For both estimators trans-
formation by g(ρ) = sin (πρ/2) yields unbiasedness under the bivariate normal distribution,
and also for a wider range of distributions (Möttönen et al., 1999). A disadvantage of such
transformations is that they can destroy the positive-semidefiniteness of the estimators.

2.2.3 Estimation based on partial autocorrelation

Autocorrelation estimators constructed from pairwise correlation estimators possibly lack positive-
semidefiniteness as mentioned before. Valid estimation of the pacf is easier, since one only needs
to ensure estimates within -1 and 1. Using relation (2.17) between pacf and acf with initializa-
tion π̂(1) = ρ̂(1) then yields a positive semidefinite autocorrelation estimation. This motivates
estimating the pacf first, as suggested by Masarotto (1987) and Möttönen et al. (1999). Both
approaches differ in the choice of the correlation estimator for π(h) based on the identity (2.15).

An M-estimator as a variant of the Burg estimator (2.18) is proposed by Masarotto (1987)
and defined as the solution π̂(h) of

n∑
t=h+1

Wh,t(dht(π̂(h))/s
2
hn)
(
2UhtVht − π̂(h)(U2

ht + V 2
ht)
)
, (2.23)

whereWh,t = w(dht(b)/s
2
ht) with weight function w(x) = 3/(1+x), dht(b) = U2

ht+V
2
ht−2bUhtVht

and sht satisfying

n∑
t=h+1

w(dht(b)/s
2
ht)dht(b) = 2(n− h)s2ht.
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Figure 2.1: Time series with 95% prediction bounds based on the univariate (left) and the
bivariate (right) marginal distribution corresponding to subsequent observations. Univariate
margins identify the most extreme observations as outliers, while multivariate inspection takes
the dependencies between subsequent observations into account and identifies the true outliers.

Masarotto (1987) argues that the resulting acf estimator (abbr.: PA-M) is consistent and
asymptotically normal at least under normality. Asymptotical confidence bands can be con-
structed numerically. As an alternative, Möttönen et al. (1999) proposes sign and rank based
correlation estimators, e.g. Spearman’s ρ (abbr.: PA-Spearman), Kendall’s τ (abbr.: PA-
Kendall) and quadrant-correlation (abbr.: PA-Quadrant), as described in the previous sub-
section. Generally, every robust bivariate correlation estimator can be applied.

2.2.4 Estimation based on multivariate correlation

Approaches based on univariate transformations ignore the serial dependence of the data, pos-
sibly downweight good observations and overlook outliers. The left panel of Figure 2.1 depicts
a realization of an AR process with ϕ0 = 0 and ϕ1 = 0.9. Prediction bounds based on the
univariate marginal distribution simply identify the most extreme observations as possible out-
liers, although these observations might be due to the dynamics of the underlying process. A
bivariate or even multivariate analysis based on the marginal distribution of subsequent obser-
vations (Gather et al., 2002) allows us to take the dependencies among subsequent observations
into account, and can achieve better downweighting of spurious observations in the subsequent
analysis than a simple univariate consideration. Estimation of the acf from a robust estimate
of the multivariate covariance matrix is thus promising. Such estimators can be based e.g. on
multivariate trimming or weighting. Moreover, some multivariate robust correlation estimators
even gain efficiency with increasing dimension (Taskinen et al., 2006).

Multivariate methods can be formulated in terms of the data matrix Zk in (2.5). Note
that centering is unnecessary, since the described approaches estimate a robust center. The
computing time of many robust procedures increases exponentially in the dimension (Vakili and
Schmitt, 2014), so one should choose k rather small. To simplify notation, we denote the i-th
row of Zk as M′

i, so that we are in the usual multivariate case. The estimation result will
always be a valid covariance matrix but it does not have the Toeplitz structure with constant
off-diagonals, albeit by definition all values of the h-th off-diagonal estimate ρ(h). An intuitive
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solution is averaging the values across each off-diagonal, i.e.

ρ̂(h) =
1

k − h+ 1

k−h+1∑
i=1

Ξ̂
(k)
i,i+h, (2.24)

though positive-semidefiniteness gets possibly lost then.
There is a large literature on robust multivariate correlation estimation. We will concentrate

on the most common proposals, but of course others could be employed as well.
An M-estimator of scatter (abbr.: Multi-M), which can be represented as a weighted least

squares estimate, is introduced in Maronna (1976), see also Maronna et al. (2006). Given an
initial estimator (µ̂, Σ̂) for expectation and covariance, robust weights are obtained from the
outlyingness of the observations as measured by the Mahalanobis distance

d2i = (Mi − µ̂)′Σ̂−1 (Mi − µ̂), i = 1 , . . . ,n + k . (2.25)

After that, the estimation is sequentially updated by

Σ̂ =
1

n

n+k∑
i=1

v(di)(Mi − µ̂)(Mi − µ̂)′ and µ̂ =

∑n+k
i=1 w(di)Mi∑n+k
i=1 w(di)

, (2.26)

where w(di) and v(di) are suitable weights. Popular are Huber weights: w(di) = min(1, c0/|di|)
and v(di) = w(di)

2/r, where c0 determines robustness and efficiency and r depending on c0 and
the probability model ensures consistency. Using the weight function v(d) = (k + 1)/d2 results
in Tyler’s M-estimator (abbr.: Multi-TylerM), which is a kind of minimax estimator within
the elliptical model (Tyler, 1987).

The breakdown point (see Hubert and Debruyne, 2009, for definition and meaning) of M-
estimators cannot exceed an upper bound which decreases with increasing dimension (Maronna
et al., 2006). Since the effective amount of outlying vectors in the estimation of the acf can
be k-times the number of outlying observations, other estimators might be preferred if one is
interested in larger time lags.

The disadvantage of the decreasing breakdown point does not apply to multivariate S-
estimators (Davies, 1987) (abbr.: Multi-S). They are defined as

Σ̂ = argmin
µ, Σ

{
det(Σ) :

1

n+ k

n+k∑
i=1

w
(
(Mi − µ)′Σ−1(Mi − µ)

)
= b0

}
,

where w is a bounded smooth and nondecreasing function, e.g.

w(y) = min

(
y2

2
− y4

2c2
+

y6

6c4
,
c2

6

)
.

The constant c determines the breakdown point, whereas b0 depends on the probability model;
see Lopuhaä (1989) for more details. An algorithm for computing this implicitly defined estim-
ator can be found in Salibian-Barrera and Yohai (2006). Although the breakdown point does not
depend on the number of dimensions, single outliers can cause a larger bias in higher dimensions
(Maronna et al., 2006).

A popular robust covariance estimator is the minimum covariance determinant (abbr.: Multi-
rMCD) (Rousseeuw, 1985; Hubert and Debruyne, 2010). For a given constant α between 0 and
0.5 the usual product moment covariance is calculated for the subset of proportion 1− α which
leads to the matrix with the smallest determinant. An approximate procedure was proposed
by Rousseeuw and Driessen (1999), since finding this subset is very time consuming for large n.
Larger trimming constants α lead to more robust but less efficient estimators, with the efficiency
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for large α being rather low (Croux and Haesbroeck, 1999). To combine high robustness and
large efficiency, often an additional reweighting step is added (abbr.: Multi-wMCD): Robust
Mahalanobis distances are obtained based on an initial MCD fit, and then the ordinary cov-
ariance matrix is calculated from all observations with Mahalanobis distances not exceeding a
certain quantile of the χ2-distribution with k + 1 degrees of freedom. The 0.975-quantile has
been recommended for this cut-off (Rousseeuw and Driessen, 1999). An asymptotically fully
efficient reweighting step (abbr.: Multi-effMCD) with a data-adaptive choice of the quantile
was suggested in Gervini (2003).

Multivariate outliers can be inconspicuous if one only looks at individual dimensions, but
there is always a one-dimensional projection in which the observation is outlying (Hadi et al.,
2009). Based on this idea, Stahel (1981) and Donoho (1982) propose to use the maximal distance
to the median for every possible projection to measure outlyingness, i.e.

ri = max
a:∥a∥=1

a′Mi −Median(a′M1, . . . ,a
′Mn+k)

MAD(a′M1, . . . ,a′Mn+k)
,

with ∥·∥ being the Euclidean norm. Practical algorithms only consider a finite set of randomly
chosen vectors for a. The number of such directions needs to increase strongly for higher
dimensions to ensure reliable outlier detection. The resulting Stahel-Donoho estimator (abbr.:
Multi-SD) is defined as the weighted covariance

Σ̂ =
1∑n

i=1wi

n∑
i=1

wi(Mi − µ̂)(Mi − µ̂)′ and µ̂ =
1∑n

i=1wi

n∑
i=1

wiMi.

A common choice of the weight function is wi = min
(
1, (c/ri)

2
)
, and c is often chosen as the

0.975-quantile of the χ2-distribution with k + 1 degrees of freedom (Croux and Haesbroeck,
1999).

2.2.5 Estimation based on variances

An estimation principle for covariances and correlations based on estimators of variances has
been proposed in Gnanadesikan and Kettenring (1972). In the context of autocorrelation estim-
ation for stationary time series, the underlying formula reads

ρ(h) = Cor(Xt+h, Xt) =
Var(Xt+h +Xt)−Var(Xt+h −Xt)

Var(Xt+h +Xt) + Var(Xt+h −Xt)
, (2.27)

see Ma and Genton (2000). The usual correction factors necessary for making robust scale
estimators consistent at a certain distribution are not needed when applying them for correlation
estimation, since they cancel out if Xt+h + Xt and Xt+h − Xt are in the same location-scale
family. This is fulfilled, e.g., if Xt+h and Xt are jointly normal or, more generally, elliptically-
symmetric distributed. Note that this approach does not necessarily yield a positive-semidefinite
estimation of the acf.

For estimation of the variances on the right hand side of (2.27), trimmed and winsorized
variances have been suggested (Gnanadesikan and Kettenring, 1972). Since any reasonable
estimator of variability can be applied, Ma and Genton (2000) propose Qn (Rousseeuw and
Croux, 1993) (abbr.: GK-Qn), because of its high asymptotic breakdown point of 0.5 and its
good asymptotic efficiency of 0.82 for i.i.d. Gaussian samples. The Qn corresponds roughly to
the first quartile of all absolute pairwise distances between all pairs of observations.

In the context of ordinary correlation Maronna and Zamar (2002) recommended the so called
τ -scale estimator (abbr.: GK-tau)

σ̂2(X1, . . . , Xn) =
σ̂20
n

n∑
i=1

dc2

(
Xi − µ̂

σ̂0

)
, (2.28)
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where µ̂ is an adaptively weighted mean of the observations, σ̂0 their MAD and dc(x) =
min(x2, c2). Tuning constants of c1 = 4.5 (for µ̂) and c2 = 3 results in a good trade-off between
efficiency and robustness and an asymptotic Gaussian efficiency of 0.8 in case of independent
observations (Maronna and Zamar, 2002). The good properties of this estimator in the bivariate
i.i.d. case are promising for the estimation of autocorrelations.

2.2.6 Estimation based on robust filtering

As mentioned above, clean observations can be outlying with respect to the marginal distribution
and thus be unnecessarily downweighted by estimators based on univariate transformations, if
the autocorrelations ρ(h) are large positive and slowly decaying. The robust filtering approach
overcomes this problem by taking the time series structure into account. The idea is to measure
the outlyingness of the prediction residuals Up,t instead of Xt itself. After replacing outliers
by reasonable values, one can either calculate the sample acf (abbr.: Filter-acf) or use the
fitted AR process and translate this into the acf via the Yule-Walker equations (abbr.: Filter-
ar). Robust filtering was already introduced by Masreliez (1975), but we will stick to the filter
described in Maronna et al. (2006), which is a slight modification proposed by Martin and
Thomson (1982). Note that this algorithm is quite extensive so we will summarize only the
main ideas and refer to Maronna et al. (2006, pp. 272–277 and 320–321) for details.

Let X̃t be centered for example by the median and approximate the process by an AR model
of order p ∈ N. A kind of robust AIC criterion to determine p was proposed by Maronna et al.
(2006).
Let Yt = (Yt, . . . , Yt−p+1)

′ denote the vector of robustly filtered values and

Φ =

(
ϕ1, . . . ϕp−1 ϕp

Ip−1 0p−1

)
(2.29)

the so called transition matrix. From this one calculates the one step ahead predictions

X̂t =

p∑
i=1

ϕiYt−i

and its residuals

Ũt = Xt − X̂t.

Note that this is similar to usual prediction residuals defined in (2.14), just replacing Xj by Yj
for j = t− 1, . . . , t− p to make it more robust. Eventually one sets

Yt = ΦYt−1 +
mt

st
ψ

(
Ũt

st

)
, (2.30)

where ψ should fulfill

ψ(x) =

{
x |x| < d1

0 |x| > d2,
(2.31)

with 0 < d1 < d2. Our proposal is to use a polynomial of degree three between d1 and d2. It is
uniquely defined by forcing ψ to be continuous differentiable:

ψ(x) = |x|(a+ b|x|+ dx2 + e|x|3) for d1 ≤ |x| ≤ d2, (2.32)
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where

a =
2d21d

2
2

(d1 − d2)2
b =

−d32 − d1d
2
2 − 4d21d2

(d1 − d2)2

d =
2d22 + 2d1d2 + 2d21

(d1 − d2)2
e =

−d1 − d2
(d1 − d2)3

.

Furthermore mt ∈ Rp contains estimations of the variance of the prediction residual s2t and the
covariances between the residual Ũt and the robustly filtered values Yt−1, . . . Yt−p+1. Note that
these estimations are time-dependent instead of a simpler global estimation. The reason for
this is that in case of outliers there is a chance that the algorithm otherwise might lose track
of the data afterwards. In this case st will increase and thus provide the filtered values more
variation to get back to the data more quickly. See Martin and Thomson (1982) for more details.
Recursions for mt are given as

M t = ΦP t−1Φ
′ + dd′σ̂2u

and

P t = M t −
1

s2t
ψ

(
Ũt

st

)
st

Ũt

mtm
′
t

where mt is the first column of M t, d = (1, 0, . . . , 0)′ ∈ Rp and σ̂2u an estimator for the variance
of the prediction residuals.

Looking only at the first row of equations in (2.30) we get

Yt = X̂t + stψ

(
Ũt

st

)
, (2.33)

indicating that Yt will be close to Xt if |Ũt| is small, and close to X̂t if it is large. Using the
vector recursion instead of a simpler one dimensional equation (2.33) offers the advantage that
if Xt is an outlier, the algorithm will also use future information on Xs, s > t, to determine X̂t.

The parameters ϕ1, . . . , ϕp can be estimated by minimizing the variance of the prediction
residuals

σ̂(Ũp+1(ϕ1, . . . , ϕp), . . . , Ũn(ϕ1, . . . , ϕp)). (2.34)

For σ̂ Maronna et al. (2006) proposed the τ -scale (2.28) because of its quick computation and
good robustness. Since a non-convex function needs to be optimized over p parameters, they
suggested sequential minimization based on the Durbin-Levinson algorithm. This converts the
problem into p one-dimensional optimizations, which are proposed to be optimized by a line
search.

2.2.7 Positive-semidefiniteness

From the above approaches the usual sample acf, the procedures using partial autocorrelations,
the acf of the robustly filtered values as well as the Gaussian rank autocorrelation are guaranteed
to be positive-semidefinite.

Bivariate correlation estimators do not necessarily yield positive-definite correlation matrices
unless they calculate the usual correlation based on transformed data. A further problem arises
for multivariate correlation estimators, resulting in positive-semidefinite matrices which do not
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Estimators Tuning parameters

RA-Huber c1 = 1.37
RA-Tukey c2 = 4.68
Trim α = 0.1

Multi-M c0 =
√
F−1
k+1(0.9), r = Fk+3(c

2
0) +

c20·0.1
k+1 with Fk ∼ χ2

k

Multi-S c = 6.02 (maximal lag of 7)
Multi-MCD α = 0.5

Multi-SD c =
√
F−1
k+1(0.95) with Fk ∼ χ2

k

GK-tau c1 = 4.5, c2 = 3
Filter-acf / ar c1 = 4.5, c2 = 3 for (2.34), d1 = 2, d2 = 3 for (2.31)

Table 2.1: Tuning parameters used in our simulation study.

possess a Toeplitz structure, meaning that there will be different values on the off-diagonals. En-
forcing this by averaging the off-diagonals, for instance, can destroy the positive-semidefiniteness.
Construction of the empirical counterpart of the correlation matrix Ξ(k) defined in formula (2.7)
allows to apply transformations which achieve positive-semidefiniteness, but this destroys the
Toeplitz structure.

A more appealing approach is finding the best positive-semidefinite Toeplitz approximation,
minimizing e.g. the Frobenius norm (Al-Homidan, 2006). In our simulations we use the simple
projection method proposed there, which can be described as follows. Let A be any real sym-
metric matrix and A = UDU ′ denote an eigenvalue decomposition, where D is a diagonal matrix
containing all eigenvalues. If A is not positive-semidefinite there will be some eigenvalues smaller
than zero. Setting these to zero yields the matrix D̃ and results in a projection Pp(A) = UD̃U ′,
which is positive-semidefinite but not Toeplitz. For any matrix B ∈ Rp×p we denote by PT (B)
the matrix which results from setting all off-diagonal elements of B of order j to its average
for j = 1, . . . , p − 1. Then the projection method for the best positive-semidefinite Toeplitz
approximation can be described as

R0 = Ξ̂(k)

Ri+1 = Ri + [Pp(PT (Ri))− PT (Ri)] i = 1, . . .

and is stopped if the change in the Frobenius norm ||Ri+1 − Ri||F becomes negligible, see Al-
Homidan (2006).

2.3 Simulations

There are only a few theoretical results available to compare the different autocorrelation es-
timators. We thus perform a simulation study using the statistical software R (R Core Team,
2016) and the robts package (Dürre et al., 2016). Many of the proposed estimators require the
choice of tuning parameters. For the purpose of a fair comparison these parameters are often
selected by making all estimators equally efficient in simulation studies. Unfortunately, there
are many estimators without tuning possibility and a lack of theoretical results so that this is
not possible here. We use the tuning parameters proposed by the respective authors instead.
If possible we favor more robust versions, since our simulation scenarios often contain highly
contaminated data. The chosen tuning parameters can be found in Table 2.1.
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Abbr. AR[0] AR[0.4] AR[0.8] AR[-0.4]

ϕ1 0 0.4 0.8 -0.4
θ1 0 0 0 0

Abbr. AR[-0.8] MA[0.4] ARMA[0.4,0.4] ARMA[0.8,-0.4]

ϕ1 -0.8 0 0.4 0.8
θ1 0 0.4 0.4 -0.4

Table 2.2: Considered processes and their abbreviations.

0 1 2 3 4 5 6 7

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

AR[0]
MA[0.4]
AR[0.4]
AR[0.8]

AR[−0.4]
ARMA[0.4,0.4]
ARMA[0.8,−0.4]

Theoretical acf

L
a

g

Figure 2.2: Autocorrelation functions of the processes considered in the simulations.

We mainly focus on first order autoregressive moving average (ARMA) processes (as defined
in 2.8) because of their simplicity and popularity, considering the seven parameter settings
shown in Table 2.2 along with their abbreviations. Figure 2.2 indicates that this selection covers
rather different autocorrelation functions. If not explicitly stated otherwise, the innovations are
standard normal.

We calculate the acf only for the first seven lags for different reasons. Multivariate correla-
tion estimators are time consuming for large lags and the acf of most of the processes is nearly
zero for lags larger than six. So we do not expect qualitatively different behavior for higher time
lags. However, simulations indicate a slight loss of efficiency of robust estimators for higher time
lags.
To simplify the comparison we consider maximal bias and minimal efficiency across all lags in-
stead of looking at all seven time lags separately. Simulations reveal that the maximal (absolute)
bias

max
h=1,...,7

|Bias(ρ̂(h))|
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is usually realized for h = 1, whereas the minimal efficiency compared to the sample acf ρ̃

min
h=1,...,7

(MSE(ρ̃(h))/MSE(ρ̂(h)))

occurs often for h = 1 or the largest lag considered here, h = 7. In the case of contaminated
data, we calculate the efficiency relative to the sample acf for clean data. This measures the
amount of information lost due to outliers when using a robust estimator.

2.3.1 Efficiency for uncontaminated data

First we investigate the properties in case of clean data without outliers, starting with the
AR[0.4] model. The results are based on 10 000 runs each. As mentioned before, the empirical
acf is biased for small n. As can be seen in Figure 2.3, the small sample bias is comparable to
that of the robust alternatives. Usually there is a bias towards 0, except for the PA-Quadrant
and the robust filtering approach. For the latter the bias changes from negative values for
small n to slightly positive values for large n. This is not surprising. It was already mentioned
by Maronna et al. (2006) that smoothing the time series produces a nonvanishing bias. For
small n this is overruled by the natural negative bias of the autocorrelation estimation. Tyler’s
M-estimator and RA-estimators are less biased than the other methods for small n, resulting
in a good finite sample efficiency. Generally, multivariate S- and M-estimators achieve high
efficiencies. GK, rank and sign based approaches and also the reweighted MCD versions need
larger samples to get a small MSE. As opposed to this, the relative efficiency of the estimation
by the raw MCD, Tyler’s M-estimator, the RA-approaches, the Filter-ar method and the median
correlation decreases. For the MCD this is in line with simulation results in the multivariate
case (see Croux and Haesbroeck, 1999). For the Filter-ar algorithm we notice an increase of the
variance relative to the empirical acf, whereas a slower decay of the bias is the reason for the
other estimators.

The findings for other models are similar. For processes with strong positive autocorrelations
the maximal bias increases for all estimators just as the minimal efficiency. Nevertheless, the
order of the estimators with respect to efficiency nearly stays the same. The Filter algorithms are
an exception having a relatively low efficiency compared to the other approaches if the process
has small absolute correlations. An explanation could be that, generally, the estimator of the
fitted AR parameter ϕi has a large variance in this case, which affects the precision of the filtered
values.

In time series we often face distributions with tails heavier than the Gaussian (Davis and
Resnick, 1986; Loretan and Phillips, 1994; Politis, 2009; Rojo, 2013). Estimators should remain
reliable in case of such departures from normality. Therefore we considered maximal absolute
bias and minimal efficiency for AR models with t-distributed innovations of different degrees of
freedom. Already for three degrees of freedom the results were similar to those under normality.
Only estimators based on partial autocorrelation lose considerable efficiency. Note that three
degrees of freedom correspond to the heaviest tails possible for which the acf is defined under
t-distributions. Our simulations agree with the theoretical result that the sample acf of a linear
process is still

√
n-consistent without the need of fourth moments, see Davis and Mikosch (1998).

2.3.2 Robustness under contamination

Additive outliers are known to be particularly harmful for the estimation of dependence para-
meters. Such outliers describe e.g. measurement errors, where a certain value ω is added to the
observation at time t, see Fox (1972). While for the empirical acf the effect of an outlier increases
in ω due to monotonicity, for robust estimators this influence is generally bounded. However,
while the influence is still monotone in ω for rank-based or other monotone estimators, it can
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Figure 2.3: Efficiency (left) and bias (right) for n = 50, 100, 500 (from top to bottom in each
panel) for an AR[0.4] model with normal innovations.
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Figure 2.4: Simulated bias of a contaminated AR[0] model with n = 100 and a patch of 5 (left)
or 20 outliers (right).

even decrease for very large values of ω for other estimators, e.g. for so called redescenders like
S-estimators, see Figure 2.4. This means that different outlier sizes are worst-case for different
estimators. Since we are interested in estimators with a good overall performance the outlier
size ω is sampled from a normal distribution with mean 0 and variance a2 ·γ(0), a ∈ {5, 10, 20}.
This produces some small perturbations, inconspicuous outliers which are favorable for mono-
tone estimators, as well as very large outliers which redescenders can cope well with. Note that
the outlier variance is proportional to the process variance. In general smaller values of a favor
monotone estimators, while larger values favor redescenders and GK-approaches.

Furthermore, we contaminate an increasing number n0 ∈ {5, 10, 15, 20, 25} of values of the
original time series of length n = 100 to investigate how many outliers an estimator can deal
with. It was argued by Ma and Genton (2000) that estimators of the autocovariance cannot be
expected to cope with more than 25% contaminated observations since one outlier can enter two
pairs of observations entering the calculation of the correlation. Accordingly it is not reasonable
to choose n0 larger than 25. Moreover, we consider both isolated and patchy outliers, since these
will have different effects. All results are based on 1000 simulation runs each.

We first treat the situation of isolated outliers, which drive the sample acf towards zero. The
positions of the outliers are chosen at random for each time series. We first show the results
for the AR[0.8] model with a = 5, which corresponds to an outlier variance of 25γ(0). As one
can see in Figure 2.5, the empirical acf becomes useless already for n0 = 5 outliers. In the same
situation, some robust alternatives lose more than half of their efficiency. Nevertheless they are
all preferable to the empirical acf. Their efficiency is at least 4.2 times larger.
Estimators which cope especially well with additive outliers are those based on robust filtering
and to some extent also the GK approaches.

If one increases the outlier variance to 400γ(0), monotone estimators lose little more efficiency
and get a somewhat larger bias, as expected, see Figure 2.6. Furthermore the filter methods
and GK approaches gain efficiency compared to smaller outlier variances. For the latter this
seems at first to be surprising since GK estimators are not known to be redescending, but it
is consistent with the multivariate setting. The influence function derived in Ma and Genton
(2001) tends to zero along the axes at least in the elliptical model. This means that a small
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fraction of outliers in only one dimension will have nearly no influence on the estimation as long
as the outliers are large. In the case of isolated outliers we expect only one variable of each pair
of observations to be contaminated and therefore a redescending behavior of the GK methods.

The estimators generally behave better for models with small absolute autocorrelations. This
is not surprising, since the bias effect is more limited there. In models with rather small absolute
autocorrelations other robust estimators like RA and GK approaches outperform the Filter-acf,
which seems to behave especially well if the autocorrelations have large absolute values.

Patchy (consecutive) outliers increase the sample acf at small time lags towards one. For
our simulations we add the same value ω generated from a N(0, a2 · γ(0)) distributed random
variable to successive observations at times {51, . . . , 50+n0}. This resembles a temporarily level
shift of the same height. We first look at the AR[0]-model with an outlier variance γ(0)100.
Again the estimation by the empirical acf is useless already for n0 = 5 outliers, see Figure 2.7.
Robust estimators can cope much better with this situation and rarely preserve less than half
of their efficiency, reaching values between 3.5 and 22 times the efficiency of the empirical acf in
our experiments. Estimators based on SD and MCD and to some extent also the multivariate
S-estimator perform well. Even for large amounts of outliers they are little biased and they lose
only little efficiency. Different kinds of reweighting which boost efficiency in the clean model do
not significantly increase the bias or vulnerability to outliers and should be preferred. Recall
that GK approaches are not redescending under patchy outliers as can be seen in Figure 2.4.

If the acf attains large positive values, a few consecutive outliers can even improve the
estimation by cancelling the small sample bias. All estimators behave better compared to the
AR[0] model in these cases, with rank and RA-estimators improving most. Patchy outliers seem
to have the largest impact if the acf contains values close to -1. We observe the largest maximal
absolute biases and the smallest minimal efficiencies for the AR[-0.4] and AR[-0.8] models. The
only exceptions are the filter methods which perform even better than in the AR[0] case. This
agrees with higher efficiencies for larger absolute correlations in the absence of contamination.

2.3.3 Non-linear models

We also consider nonlinear models, specifically GARCH models, introduced by Bollerslev (1986).
They allow the variance of the process to depend on the past observations and are popular for
modelling financial time series (see for example Bollerslev et al., 1992; Duan, 1995). A GARCH
process (Xt)t∈Z of order (1, 1) is defined as

Xt = σtat with σ
2
t = σ20 + α1X

2
t−1 +

l∑
j=1

β1σ
2
t−1,

with parameters σ0, α1, β1 ∈ R+ and innovations (at)t∈Z usually forming Gaussian or t-distributed
white noise. In our simulations we consider a process of order (1,1) with σ0 = 0.05, α1 =
0.1, β1 = 0.85 and standard normal innovations (at)t∈Z (abbreviated as GARCH[0.05,0.1,0.85])
which is a realistic parameter setting (see for example Lamoureux and Lastrapes, 1990). Results
under patchy outliers can be seen in Figure 2.8. In the clean model robust procedures are a
little more efficient than in the linear case, which might be due to the heavy tails of the marginal
distribution of GARCH processes (Basrak et al., 2002). Under patchy and also under isolated
outliers the results (not shown here) are comparable to the results for linear processes.
For modelling GARCH processes the autocorrelations of the squared process (X2

t )t∈Z are also
of interest (see Baillie and Chung, 2001). Since estimation of the acf of (X2

t )t∈Z is harder, we
choose a time series of length n = 1000. It turns out that most estimators are substantially
biased, which might be a result of the skewed distribution of the process (X2

t )t∈Z. Using para-
meters α1 ∈ {0, 0.1, 0.2} and β1 ∈ {0, 0.5, 0.7} we find that in addition to the empirical acf only
the RA approach with the Huber function and the median correlation yield an acceptable bias.
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Figure 2.5: Efficiency (left) and bias (right) for a contaminated AR[0.8] model with n = 100
and n0 = 0, 5, 10, 15, 20, 25 (from top to bottom in each panel) isolated outliers and a = 5.
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Figure 2.6: Efficiency (left) and bias (right) for a contaminated AR[0.8] model with n = 100
and n0 = 0, 5, 10, 15, 20, 25 (from top to bottom in each panel) isolated outliers and a = 20.
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Figure 2.7: Efficiency (left) and bias (right) for a contaminated AR[0] model with n = 100 and
outlier patches of length n0 = 0, 5, 10, 15, 20, 25 and a = 10.
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Figure 2.8: Efficiency under an outlier patch of length n0 = 0, 5, 10, 15, 20, 25 (from top to
bottom in each panel) under a GARCH[0.05,0.85,0.1] model with n = 1000 and a = 10.
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2.3.4 Positive-semidefiniteness

We have mentioned the problem of positive-semidefiniteness repeatedly. Our simulations reveal
that this is mainly a problem of little efficient estimators like quadrant correlation and the 50%
trimming (median) approach. We never noticed problems for multivariate approaches except for
the raw MCD, which occasionally produces indefinite estimations if the model is close to being
non-stationary. It turns out that consistency corrections for the approaches based on univariate
transformations often destroy definiteness. Whereas the difference between the original and
the enforced positive-semidefinite estimation is negligible for the RA-estimators, we observed
changes up to 0.08 for trimmed and median based correlation. There can be even greater
discrepancies for the Filter-AR estimator, which might be caused by some instability of our
implementation of this procedure. We rarely noticed indefinite estimations by the variance based
approaches. Enforcing positive-semidefiniteness increases the efficiency of trimmed estimators
slightly.

2.4 Conclusion

Many of the proposals for robust autocorrelation estimation are borrowed from the usual cor-
relation estimation applied to all pairs of observations (Xt, Xt+h) at a certain time lag h, with
the intention of carrying over good robustness properties and high efficiency under normality to
the time series context. A problem arising there is that every outlier can enter two pairs of ob-
servations, so that the number of contaminated pairs can be up to twice the number of outliers.
This problem does not arise for estimators which filter the time series before the acf estimation.
However, these do not respect the serial dependence structure like the RA-estimators or they
are computationally heavy like the robust filter algorithm.
There is a great interest in robust time series analysis nowadays. There is also a new proposal
by Chang and Politis (2014) on autocorrelation estimation based on the idea of estimating ρ(h)
by regressing Xt+h robustly on Xt. Extra manipulations are needed to guarantee that such
estimates are positive-semidefinite and do not exceed 1. Moreover, there are many candidate
robust regression techniques available, so that a careful inspection of this proposal would have
been beyond the scope of this paper.
Our simulation study confirms that even a small fraction of contamination can make the empir-
ical acf useless. The robust filter algorithms yield good results even in case of many isolated or
patchy outliers, but have a lower efficiency if there is little serial correlation. Estimation based on
a reweighted MCD is favorable, if there are patchy outliers. The approach based on the Stahel-
Donoho estimator means a good compromise, but it is computationally demanding. If one looks
for a relatively quick estimator, the approach based on robust variances seems to be a good
choice, since they also generally yield good results. A possible lack of positive-semidefiniteness
can easily be fixed by a projection algorithm.
Our simulation results are based on additive outliers of random size ω and therefore represent a
kind of overall performance for different outlier sizes. In simulations not reported here we also
consider other outlier scenarios with fixed outlier sizes. The worst case biases and efficiencies
are generally worse there than those presented here. Nevertheless, the results are qualitatively
rather similar.

It needs to be kept in mind that in the simulations reported here we focus on the case
of innovations from a contaminated Gaussian or at least continuous-symmetric distribution.
Results look different e.g. for count time series as reported in Fried et al. (2014), where rank
based estimators performed rather well.
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Chapter 3

Spatial sign correlation

3.1 Introduction

In this chapter we present a new estimator for the correlation coefficient and derive its asymptotic
properties. The new proposal is based on the spatial sign covariance matrix. The spatial sign
of a multivariate observation is its projection (after a suitable centering) onto the p-dimensional
unit sphere. Spatial signs play an important role in robust multivariate data analysis. Since
every observation is basically shrunk to length 1, the impact of any contamination is bounded.
Spatial signs have been used, e.g., for robust tests of multivariate location (e.g. Möttönen et al.,
1997), tests of independence (Taskinen et al., 2003), testing for sphericity (Sirkiä et al., 2009)
or canonical correlation analysis (Taskinen et al., 2006). Using spatial signs as score function in
estimation leads to the spatial median as a multivariate location estimator or, in the regression
setting, to the least absolute deviation (LAD) regression. For a recent overview of spatial sign
methods see Oja (2010).

The spatial sign covariance matrix (SSCM) is simply the covariance matrix of the spatial
signs of the (suitably centered) observations. It is known that, within symmetric data models, the
SSCM consistently estimates the eigenvectors of the covariance matrix, but not the eigenvalues
(see for example Marden, 1999). The connection between the eigenvalues of the population
SSCM and the covariance matrix is explicitly known in the special case of two-dimensional
elliptical distribution, see Vogel et al. (2008) and Croux et al. (2010). We use this relationship
to robustly estimate a two-dimensional covariance matrix (up to scale) based on the SSCM and
hence devise a correlation estimator, which we call spatial sign correlation. We further derive the
asymptotic distributions and influence functions of the SSCM and the spatial sign correlation.
It turns out that the asymptotic variance of the spatial sign correlation can get arbitrarily large if
the ratio of the marginal scales get arbitrarily large. We therefore propose a two stage procedure
which first standardizes the data marginally and then computes the spatial sign correlation. The
asymptotic variance of the two stage spatial sign correlation equals then that of the ordinary
spatial sign correlation for the most favourable case of equal marginal scales.

Finally we introduce two generalizations to estimate the multivariate correlation matrix.
The first one fills the off-diagonal positions of the matrix estimate with the bivariate spatial sign
correlation coefficients of all pairs of variables. The second one which we call the positive definite
spatial sign correlation matrix uses the relationship between the eigenvalues of the population
SSCM and the covariance matrix under elliptical distributions of arbitrary dimensions. Though
an explicit formula mapping the eigenvalues onto each other does not seem to exist except in the
bivariate case, the eigenvalues of the SSCM can be expressed as one-dimensional integrals given
the eigenvalues of the covariance matrix. This representation can be inverted by a fix point
algorithm and therefore used to estimate the correlation matrix. Simulations and theoretical
results suggest that the positive definite spatial sign correlation matrix is more efficient but also
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more sensitive against outliers than the bivariate approach.
This chapter is structured as follows. We gather results concerning the SSCM including

representations of the eigenvalues in Section 3.2. We use them to derive the spatial sign correl-
ation coefficient in Section 3.3 and calculate its asymptotic distribution as well as its influence
function and gross error sensitivity. Section 3.4 is devoted to the two stage spatial sign correl-
ation. Besides its asymptotic distribution we state a variance stabilising transformation in the
same manner as the Fisher z-transform, which enables us to construct very accurate confidence
intervals even for small sample sizes. In Section 3.5 we compare the spatial sign correlation
analytically and in simulations with other robust correlation estimators which are commonly
used. Section 3.6 is concerned with the positive definite spatial sign correlation. It contains a
description of the fixed point algorithm, simulations regarding the efficiency of the estimator and
its influence function under special assumptions, which indicates the sensitivity of the positive
definite spatial sign correlation matrix in high dimensions. All proofs are deferred to Section
3.8.

We close this section by introducing some recurrent terms and notation. By vec we denote the
operator, which stacks the columns of a matrix from left to right underneath each other, and by
⊗ the Kronecker product (e.g. Magnus and Neudecker, 1999, Sec. 2). Both are connected by the
identity vec(ABC) = (CT ⊗A) vecB. Furthermore we denote by Xn = (X1, ...,Xn)

T the n× p
data matrix containing the p-dimensional observations X1, ...,Xn as rows. In order to study the
properties of the new estimator analytically we will assume the data to stem from the elliptical
model. A continuous distribution F on Rp is said to be elliptical if it has a Lebesgue-density f
of the form

f(x) = det(V )−1/2g{(x− µ)TV −1(x− µ)} (3.1)

for some µ ∈ Rp and symmetric, positive definite p × p matrix V . We call µ the location or
symmetry center, V the shape matrix, since it describes the shape of the elliptical contour lines
of the density, and the function g : [0,∞) → [0,∞) the elliptical generator of F . The class
of all continuous elliptical distributions F on Rp having location µ and shape V is denoted by
Ep(µ, V ). The shape matrix V is unique only up to scale, that is, Ep(µ, V ) = Ep(µ, cV ) for
any c > 0. For scale-free functions of V , such as correlations, which we consider here, this
ambiguity is irrelevant. A common view on the shape of an elliptical distribution is to treat it as
an equivalence class of positive definite random matrices being proportional to each other. We
adopt this notion here: in the results of this exposition, V can be any representative from its
equivalence class. If second moments exist, one can always take the covariance matrix, or any
suitably scaled multiple of it. However, the results are more general, the existence of second, or
even first, moments is not required. Throughout the paper we let

V = UΛUT (3.2)

denote an eigenvalue decomposition of V , where U is an orthogonal matrix containing the
eigenvectors of V as columns and Λ = diag(λ1, ..., λp) is such that 0 < λp ≤ . . . ≤ λ1. It
furthermore holds that for X ∼ F ∈ Ep(µ, V ), there exists a spherical random variable Y such
that

X = UΛ
1
2Y + µ, (3.3)

with U and Λ as in (3.2). We use || · || to denote the L2 norm of a vector.

3.2 The spatial sign covariance matrix

We define the spatial sign covariance matrix of a multivariate distribution and derive its connec-
tion to the shape matrix V in case of elliptical distributions. For x ∈ Rp define the spatial sign
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s(x) of x as s(x) = x/||x|| if x ̸= 0 and s(x) = 0 otherwise. Let X be a p-dimensional random
vector (p ≥ 2) having distribution F . We call µ(F ) = µ(X) = argminµ∈Rp E(||X−µ||− ||X||)
the spatial median and, following the terminology of Visuri et al. (2000),

S(F ) = S(X) = E
(
s(X − µ(F ))s(X − µ(F ))T

)
(3.4)

the spatial sign covariance matrix (SSCM) of F (or X). If there is no unique minimizing point
of E(||X−µ||− ||X||), then define µ(F ) as the barycenter of the minimizing set. This may only
happen if F is concentrated on a line. For results on existence and uniqueness of the spatial
median see Haldane (1948), Kemperman (1987), Milasevic and Ducharme (1987) or Koltchinskii
and Dudley (2000). If the first moments of F are finite, then the spatial median allows the more
descriptive characterization as argminµ∈Rp E||X − µ||. Let Xn = (X1, . . . ,Xn)

T be a data
sample of size n, where the Xi, i = 1, ..., n, are i.i.d., each with distribution F . Define

Ŝn(Xn; t) = ave
i=1,...,n

s(Xi − t)s(Xi − t)T (3.5)

where t ∈ Rp. Choosing t = µ(F ), we call the estimator Ŝn(Xn;µ(F )) the empirical SSCM with
known location. However, the location is usually unknown, and t has to be replaced by a suitable
location estimator (tn)n∈N, and we refer to Ŝn(Xn; tn) as the empirical SSCM with unknown
location. The canonical location functional in this case is the (empirical) spatial median

µ̂n = µ̂n(Xn) = min
µ∈Rp

n∑
i=1

||Xi − µ||.

Under regularity conditions (the data points do not lie on a line and none of them coincides
with µ̂n, see Kemperman (1987), p. 228) the spatial signs with respect to the empirical spatial
median are centered, i.e. aveni=1 s(Xi − µ̂n) = 0. Hence, the empirical spatial sign covariance
matrix Ŝn(Xn; µ̂n) is indeed the covariance matrix of the spatial signs if the latter are taken
with respect to the spatial median.

Within the elliptical model there is, up to scale, a one-to-one connection between S(F ) and
the parameter V : both share the same eigenvectors and the ordering of the respective eigenvalues:
S(F ) = U∆UT , where ∆ = diag(δ1, ..., δp) is a diagonal matrix with 0 < δp ≤ . . . ≤ δ1. This
makes the spatial sign covariance matrix particularly popular for robust principal component
analysis (e.g. Marden, 1999; Locantore et al., 1999; Croux et al., 2002; Gervini, 2008). Other
applications are direction-of-arrival estimation (Visuri et al., 2001), or testing sphericity in the
elliptical model (Sirkiä et al., 2009). The map between the eigenvalues of V and S(F ) is only
known explicitly for p = 2, where

δj =
√
λj/(

√
λ1 +

√
λ2), j = 1, 2. (3.6)

This result first appears in a similar form in Visuri et al. (2000) and has also been used by Vogel
et al. (2008) and Croux et al. (2010), but neither of these articles provide a proof, which can
finally be found in Dürre et al. (2015b). In case of general p decomposition (3.3) of an elliptic
random variable enables the following representation of the eigenvalues of S(F )

δi = E

{
λiY

2
i

(∑p
j=1 λjY

2
j

)−1
}

(3.7)

where Y = (Y1, . . . , Yp) has a spherical distribution. However, such p-dimensional integrals are
hard to approximate numerically. The next proposition offers a much simpler description.
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Proposition 1. (Dürre et al., 2016) Let F ∈ Ep(µ, V ) and V = UΛUT denote an eigenvalue
decomposition of V with 0 ≤ λp ≤ . . . ≤ λ1. Then the eigenvalues 0 ≤ δp ≤ . . . ≤ δ1 of S(F )
have the following representation:

δj =
λj
2

∫ ∞

0

1

(1 + λjx)
∏p

i=1(1 + λix)1/2
dx, 1 ≤ j ≤ p. (3.8)

The p-dimensional integral (3.7) is unfeasible for numerical approximations. Solving the one-
dimensional integral given in Proposition 1 numerically, the population SSCM can be computed
in any dimension. Using the function integrate() in R (R Core Team, 2016), we found it to work
without problems for p = 10,000.

We use formula (3.8), which is implemented in R in the package sscor (Dürre and Vogel,
2016b), to get an impression how the eigenvalues of S(X) look like in comparison to those of V .
As mentioned before V is only uniquely defined up to scale. For a better comparability we look
at the eigenvalues of the trace standardized shape matrix V1 = V/tr(V ) (keep in mind that the
trace of S(F ) equals 1 per definition). We first look at equidistantly spaced eigenvalues

λi =
2(p+ 1− i)

p(p+ 1)
, i = 1, . . . , p,

for different p = 3, 11, 101.

●

●

●

0.20 0.30 0.40 0.50

0
.2

0
0
.3

0
0
.4

0
0
.5

0

Eigenvalues of V1

E
ig

en
v
al

u
es

 o
f 

S
(X

)

●

●

●

●

●

●

●

●

●

●

●

0.05 0.10 0.15

0
.0

5
0
.1

0
0
.1

5

Eigenvalues of V1

E
ig

en
v
al

u
es

 o
f 

S
(X

)

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

0.000 0.010

0
.0

0
0

0
.0

1
0

Eigenvalues of V1

E
ig

en
v
al

u
es

 o
f 

S
(X

)

Figure 3.1: Eigenvalues of the SSCM w.r.t. the corresponding eigenvalues of the shape matrix
in the equidistant setting p = 3 (left), p = 11 (centre) and p = 101 (right).

The magnitude of the eigenvalues necessarily decreases as p increases, since
∑p

i=1 λi =∑p
i=1 δi = 1 per definition of V1 and S(X). As one can see in Figure 3.1, the eigenvalues

of S(X) and V1 approach each other for increasing p. In fact the maximal absolute difference for
p = 101 is roughly 2 ·10−4. In the second scenario, we take p−1 equidistantly spaced eigenvalues
and one eigenvalue 5 times larger than the rest, i.e.,

λi =

⎧⎨⎩
5(p−1)

p((p+1)/2+5)−5 i = 1,

p−i
p((p+1)/2+5)−5 i = 1, . . . , p− 1.

This models the case where the dependence is mainly driven by one principal component.
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Figure 3.2: Eigenvalues of the SSCM wrt the corresponding eigenvalues of shape matrix in the
setting of one large eigenvalue for p = 3 (left), p = 11 (centre) and p = 101 (right).

As one can see in Figure 3.2, the distance between the two largest eigenvalues is smaller for
S(X) than for V1. This is not surprising, since it is proven in Proposition 2 of Dürre et al. (2016)
that

δi/δj ≤ λi/λj for 1 ≤ i < j ≤ p and λj > 0.

Thus in general, the eigenvalues of the SSCM are less separated than those of V1, which is one
reason why the use of the SSCM for robust principal component analysis has been questioned
(e.g. Bali et al., 2011; Magyar and Tyler, 2014). However, the differences appear to be generally
small in higher dimensions.

The next paragraph concerns the asymptotic behaviour of the empirical SSCM. Let therefore
X1, . . .Xn be i.i.d. with distribution F, which is not necessarily elliptical. Under the assump-
tions that tn is strongly consistent for µ and E

(
||X1 − µ||−1

)
<∞ Dürre et al. (2014) showed

that then also the spatial sign covariance matrix is strongly consistent

Ŝn(Xn; tn)
a.s.−→ S(F ).

While the condition concerning the location estimator tn is quite usual, reflects the moment
condition the specific construction of the SSCM, more precisely the discontinuity of the spatial
sign at the origin. However the condition is very mild and for example fulfilled if the density f
is bounded.

If one assumes additionally that
√
n(tn −µ) converges in distribution, E

(
||X1 − µ||−3/2

)
<

∞ and (X1 − µ)
L
= −(X1 − µ) then the SSCM is asymptotically normal, so there exists a

symmetric and non-negative definite symmetric matrix WS ∈ Rp×p such that

√
n vec

{
Ŝn(Xn; tn)− S(F )

} d−→ Np2 (0,WS) ,

see Dürre et al. (2014), where also alternative assumptions to guarantee strong consistency

and asymptotic normality are given. The symmetry condition (X1 − µ)
L
= −(X1 − µ) is not

necessary, but it ensures that the location estimation does not enter into the asymptotics of the
SSCM, in particular that it does not influence the form of WS . It is fulfilled for example for
elliptical distributions. In this case one can specify WS by

WS = (U ⊗ U)
{
Γ− vec∆(vec∆)⊤

}
(U ⊗ U)⊤,
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with

Γ = E

⎧⎨⎩vec

(
Λ1/2Y Y ⊤Λ1/2

Y ⊤ΛY

)
vec

(
Λ1/2Y Y ⊤Λ1/2

Y ⊤ΛY

)⊤
⎫⎬⎭ .

Due to the spherical symmetry of Y , p(p3 − 3p+ 2) of the p4 matrix entries of Γ are zero. The
remaining p(3p− 2) entries consist of at most (p+ 1)p/2 distinct values, with the upper bound
being achieved if the eigenvalues λ1, . . . , λp of V0 are mutually distinct. Letting

ηij = E

{
λiY

2
i λjY

2
j

(∑p
j=1 λjY

2
j

)−2
}
, 1 ≤ i, j ≤ p, (3.9)

we have for 1 ≤ i < j ≤ p, each ηij appears six times in Γ, that is at the positions {(i − 1)p +
j, (i− 1)p+ j)}, {(i− 1)p+ i, (j − 1)p+ j)}, {(i− 1)p+ j, (j − 1)p+ i)}, and the same with i
and j interchanged. For 1 ≤ i ≤ p, each ηii appears once at position {(i− 1)p+ i, (i− 1)p+ i)}.
In the two-dimensional case Dürre et al. (2015b) calculate the expectations (3.9) explicitly by
applying the residue theorem and deduce

WS =
−λ1λ2 + 1

2

√
λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(U ⊗ U)W0(U ⊗ U)T (3.10)

with

W0 =

⎛⎜⎜⎝
1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

⎞⎟⎟⎠ ,

if λ1 ̸= λ2 respectively WS = 1
8W0 for λ1 = λ2. The next proposition characterizes the integrals

(3.9) for general p.

Proposition 2. (Dürre et al., 2016) Let Y = (Y1, . . . , Yp) be spherical distributed and λ1 ≥
. . . ≥ λp ≥ 0, then ηi,j defined in (3.9) possesses the following representation:

ηij =

⎧⎨⎩
λiλj

4

∫∞
0

x
(1+λix)(1+λjx)

∏p
k=1(1+λkx)1/2

dx, i ̸= j

3λ2
i

4

∫∞
0

x
(1+λix)2

∏p
k=1(1+λkx)1/2

dx, i = j.

In the case of two distinct eigenvalues, Magyar and Tyler (2014) investigate the asymptotic
efficiency of the SSCM eigenspace projections by employing a representation of the eigenvalues
δi and the ηij-terms by means of the Gauss hyperbolic function. Proposition 2 allows to quantify
the asymptotic efficiency of the SSCM and any analysis build upon it in the general setting.

3.3 A spatial sign based estimator for the correlation coefficient

In the following letXi = (Xi, Yi)
T , i = 1, . . . , n, be an i.i.d. sample from F ∈ E2(µ, V ). Denoting

the entries of V by vij , we want to estimate the parameter

ρ = v12/
√
v11v22.

We call ρ the generalized correlation coefficient of the elliptical distribution F , since it coincides
with the correlation coefficient if second moments are finite. In a slight abuse of notation, we
will refer to ρ simply as the correlation (coefficient) of F in the following. Equation (3.6) from
the previous section gives rise to an estimator of ρ constructed as follows: compute the SSCM
Ŝn = Ŝn(Xn; µ̂n), perform an eigenvalue decomposition Ŝn = Ûn∆̂nÛ

T
n with ∆̂n = diag(δ̂1, δ̂2)

and compute the matrix V̂n = ÛnΛ̂nÛ
T
n with Λ̂n = diag(λ̂1, λ̂2) and λ̂1 = δ̂1/δ̂2, λ̂2 = δ̂2/δ̂1.

1

1The overall scaling of V̂n is, of course, irrelevant for the correlation, and its eigenvalues λ̂1 and λ̂2 may as well
be chosen differently. By setting

√
λ1 +

√
λ2 = 1 one can see that the ratio has to satisfy λ̂1/λ̂2 = (δ̂1/δ̂2)

2.
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Finally compute the correlation coefficient from the matrix V̂n, i.e. let ρ̂n = v̂12/
√
v̂11v̂22. In

dimension two, the eigenvalue decomposition can be computed explicitly with justifiable effort
which results in:

ρ̂n =
ŝ12√

(ŝ212 + ŝ211)(ŝ
2
12 + (1− ŝ11)2)

, (3.11)

where ŝij denote the entries of Ŝn. We call ρ̂n the spatial sign correlation coefficient. This must
not be confused with the correlation of the spatial signs of the observations. This would be
ρ̂SSCM = ŝ12/

√
ŝ11ŝ22. Also note that knowing ρ̂SSCM alone is not sufficient for computing ρ̂n.

The next proposition deals with the asymptotic properties of ρ̂n.

Proposition 3. (Dürre et al., 2015b) Let F ∈ E2(µ, V ) have a bounded density at µ. Then, as
n→ ∞,

(1) ρ̂n
a.s.−→ ρ, and

(2)
√
n(ρ̂n − ρ)

d−→ N

(
0, (1− ρ2)2 +

1

2

(
a+ a−1

)
(1− ρ2)3/2

)
,

where a =
√
v11/v22 is the root of the ratio of the diagonal elements of V .

Proposition 3 (2) gives the asymptotic variance ASV (ρ̂n) as a function of the true correla-
tion ρ and the ratio of the diagonal elements of the shape matrix V . The elliptical generator
g, cf. (3.1), does not enter, which may be phrased as “ρ̂n is asymptotically distribution-free
within the elliptical model”. It is furthermore consistent and asymptotically normal without
any moment condition.

In the next step, we examine the influence function of the spatial sign correlation. The
influence function is based on the notion that estimators are statistical functionals working
on distributions. The specific estimate computed from the data set Xn is then the functional
applied to the corresponding empirical distribution. We use Ŝ and ρ̂ to denote the statistical
functionals corresponding to the SSCM and the spatial sign correlation, respectively.2 The
influence function IF (x, ρ̂, F ) describes the effect of an infinitesimal small contamination at
point x on the functional ρ̂ if the latter is evaluated at distribution F . It is an important tool
describing the robustness properties of estimators. For a precise definition, interpretation and
further details, see, e.g., Hampel et al. (1986) or Huber and Ronchetti (2009).

Proposition 4. (Dürre et al., 2015b) Let F ∈ E2(µ, V ). Then IF (x, ρ̂, F ) =

−
{
(a2+1) ρ

√
1−ρ2+2 a ρ (1−ρ2)

}
(a2 y2+x2)−

{
(a4+6 a2+1) (ρ2−1)+2 a (a2+1)

√
1−ρ2 (ρ2−2)

}
x y{

2 a2
√

1−ρ2+a (a2+1)
}
(y2+x2)

,

where x = (x, y)T and a and ρ are as in Proposition 3.

The influence function for a = 1 and ρ = 0 is illustrated in Figure 3.3 on the right. It has a
discontinuity at the origin and is bounded. Its extreme values ±2 are attained on the diagonals.
Furthermore, IF (x, ρ̂, F ) is bounded in x for any fixed values a and ρ, but it may get arbitrarily
large as a varies. A robustness index that is derived from the influence function is the gross-error
sensitivity (GES), defined as GES(ρ̂, F ) = supx∈R2 |IF (x, ρ̂, F )|. For a = 1, we obtain

GES(ρ̂, F ) =

{
(ρ2−1)

(
−ρ4+8 ρ2+4

√
1−ρ2 (ρ2−2)−8

)}1/2
+|ρ|

(√
1−ρ2−ρ2+1

)
√

1−ρ2+1
.

2We use the notational convention that functionals working on distributions wear hats, but do not carry
subscripts. So for instance S(F ) and Ŝ(F ) denote the same thing, but the different notation invokes slightly
different views: S(F ) denotes a parameter of the distribution F , while Ŝ(F ) is the functional Ŝ evaluated at F .

35



0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

ρ

G
E

S
SSCM

Quadrant

Kendall

Spearman

x
−4

−2
0

2
4

y

−4

−2

0

2

4

IF

−2

−1

0

1

2

Figure 3.3: The gross error sensitivity (GES) of the spatial sign correlation compared to other
nonparametric correlation estimators under equal marginal variances (left) and the influence
function of the spatial sign correlation for ρ = 0 and a = 1 (right).

which is depicted in Figure 3.3 (left). Croux and Dehon (2010) compute the gross-error sensit-
ivities of several nonparametric correlation measures at bivariate normal distributions. Figure
3.3 (left) corresponds to their Figure 2, complemented by the GES curve of the spatial sign
correlation. The GES is small for any ρ, indicating a good robustness against small amounts of
outliers. We refrain from stating the GES for arbitrary a and ρ explicitly since the formula is
rather lengthy.

In Section 3.5, we will compare several correlation estimators with respect to their efficiency
at the normal model. As a first glimpse in this direction, we recall the asymptotic variance of
the Pearson correlation ρ̂Pea at elliptical distributions ASV (ρ̂Pea) = (1 + κ/3)(1 − ρ2)2, where
κ is the excess kurtosis of the components of F . The asymptotic relative efficiency of ρ̂n with
respect to ρ̂Pea is hence

ARE(ρ̂n, ρ̂Pea) =
ASV (ρ̂Pea)

ASV (ρ̂n)
=

1 + κ/3

1 + 1
2(a+ a−1)(1− ρ2)−1/2

,

which is depicted in Figure 3.4 for normality, i.e. κ = 0. The maximum 1/2 is attained for
a = 1 and ρ = 0. If we fix a = 1, the asymptotic relative efficiency declines with increasing
|ρ|, even tending to 0 for |ρ| → 1. But it declines very slowly: for |ρ| < 0.7 it stays above 0.4.
Under heavy-tailed distributions, however, the spatial sign correlation can be more efficient than
the Pearson correlation. Specifically, ARE(ρ̂n, ρ̂Pea) ≥ 1 if κ ≥ (3/2)(a + a−1)/

√
1− ρ2. For

instance, with the kurtosis of the tν distribution being 6/(ν − 4), the spatial sign correlation is
more efficient at the bivariate spherical tν distribution for ν < 6.

At any spherical distribution, i.e., for a = 1 and ρ = 0, the spatial sign correlation has an
asymptotic variance of 2, which is the same as of the correlation estimator derived from Tyler’s
scatter matrix V̂n, cf. Section 3.5.3. However, it should be noted that in this case the asymptotic
covariance matrix ASV (V̂n) of the appropriately scaled Tyler matrix V̂n (i.e., scaled such that
tr(V̂n) = 1) is W0/2, which is four times the asymptotic covariance matrix of the SSCM. This is
not a contradiction to the previous statement. The functions applied to the two matrix estimates
to obtain a correlation estimate are different. Keep in mind that, when comparing expressions
for the asymptotic variances of the SSCM and the Tyler matrix, the latter is usually scaled such
that tr(V̂n) = p (as in Tyler, 1987) or det(V̂n) = 1.
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Figure 3.4: The asymptotic relative efficiency of ρ̂ with respect to the empirical correlation
under normality as a function of ρ and a =

√
v11/v22.

3.4 The two-stage spatial sign correlation

For fixed ρ, the asymptotic variance ASV (ρ̂n) is minimized by equal marginal variances, that
is, when a = 1. On the other hand, the asymptotic variance as well as the gross error sensitivity
become arbitrarily large as a approaches 0 or ∞. It is therefore advisable to apply this estimator
to standardized data, i.e. the components should be divided beforehand by a scale measure to
yield equally dispersed margins. Margin-wise standardization generally should be administered
with caution in multivariate data analysis, since it changes the shape, e.g., the direction of the
eigenvectors, and will alter the results of, e.g., a principal component analysis. The inefficiency of
the spatial sign covariance matrix at strongly “shaped”, i.e. non-spherical, distributions has led to
criticism regarding its use for robust principal component analysis, where a strong “shapedness”
is the working assumption, cf. e.g. Remark 5.1 in Bali et al. (2011). We define shapedness as
deviation from sphericity (and measure it for instance by the condition number of V ). There are
two sources that contribute to the shapedness: collinearity (ρ close to ±1) and heteroscedasticity
(a away from 1). The formula in Proposition 3 (2) nicely visualizes the individual influences of
these two sources of shapedness on the asymptotic variance of ρ̂n. Since we are interested in
correlation, a function of the shape that is invariant with respect to margin-wise scale changes,
we can avoid the inefficiency due to the heteroscedasticity by margin-wise standardisation.

Let σ(·) denote a univariate scale measure or dispersion measure, i.e., for any univariate
distribution G it satisfies

σ(G⋆
α,β) = |α|σ(G) for all α, β ∈ R, (3.12)

where G⋆
α,β is the distribution of Y ⋆ = αY + β for Y ∼ G. This may be the standard deviation

σSD = {E(Y − EY )2}1/2, but since the main purpose of studying spatial sign methods is
their robustness, robust measures like the median absolute deviation σMAD = median|Y −
median(Y )| or the Qn scale measure σQn = q1/4(|Y − Y ′|) may be more appropriate. Here,
Y ′ is an independent copy of Y , median(Y ) denotes the median of the distribution of Y , and
q1/4(Y ) its 1/4th quantile. Let further σ̂n = σ̂n(Yn) denote the respective scale estimator,
which is, in principle, the measure σ(·) applied to the empirical distribution associated with
the univariate sample Yn = (Y1, . . . , Yn)

⊤. In many situations, the empirical version of the
scale measure may be defined slightly differently due to various reasons, e.g., the empirical
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standard deviation is usually defined as σ̂n(Yn) = {(n − 1)−1
∑n

i=1(Yi − Ȳn)
2}1/2 instead of

σ̂n(Yn) = {n−1
∑n

i=1(Yi − Ȳn)
2}1/2, but the differences are negligible asymptotically.

Returning to the general p-dimensional set-up, for any specific choice of σ(·), let Fi denote

the ith margin of F , further σi = σ(Fi) and σ̂i,n = σ̂n(X
(i)
n ), where X(i)

n is the ith column of Xn,
1 ≤ i ≤ p. Let

A =

⎛⎜⎝σ
−1
1 0

. . .

0 σ−1
p

⎞⎟⎠ , An =

⎛⎜⎝σ̂
−1
1,n 0

. . .

0 σ̂−1
p,n

⎞⎟⎠ .

Then we define the two-stage spatial sign covariance matrix as

S̃n(Xn, tn(·), An) = Ŝn(XnAn, tn(·)) =
1

n

n∑
i=1

s{AnXi−tn(XnAn)}s{AnXi−tn(XnAn)}⊤, (3.13)

and the two-stage spatial sign correlation ρ̂σ,n (of the sample Xn with location tn(·) and inverse
scales An) as the spatial sign correlation ρ̂n, see (3.11), being applied to S̃n(Xn, tn(·), An) instead
of Sn(Xn, tn).

Remark 1.

(I) There is a subtle but important difference in the role that tn plays in Ŝn(Xn, tn) and in
S̃n(Xn, tn(·), An). The location tn may generally be any random vector, which may or
may not bear a connection to the sample Xn. But usually, we take it to be an estimator
computed from the data, i.e., it is a function of Xn. Whenever we want to invoke this latter
meaning, we write tn(·) instead of tn, particularly so in the definition of S̃n(Xn, tn(·), An).
Here it is essential that tn(·) is applied to the transformed data XnAn.

(II) In the definition of the two-stage spatial sign covariance matrix S̃n(Xn, tn(·), An), the data
are first standardized marginally, and then the location is estimated from the transformed
data. For all marginally equivariant location estimators – and this is vast majority –
the order of these two-steps is irrelevant. We call a multivariate location estimator tn
marginally equivariant if it satisfies tn(XnA + b) = Atn(Xn) + b for any p × p diagonal
matrix A and any b ∈ Rp. All location estimators being composed of univariate, affine
equivariant location estimators are marginally equivariant. So are also all multivariate,
affine equivariant location estimators, including elliptical maximum likelihood estimators,
M-estimators (Maronna, 1976; Tyler, 1987), S-estimators (Davies, 1987), CM-estimators
(Kent and Tyler, 1996), or MM-estimators (Tyler, 2002). However, there is one promin-
ent example which lacks this property: the spatial median (e.g. Oja, 2010, Section 6.2).
We want to include this estimator since, due to its conceptual similarity to the SSCM, it
may be regarded as a default choice for tn(·). The spatial median has a variety of good
properties such as uniqueness and computational and statistical efficiency, see e.g. Mag-
yar and Tyler (2011) and the references therein. Likewise to the spatial sign covariance
matrix, the spatial median is inefficient at strongly shaped distributions. Thus, when using
the spatial median as location estimate, it is therefore reasonable to compute it from the
marginally standardized data. This is the reason for choosing the order of steps as we do
here: first standardization, then location estimation. However, in practical situations, the
difference to the estimator obtained when reversing the order of these two steps tends to
be rather small – also in case of the spatial median.

(III) Finally we would like to stress that we deliberately avoid any reference to the covariance
matrix of F . Our whole discussion of scale and correlation is completely moment-free.
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Our main focus here is on estimating the generalized correlation coefficient ρ within the
semiparametric model of elliptical distributions, but the concept of spatial sign correla-
tion can also be employed for defining a general, moment-free measure of association.
Requiring no moment assumptions is one major strength of spatial sign methods.

3.4.1 Asymptotic results

The first result concerns the asymptotic difference between Ŝn(XnAn, tn(·)), the sample two-
stage SSCM with estimated location and scales, and Ŝn(XnA,At), the sample two-stage SSCM
with known location and scales. We use the notation X(j) to denote the jth component of the
p-dimensional random vector X, j = 1, . . . , p, likewise for other vectors.

Theorem 1. (Dürre and Vogel, 2016a) Let t ∈ Rp and X be a p-variate random vector with
continuous distribution F satisfying

(C1) E|X − t|−3/2 <∞,

(C2) E
{

X−t
|X−t|2

}
= 0 and E

{
(X−t)(i)(X−t)(j)(X−t)(k)

|X−t|4

}
= 0 for i, j, k = 1, . . . , p.

Let further A be a p × p diagonal matrix with positive diagonal entries a1, . . . , ap, and An a
series of random p× p diagonal matrices satisfying

(C3)
√
n(An −A)

d−→ Z = diag(Z1, . . . , Zp)

for some random diagonal matrix Z. Finally, let Xn = (X1, . . . ,Xn)
⊤ be an iid sample drawn

from F and tn(·) a series of p-variate estimators satisfying

(C4)
√
n{tn(Xn)− t} = OP (1),

(C5)
√
n{tn(XnAn)−Antn(Xn)} = OP (1).

Then
√
n{Sn(XnAn, tn(·))− Sn(XnA,At)}

d−→ Ξp as n→ ∞ with

Ξp = A−1ZS(F0, 0) + S(F0, 0)A
−1Z − 2

p∑
j=1

(Zj/aj)Γj , (3.14)

where F0 is the distribution of X0 = A(X − t) and

Γj = E

{(
X

(j)
0

)2 X0X
⊤
0(

X⊤
0 X0

)2
}
.

Theorem 1 apparently has a long list of technical conditions. They are due to the fact that
it is formulated under very broad conditions. We do not assume any specific model for the
distribution F . Also, the location estimator tn(·), the scale estimator An and even the location
t are unspecified. The above conditions are indeed a set of easy-to-verify regularity conditions,
which are met in practically all relevant situations, and many of which may be further relaxed
for the price of more involved technical derivations. We will review them one by one below.

Condition (C1) requires the probability mass of F to be not too strongly concentrated around
t. For instance, if F possesses a Lebesgue density f , it is sufficient (but not necessary)
that f is bounded at t. This condition also appears in Theorems 2 and 3 of Dürre et al.
(2014) and is, loosely speaking, due to the discontinuity of the spatial sign function at the
origin.
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Condition (C2) is indeed a somewhat restrictive condition as it basically imposes component-
wise symmetry of F around t. It is, however, a mere convenience assumption, it can be
dropped in favor of an additional term in (3.14) and a slightly stronger formulation of the
other conditions (basically joint convergence of Ŝn, tn and An). The proof of the more
general version runs analogously, with the main difference that Dürre et al. (2014, Theorem
3) instead of Dürre et al. (2014, Theorem 2) is used. However, our central result, Theorem
2 below, concerns elliptical distributions, for which (C2) is fulfilled. We therefore consider
it appropriate to include this symmetry condition here for the sake of simpler conditions
and a clearer exposition.

Condition (C3) is satisfied, e.g., if A−2
n is taken to be the diagonal of some p×p scatter matrix

estimator for which asymptotic normality has been shown. But also if A−1
n is composed

of univariate scale estimators (the default case here due to computational reasonability),
it is usually true. Specifically, if the univariate scale estimator σ̂j,n allows a linearization,
i.e.,

σ̂j,n =
1

n

n∑
i=1

fj(X
(j)
i ) + op(n

−1/2), j = 1, . . . , p, (3.15)

with E{fj(X(j))2} <∞, then
√
n{(σ̂1,n, . . . , σ̂p,n)− (σ1, . . . , σp)}⊤ =

√
n diag(A−1

n −A−1)
converges to a multivariate normal distribution, and then so does

√
n(An−A). Note that,

since A and An are diagonal matrices,
√
n(A−1

n − A−1)
d−→ Z̃ implies

√
n(An − A) =

AAn
√
n(A−1 −A−1

n )
d−→ −A2Z̃, and hence Z = −A2Z̃ in distribution.

All estimators of practical relevance allow a linearization (3.15). For instance, for quantile-
based estimators, such as the MAD, this linearization is provided by the Bahadur represent-
ation (Bahadur, 1966; Kiefer, 1967; Ghosh, 1971; Sen, 1968). In the case of U -statistics,
such as Gini’s mean difference, it is given by the Hoeffding decomposition (Hoeffding,
1948), and in the case of U -quantiles, such as the Qn scale estimator (Rousseeuw and
Croux, 1993), by a combination of the two (Serfling, 1984; Wendler, 2011).

Condition (C4): This is a minimal standard assumption.

Condition (C5) is trivially fulfilled for any marginally equivariant location estimator, see Re-
mark 1 (II). This condition is necessary since we want to include the spatial median as
potential location estimator, and, for efficiency reasons, propose to standardize the data
prior to computing its spatial median – instead of scaling the spatial median along with the
data. Under (C3), the spatial median satisfies (C5) at elliptical distributions (Nevalainen
et al., 2007).

Finally, the continuity of F also is a mere convenience assumption, which prohibits that several
data points coincide with each other, and thus ensures that tn coincides with at most one
observation. Alternative assumptions are discussed also in Dürre et al. (2014).

In case of F being an elliptical distribution and t its symmetry center, explicit expressions
for S(F, t) appear to be known only for p = 2. In this case, Ξp in (3.14) considerably simplifies.

Corollary 1. Let p = 2 and X ∼ F ∈ E2(t, V ). Let A = diag(a1, a2) be a 2 × 2 diagonal
matrix with positive diagonal entries such that V0 = AV A has equal diagonal entries. Denote
the diagonal entries of the diagonal matrix Z from Theorem 1 by Z1 and Z2. Then Ξ2 from
Theorem 1 is

Ξ2 =

(
Z1/a1 − Z2/a2 0

0 Z2/a2 − Z1/a1

)
ζ,

where ζ = (1−
√
1− ρ2)/(2ρ2) if ρ ̸= 0 and ζ = 1/4 if ρ = 0, and ρ = v12(v11v22)

−1/2.
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An important implication of Corollary 1 is that, at elliptical population distributions, the
asymptotic distribution of the off-diagonal element of the two-dimensional two-stage SSCM is
the same as that of the off-diagonal element of the ordinary SSCM at the corresponding distri-
bution with equal marginal scales. Building on this observation, we can derive the asymptotic
distribution of the two-stage spatial sign correlation by means of a generalized version of the
delta method.

Theorem 2. (Dürre and Vogel, 2016a) Let p = 2 and X ∼ F ∈ E2(t, V ) satisfy Condition (C1)
of Theorem 1. Let Xn, A, An and tn(·) be as in Theorem 1, satisfying Conditions (C3), (C4)
and (C5), with the further property that V0 = AV A has equal diagonal entries. Then

√
n(ρ̂σ,n − ρ)

d−→ N
{
0, (1− ρ2)2 + (1− ρ2)3/2

}
. (3.16)

We have the following remarks about Theorem 2.

Remark 2.

(I) Comparing Theorem 2 to Proposition 3 (2), we find that, at any elliptical distribution,
the spatial sign correlation with the margins being standardized beforehand by the true
scales and the spatial sign correlation with the margins being standardized by estimated
scales have the same asymptotic efficiency. In fact, we show in the Appendix that they
are asymptotically equivalent. In other words, the loss for not knowing the scale is zero
asymptotically, and this is true regardless of the scale estimator used. Any scale function
σ(·) satisfying (3.12) yields that X0 = AX has equal marginal scales if X is elliptical.
Also, the finite-sample variances of the spatial sign correlation with known and estimated
scales hardly differ, as the simulations in Subsection 3.4.2 indicate.

(II) At elliptical distributions with finite fourth moments, the asymptotic variance of the
product moment correlation is (1 + κ/3)(1 − ρ2)2, where κ is the marginal excess kur-
tosis. Thus under normality, where κ = 0, the additional term (1− ρ2)3/2 may be viewed
as the price to pay efficiency-wise for the gain in robustness when using the two-stage
spatial sign correlation instead of the moment correlation.

(III) Note that in case of a two-dimensional elliptical distribution, Condition (C2) from The-
orem 1 is always fulfilled and Condition (C1) if g(z) = O(z−1/4+δ) as z → 0 for some
δ > 0.

The asymptotic distribution of ρ̂σ,n only depends on ρ, but not on the elliptical generator g
or any other characteristic of the population distribution. Therefore the two-stage spatial sign
correlation is very well suited for nonparametric and robust correlation testing. Likewise to
Fisher’s z-transformation for the moment correlation under normality (Fisher, 1921), one can
find a variance-stabilizing transformation for the spatial sign correlation under ellipticity.

Corollary 2. (Dürre and Vogel, 2016a) Under the conditions of Theorem 2, we have
√
n{h(ρ̂σ,n)−

h(ρ)} d−→ N (0, 1) with

h(x) = s(x)

[
1√
2
arcsin

{
3(1−

√
1− x2)− 2√

1− x2 + 1

}
+

π

23/2

]
, (3.17)

where s(·) denotes the (in this case univariate) sign function.

As can be seen in Figure 3.5, the transformation h is similar to Fisher’s z-transform z(x) =
log{(1 + x)/(1 − x)}/2. There are two main differences: first, h is flatter, with a smaller
derivative throughout, reflecting the larger asymptotic variance of the spatial sign correlation
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Figure 3.5: Variance-stabilizing transformations (left) and their derivates (right) for the spatial
sign correlation (solid) and the Pearson moment correlation, i.e., Fisher’s z-transform (dashed).

under normality, and second, h is bounded, attaining only values between −π/
√
2 and π/

√
2.

To construct confidence intervals, its inverse function h−1 : [−π/
√
2, π/

√
2] → [−1, 1] is also of

interest. It is given by

h−1(y) = s(y)
23/2

√
1− cos(

√
2y)

3− cos(
√
2y)

.

Based on Corollary 2, one can derive asymptotic level-α-tests for the generalized correlation
coefficient ρ of a bivariate elliptical distribution, which are robust and very accurate also in
small samples, as the results of Section 3.4.2 below indicate. For instance, a two-sided one-
sample test for ρ based on ρ̂σ,n would reject the null hypothesis ρ = ρ0 at the significance level
α if the test statistic

T1,n = n{h(ρ̂σ,n)− h(ρ0)}2

exceeds χ2
1;1−α, i.e., the 1 − α quantile of the χ2 distribution with one degree of freedom.

Likewise, for two samples of sizes n1 and n2 and generalized correlation coefficients ρ(1) and
ρ(2), respectively, the null hypothesis ρ(1) = ρ(2) is rejected if

T2,n =
n1n2
n1 + n2

{h(ρ̂(1)σ,n)− h(ρ̂(2)σ,n)}2

is larger than χ2
1;1−α, where ρ̂

(i)
σ,n, i = 1, 2, denote the two-stage spatial sign correlations computed

from the two samples. The asymptotic χ2
1 distribution of the two-sample test statistic is derived

under the assumption that n1, n2 → ∞ and n1/(n1 + n2) → λ ∈ (0, 1). Similarly, one can
construct one-sided and k-sample tests.

3.4.2 Simulations

First we examine the influence of the chosen scale estimator in finite samples, respectively the
difference between knowing and estimating the scale at all. Results for a bivariate normal
distribution with a = 10 and ρ = 0 are presented in Table 3.1. We compare the n-stabilized
variances (based on 100,000 replications for each n) of the two-stage spatial sign correlation
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ρ̂σ,n (two-stage) ρ̂n
n known SD Qn MAD

10 1.703 1.664 1.684 1.706 3.953
20 1.815 1.795 1.799 1.804 4.688
50 1.921 1.916 1.914 1.913 5.429
100 1.936 1.930 1.928 1.926 5.614
500 1.973 1.972 1.971 1.972 5.945

Table 3.1: Simulated variances (based on 100,000 replications), multiplied by the sample size
n, of the ordinary and the two-stage spatial sign correlation at a bivariate normal distribution
with a = 10, ρ = 0 and different sample sizes n. Standardization of the two-step estimator is by
the true marginal standard deviation (known), by the sample standard deviation (SD), the Qn

and the MAD.

(pre-standardized by the standard deviation, the Qn and the MAD), the one-step spatial sign
correlation and the one-step spatial sign correlation being applied to the data standardized
by the true scale parameter. We observe that there is a large improvement through the pre-
standardization, and that it makes practically no difference, also for small n, if the true scale
is known or has to be estimated, and if so, which scale estimator is used. Results for other
distributions, a and ρ are comparable. Standardizing by the standard deviation is, as expected,
slightly worse at very heavy tailed distributions.

Furthermore we want to numerically investigate the usefulness of the asymptotics and espe-
cially the h-transform (3.17) in finite samples. We compute 95% confidence intervals based on
the spatial sign correlation without and with the transformation h, denoted in the tables below
by sscor and sscor-h, respectively. The confidence intervals without transformation are given by

ρ̂σ,n ±

√
(1− ρ̂2σ,n)

2 + (1− ρ̂2σ,n)
3/2

n
z1−α/2

and with transformation by

h−1

{
h(ρ̂σ,n)±

z1−α/2√
n

}
,

where z1−α/2 denotes the 1−α/2 quantile of the standard normal distribution, which is z0.975 =
1.96 in our case. Pearson’s moment correlation r̂n serves as benchmark. Under ellipticity, the
asymptotic variance of r̂n additionally depends on the kurtosis κ. We estimate the latter by the
following multivariate kurtosis estimator

κ̂n =
3

p(p+ 2)

1

n

n∑
i=1

{(Xi − X̄n)
⊤Σ̂−1

n (Xi − X̄n)}2 − 3,

where X̄n denotes the sample mean and Σ̂n the sample covariance matrix (e.g. Anderson, 2003,
p. 103). Alternatively, one may estimate the kurtosis by averaging the componentwise marginal
sample kurtoses, as it is done, e.g., in Vogel and Fried (2011). The confidence intervals for ρ
based on the sample moment correlation without and with z-transformation (denoted by cor
and cor-z, respectively) are then given by

r̂n ±
√

1 + κ̂n
n

(1− r̂2n)z1−α/2 and z−1

{
z(r̂n)±

√
1 + κ̂n
n− 3

z1−α/2

}
,
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respectively, where z(·) denotes the z-transform. The simulations are done with the statistical
software R (R Core Team, 2016). We sample from bivariate elliptical distributions using the
package mvtnorm (Genz et al., 2014). The central location is computed by the spatial me-
dian from the package pcaPP (Filzmoser et al., 2011), and the scales are estimated by the Qn

implemented in the package robustbase (Rousseeuw et al., 2014).
In Table 3.2, covering frequencies of the generalized correlation coefficient ρ by the various

confidence intervals are given based on 10,000 repetitions for each parameter setting. We consider
the normal distribution and the t-distribution with 5 and 3 degrees of freedom, true correlations
of ρ = 0 and ρ = 0.5 and six different sample sizes ranging from n = 10 to n = 10, 000.

We see that the sscor-h confidence intervals, i.e., the spatial-sign-based with transformation
h, are almost exact in all cases considered, already for n = 10. The sscor-based intervals
without transformation as well as the z-transformed r̂n-based intervals reach a comparable
accuracy only for n = 50, and the r̂n-based confidence intervals without z-transformation no
sooner than n = 100 even under normality. Table 3.3 reports the corresponding average lengths
of the confidence intervals multiplied by

√
n. Comparing these average lengths for the Pearson

correlation and spatial sign correlation, we rediscover roughly the square root of the ratio of the
asymptotic variances, e.g., for the normal distribution at ρ = 0, we have 5.54/3.92 = 1.413 ≈

√
2.

At normality, the confidence intervals based on the Pearson correlation (the maximum likelihood
estimator for ρ in this case) are shorter, whereas the sscor confidence intervals are shorter at
the t5 distribution – at least in larger samples, where all confidence intervals have the same
95% covering probability. Thus, in a heavy-tailed setting like the t5 distribution, the spatial-
sign-based confidence intervals are superior in terms of covering accuracy as well as length.
Further, we observe that the strict asymptotic distribution-freeness of the spatial sign correlation
practically also extends to the finite-sample case. In both tables, the results for the spatial sign
correlation are essentially the same for the three different elliptical distributions. In contrast,
the Pearson correlation shows a considerably worse finite-sample behavior at the t5 than at the
normal distribution.

It should also be noted that, when constructing confidence intervals using Fisher’s z-transform,
we have employed that var{z(r̂n)} ≈ 1/(n− 3) yields a better approximation than var{z(r̂n)} ≈
1/n. It appears that the appropriate standard error for the h-transform of the spatial sign
correlation is 1/

√
n. If the z-transform is applied naively, i.e., with 1/

√
n standard errors, the

accuracy comparison of the confidence intervals is yet much more favorable for the spatial sign
correlation.

When sampling from a t3 distribution, where fourth moments are not finite, the usual con-
struction of the moment-correlation-based confidence intervals lacks a mathematical justifica-
tion. However, the bottom parts of Tables 3.2 and 3.3 indicate that they nevertheless provide
a somewhat useful approximation. While for small n the moment-correlation-based confidence
intervals are short but have a too low coverage probability, they reach 95% in large samples, but
are in comparison to the sscor-based confidence intervals very large. The slower convergence
of the sample moment correlation to ρ, and the exploding behavior of the sample kurtosis are
opposing effects, which appear to basically cancel each other.

Altogether the spatial correlation with variance stabilizing-transformation h yields very re-
liable confidence bands, which are accurate also in very small samples.

3.5 Comparison of robust correlation estimators

There are many proposals for robust correlation estimators in the literature. In this section we
compare the spatial sign correlation ρ̂n to a number of prominent alternatives, without claiming
or attempting any completeness or ranking. In Subsections 3.5.1-3.5.3, we gather the basic
analytic results, particularly the asymptotic efficiencies at the normal model, and in Subsection
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ρ 0 0.5
n sscor sscor-h cor cor-z sscor sscor-h cor cor-z

normal distribution

10 86 94 77 89 87 93 78 89
20 90 94 86 92 91 95 87 92
50 93 95 92 94 93 95 92 93

100 93 95 93 94 94 95 93 94
500 95 95 95 95 95 95 95 95

10000 95 95 95 95 95 95 95 95

t5 distribution

10 85 94 70 84 87 93 71 84
20 90 95 81 88 90 95 80 88
50 93 95 88 91 93 95 88 91

100 94 95 91 93 94 95 91 93
500 95 95 94 94 95 95 94 94

10000 95 95 95 95 95 95 95 95

t3 distribution

10 85 94 64 80 87 93 66 80
20 90 94 74 83 90 94 76 84
50 93 95 82 87 93 95 82 86

100 94 95 86 89 94 95 86 89
500 95 95 90 92 94 95 90 92

10000 95 95 94 95 95 95 94 94

Table 3.2: Empirical covering probabilities (%) of asymptotic 95% confidence intervals based on
the spatial sign correlation (sscor) and the moment correlation (cor) with and without variance-
stabilizing transformation for bivariate normal and t-distributions with 3 and 5 degrees of free-
dom, ρ = 0 and ρ = 0.5, and varying sample sizes n; 10,000 repetitions.

3.5.4 we compare the finite-sample and robustness properties numerically.
In general, the estimators mentioned are known to be Fisher-consistent for the correlation

only under normality, which often, as in the case of the spatial sign correlation, can be relaxed
to ellipticity. To put it differently, each of the various correlation estimators θ̂n estimates some
parameter θ of the bivariate population distribution, which may serve as a measure of mono-
tone dependence, but does in general not coincide with the moment correlation ρ.3 The exact
functional connection between θ and ρ is usually hard to assess for arbitrary distributions, but
is known for the normal model. If no such function is mentioned in the examples below, it is
the identity.

Let the data be denoted by Xi = (Xi, Yi)
T , i = 1, . . . , n, independent and normally distrib-

uted. Relative efficiencies reported below are with respect to the sample correlation, which is
denoted by ρ̂Pea. The estimators we will consider can roughly be divided into three groups: We
call the first group nonparametric estimators since they depend on signs and ranks. Besides
the spatial sign correlation, these are the Gaussian rank correlation, Spearman’s ρ, Kendall’s
τ , and the quadrant correlation. The second group are the Gnanadesikan-Kettenring-type es-
timators, where we consider the τ -scale and the Qn as scale estimators. We label the third
group affine equivariant estimators, i.e., estimators that are derived from an affine equivariant
two-dimensional scatter estimator. Here we consider Tyler’s M-estimator, the raw and the re-

3In this sense, “correlation” is understood as monotone dependence.
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ρ 0 0.5
n sscor sscor-h cor cor-z sscor sscor-h cor cor-z

normal distribution

10 4.75 4.11 2.83 3.11 4.08 3.69 2.23 2.56
20 5.11 4.68 3.35 3.45 4.20 3.99 2.57 2.73
50 5.36 5.15 3.68 3.71 4.26 4.18 2.79 2.85

100 5.45 5.33 3.80 3.81 4.30 4.26 2.87 2.90
500 5.52 5.50 3.89 3.90 4.31 4.30 2.92 2.93

10000 5.54 5.54 3.92 3.92 4.32 4.32 2.94 2.94

t5 distribution

10 4.75 4.12 2.84 3.12 4.08 3.69 2.28 2.61
20 5.11 4.68 3.63 3.71 4.22 4.01 2.83 2.99
50 5.36 5.15 4.44 4.42 4.28 4.20 3.40 3.46

100 5.45 5.34 4.92 4.89 4.30 4.26 3.74 3.77
500 5.52 5.50 5.71 5.69 4.31 4.31 4.29 4.29

10000 5.54 5.54 6.38 6.38 4.32 4.31 4.79 4.79

t3 distribution

10 4.73 4.10 2.81 3.10 4.09 3.70 2.27 2.60
20 5.11 4.68 3.77 3.84 4.22 4.01 2.99 3.15
50 5.36 5.15 5.08 5.01 4.28 4.20 3.94 3.99

100 5.45 5.34 6.15 6.04 4.30 4.26 4.72 4.73
500 5.52 5.50 9.12 8.98 4.31 4.31 6.90 6.87

10000 5.54 5.54 17.57 17.46 4.32 4.32 13.02 12.99

Table 3.3: Average lengths of 95% confidence intervals based on the spatial sign correlation
(sscor) and the moment correlation (cor) with and without variance-stabilizing transformation
for bivariate normal and t-distributions with 3 and 5 degrees of freedom, ρ = 0 and ρ = 0.5, and
varying sample sizes n; 10,000 repetitions.

weighted MCD, and the S-estimator with Tukey’s biweight-function. Detailed descriptions of
the estimators are given below.

3.5.1 Nonparametric estimators

The Gaussian rank correlation is defined as the sample correlation of the normal scores of the
data, i.e.

ρ̂GRK =
1

cn

n∑
i=1

Φ−1

(
R(Xi)

n+ 1

)
Φ−1

(
R(Yi)

n+ 1

)
,

where cn =
∑n

i=1Φ
−1
(

i
n+1

)2
, R(Xi) is the rank of Xi among X1, . . . , Xn, and Φ−1 is the

quantile function of the standard normal distribution. The influence function of the Gaussian
rank correlation is unbounded, but in finite samples it is much more robust than the Pearson
correlation (Boudt et al., 2012). Since the Gaussian rank correlation corresponds to the Pearson
correlation of the transformed data, the pairwise estimation of a multidimensional correlation
matrix leads always to a non-negative definite estimate.

Another rank based estimator is Spearman’s ρ, which is the sample correlation of the ranks
R(X1), . . . , R(Xn) and R(Y1), . . . , R(Yn). To obtain a consistent estimator for ρ, one has to
apply the transformation ρ̂Sp.c = 2 sin (πρ̂Sp/6), which goes back to Pearson (1907). A further
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popular nonparametric estimator is Kendall’s τ , which is defined as

ρ̂Ken =
2

n(n− 1)

∑
i>j

s ((Xi −Xj)(Yi − Yj)) ,

where s(·) is the sign function defined at the beginning of Section 3.2, here applied to a univariate
argument. It also requires a consistency transformation, which is valid under ellipticity (e.g.
Möttönen et al., 1999): ρ̂Ken.c = sin (πρ̂Ken/2). A highly robust, non-parametric procedure
based on signs is the quadrant correlation, which first appears in Mosteller (1946) and Blomqvist
(1950). It can be expressed as ρ̂Q = 1

n

∑n
i=1 s ((Xi −med(X))(Yi −med(Y ))), where med(X)

denotes the median of X1, . . . , Xn. The same transformation ρ̂Q.c = sin (πρ̂Q/2) renders this
estimator consistent for ρ under elliptical distributions. All three nonparametric estimators
ρ̂Sp.c, ρ̂Ken.c, ρ̂Q.c have a bounded influence function and are therefore called B-robust. Their
influence functions, asymptotic variances and gross-error sensitivities can be found in Croux and
Dehon (2010).

3.5.2 GK estimators

Gnanadesikan and Kettenring (1972) introduced an estimation principle based on robust vari-
ance estimation,

ρ̂ =
σ̂2(X/σ1 + Y/σ2)− σ̂2(X/σ1 − Y/σ2)

σ̂2(X/σ1 + Y/σ2) + σ̂2(X/σ1 − Y/σ2)
,

where σ̂ can be any robust scale measure and σ1 = σ̂(X), σ2 = σ̂(Y ). Such an estimator
can be seen to be Fisher-consistent for ρ, regardless of the choice of the scale measure σ̂, if
X + Y , X − Y as well as X and Y have the same distribution up to location and scale, which
is fulfilled for elliptical distributions. According to Ma and Genton (2001), the correlation
estimator has the same asymptotic relative efficiency (with respect to the Pearson correlation)
at the normal distribution as the underlying scale estimator posses with respect to the standard
deviation. There is also a relationship between the influence functions, which guarantees that
the B-robustness translates from the variance to the correlation estimator, see Genton and Ma
(1999). In the recent literature, there are two proposals for the variance estimation. Maronna
and Zamar (2002) favor the so-called τ -scale (not to be confused with Kendall’s τ):

σ̂τ =
σ20
n

n∑
i=1

dc2

(
Xi − µ̂(X)

σ0

)
, where µ̂(X) =

∑n
i=1wiXi∑n
i=1wi

,

wi = Wc1{(Xi −med(X))/σ0}, σ0 = med { |Xi −medX| : i = 1, . . . , n}, dc(x) = min(x2, c2)
and Wc(x) = {1 − (x/c)2}21{|x|≤c}. They use c1 = 4.5 and c2 = 3 to get an efficiency of
approximately 0.8 under normality. Ma and Genton (2001) use the Qn, which is defined as

Qn(X) = d · {|Xi −Xj | : i < j}(k),

where k =
(
[n/2]+1

2

)
and the notation {·}(k) refers to the kth order statistic. The consistency

factor d equals 1/(
√
2Φ−1(5/8)) for the normal distribution. This estimator has an asymptotic

efficiency of 0.82, see Rousseeuw and Croux (1993). The influence function of the resulting
covariance estimator is bounded and can also be found in Ma and Genton (2001).

3.5.3 Affine equivariant estimators

One can estimate the correlation by means of any affine equivariant, bivariate scatter estimator
V̂n using the relation ρ̂ = v̂1,2/

√
v̂1,1v̂2,2. Taskinen et al. (2006) derive the influence function
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of the correlation estimator from the influence function of V̂n under elliptical distributions.
Furthermore, the asymptotic variance of ρ̂ is of the form (1−ρ2)2 ·ASV (v̂1,2), where ASV (v̂1,2)
is the asymptotic variance of v̂1,2 under the corresponding spherical distribution. We consider
three examples of robust affine equivariant scatter estimators.

Tyler (1987) proposed an M-estimator for the shape matrix V , being a suitably scaled
solution of

2

n

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)
T

(Xi − µ̂n)
T V̂ −1

n (Xi − µ̂n)
= V̂n,

where µ̂n is a suitable multivariate location estimate. In the simulations in Section 3.5.4, we
take the spatial median. The Tyler estimator can be regarded as an affine equivariant version
of the SSCM and is also distribution-free within the elliptical model.

A highly robust, affine equivariant scatter estimator is the minimum covariance determin-
ant (MCD) estimator proposed by Rousseeuw (1985). For a given trimming constant α, it is
defined as the sample covariance matrix of the subset of observations which yields the smallest
determinant of the matrix estimate among all subsets of size ⌊(1 − α) · n⌋. Choosing α = 0.5
results in an asymptotic breakdown point of 0.5. Since the asymptotic efficiency, especially in
small dimensions, is rather low, the raw MCD is usually followed by a reweighting step. We call
this two-step estimate the weighted MCD. For both, the raw and the weighted MCD, influence
functions, consistency factors and asymptotic efficiencies can be found in Croux and Haesbroeck
(1999).

Davies (1987) proposed a multivariate generalization of S-estimators, being defined as

(µ̂n, V̂n) = argmin
µ,V

det(V ) subject to
n
ave
i=1

w(d̂i) = b,

where di = {(Xi − µ)TV −1(Xi − µ)}1/2 and w is a suitable, smooth and bounded, weight
function, usually the Tukey–biweight:

wc(y) = min

(
y2

2
− y4

2c2
+

y6

6c4
,
c2

6

)
.

Letting b = E{wc(∥V −1/2(X − µ)∥)} yields Fisher-consistency at the elliptical population dis-
tribution F , and if c is chosen such that rc2/6 = E{wc(∥V −1/2(X − µ)∥)}, the S-estimator
achieves an asymptotic breakdown point of 0 < r ≤ 1/2. We consider the common standard
choices r = 1/2 and consistency for Σ at the normal model. Asymptotics can be found in Davies
(1987), the influence function was calculated by Lopuhaä (1989) and efficiencies under normal
distribution were calculated for instance in Croux and Haesbroeck (1999).

Table 3.4 lists the asymptotic relative efficiencies of the mentioned correlation estimators
with respect to the Pearson correlation under normality. Specific tuning constants, parameters,
weight functions, etc., are chosen as described above. The efficiency of the nonparametric
estimators is declining with |ρ|, but the loss is rather small for moderate values. As we can see,
the spatial correlation can well compete with highly robust estimators in terms of efficiency.

3.5.4 Simulations

We compare the correlation estimators in three different situations: under normality, under
ellipticity and in outlier scenarios. We use the statistical software R (R Core Team, 2016),
including the packages ICSNP (Nordhausen et al., 2012) (Tyler’s M-estimator), MNM (Nord-
hausen and Oja, 2011) (elliptical power exponential distribution), mvtnorm Genz et al. (2014)
(multivariate normal and elliptical t-distributions), pcaPP Filzmoser et al. (2011) (spatial me-
dian), rrcov Todorov and Filzmoser (2009) (S-estimator) and robustbase Rousseeuw et al. (2014)
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ρ = 0 ρ = 0.5 ρ = 0 ρ = 0.5

Pearson 1 GK-Qn 0.823
Spatial sign 0.5 0.464 GK-τ 0.8
Gaussian rank 1 Tyler 0.5
Spearman 0.912 0.867 rMCD 0.033
Kendall 0.912 0.892 wMCD 0.401
Quadrant 0.405 0.342 S 0.377

Table 3.4: Asymptotic efficiency of correlation estimators for p = 2 under normality

(τ -scale, MCD and Qn). In all scenarios, the estimators are transformed to be Fisher-consistent
for the normal distribution. For some estimators, consistency-transformations for other distri-
butions are known as well, but it is unrealistic in practice to know the kind of distribution in
advance.

Throughout the simulations, we consider the one-stage spatial sign correlation (without
pre-standardization) at distributions with equal marginal variances. The findings of Section
3.4 indicate that these simulation results may serve as a proxy for the two-stage estimator at
elliptical distributions with arbitrary marginal variances.

Results under normality

First we examine bias and variance under normality. We choose ρ = 0.5, let the sample size
n vary from 5 to 100, and generate 100,000 samples for each sample size. In Figure 3.6 (left),
we see that all correlation estimators are biased towards zero in small samples. Next to the
Pearson correlation, Kendall’s τ and Spearman’s ρ (the adequately transformed estimates) are
least biased. The negative bias of the raw MCD still remains heavy even for n = 100. The
spatial sign correlation behaves very well in terms of finite-sample variance. On the right-hand
side of Figure 3.6, the variance times n (the n-stabilized variance) is plotted against n, which
is, contrary to most other estimators, nearly a horizontal line. This indicates that asymptotic
tests and confidence intervals based on the spatial sign correlation provide good approximations
also in small samples.

Results under elliptical distributions

We consider two subclasses of elliptical distributions that generate varying tails: the tν-family
and the power exponential family (e.g. Bilodeau and Brenner, 1999, pp. 208, 209). The results
for the tν distribution are summarized in Table 3.5.4, where the mean squared error (MSE) of
the various correlation estimators based on 100,000 samples are given for ρ = 0 and ρ = 0.5 and
different degrees of freedom ν. Keep in mind that formally the correlation does not exist for
one and two degrees of freedom, and we estimate the corresponding parameter ρ of the shape
matrix instead, see also the beginning of Section 3.3. The MSE of the spatial sign correlation
remains constant with respect to ν, which applies only to the quadrant correlation and Tyler’s
M-estimator among the other methods. For one degree of freedom and ρ = 0.5, the spatial
sign correlation, together with Kendall’s τ and Tyler’s M-estimator, is most efficient. For one
degree of freedom and ρ = 0, Spearman’s ρ yields the smallest MSE by far. But this is due
to its (asymptotic) bias towards zero. Contrary to Kendall’s τ , the consistency transformation
applied to Spearman’s ρ under normality is not valid under ellipticity in general.

The MSEs, again based on 100,000 repetitions, for the power exponential distribution are
displayed in Figure 3.7. The sample size is n = 100, the true correlation ρ = 0.5, and the power
parameter α ranges from 0.02 to 2 in 56 (non-equidistant) steps. Letting α = 1 corresponds to
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Figure 3.6: Simulated finite sample bias (left) and n·variance (right) under normality, ρ = 0.5
and different sample sizes n.

ρ 0 0.5
ν 1 2 5 10 1 2 5 10

Pearson 0.356 0.112 0.021 0.013 0.283 0.077 0.012 0.007

Spatial sign 0.020 0.020 0.019 0.020 0.012 0.012 0.012 0.012
Quadrant 0.024 0.024 0.024 0.017 0.017 0.016 0.016 0.016
Kendall 0.019 0.016 0.013 0.012 0.012 0.010 0.008 0.007
Spearman 0.016 0.014 0.012 0.012 0.015 0.011 0.008 0.007
Gaussian rank 0.021 0.017 0.013 0.012 0.019 0.013 0.008 0.007

GK-Qn 0.021 0.017 0.015 0.014 0.012 0.010 0.009 0.008
GK-τ 0.024 0.019 0.015 0.014 0.014 0.011 0.009 0.008

Tyler 0.020 0.020 0.020 0.020 0.012 0.012 0.012 0.012
rMCD 0.076 0.099 0.132 0.149 0.047 0.062 0.085 0.098
wMCD 0.037 0.035 0.034 0.032 0.022 0.021 0.020 0.019
S 0.033 0.030 0.029 0.029 0.019 0.017 0.017 0.017

Table 3.5: MSE under tν distributions with different degrees of freedom and n = 100.
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Figure 3.7: MSE of correlation estimators under the power exponential distribution with different
α, ρ = 0.5 and n = 100.

the normal distribution and α = 0.5 yields the elliptical Laplace distribution. With decreasing
α, the distribution gets heavier tailed and more peaked in the origin, but all moments exist for
any α > 0 and the density remains bounded. As before, the MSE of the spatial correlation does
not depend on the “tailedness parameter” α, which is in line with the asymptotic result. Only
for very small α, we observe a slight incline. The power exponential distribution with a small
α is particularly challenging for robust scatter estimators, since it possesses heavy tails and a
probability mass concentration at the origin. Robust estimators downweight or reject outlying
observations, which are in this case no contaminations, but carry the main information about
the shape. In fact, the MSE of the raw MCD is above the displayed region in Figure 3.7. The
spatial sign covariance matrix can cope well with such peaked distributions. For α < 0.1, we
find it, together with Tyler’s estimator, to have the smallest MSE. However, it is crucial to use
an appropriate location estimator that also works well with peaks at the center, see e.g. the
discussion in Section 3.2 of Dürre et al. (2014). Altogether Kendall’s τ appears to perform best
over the whole range of α.

Results under contamination

To assess the robustness properties, we consider two scenarios: a single outlier of varying size,
and an increasing amount of outliers stemming from a contamination distribution. In the first
situation, we start from a bivariate normal sample with ρ = 0.5 and n = 100 and shift the
first observation to the right by a distance h ranging from 0 to 5. This yields a high leverage
point, suggesting a smaller correlation. We measure the influence of this one outlier in the
x-direction by the difference of the estimate before and after the manipulation. The result is
a sensitivity curve along the x-direction (divided by the factor n = 100), plotted in Figure 3.8
(left). The influence of the additive outlier is very small for the spatial sign correlation and also
for most other robust estimators. An exception is the Gaussian rank correlation, which is known
to have an unbounded influence function. Several highly robust estimators (in particular, the
S-estimator and the MCD) completely disregard outliers that are sufficiently far away from the
bulk of the data, and their sensitivity curves tend back to 0 as h further increases.

In the second setting, we start as usual with normally distributed data, ρ = 0.5, marginal
variances 1 and n = 100. Then we replace, one after another, the “good” observations by outliers,
which stem from a normal distribution with marginal variances 4 and correlation ρ = −0.5. On
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Figure 3.8: Bias of correlation estimators under normality with ρ = 0.5, n = 100. Left: one
additive outlier of size h in the x-direction. Right: different fraction of outliers sampled from
distribution with correlation ρ = −0.5.

the right-hand side of Figure 3.8, the bias of the estimators (average of 50,000 repetitions)
is plotted against the contamination fraction. Here the picture is somewhat reversed to the
efficiency results under normality: the rather efficient rank-based estimators like Spearman’s ρ
and Kendall’s τ are substantially biased, and the rather inefficient and highly robust estimators
(MCD, S) perform better. As before, the spatial sign correlation takes a place in the middle.

3.6 Multivariate spatial sign correlation matrix

One can construct an estimator of the correlation matrix R by filling the off-diagonal positions of
the matrix estimate with the bivariate spatial sign correlation coefficients of all pairs of variables.
Proposition 1 allows an alternative approach: First standardize the data marginally by a robust
scale estimator and compute the SSCM of the transformed data. Then apply a singular value
decomposition

Ŝn(tn,X1, . . . ,Xn) = Û∆̂Û⊤,

where ∆̂ contains the ordered eigenvalues δ̂1 ≥ . . . ≥ δ̂p. One obtains estimates λ̂1, . . . , λ̂p by
inverting (3.8). Although theoretical results are yet to be established, we found in our simulations
that the following fix point algorithm

λ̂
(0)
i = δ̂i, i = 1, . . . , p,

λ̃
(k+1)
i = 2δ̂i

(∫ ∞

0

1

(1 + λ̂
(k)
i x)

∏p
j=1(1 + λ̂

(k)
j x)

1
2

dx,

)−1

, i = 1, . . . , p, k = 1, 2, . . .

λ̂
(k+1)
i = λ̃

(k+1)
i

⎛⎝ p∑
j=1

λ̃j
(k+1)

⎞⎠−1

, i = 1, . . . , p, k = 1, 2, . . .
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n 100 1000
p 2 3 5 10 50 2 3 5 10 50

N
cor 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
sscor pairwise 1.9 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0
sscor multivariate 1.9 1.6 1.4 1.2 1.0 2.0 1.7 1.4 1.2 1.0

t10

cor 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3
sscor pairwise 2.0 1.9 1.9 2.0 1.9 2.0 2.0 2.0 2.0 2.0
sscor multivariate 2.0 1.7 1.3 1.2 1.0 2.0 1.7 1.4 1.2 1.0

t5

cor 2.0 2.1 2.1 2.1 2.1 2.6 2.6 2.6 2.6 2.6
sscor pairwise 2.0 2.0 1.9 2.0 1.9 2.1 2.0 2.0 2.0 2.0
sscor multivariate 2.0 1.7 1.4 1.2 1.1 2.1 1.7 1.4 1.2 1.0

L
cor 1.6 1.5 1.3 1.2 1.1 1.6 1.5 1.3 1.2 1.1
sscor pairwise 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0
sscor multivariate 1.9 1.6 1.4 1.2 1.1 2.0 1.7 1.4 1.2 1.1

Table 3.6: Simulated variances (multiplied by n) of one off-diagonal element of the correlation
matrix estimate based on the moment correlation (cor), the pairwise spatial sign correlation
(sscor pairwise) and the multivariate spatial sign correlation matrix (sscor multivariate) for
spherical normal (N), t5, t10, and Laplace (L) distribution, several dimensions p and sample
sizes n = 100, 1000.

works reliably and converges usually within 5 iterations if p is large. Let Λ̂ denote the diagonal
matrix containing λ̂1, . . . , λ̂p, then V̂ = Û Λ̂ÛT is a suitable estimator for the shape of the
standardized data and R̂ with ρ̂ij = v̂ij/

√
v̂iiv̂jj an estimator for the correlation matrix, which

we call the multivariate spatial sign correlation matrix. Contrary to the pairwise approach, the
multivariate spatial sign correlation matrix is positive semi-definite by construction.

Theoretical properties of the new estimator are not straightforward to establish. By a small
simulation study we want to obtain an impression of its efficiency. We compare the variances of
the moment correlation, the pairwise as well as the multivariate spatial sign correlation under
several elliptical distributions: normal, Laplace and t distributions with 5 and 10 degrees of
freedom. The latter three generate heavier tails than the normal distribution. The Laplace
distribution is obtained by the elliptical generator g(x) = cp exp(−

√
|x|/2), where cp is the

appropriate integration constant depending on p (e.g. Bilodeau and Brenner, 1999, p. 209).
We take the identity matrix as shape matrix and compare the variances of an off-diagonal

element of the matrix estimates for different dimensions p = 2, 3, 5, 10, 50 and sample sizes
n = 100, 1000. We use the R packages mvtnorm (Genz et al., 2014) and MNM (Nordhausen
and Oja, 2011) for the data generation. The results based on 10000 runs are summarized in
Table 3.6.

Except for the moment correlation at the t5 distribution, the results for n = 100 and n = 1000
are very similar. Note that the variance of the moment correlation decreases at the Laplace
distribution as the dimension p increases, but not so for the other distributions considered. The
lower dimensional marginals of the Laplace distribution are, contrary to the normal and the t-
distributions, not Laplace distributed (see Kano, 1994), and the kurtosis of the one-dimensional
marginals of the Laplace distribution in fact decreases as p increases.

Theorem 2 yields an asymptotic variance of 2 for the pairwise spatial sign correlation matrix
elements regardless of the specific elliptical generator. This can also be observed in the simulation
results. The moment correlation is twice as efficient under normality, but it has a higher variance
at heavy tailed distributions. For uncorrelated t5 distributed random variables, the spatial
sign correlation outperforms the moment correlation. Looking at the multivariate spatial sign
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correlation, we see a strong increase of efficiency for larger p. For p = 50 the variance is
comparable to that of the moment correlation. Since the asymptotic variance of the SSCM does
not depend on the elliptical generator, this is expected to also hold for the multivariate spatial
sign correlation, and this claim is confirmed by the simulations. The multivariate spatial sign
correlation is more efficient than the moment correlation even under slightly heavier tails for
moderately large p.

We simulate also from other shape matrices, e.g., the equi-correlation matrix

V =

⎛⎜⎜⎜⎜⎝
1 0.5 . . . 0.5

0.5
. . .

. . .
...

...
. . .

. . . 0.5
0.5 . . . 0.5 1

⎞⎟⎟⎟⎟⎠ .

The results can be found in Table 3.7. Except for the general smaller asymptotic variances
we get the same picture. The asymptotic variance of the multivariate spatial sign correlation
matrix is shrinking with growing dimension and approaches that of the sample correlation under
normality, albeit more slowly than in the uncorrelated case.

n 100 1000
p 2 3 5 10 50 2 3 5 10 50

N
cor 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
sscor pairwise 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.0 1.0 0.8 0.8 1.2 1.0 0.9 0.8 0.7

t10

cor 0.8 0.7 0.7 0.8 0.8 0.8 0.7 0.8 0.7 0.8
sscor pairwise 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.1 0.9 0.8 0.8 1.2 1.0 0.9 0.8 0.7

t5

cor 1.2 1.2 1.2 1.2 1.2 1.5 1.5 1.5 1.5 1.5
sscor pairwise 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.0 0.9 0.8 0.7 1.2 1.0 0.9 0.8 0.8

L
cor 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
sscor pairwise 1.2 1.2 1.2 1.3 1.2 1.2 1.2 1.2 1.2 1.2
sscor multivariate 1.2 1.1 0.9 0.9 0.7 1.2 1.0 0.9 0.8 0.7

Table 3.7: Simulated variances (multiplied by n) of one off-diagonal element of the correlation
matrix estimate based on the moment correlation (cor), the pairwise spatial sign correlation
(sscor pairwise) and the multivariate spatial sign correlation matrix (sscor multivariate) for
equi-correlated normal (N), t5, t10, and Laplace (L) distribution, several dimensions p and
sample sizes n = 100, 1000.

An increase of efficiency for larger p is not uncommon for robust scatter estimators. It can be
observed amongst others forM -estimators, the Tyler shape matrix, the MCD, and S-estimators
(see e.g. Croux and Haesbroeck, 1999; Taskinen et al., 2006). All of these are affine equivariant
estimators, requiring n > p. This is not necessary for the spatial sign correlation matrix.
One may expect that the efficiency gain for large p is at the expense of robustness. We therefore
investigate the influence function of one off-diagonal element of the multivariate spatial sign
correlation. The influence function is based on the concept that estimators are functionals
working on distributions. In this setting the specific estimate based on a given dataset equals
the functional evaluated at the corresponding empirical distribution. Denote by ρ̌ the functional
representation of the multivariate spatial sign correlation with matrix-elements ρ̌i,j , 1 ≤ i <
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Figure 3.9: Partial influence functions of the off-diagonal element of multivariate spatial sign
correlation ρ̌12 for x = (x, y, 0, . . . , 0) under spherical distribution for p = 2 (left), p = 5 (center)
and p = 10 (right).

j ≤ p. Then the influence function IF (x, ρ̌i,j , F ) is defined as

IF (x, ρ̌i,j , F ) = lim
ϵ→0

ρ̌i,j((1− ϵ)F + ϵ∆x)− ρ̌i,j(F )

ϵ

where ∆x denotes the Dirac measure putting its mass at x. It measures the impact of an
infinitesimal contamination at point x on ρ̌i,j under distribution F . For further explanations
and details about the influence function, see Hampel et al. (1986) and Huber and Ronchetti
(2009).
Since we do not have an explicit representation for the estimated eigenvalues λ̂1, . . . , λ̂p, it seems
to be challenging to calculate the influence function for arbitrary F and x. Nevertheless, we can
get results if we restrict ourselves to the case where F is elliptical with shape V = Ip and x
lies in a special hyperplane of Rp. Furthermore we look at the case where the proportions of the
marginal scales are known, respectively the data is not standardized prior to the computation
of the SSCM.

Proposition 5. (Dürre et al., 2017) Let F ∈ E2(t, V ) and ρ̌i,j denote the functional repres-
entation of the off-diagonal element of the multivariate spatial sign correlation without pre-
standardization and let x = (x, y, 0, . . . , 0)T with x, y ∈ R, then

IF (x, ρ̌1,2, F ) = (p+ 2)
xy

x2 + y2
. (3.18)

For p = 2, Proposition 5 is a special case of Proposition 4 which gives the influence func-
tion for arbitrary V . Although Proposition 5 is restricted to the situation where there is only
contamination in the first two components, it provides evidence that the sensitivity of the mul-
tivariate spatial sign correlation increases with increasing dimension. One can see in Figure
3.9 respectively formula (3.18) that the influence functions are proportional to each other and
that |IF (x, ρ̌1,2, F )| increases linearly in p for fixed x = (x, y, 0 . . . , 0). This result indicates
that the multivariate spatial sign correlation is more effected by outliers if p is large. Therefore
the bivariate approach seems to be preferable if one suspects outliers and the dataset is high
dimensional.
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3.7 Conclusion

We have introduced a new bivariate correlation estimator based on the spatial sign covariance
matrix, which we call the spatial sign correlation. We studied its asymptotic properties analyt-
ically and investigated its finite-sample and robustness properties by means of a comprehensive
simulation study, comparing it to other popular robust correlation estimators. The simulations
indicate that, although the spatial sign correlation at normality has a rather low relative ef-
ficiency of at most 1/2 with respect to the sample correlation, it is competitive when being
compared to highly robust correlation measures that offer a similar resistance against outliers.
The main advantage of the spatial sign correlation is its computational efficiency. It is therefore
suited to be applied in a high-dimensional setting for pairwise correlation estimation. Robust
pairwise correlation matrices have the advantage of a manageable computational effort as p in-
creases, and that they work also for n < p. The price one usually has to pay, though, is the
loss of the non-negative definiteness of the matrix estimate. For example, many nonparametric
correlation matrix estimators (see Section 3.5) are based on an initial scatter matrix estimate
which is non-negative definite, but not affine equivariant. The loss of non-negative definiteness
occurs when a component-wise transformation is applied to render the entries consistent for
the moment correlation. In applications where non-negative definiteness is important, one can
“orthogonalize” the matrix estimate as suggested by Maronna and Zamar (2002), which involves
an eigenvalue decomposition.

In the case of the spatial sign correlation, the pairwise approach means to compute bivariate
spatial signs for every pair of observations. This entails the question if, when using the spatial
median as location estimator, also bivariate spatial medians should be computed, or if rather
each variable should be centered by the respective component of the p-variate spatial median.
Computationally there is little obligation against the latter, the Weiszfeld algorithm (cf. e.g.
Vardi and Zhang, 2001) scales nicely with p. From a statistical point of view, one might prefer
the bivariate spatial median. Assume a trivariate elliptical model with uncorrelated margins
and marginal variances 1, 1 and 100. The (trivariate) spatial median (as well as the SSCM)
is very inefficient at such a strongly shaped distribution, and this inefficiency affects all of its
components. In such a case, the bivariate spatial median is a more efficient location estimator
for the first two components than the first two components of the trivariate spatial median. For
a detailed and nice exposition of the efficiency properties of the spatial median see Magyar and
Tyler (2011). Again, this effect can be reduced by pre-standardization.

The main drawback of the spatial sign correlation is the inefficiency under strongly shaped
models, i.e., where the eigenvalues of the shape matrix strongly differ. The shapedness4 due to
different marginal scales may be eliminated by a componentwise standardization before comput-
ing the spatial sign correlation. We have shown that the resulting two-step estimator has the
same asymptotic distribution as the spatial sign correlation applied to a sample from a model
with equal marginal scales.

An important consequence is that the parameter a, the ratio of the marginal scales, drops
from the expression for the asymptotic variance. The only parameter left is the generalized
correlation coefficient ρ itself. This allows us to devise a variance-stabilizing transformation
similar to Fisher’s z-transformation. The confidence intervals obtained by this transform are very
accurate also for very small samples. They are more precise in terms of coverage probabilities
than those obtained by Fisher’s z-transform and furthermore valid for all elliptical distributions.
The prior standardization makes the spatial sign correlation really a practical estimator. The
two-stage spatial sign correlation is implemented in the package sscor (Dürre and Vogel, 2016b)

4The term shapedness is used here for what is usually called ellipticity, i.e., the degree of divergence of an
ellipse from a circle. We prefer to use shapedness since the term ellipticity in the context of elliptical distributions
is often used to refer to the latter.
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along with a correlation test including confidence intervals based on the h-transform.
The derivation of the spatial sign correlation hinges on the explicit connection between the

spatial sign covariance matrix and the covariance matrix which is known under two-dimensional,
elliptical distributions. The question naturally arises if and how these results may be extended
to broader distributional assumption.

It is known that the covariance matrix and the shape matrix share the same eigenvectors not
only under ellipticity but also within the broader class of linear transformations of permutation
and sign-change invariant distributions, which includes the symmetric independent-components
model. An elliptical vector X may be characterized by

X = ARU + µ, (3.19)

where A ∈ Rp×p, µ ∈ Rp, and R is a non-negative univariate random variable, independent
of U , which is uniformly distributed on the unit sphere in Rp. The symmetric independent-
components model may be similarly written as

X = AY + µ,

where A and µ are as above, but Y = (Y (1), . . . , Y (p))⊤ consists of i.i.d. symmetrically dis-
tributed components. However, an explicit connection between the eigenvalues of the SSCM
and covariance matrix in this model is not known. Furthermore, spatial signs are not similarly
invariant with respect to the distribution of Y (1) as they are with respect to the distribution of
R in (3.19). A class of distributions to which this invariance extends is the generalized ellipt-
ical family as considered, e.g., by Frahm (2004). It is also generated by (3.19) with R being
uniformly distributed on the unit sphere, but R and U need not be independent. However, the
connection between the SSCM and the covariance matrix that holds under ellipticity does not
extend to this class.

Next to the pairwise approach we propose a second estimator for the correlation matrix of
an elliptical distributed random variable, the multivariate spatial sign correlation matrix. By
a fixed-point algorithm one can invert the map between the eigenvalues of the shape and the
spatial sign covariance matrix and, based on this, estimate the correlation matrix of an elliptical
distributed random vector. We found the fixed-point algorithm to work reliably and fast for
various shape matrices and dimensions. Simulations show that the resulting estimator is highly
efficient in larger dimensions. Its asymptotic variance appears to approach that of the sample
correlation under normality as the dimension is growing. Asymptotics confirming the simulation
results are of great interest. The calculated partial influence function indicates that the efficiency
gain of the spatial sign correlation matrix is at the cost of robustness. So the estimator does
not seem to be very robust in the case of very high dimensions, but is nevertheless very efficient
under heavy-tailed distributions.

3.8 Proofs

Proof of Proposition 1 and 2. We exercise the liberty to choose an appropriate distribution for
Y and take the uniform distribution on the unit ball (not the unit sphere) with density f(y) =
p/2Γ(p/2)π−p/21[0,1](y

⊤y), which yields

δi =
pΓ(p/2)

2πp/2

∫
y⊤y≤1

λiy
2
i

λ1y21 + . . .+ λpy2p
dy =

2ppΓ(p/2)

2πp/2

∫
S2

λiy
2
i

λ1y21 + . . .+ λpy2p
dy

with y = (y1, . . . , yp) and S2,p = {y ∈ Rp |y⊤y ≤ 1, y1, . . . , yp ≥ 0}. Substituting yk =
√
zk,

1 ≤ k ≤ p, we get

δi =
pΓ(p/2)

2πp/2

∫
S1,p

λizi
λ1z1 + . . .+ λpzp

p∏
j=1

1
√
zj
dz (3.20)

57



with S1,p = {z ∈ Rp | z1 + . . .+ zp ≤ 1, z ≥ 0}. Now we apply formula 4.646 in Gradshteyn and
Ryzhik (2000):∫

S1,n

∏n
k=1 x

pk−1
k

(
∑n

k=1 qkxk)
r
dx =

Γ(p1) · . . . · Γ(pn)
Γ(
∑n

k=1 pk − r + 1)Γ(r)

∫ ∞

0

xr−1∏n
k=1(1 + qkx)pk

dx (3.21)

for p1, . . . , pn, q1, . . . qn > 0, p1 + . . .+ pn > r > 0. Setting n = p, r = 1, qk = λk for 1 ≤ k ≤ p,
pi = 3/2, and pk = 1/2 for k ̸= i, we obtain from (3.20) the expression for δi given in Proposition
1. As for ηii, we proceed similarly. Choosing again the uniform density on the unit ball and
substituting yk =

√
zk, 1 ≤ k ≤ p, yields

ηii =
pΓ(p/2)

2πp/2

∫
S1,p

λ2i z
2
i

(λ1z1 + . . .+ λpzp)2

p∏
j=1

1
√
zj
dz.

Applying (3.21) with n = p, r = 2, qk = λk for 1 ≤ k ≤ p, pi = 5/2, and pk = 1/2 for k ̸= i,
we obtain the expression for ηii as given in Proposition 2. As for ηij with i ̸= j, we obtain a
similar expression, to which we apply (3.21) with the same parameters except pi = pj = 3/2,
and pk = 1/2 for k ̸= i, j. This completes the proof.

Towards the proof of Proposition 3, we consider as an intermediate step the SSCM-based
shape estimator V̂n defined at the beginning of Section 3.3. Precisely, we give the asymptotic
distribution of the estimator

V̂0,n =

(
v̂0,11 v̂0,12
v̂0,12 v̂0,22

)
=

1√
v̂11v̂22

V̂n.

We have remarked at the end of Section 3.1 that, for analyzing the scale-invariant properties
of the shape of an elliptical distribution, fixing the overall scale of the shape matrix V is not
necessary, and we view the shape as an equivalence class of positive definite matrices being
proportional to each other. For explicit computations, however, it is at some point necessary to
fix the scale, that is, picking one specific representative from the equivalence class. Various ways
of standardizing the shape can be found in the literature. Paindaveine (2008) argues to choose
det(V ) = 1, which corresponds to our choice of V̂n in Section 3.3. However, for our purposes, it
is most convenient to standardize V such that the product of its diagonal elements is 1, which
corresponds to V̂0,n described above. Accordingly, we denote by V0 the representative of the
equivalence class with this property and parametrize it as

V0 =

(
a ρ
ρ a−1

)
, (3.22)

where the parameters a and ρ have the same meaning as in Section 3.3, that is, the ratio of the
diagonal elements of V and the correlation, respectively. Denote ŝij , i, j = 1, 2 the elements of
the SSCM Ŝ(Xn; µ̂n) and let d = 1

2 +
√

(ŝ11 − 1/2)2 + ŝ212. An eigenvalue decomposition yields

∆̂n =

(
d 0
0 1− d

)
and Ûn =

⎛⎝ ŝ12√
ŝ212+(d−ŝ11)2

ŝ12√
ŝ212+(1−d−ŝ11)

2

d−ŝ11√
ŝ212+(d−ŝ11)2

1−d−ŝ11√
ŝ212+(1−d−ŝ11)

2

⎞⎠
and by choosing λ̂1 = δ̂1/δ̂2 as well as λ̂2 = δ̂2/δ̂1 one arrives at v̂0,11 =

Û2
n11

λ̂1+Û2
n21

λ̂2

Û2
n12

λ̂1+Û2
n22

λ̂2
where

the nominator simplifies to

Û2
n11
λ̂1 + Û2

n21
λ̂2 =

Û2
n11
d2 + Û2

n21
(1− d)2

(1− d)d

=
d2 + dÛ2

n11
+ (1− d)Û2

n21
− d(Û2

n11
+ Û2

n21
)

d(1− d)
=

ŝ11
d(1− d)

− 1
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and the denominator to Û2
n12
λ̂1 + Û2

n22
λ̂2 =

1−ŝ11
d(1−d) − 1 such that

v̂0,11 =
ŝ211 + ŝ212

ŝ212 + (1− ŝ11)2
. (3.23)

The nominator of v̂0,12 =
Ûn11 λ̂1Ûn21+Ûn12 λ̂2Ûn22√

Û2
n12

λ̂1+Û2
n22

λ̂2

√
Û2
n11

λ̂1−Û2
n21

λ̂2

equals

Ûn11 λ̂1Ûn21 + Ûn12 λ̂2Ûn22 =
Ûn11dÛn21 + Ûn12(1− d)Ûn22

(1− d)d
− (Ûn11Ûn21 + Ûn12Ûn22)

=
ŝ12

d(1− d)
,

hence

v̂0,12 =
ŝ12√

(ŝ212 + ŝ211)(ŝ
2
12 + (1− ŝ11)2)

. (3.24)

The following proposition summarizes the asymptotic behavior of the estimator V̂0,n.

Proposition A1. Under the assumptions of Proposition 3, we have for n→ ∞ that

(1) V̂0,n
a.s.−→ V0 and

(2)
√
n
{
(v̂0,11, v̂0,12)

T − (a, ρ)T
} d−→ N2 (0,WV0), where WV0 = GWSG

T with

G =

(
2a+

(
a2 + 1

)√
1− ρ2 0

(
1− a2

)
ρ 0

a−1
(
a2 − 1

)
ρ
√

1− ρ2 0
√

1− ρ2{2 + (a2 + 1)a−1
√

1− ρ2} 0

)
, (3.25)

and WS is defined by (3.10).

Proof of Proposition A1. Part (1) is a consequence of the continuous mapping theorem, part
(2) follows with the delta method. Note that V0 is specified by the two elements v̂0,11 and
v̂0,12, and, likewise, Ŝn = Ŝn(Xn;µn) by the two elements ŝ11 and ŝ12. Let H be the function
that maps (ŝ11, ŝ12) to (v̂0,11, v̂0,12) and (s11, s12) to (a, ρ). It is given explicitly by the formulas
(3.23) and (3.24), from which we can compute its derivative. However, it turns out that it is
easier to compute the derivative of its inverse and apply the inverse function theorem. With
{(s11, s12) | 0 < s11 < 1, |s12| <

√
s11(1− s11)} and {(a, ρ) | 0 < a < ∞, |ρ| < 1} being its

domain and image, respectively, the function H is invertible and continuously differentiable.
Let J denote its inverse. The function J maps (a, ρ) to (s11, s12) and is described by (3.2) and
(3.6). In the following, we will compute its derivate, for which we require an explicit form of J .
The eigenvalue decomposition of V0 can be computed by the computer algebra system Maxima
(2014) and is given by λ1/2 = (2a)−1

(
a2 + 1±√

q
)
and

U =

⎛⎜⎜⎝
√√

q+a2−1
√
2q

1
4

√√
q−a2+1

√
2g

1
4

s(ρ)
√√

q−a2+1
√
2q

1
4

− s(ρ)(
√√

q+a2−1
√
2q

1
4

⎞⎟⎟⎠ , (3.26)
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where q = 4a2ρ2+(a2−1)2 and s(·) denotes the sign function defined at the beginning of Section
3.2. By (3.2) and (3.6) we find

s11 = U2
11

√
λ1√

λ1 +
√
λ2

+ U2
12

√
λ2√

λ1 +
√
λ2

=
√
k

√
q + a2 − 1

2
√
q(
√
m+

√
k)

+
√
m

√
q − a2 + 1

2
√
q(
√
m+

√
k)

=

√
k{4a2ρ2 +√

q(a2 − 1) + (a2 − 1)2}+
√
m{4a2ρ2 +√

q(1− a2) + (a2 − 1)2)}
2q(

√
m+

√
k)

and

s12 = U1,1U2,1

√
λ1√

λ1 +
√
λ2

+ U1,2U2,2

√
λ2√

λ1 +
√
λ2

=
s(ρ)

√
q − (a2 − 1)2

2
√
q

√
k√

k +
√
m

−
s(ρ)

√
q − (a2 − 1)2

2
√
q

√
m√

k +
√
m

= s(ρ)
2a|ρ|
2
√
q

(
√
k −

√
m)2

k −m

= (2q)−1aρ(
√
k −

√
m)2,

where k = a2 + 1 +
√
q and m = a2 + 1 − √

q. The derivative of J can also be computed by
Maxima and is

DJ(a, ρ) =

⎛⎜⎝ 2a(a2+1)ρ2
√

1−ρ2+(a2−1)2(1−ρ2)

q((a2+1)
√

1−ρ2+2a(1−ρ2))
− (a−1)a(a+1)ρ(2a

√
1−ρ2−a2−1)

q((a2+1)
√

1−ρ2+2a(1−ρ2))

− (a−1)(a+1)ρ((a2+1)
√

1−ρ2−2a(1−ρ2))

q((a2+1)
√

1−ρ2+2a(1−ρ2))

a((a2−1)2
√

1−ρ2+2a(a2+1)ρ2)

q((a2+1)
√

1−ρ2+2a(1−ρ2))

⎞⎟⎠ .

Straightforward calculation yields that the determinant of this matrix equals detDJ(a, ρ) =
a
√

1− ρ2{
(
a2 + 1

) √
1− ρ2 + 2 a

(
1− ρ2

)
}−2. By virtue of the inverse function theorem, we

have DH(s11, s12) = (DJ(a, ρ))−1. Hence we obtain DH(s11, s12) by inverting the 2× 2 matrix
DJ(a, ρ). It can be seen to be (except for the zero columns) the matrix G in Proposition A1.
The proof is complete.

Proof of Proposition 3. Proposition 3 is an immediate corollary of Proposition A1, noting that
ρ̂n = v̂0,12. By (3.10) and (3.26) we get

WS =
1
2a
√
1− ρ2(a2 + 1) + a2(ρ2 − 1)

4a2ρ2 + (a2 − 1)2

⎛⎜⎜⎝
1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

⎞⎟⎟⎠ .

The asymptotic variance of ρ̂n is the then lower diagonal element of WV0 = GWSG
T

WV02,2 =
1
2a
√
1− ρ2(a2 + 1) + a2(ρ2 − 1)

4a2ρ2 + (a2 − 1)2
(G2

2,1 +G2
2,3)

=
(1− ρ2)3/2a

4a2ρ2 + (a2 − 1)2

[
(a2 + 1)3

2a2
− 4a(1− ρ2)3/2 − 2(1− ρ2)(a2 + 1) +

(a2 + 1)2
√
1− ρ2

a

]
= (1− ρ2)2 + (1− ρ2)3/2(a2 + 1)/2/a.
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Proof of Proposition 4. Croux et al. (2010) give the influence function of the off-diagonal element
of the SSCM for p = 2. Calculation of the diagonal elements is straightforward, and we obtain
for F ∈ E2(µ, V ):

IF (x, Ŝ, F ) = xxT /(xTx)− S(F ). (3.27)

Applying the chain rule and using the derivatives calculated in the proof of Proposition A1
above, we arrive at the influence function of the spatial sign correlation as given in Proposition
4.

In the proof of Theorem 1, we make use of the following lemma, which states that the
difference between the empirical versions of Γj with and without location estimation converges
to zero in probability.

Lemma A1. Let t ∈ Rp and X be a p-variate random vector with distribution F satisfying

(I) E|X − t|−2/3 <∞.

Let further Xn = (X1, . . . ,Xn)
⊤ be an iid sample drawn from F and tn a series of p-variate

random vectors satisfying

(II)
√
n(tn − t) = OP (1).

Finally, let A be a diagonal p× p matrix with positive diagonal entries. Then, for all 1 ≤ j ≤ p,

1

n

n∑
i=1

[
a2j (X

(j)
i −t(j)n )2

A(Xi−tn)(Xi−tn)
⊤A

{(Xi−tn)⊤A2(Xi−tn)}2

]
− 1

n

n∑
i=1

[
a2j (X

(j)
i −t(j))2 A(Xi−t)(Xi−t)⊤A

{(Xi−t)⊤A2(Xi−t)}2

]
converges to zero in probability as n→ ∞.

Proof. To shorten notation and without loss of generality we will assume that t = 0 and A = Ip.
We will show componentwise convergence, i.e.

1

n

n∑
i=1

{
(X

(j)
i − t

(j)
n )2(Xi − tn)

(k)(Xi − tn)
(l)

|Xi − tn|4
−

(X
(j)
i )2X

(k)
i X

(l)
i

|Xi|4

}
p−→ 0 (3.28)

as n→ ∞ for all 1 ≤ j, k, l ≤ p. We use the following random partition of Rp:

Bn = {x ∈ Rp| |x− tn| ≥
1

2
|x|}, BC

n = {x ∈ Rp| |x− tn| <
1

2
|x|}. (3.29)

and the corresponding random partition of the index set {1, . . . , n}:

In = {1 ≤ i ≤ n|Xi ∈ Bn}, ICn = {1 ≤ i ≤ n|Xi ∈ BC
n }.

Letting Ki denote the summands in (3.28), we write

1

n

n∑
i=1

Ki =
1

n

∑
i∈In

Ki +
1

n

∑
i∈ICn

Ki. (3.30)

For the second sum on the right-hand side of (3.30) we make use of |Ki| ≤ 2 to obtain
|n−1

∑
i∈ICn Ki| ≤ 2n−1

∑n
i=1 1BC

n
(Xi). The right-hand side of the last inequality is shown

to converge to zero in probability under the assumptions of Lemma A1 as in the proof of The-
orem 1 in Dürre et al. (2014). The first sum on the right-hand side of (3.30) is decomposed
into

1

n

∑
i∈In

Ki =
1

n

∑
i∈In

{(X(j)
i − t

(j)
n )2 − (X

(j)
i )2}(Xi − tn)

(k)(Xi − tn)
(l)|Xi|4

|Xi − tn|4|Xi|4
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+
1

n

∑
i∈In

(X
(j)
i )2t

(k)
n (Xi − tn)

(l)|Xi|4

|Xi − tn|4|Xi|4
+

1

n

∑
i∈In

(X
(j)
i )2X

(k)
i t

(l)
n |Xi|4

|Xi − tn|4|Xi|4

+
1

n

∑
i∈In

(X
(j)
i )2X

(k)
i X

(l)
i (|Xi|4 − |Xi − tn|4)

|Xi − tn|4|Xi|4
.

Call the four terms from left to right T1, T2, T3, T4. Since Xi ∈ Bn implies |Xi| ≤ 2|Xi − tn|, we
have

|T1| ≤
1

n

∑
i∈In

⏐⏐⏐⏐⏐ t(j)n (t
(j)
n − 2X

(j)
i )(Xi − tn)

(k)(Xi − tn)
(l)|Xi|4

|Xi − tn|4|Xi|4

⏐⏐⏐⏐⏐
≤ 1

n

∑
i∈In

⏐⏐⏐⏐⏐ t(j)n (t
(j)
n −X

(j)
i )

|Xi − tn|2

⏐⏐⏐⏐⏐+ 1

n

∑
i∈In

⏐⏐⏐⏐⏐ t
(j)
n X

(j)
i

|Xi − tn|2

⏐⏐⏐⏐⏐
≤ 2

n

∑
i∈In

|t(j)n |
|Xi|

+
4

n

∑
i∈In

|t(j)n |
|Xi|

≤ 6

n

n∑
i=1

|t(j)n |
|Xi|

= 6
√
n|t(j)n |

{
1

n3/2

n∑
i=1

1

|Xi|

}
p−→ 0,

since the term in {·} converges to zero almost surely by Marczinkiewicz’s law of large numbers
(Loève, 1977, p. 255). Convergence to zero of the remaining terms T2, T3 and T4 is shown
analogously. The proof of Lemma A1 is complete.

Remark: One can see from the last displayed line that, similarly to Theorem 1 of Dürre
et al. (2014), the lemma can be proven also under slightly different conditions. For instance,
assumption (II) can weakened to tn

p−→ t in exchange for the stronger moment condition
E|X − t|−1 <∞.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let t̃n(Xn) = A−1
n tn(XnAn)

5 and write
√
n{Ŝn(XnAn, tn(·))−Ŝn(XnA,At)}

as

1√
n

n∑
i=1

[
{AnXi −Ant̃n(Xn)}{AnXi −Ant̃n(Xn)}⊤

{AnXi −Ant̃n(Xn)}⊤{AnXi −Ant̃n(Xn)}
− {AXi −At̃n(Xn)}{AXi −At̃n(Xn)}⊤

{AXi −At̃n(Xn)}⊤{AXi −At̃n(Xn)}

]

+
1√
n

n∑
i=1

[
{AXi −At̃n(Xn)}{AXi −At̃n(Xn)}⊤

{AXi −At̃n(Xn)}⊤{AXi −At̃n(Xn)}
− {AXi −At}{AXi −At}⊤

{AXi −At}⊤{AXi −At}

]
.

Call the first term T1 and the second T2. The convergence of T2 to zero in probability follows
with Dürre et al. (2014, Theorem 2). Let X̃i = AXi, τn = At̃n and τ = At. Then Theorem
2 of Dürre et al. (2014) essentially states that

√
n{Ŝn(X̃n, τn)− Ŝn(X̃n, τ )}

p−→ 0, where X̃n =
(X̃1, . . . , X̃n)

⊤. This is not stated explicitly in the text of the theorem, but this is what is
proven. To check that the assumptions are met, note that by Conditions (C3), (C4) and (C5)
we have

√
n(τn − τ ) = A

√
n{A−1

n tn(XnAn)− t}

= A
√
n{A−1

n tn(XnAn)− tn(Xn)} + A
√
n{tn(Xn)− t}

=
√
nAA−1

n {tn(XnAn)−Antn(Xn)} + A
√
n{tn(Xn)− t} = OP (1).

5Technically, t̃n is a function of Xn as well as An. We can understand t̃n(Xn) as a short-hand notation, where
the dependence on An is simply suppressed, but the notation is also justified in the sense that An usually is a
function of Xn.
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The latter is sufficient (along with continuity of F ), see the remarks below Theorem 3 in Dürre

et al. (2014). We are thus left to prove T1
d−→ Ξp. Let Y i = Xi − t̃n(Xn), where we suppress

the dependence the on n in this short-hand notation. Then T1 can be further decomposed into

T1 =
1√
n

n∑
i=1

AnY iY
⊤
i An −AY iY

⊤
i A

Y ⊤
i A

2Y i

+
1√
n

n∑
i=1

{Y ⊤
i (A

2 −A2
n)Y i}AnY iY

⊤
i An

Y ⊤
i A

2
nY iY

⊤
i A

2Y i

.

We call the terms T1,a and T1,b, where we have

T1,a = AnA
−1

(
1

n

n∑
i=1

AY iY
⊤
i A

Y ⊤
i A

2Y i

)
A−1√n(An−A)+

√
n(An−A)A−1

(
1

n

n∑
i=1

AY iY
⊤
i A

Y ⊤
i A

2Y i

)
,

which converges in distribution to S(F0, 0)A
−1Z + ZA−1S(F0, 0), since

1

n

n∑
i=1

AY iY
⊤
i A

Y ⊤
i A

2Y i

p−→ S(F0, 0)

by Theorem 1 in Dürre et al. (2014). Writing T1,b as T1,b = L+R with

L =
1√
n

n∑
i=1

2{Y ⊤
i (A−An)A}Y iAY iY

⊤
i A

(Y ⊤
i A

2Y i)2
,

R =
1√
n

n∑
i=1

[
{Y ⊤

i (A−An)(A+An)Y i}AnY iY
⊤
i An

Y ⊤
i A

2
nY iY

⊤
i A

2Y i

− 2
{Y ⊤

i (A−An)AY i}AY iY
⊤
i A

(Y ⊤
i A

2Y i)2

]
,

we find for L by using Lemma A1

L = 2

p∑
j=1

{A−1√n(A−An)}(j,j)
1

n

n∑
i=1

{(AYi)(j)}2
AY iY

⊤
i A

(Y ⊤
i A

2Y i)2
d−→ −2

p∑
j=1

(A−1Z)(j,j)Γj .

It remains to show that R vanishes asymptotically. We further decompose R into

1√
n

n∑
i=1

[
{Y ⊤

i (A−An)(A+An)Y i}AnY iY
⊤
i An

Y ⊤
i A

2
nY iY

⊤
i A

2Y i

− {Y ⊤
i (A−An)(A+An)Y i}AnY iY

⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

]

+
1√
n

n∑
i=1

[
{Y ⊤

i (A−An)(A+An)Y i}AnY iY
⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

− {Y ⊤
i (A−An)2AY i}AnY iY

⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

]

+
1√
n

n∑
i=1

2

[
{Y ⊤

i (A−An)AY i}AnY iY
⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

− {Y ⊤
i (A−An)AY i}AY iY

⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

]

+
1√
n

n∑
i=1

2

[
{Y ⊤

i (A−An)AY i}AY iY
⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

− {Y ⊤
i (A−An)AY i}AY iY

⊤
i A

Y ⊤
i A

2Y iY
⊤
i A

2Y i

]
and denote the four terms by S1, S2, S3 and S4, respectively. For S1 we get

|S1| ≤
1√
n

n∑
i=1

⏐⏐⏐⏐{Y ⊤
i (A−An)(A+An)Y i}2AnY iY

⊤
i An

Y ⊤
i A

2
nY i(Y

⊤
i A

2Y i)2

⏐⏐⏐⏐
≤ 1√

n

n∑
i=1

{
Y ⊤

i (A−An)(A+An)Y i

Y ⊤
i A

2Y i

}2
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=
1√
n

p∑
j=1

p∑
k=1

{
√
n(A−An)(A+An)}(j,j){

√
n(A−An)(A+An)}(k,k)

1

n

n∑
i=1

(
Y

(j)
i Y

(k)
i

Y ⊤
i A

2Y i

)2

,

which converges to zero in probability. For S2, we obtain

S2 =
1√
n

n∑
i=1

{Y ⊤
i (A−An)(An −A)Y i}AnY iY

⊤
i An

Y ⊤
i A

2Y iY
⊤
i A

2Y i

=
1√
n

p∑
j=1

−{a−1
j

√
n(An −A)(j,j)}2AnA

−1

{
1

n

n∑
i=1

(ajY
(j)
i )2

AY iY
⊤
i A

(Y ⊤
i A

2Y i)2

}
A−1An

d−→ 0 ·
p∑

j=1

−(Z(j,j)/aj)
2Γj ,

where we have again used Lemma A1. Similar calculations yield that S3 = oP (1) and S4 = oP (1)
as n → ∞. Note that, although we have treated T1,a and L individually, they converge in
fact jointly. Both are essentially linear functions of

√
n(An − A). The proof of Theorem 1 is

complete.

Proof of Corollary 1. As in Theorem 1, let X0 = A(X − t). Then X0 ∼ F0 ∈ E2(0, V0). Since
V0 has equal diagonal elements, its eigenvalue decomposition is given by V0 = UΛU⊤, where

U =
1√
2

(
1 1
−1 1

)
, Λ =

(
λ1 0
0 λ2

)
= c

(
1− ρ 0
0 1 + ρ

)
. (3.31)

for some c > 0. Hence, by (3.2) and (3.6), we have

S(F0, 0) =

(
1/2 δ
δ 1/2

)
with δ = (1−

√
1− ρ2)/(2ρ) if ρ ̸= 0 and δ = 0 otherwise, and hence

A−1ZS(F0, 0) + S(F0, 0)A
−1Z =

(
Z1/a1 (Z1/a1 + Z2/a2)δ

(Z1/a1 + Z2/a2)δ Z2/a2

)
. (3.32)

To compute the remaining part −2
∑2

j=1(Zj/aj)Γj , we have to evaluate the integrals Γj , j = 1, 2.

Towards this end, we write X0 = UΛ1/2Y , where U and Λ are as in (3.31) and Y has a spherical
distribution, and consider the matrix

W = E

{
vec

(
X0X

⊤
0

X⊤
0 X0

)
vec

(
X0X

⊤
0

X⊤
0 X0

)⊤}

= (U ⊗ U)E

⎧⎨⎩vec

(
Λ1/2Y Y ⊤Λ1/2

Y ⊤ΛY

)
vec

(
Λ1/2Y Y ⊤Λ1/2

Y ⊤ΛY

)⊤
⎫⎬⎭ (U ⊗ U)⊤

The expectation on the right-hand side is independent of the elliptical generator g and is given
as an explicit function of λ1 and λ2 in the proof of Proposition 2(3) in Dürre et al. (2015b).
Plugging in our specific forms of Λ and U , see (3.31), we obtain

W =

⎛⎜⎜⎝
α β β γ
β γ γ β
β γ γ β
γ β β α

⎞⎟⎟⎠
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with

α =

√
1− ρ2 + 2ρ2 − 1

4ρ2
, β =

1−
√
1− ρ2

4ρ
= δ/2, γ =

1−
√
1− ρ2

4ρ2

if ρ ̸= 0, and α = 3/8, β = 0, γ = 1/8 if ρ = 0. Since W contains Γ1 as upper diagonal block
and Γ2 as lower diagonal block, we obtain

−2

(
Z1

a1
Γ1 +

Z2

a2
Γ2

)
= −2

⎛⎝ Z1
a1
α+ Z2

a2
γ

(
Z1
a1

+ Z2
a2

)
β(

Z1
a1

+ Z2
a2

)
β Z1

a1
γ + Z2

a2
α

⎞⎠ . (3.33)

Putting (3.32) and (3.33) together, we finally arrive at

Ξ2 =

(
Z1/a1 − Z2/a2 0

0 Z2/a2 − Z1/a1

)
which completes the proof of Corollary 1.

For the proof of Theorem 2 we require a slight generalization of the delta method.

Lemma A2. Let (Un)n∈N be a series of p-dimensional random vectors and (an)n∈N a sequence
of real numbers such that an → ∞ as n→ ∞ and

(I) an(Un − u) = Op(1) as n→ ∞ for some u ∈ Rp. Let furthermore

(II) h : Rp → R be continuously differentiable at u = (u1, . . . , up)
⊤ with ∂h(u)

∂ui
= 0 for all i ∈ I

for some subset I ⊂ {1, . . . , p}, and

(III) an[Un −u]IC
d−→ Ψ, where [Un −u]IC denotes the random vector obtained from Un −u

by deleting all components in I.

Then an{h(Un)− h(u)} d−→ [h′(u)]ICΨ.

If I = ∅, Lemma A2 boils down to the usual delta method. If some components of h′(u)
are zero (which are gathered in the index set I), it suffices to ensure the joint convergence of
the remaining components of an(Un −u) and the boundedness in probability of an(Un −u) to
conclude the convergence of an{h(Un)− h(u)}.

Proof of Lemma A2. The proof is similar to the proof of Lemma 5.3.2. in Bickel and Doksum
(2001). Since h is continuously differentiable, for every ϵ > 0 there exists a δ > 0 such that

|u− v| ≤ δ ⇒ |h(v)− h(u)− h′(u)(v − u)| ≤ ϵ|v − u|. (3.34)

Condition (I) implies that Un
p−→ u, i.e., P (|Un − u| ≤ δ) → 1. Thus using (3.34), we have

for every ϵ > 0 that P (|h(Un) − h(u) − h′(u)(Un − u)| ≤ ϵ|Un − u|) → 1 which implies
an{h(Un)− h(u)− h′(u)(Un − u)} = op(|an(Un − u)|) = op(1). The latter may be re-written
as

an{h(Un)− h(u)} = anh
′(u)(Un − u) + op(1),

and the result follows by Conditions (II) and (III) and Slutsky’s lemma.
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Proof of Theorem 2. We write

√
n(ρ̂σ,n − ρ) =

√
n
[
γ{vec Ŝn(XnAn, tn(·))} − γ{vecS(F0, 0)}

]
,

where F0 is, as in Theorem 1, the distribution of X0 = A(X − t), and γ : R4 → R is the func-
tion that maps the (vectorized) two-dimensional spatial sign covariance matrix of an elliptical
distribution to the corresponding generalized correlation coefficient. The function γ is given by
(3.11). Its derivative γ′ equals the second row of G in 3.25 evaluated at a = 1 since F0 has equal
marginal scales

γ′{vecS(F0, 0)} =
(
0 0 2

√
1− ρ2(1 +

√
1− ρ2) 0

)
.

We further decompose

√
n vec

{
Ŝn(XnAn, tn(·))− S(F0, 0)

}
(3.35)

=
√
n vec

{
Ŝn(XnAn, tn(·))− Ŝn(XnA,At)

}
+

√
n vec

{
Ŝn(XnA,At)− S(F0, 0)

}
,

where we call the two terms on the right hand side T1 and T2. We deduce two things: First,

√
n vec

{
Ŝn(XnAn, tn(·))− S(F0, 0)

}
= Op(1) as n→ ∞,

since T1
d−→ Ξ2 by Theorem 1, and T2 converges in distribution as a corollary of the central

limit theorem (or as a special case of Proposition 2 in Dürre et al. (2015b)). Second, the third

component of (3.35) converges in distribution to the same limit as T (3)
2 , since T (3)

1 converges
to zero in probability by Corollary 1. Here we use ( · )(3) to denote the third component of a
vector. The asymptotic distribution of T2 is given by Proposition 2 in Dürre et al. (2015b).
Making use of the particular structure of V0, i.e., equal diagonal elements, see (3.31), we obtain

T (3)
2

d−→ N (0, w) with w = (
√

1− ρ2 + ρ2 − 1)/(2ρ)2 if ρ ̸= 0 and w = 1/8 if ρ = 0. Applying
Lemma A2 with γ in the role of h, and IC = {3}, we obtain

√
n(ρ̂σ,n − ρ)

d−→ [γ′{vecS(F0, 0)}](1,3) · N (0, w) = N (0, (1− ρ2)2 + (1− ρ2)3/2).

since √
1− ρ2 + ρ2 − 1

4ρ2
4(1− ρ2)(1 +

√
1− ρ2)2 =

1− (1− ρ2)

ρ2
(1− ρ2)

3
2 (1 +

√
1− ρ2)

=(1− ρ2)2 + (1− ρ2)
3
2 .

Note also that γ′(·) is a 1× 4 matrix. The proof of Theorem 2 is complete.

Proof of Corollary 2. By the delta method, the function h has to satisfy

|h′(x)| = {(1− x2)2 + (1− x2)3/2}−1/2. (3.36)

The function h given in Corollary 2 fulfills this requirement and is further strictly increasing
and odd. To find the antiderivative of (3.36), we have used the compute algebra system Maxima
(2014). Substituting z = 1 −

√
1− x2 yields the integral

∫
{
√
(1− z)z(2 − z)}−1dz, for which

Maxima gives the primitive 2−1/2 arcsin{(3z − 2)/|z − 2|}.
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Proof of Proposition 5: Let denote Š the functional representation of the spatial sign covariance

matrix Š(F ) = EF

(
XX⊤

X⊤X

)
where X has distribution F. Since Š((1− ϵ)F + ϵ∆x) = (1− ϵ)Ip +

ϵxx⊤ is a block diagonal matrix, we get the following eigenvalue decomposition Š((1 − ϵ)F +
ϵxx⊤) = Uxy∆ϵU

⊤
xy where

Ux,y =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x√
x2+y2

y√
x2+y2

0 . . . 0

y√
x2+y2

−x√
x2+y2

0 . . . 0

0 0 1 0
. . .

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and ∆ϵ =

⎛⎜⎜⎜⎜⎜⎜⎝

1+(p−1)ϵ
p 0 0 . . . 0

0 1−ϵ
p 0 . . . 0

0 0 1−ϵ
p 0

. . .

0 0 0 1−ϵ
p

⎞⎟⎟⎟⎟⎟⎟⎠ .

We need to know how the perturbation of the eigenvalues of the SSCM translates into the
eigenvalues of the shape matrix. The function Φ : Rp → Rp which maps the eigenvalues
of the shape to the eigenvalues of the SSCM is injective (see Proposition 1 in Dürre et al.,
2016). Therefore the shape matrix related to ∆ϵ contains only two distinct eigenvalues: λ1
and λ2 = . . . = λp. We can simplify the situation even further since the eigenvalues are not
uniquely defined and standardize them such that λ2 = . . . , λp = 1. On the other hand we have∑p

i=1 δi = 1 and therefore δi = 1−δ1
p−1 , i = 2, . . . , p. Consequently in this case the connection

between the eigenvalues can be expressed by the one-dimensional function f : [0, 1] → [0,∞)
which maps the first eigenvalue of ∆ϵ to the first of the shape matrix.
Let ζ : Rp×p → [−1, 1] denote the function which computes the correlation coefficient between
the first and second component given the shape matrix: ζ(A) = a12√

a11a22
and denote further

k(ϵ) = 1+(p−1)ϵ
p , then straightforward calculations yields,

lim
ϵ→0

ρ̌i,j((1− ϵ)F + ϵ∆x)− ρ̌i,j(F )

ϵ

= lim
ϵ→0

ζ

⎡⎢⎢⎢⎢⎣Uxy

⎛⎜⎜⎜⎜⎝
f
(
1+(p−1)ϵ

p

)
0

1
. . .

0 1

⎞⎟⎟⎟⎟⎠U⊤
xy

⎤⎥⎥⎥⎥⎦− ζ
[
UxyIpU

⊤
xy

]
ϵ

= lim
ϵ→0

1

ϵ

(f [k(ϵ)]− 1)xy√
y2 + f [k(ϵ)]x2

√
x2 + f [k(ϵ)]y2

=:
∂

∂ϵ
h(f [k(ϵ)])

⏐⏐⏐⏐
ϵ=0

.

By the chain rule we get:

∂

∂ϵ
h(f [k(ϵ)])

⏐⏐⏐⏐
ϵ=0

=
∂

∂ϵ
h(x)

⏐⏐⏐⏐
x=1

· ∂
∂y
f(y)

⏐⏐⏐⏐
y=1/p

· ∂
∂ϵ
k(ϵ)

⏐⏐⏐⏐
ϵ=0

.

Whereas differentiation of h and k is straightforward, we do not have an explicit representation
of f. Since we only need its derivative, we can apply the inverse function theorem. Using (3.8)
and Leibniz’s rule we arrive at

∂

∂x
f(x)

⏐⏐⏐⏐
x=1/p

=
1

∂
∂xf

−1(x)|x=1

= 1/

(
1

2

∫ ∞

0

1

(1 + z)
p
2
+1
dz − 3

4

∫ ∞

0

z

(1 + z)
p
2
+2
dz

)
=:

1

A1 +A2
.
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For A1 and A2 we can apply formula 3.193-3 in Gradshteyn and Ryzhik (2000):∫ ∞

0

xµ−1dx

(1 + βx)ν
dx = B(µ, ν − µ) for ν > µ > 0

where B denotes the beta function. Setting β = 1, µ = 1 and ν = p/2 + 1 for A1 respectively
µ = 2 and ν = p/2 + 2 for A2 and using the relationship between beta and gamma function
we arrive at A1 = 1

p and A2 = 3
2p(p/2+1) . Straightforward term manipulations yield the stated

formula (3.18).
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Chapter 4

Robust change-point detection in
panel data

4.1 Introduction

There is an increasing amount of literature on panel data taking structural breaks into account,
see for example Im et al. (2005), Bai and Carrion-I-Silvestre (2009), Karavias and Tzavalis (2012)
and Baltagi et al. (2016). Often the work of Joseph and Wolfson (1992) is regarded as starting
point of change point detection in panel data. Therein two different change point models are
introduced, namely the common change point model, where the time of change θi ∈ {1, . . . , T}
is identical for every individual i = 1, . . . , N , and the random change point model, where θi
is independent and identically distributed following an unknown distribution Pθ. Recent work
mostly considers the first approach. Joseph and Wolfson (1992), De Wachter and Tzavalis
(2005), De Wachter and Tzavalis (2012) and Baltagi et al. (2017) consider homogeneous panels,
where either the dependence structure or the noise distribution is the same for all individuals,
whereas Bai (2010) and Kim (2011) look also at heterogeneous ones.
Surprisingly little attention has been paid to robust change-point procedures. To the best of
our knowledge, the only exception is the article of Joseph and Wolfson (1992) where a robust
variation of their original test procedure, a kind of Mann-Whitney-Wilcoxon test, is proposed.
The lack of robust methods is in contrast to change point detection in one-dimensional (see for
example Csörgo and Horváth, 1987; Hušková, 1996; Dehling et al., 2015) or multi-dimensional
time series (see Koziol, 1978; Quessy et al., 2013; Vogel and Fried, 2015). In these settings
robust procedures are not only more reliable in case of some corrupted observations, but they
also turn out to be more powerful under heavy tailed distributions (see Dehling et al., 2017;
Dehling et al., 2015).
In this chapter we propose a robust test for the fundamental problem of a common change point
in location. As opposed to Joseph and Wolfson (1992) our test can cope with heterogeneous
panels and short range dependence. Like Bai (2010), Horváth and Hušková (2012) and Jirak
et al. (2015) we consider the case where both the time dimension T and the cross-sectional
dimension N tend to infinity. In contrast to them, by choosing a bounded ψ-function, moment
assumptions are not required. Our test is based on M-estimation and can be seen as a general-
ization of the test proposed in Horváth and Hušková (2012).
This chapter is structured as follows: in the next section we define the test statistic and explain
how to choose the required tuning parameters. We present theoretical properties and condi-
tions in Section 4.3. Section 4.4 contains a small simulation study showing the usefulness of the
procedure and its finite sample performance. All proofs are deferred to Section 4.6.
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4.2 Testing procedure

Let (Xi,t)i∈{1,...,N}, t∈{1,...,T} denote a panel where N is the number of individuals, which are
observed at T equidistant time points. We assume the simple structure

Xi,t = ηi + δiIt>t0 + ϵi,t, i = 1, . . . , N, t = 1, . . . , T,

implying that the outcome only depends on an individual location ηi, an individual level-shift
δi at a common time point t0 and a random error ϵi,t. In this setting we test the null hypothesis
of a stationary panel

H0 : δ1, . . . , δN = 0

against the alternative of a structural break at an unknown time point t0 :

H1 : ∃i ∈ {1, . . . , N} such that δi ̸= 0.

The individual error processes (ϵi,t)t=1,...,T , i = 1, . . . , N are supposed to be stationary and
independent of each other. They are allowed to have different distributions and to be short
range dependent. For technical assumptions on (ϵi,t)i∈{1,...,N}, t∈{1,...,T} see Section 4.3. To
avoid identification problems we set median(ϵi,1) = 0, i = 1, . . . , N.
In the following paragraph we develop the proposed test procedure. If one is only interested in
detecting a change in one individual i it is quite common to look at its CUSUM statistic

Z
(i)
T (x) =

1√
Tνi

⎛⎝⌊Tx⌋∑
t=1

Xi,t −
⌊Tx⌋
T

T∑
t=1

Xi,t

⎞⎠ , x ∈ [0, 1], (4.1)

which basically compares the mean value of the first part with that of the second for every split
point. A large absolute difference for any split point indicates a structural change. If there is
serial dependence the CUSUM statistic (4.1) depends on the so called long run variance

ν2i = Var(Xi,1) + 2
∞∑
h=1

Cov(Xi,1, Xi,1+h).

Since (4.1) is a linear statistic it is sensitive regarding unusually small or large values. To bound
the influence of outliers one can transform the observations with a so called Ψ−function

Yi,t = Ψi

(
Xi,t − µi

σi

)
, i = 1, . . . , N, t = 1, . . . , T

with Ψi : R → R, µi ∈ R, σi > 0, i = 1, . . . , N. Two examples and their impact on a short time
series are shown in Figure 4.1. In change-point analysis monotone Ψ−functions are preferred
(Hušková and Marušiaková, 2012) since redescending ones not only limit the influence of unusual
values, which can be a result of a large level shift, but also can shrink them to 0 as we can can
see in Figure 4.1 on the right.

70



−4 −2 0 2 4

−
2

−
1

0
1

2
Psi−functions

x

ψ
(
x
)

Identity

Huber

Bisquare

2 4 6 8 10 12 14

−
4

−
2

0
2

Transformed time series

t

Ψ
(
X

t)

Figure 4.1: Ψ-functions (left) and corresponding transformed time series (right) with a level
shift at t = 11.

Usually the parameters µi, i = 1, . . . , N describe the central location and σi, i = 1, . . . , N
the scale. Their aim is to standardize the data such that outliers are treated independently of
the scale and location of the underlying distribution. Regarding the change-point problem they
can also be seen as tuning parameters, since the resulting test is valid under some restrictions
we will state in Section 4.3 irrespective of their particular choice. But of course some choices
are more suitable than others. If σi is too large, outliers are hardly downweighted, and if it is
too small, a lot of information is lost, see Figure 4.2. An inappropriate value of µi can heavily
skew formerly symmetric data and even destroy the data completely, if µi is far away from
the observed data, see Figure 4.2 on the right. We will show in Section 4.3 that under some
regularity conditions we can choose µi and σi, i = 1, . . . , N data adaptively. We recommend
to use highly robust and computationally fast estimators for location respectively scale, like the
median and the median absolute deviation (MAD).
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Figure 4.2: Transformed time series using the identity (solid), Huber (dashed) and bisquare
(dotted) Ψ−function with µ = 0, σ = 10 (left), µ = 0, σ = 0.1 (middle) and µ = 4, σ = 1
(right).
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The CUSUM statistic of the transformed panel is then defined as

S
(i)
T (x) =

1√
Tvi

⎛⎝⌊Tx⌋∑
t=1

Yi,t −
⌊Tx⌋
T

T∑
t=1

Yi,t

⎞⎠ , x ∈ [0, 1]

with

v2i = Var(Yi,1) + 2
∞∑
h=1

Cov(Yi,1, Yi,1+h).

In the one dimensional case N = 1, setting σ1 = 1 and choosing µ1 as the M-estimator cor-
responding to the chosen Ψ−function this statistic was proposed by Hušková and Marušiaková
(2012) for change point detection.
Assuming independence between the individuals the related multivariate Wald-type test for
finite N equals

N∑
i=1

(
S
(i)
T (x)

)2
, x ∈ [0, 1], (4.2)

which converges for T → ∞ under some regularity conditions to the sum of independent squared
Brownian bridges. If additionally N → ∞ one has to normalize (4.2):

WN,T (x) =
1√
N

N∑
i=1

((
S
(i)
T (x)

)2
− ⌊xT ⌋(T − ⌊xT ⌋)

T 2

)
, x ∈ [0, 1].

Note that ⌊xT ⌋(T−⌊xT ⌋)
T 2 nearly equals the variance of a Brownian bridge and therefore approx-

imates the mean of S
(i)
T (x) for large T . Setting Ψi(x) = x, i = 1, . . . , N, µi cancels out, σi is

absorbed into vi and one arrives at the non-robust panel-CUSUM-statistic which was originally
proposed by Bai (2010) and investigated theoretically by Horváth and Hušková (2012). If T
tends faster to infinity than N (the accurate rates can be found in Section 4.3) and under some
regularity conditions WN,T (x) converges weakly to a Gaussian process Γ(x) defined by

E(Γ(x)) = 0 and Cov(Γ(x),Γ(y)) = x2(1− y2), 0 ≤ x ≤ y ≤ 1.

It is shown in Horváth and Hušková (2012) that such a process can be simulated based on a
standard Brownian motion (B(t))0≤t<∞ using the following relationship:

{Γ(x), 0 ≤ x ≤ 1} D
=

{√
2(1− x)2B

(
x2

1− x2

)
, 0 ≤ x ≤ 1

}
.

One rejects the null hypothesis of a stationary panel if

sup
0<x<1

|WN,T (x)| (4.3)

exceeds a certain quantile of sup0<x<1 |Γ(x)|. A small selection of critical values can be found in
Table 4.1.

α 0.9 0.95 0.975 0.99 0.995

qα 0.899 0.990 1.072 1.173 1.245

Table 4.1: Quantiles of sup0<x<1 |Γ(x)|.
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The proposed test statistic (4.3) has the largest power if the change occurs in the middle of
the sample. If one needs higher power near the margins, one can look at other functionals of
WN,T (x), for example

∫ 1
0 |WN,T (x)| dx.

In practice vi, i = 1, . . . , N, is unknown and has to be estimated. We propose to use a kernel
estimator, which originally goes back to Parzen (1957). Denote by

γ̂i(h) =
1

T

N−h∑
t=1

(
Yi,t − Y i

) (
Yi,t+h − Y i

)
with Y i =

1
T

∑T
t=1 Yi,t the empirical autocovariance of (Yi,t)t=1,...,T of lag h, h = 1, . . . , T − 1.

Let furthermore k : R → [−1, 1] be a kernel function and bT a bandwidth, then

v̂2i = γ̂i,0 + 2

bT∑
h=0

γ̂i(h)k

(
h

bT

)
(4.4)

represents the related kernel estimator for v2i . More details and theoretical conditions on k and
bT can be found in the next section. Simulations in Section 4.4 indicate that the flat top kernel
k = kF

kF (x) =

⎧⎪⎨⎪⎩
1 |x| ≤ 0.5

2− 2|x| 0.5 < |x| ≤ 1

0 |x| > 1

(4.5)

with bT = T 0.4 works well if the serial dependence is not very large.

4.3 Theoretical results

In this section we give theoretical justification of the testing procedure and compile all conditions
which are necessary for the asymptotical results. We start by defining the type of short range
dependence we impose on the error processes (ϵi,t)t=1,...,T , i = 1, . . . , N . We assume that they
are near epoch dependent in probability (P-NED) on an absolutely regular process.

Definition 1. i) Let A,B ⊂ F be two σ−fields on the probability space (Ω, F, P ). Then the
regularity coefficient of A and B is defined as

β(A,B) = E
(
sup
M∈A

|P (M |B)− P (M)|
)
.

ii) For a stationary process (Zt)t∈Z, the absolute regularity coefficients are given by

βk = sup
n∈Z

β(F∞
n+k, F

n
−∞),

where F k
n = σ(Zn, . . . , Zk) denotes the σ−field generated by Zn, . . . , Zk. A process is called

absolutely regular, if βk → 0 for k → ∞.

iii) The process (Xt)t∈N is P-NED on the absolutely regular process (Zt)t∈Z, if there is a sequence
of approximating constants (ak)k∈N fulfilling ak → 0 for k → ∞, a sequence of functions
fk : Rk → R for k ∈ N and a decreasing function Φ : (0,∞) → (0,∞) such that

P (|X0 − fk(Z−k, . . . , Zk)| > ϵ) ≤ akΦ(ϵ) (4.6)
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Remark 3. • Looking at functionals of processes is quite natural, in fact ARMA and GARCH
models are defined as functionals of iid sequences. Part iii) demands that the influence of
observations of the underlying process (Zt)t∈Z, corresponding to time points far away from
the observed Xt, is small and even vanishes, if the time difference between them tends to
infinity.

• The underlying process (Zt)t∈Z is sometimes assumed to be iid, see for example Hörmann
(2008) and Aue et al. (2009), and though this class would yet be quite general, this as-
sumption is in our case more restrictive than necessary. A main component of our proofs
are moment inequalities, which work fine for absolutely regular processes (Philipp, 1986).

• The concept of near epoch dependence has a long history. It was introduced in Ibragimov
(1962) where the difference between the approximating functional fk(Z−k, . . . , Zk) and X0

was measured by the L2 norm, which requires existing second moments of (Xt)t∈N. With
applications under heavy tailed distributions and robustness in mind this is somehow re-
strictive, which was the reason Bierens (1981) proposed to measure the approximation error
in probability. This concept is often called L0 near epoch dependence (L0-NED) since it
is the natural limit of Lp-NED for p → 0, see Prucha and Pötscher (1997) p.49. We use
here the variation presented by Dehling et al. (2017) which adds the error function Φ.

• Let Ψ be Lipschitz continuous with Lipschitz constant L, then it is easy to see that with
(Xt)t∈N also (Ψ(Xt))t∈N is P-NED on the same underlying process (Zt)t∈Z with approxim-
ating functionals f̃k = Ψ ◦ fk and constants (ak)k∈Z. For the error function corresponding
to (Ψ(Xt))t∈N we have Φ̃(x) = Φ(x/L). Furthermore, if Ψ is bounded by a constant c, one
can find approximating functions f̃k such that Φ̃(|2c+ ϵ|) = 0, ϵ > 0.

We allow for different distributions and dependence structures of the individual error pro-
cesses (ϵi,t)t=1,...,T for i = 1, . . . , N. However we need certain bounds to rule out that moments di-
verge to infinity or dependence gets uncontrollable strong as N tends to infinity. We therefore in-
troduce the abbreviations inf⋆i ai = limN→∞mini≤N ai and sup⋆i ai = limN→∞maxi≤N ai for a se-
quence (ai)i∈N. In the following we compile some assumptions on the errors (ϵi,t)i=1,...,N, t=1,...,T ,
which we need repeatedly.

Assumption 1. Let (ϵi,t)t=1,...,T be a stationary process, which is P-NED on absolutely regu-
lar process (Zi,t)t∈Z with approximating constants (ak,i)k∈N, regularity coefficients (βk,i)k∈N and
error functions Φi for i = 1, . . . , N , which fulfil

I) (ϵ1,t)t=1,...,T , . . . , (ϵN,t)t=1,...,T are independent processes,

II) either a):

i) sup⋆i |Yi,1| = c1 <∞ a.s.,

ii) there exist c2 > 0 and b > 8 such that sup⋆i ak,i, sup
⋆
i βk,i ≤ c2(1 + k)−b,

iii) there exists Φ : R+ → R+ with sup⋆i Φi(x) ≤ Φ(x) ∀x > 0 such that
∫ 1
0 Φ(x) dx <∞,

or b):

i) there exist a ≥ 8 such that sup⋆i E (|Yi,1|a) = c1,

ii) there exist c2 > 0, b > 8 such that for sup⋆i ak,i ≤ c2(1 + k)−
b·a
a−7 and sup⋆i βk,i ≤

c2(1 + k)−
b·a
a−8 ,

iii) there exists Φ : R+ → R+ with sup⋆i Φi(x) ≤ Φ(x) ∀x > 0 such that
∫∞
1 xa−1Φ(x) dx <

∞ and
∫ 1
0 x

a
a−7

−1Φ(x) dx <∞.
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Remark 4. • Assumption I) is very strong but essential in the proof. Deriving asymptotics
under dependence between panels is for this test statistic if at all only possible under very
restrictive assumptions. For example Horváth and Hušková (2012) add dependence through
common time effects, which need to shrink with increasing N . Another possibility could be
to impose a spatial dependence structure like in Jirak et al. (2015).

• Assumption II) differentiates depending on whether the transformed random variables Yi,t
are bounded or not. The former is the standard case for a robust procedure, since it requires
bounded Ψ− functions. The later contains the non-robust test with Ψi(x) = x, i = 1, . . . , N .

• If one uses finitely many bounded Ψ-functions assumption II) a) i) is always fulfilled re-
gardless of the underlying distribution. This is a major advantage of the robust method
over the non-robust one which depends on finite moments of order 8, see also Horváth and
Hušková (2012).

• If |Ψi(ϵi,1)| is not bounded one needs at least finite eighth moments of the transformed
time series. If higher moments exist, one can weaken the dependence condition II) b)
ii). Assumption II) b) iii) is quite technical and implies some finite moments of the error
of the P-NED approximation. Using the P-NED concept is quite artificial in this case.
Nevertheless we will prove the results also under these assumptions since it generalizes the
results of Horváth and Hušková (2012) to non-linear processes.

• Assumption II a)/b) ii) define that the dependence needs to decay uniformly. A similar
condition can also be found in Horváth and Hušková (2012).

In the following theorem we derive the asymptotic behaviour of WN,T (x) if vi is known and

σi, µi are fixed for i = 1, . . . , N . Let for this purpose
D[0,1]→ denote weak convergence in the

Skorokhod space D[0, 1].

Theorem 3. Let (ϵi,t)i=1,...,N, t=1,...,T fulfil Assumption 1 and furthermore

i) N,T → ∞ with N/T → 0

ii) the Ψ−functions are Lipschitz continuous with constants Li and sup⋆i Li = c3 <∞,

iii) inf⋆i vi = δ > 0,

iv) inf⋆i σi = σ0 > 0,

then

(WN,T (x))x∈[0,1]
D[0,1]→ (Γ(x))x∈[0,1].

Remark 5. • The special case Ψi(x) = x is treated by Horváth and Hušková (2012). Note
that the functions (Ψi)i∈N do not interfere with the limiting distribution as long as they do
not cut existing moments or lead to imploding variances.

• Condition i) prohibits N to grow faster than T. Intuitively one might think that a large N
always improves the asymptotics, but one needs to remember that the standardization by
⌊xT ⌋(T−⌊xT ⌋)

T 2 and vi is only an approximation for large T . If N grows too fast these small
errors sum up to something which is not negligible. In Horváth and Hušková (2012) only
N/T 2 → 0 is required and it is not clear why we need this somewhat stronger assumption
here, which is by the way only necessary to verify tightness. A possible reason is our more
flexible dependence structure of the errors. However, since the following Theorems also
require N/T → 0, we do not judge this more restrictive condition as a real drawback.

75



• Assumption ii) implies some regularity conditions for the Ψ-functions. Similar conditions
can be found in one dimensional change point detection, see Hušková and Marušiaková
(2012). For usual ψ functions this is no restriction.

• Condition iii) states that the variability within one individual should not tend to 0 and this
condition can also be found in Horváth and Hušková (2012). Though one has to mention
that the condition is here formulated based on the transformed time series. Inappropriate
choices of µi and σi can shrink all values to a constant, see Figure 4.2, and so cause the
assumption to be violated, though the original time series was permissible.

To actually apply the testing procedure, one has to find estimators for vi, i = 1, . . . , N . As
usual the asymptotics depend on the smoothness of the kernel k in 0. We need the following
assumptions on the kernel.

Assumption 2. Let k : R → [−1, 1] be a kernel function with

i) k(0) = 1,

ii) k(−x) = k(x), x ≥ 0,

iii) k(x) = 0, |x| ≥ 1

iv) the first m− 1 > 0 derivatives of k in 0 are 0,

v) ∃ϵ,M > 0 such that |k(m)(x)| ≤ M for |x| ≤ ϵ, where k(m) denotes the m−th derivative of
k.

Remark 6. • While conditions i) and ii) are very conventional, see for example section
9.3.2. in Anderson (1971), requirement iii) is more particular, though fulfilled for most
kernels.

• The number m characterizes the smoothness of the kernel in 0 which determines the bias
of the kernel estimator, see also chapter 9.3.2 of Anderson (1971). The popular Daniell,
Blackman-Tukey, Hanning, Hamming and Parzen kernels fulfil condition iv) with m =
2, the flat top kernel (4.5) even for arbitrary m ∈ N. Since the Bartlett-Kernel is not
differentiable in 0, it is not covered by the assumptions.

• Condition v) is fulfilled for all above mentioned kernels except the Bartlett kernel. Both
assumption iv) and v) are additional requirements, not necessary in the usual one- or
multidimensional time series context. We need them here to ensure uniform convergence
over all individuals.

The next theorem deals with the case where the theoretical long run variances vi are replaced
by their kernel estimations (4.4).

Theorem 4. Let Yi,t = Ψi

(
Xi,t−µi

σi

)
and denote

S̃
(i)
T (x) =

1√
T v̂i

⎛⎝⌊Tx⌋∑
t=1

Yi,t −
⌊Tx⌋
T

T∑
t=1

Yi,t

⎞⎠ , x ∈ [0, 1],

the CUSUM-statistic with estimated long run variance using (4.4) and

W̃N,T (x) =
1√
N

N∑
i=1

((
S̃
(i)
T (x)

)2
− ⌊xT ⌋(T − ⌊xT ⌋)

T 2

)
, x ∈ [0, 1],
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the related panel-CUSUM-statistic. Let additionally to the Assumptions of Theorem 3

NbT /T → 0 and N/b2sT → 0 where s =

{
min(m, b− 1) m ̸= b− 1

m− 1 m = b− 1
, (4.7)

then

sup
x∈[0,1]

|W̃N,T (x)−WN,T (x)|
p→ 0.

Remark 7. • The assumption NbT /T → 0 seems to be stronger than necessary. In the
same situation Horváth and Hušková (2012) only require Nb2T /T

2 → 0. The reason seems
to be a difference in the proofs. While at one point Horváth and Hušková (2012) consider
the L2 norm, we choose the L1 norm to make the proof somewhat more feasible. Remember
that we allow for a little more complicated dependence structure.

• As usual for kernel estimators the rate of bT should neither be too fast (large variance)
nor too slow (large bias). This is reflected in (4.7). Furthermore, we see that from the
theoretical point of view the flat-top kernel is preferable. In this case the bias condition
N/b2sT → 0 only depends on the strength of the serial dependence.

Now we want to prove that the tuning parameters µi and σi, i = 1 . . . , N can be chosen
data-adaptively. Let therefore µ(·) denote a univariate location measure, which implies µ(F ⋆) =
a + µ(F ) for a, b ∈ R and any one-dimensional distribution F where F ⋆ is the distribution
of a + bX with X ∼ F. Examples are the mean µmean(F ) = E(X) and the more robust me-
dian µmed(F ) = median(X). For a univariate scale measure σ(·) we demand σ(F ⋆) = |b|σ(F ).
Maybe the most popular representative is the standard deviation σSD(F ) =

√
E(X − E(X))2,

which is of course not robust. A more appropriate choice here is the median absolute deviation
σMAD(F ) = cF ·median(|X−median(X)|), where often cF = 1.4826 so that σSD(F ) = σMAD(F )
if F is a normal distribution.
The related estimators µ̂ and σ̂ are usually the measure µ(·) respectively σ(·) applied to the em-
pirical distribution F̂T of the sample (X1, . . . , XT ). Though there are sometimes differences. The

standard deviation is for example often defined as σ̂SD(F̂T ) =
√

1
T−1

∑T
i=1(Xi − 1

T

∑T
i=1Xi)2

instead of σ̂SD(F̂T ) =
√

1
T

∑T
i=1(Xi − 1

T

∑T
i=1Xi)2.

From now on we define the standardization parameters µi and σi as µi = µ(Fi) and σi =
σ(Fi), i = 1, . . . , N, where Fi is the marginal distribution of X1,t for some location measure
µ(·) and scale measure σ(·). The corresponding estimators are denoted by µ̂i,T and σ̂i,T for
i = 1, . . . , N . The next Theorem gives conditions under which it is asymptotically negligible
whether one knows these theoretical values or estimates them, as long as the estimators converge
fast enough.

Theorem 5. Denote by

Š
(i)
T (x) =

1√
T v̌i

⎛⎝⌊Tx⌋∑
t=1

Ψi

(
Xi,t − µ̂i,T

σ̂i,T

)
− ⌊Tx⌋

T

T∑
t=1

Ψi

(
Xi,t − µ̂i,T

σ̂i,T

)⎞⎠ , x ∈ [0, 1],

the CUSUM-statistic with estimated location and scale parameter, v̌i the long run variance es-
timation based on µ̂i,T and σ̂i,T and

W̌N,T (x) =
1√
N

N∑
i=1

((
Š
(i)
T (x)

)2
− ⌊xT ⌋(T − ⌊xT ⌋)

T 2

)
, x ∈ [0, 1].

the related panel-CUSUM-statistic. Let additionally to the Assumptions of Theorem 4 hold that
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i) Ψi is m + 1 times continuously differentiable with derivatives Ψ
(1)
i , . . . ,Ψ

(m+1)
i and

sup⋆i |Ψ
(k)
i (x)xk|∞ = ck <∞, for k = 1, . . . ,m,

ii) there exist ϵ, δ > 0 such that sup⋆i supx∈R,|y|≤δ,|z|≤ϵ |Ψ
(m+1)
i (x(1 + y) + z)xk| = dk < ∞, for

k ≤ m+ 1,

iii) there exists α, β > 0 such that for ∀x > 0:

lim sup
T→∞

Tα ⋆
sup
i
P
(
|µ̂i,T − µi| >

x

T β

)
<∞ and lim sup

T→∞
Tα ⋆

sup
i
P
(
|σ̂i,T − σi| >

x

T β

)
≤ ∞,

iv) N/T 2β → 0, N/Tα → 0 and N/T 2β(m+1)−1 → 0,

then

sup
x∈[0,1]

|W̌N,T (x)−WN,T (x)|
p→ 0.

Remark 8. • Assumption i) is often not fulfilled for standard Ψ−functions. The Huber
Ψ−function is for example only continuous but in two points not differentiable. This
assumption may be relaxed to the case where the function is differentiable in all but a finite
number of points at least as the error distribution is continuous. This would be fulfilled
for all common Ψ−functions. Nevertheless the current condition is not a restriction in
practice, since one can always find m + 1-times differentiable modifications which hardly
differ from the original Ψ−function. The existence of the upper bounds ck for k = 1, . . . ,m
and dk for k = 0, . . . ,m + 1 are also no substantial restrictions, since Ψ−functions are
usually constant for large values (and so its derivatives are 0).

• Assumption iii) is the main restriction of the Theorem. We will show in the next Theorem
that one can find tail probability bounds for median and MAD which imply this condition.
Note that the parameter α and β determine the rate of convergence as can be seen in
Assumption iv).

• Additionally to the persisting conditions on the ratio of N and T , we get the assumptions
N/T 2β → 0, N/Tα → 0 and N/T β(m+1)−1 → 0. If exponential inequalities for µ̂i,T and
σ̂i,T , i = 1, . . . , N are available and Ψi is 2 times continuously differentiable, i = 1, . . . , N
this boils down to N/T 1−ϵ → 0 for some ϵ > 0. So T has to grow a little faster than N.

Finally we want to investigate if our proposed estimators median and MAD fulfil assumption
iii) of Theorem 5 and how the parameters α and β depend on the properties of the observed
processes. We formulate the result for a one dimensional time series (Xt)t∈N respectively its
transformation (Yt)t∈N with Yt = |Xt − µmed|, t ∈ N.

Theorem 6. Let (Xt)t∈N be stationary and P-NED on an absolutely regular process (Zt)t∈Z with
approximation constants (ak)k∈N, functions (fk)k∈N, error function Φ and absolutely regularity
coefficients (βk)k∈N. Furthermore

i) there exist κ > 0 and p ∈ N even such that
∑∞

k=1(akΦ(a
κ
k)+a

κ
k)k

p <∞ and
∑∞

k=1 βkk
p <

∞,

ii) X1 is continuous with bounded density f and there exist M, ϵ > 0 with f(x) ≥ M for x ∈
(µmed − ϵ, µmed + ϵ),

then there exists c such that for x > 0

P (|µ̂med,T − µmed| > xT−β) ≤ c

xp
T−p/2+pβ ∀T ∈ N. (4.8)

If additionally
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iii) Y1 is continuous with bounded density g and there existM, ϵ > 0 with g(x) ≥M for x ∈
(σMAD/cF − ϵ, σMAD/cF + ϵ),

then there exists c such that for x > 0

P (|σ̂MAD,T − σMAD| > xT−β) ≤ c

xp
T−p/2+pβ ∀T ∈ N.

Remark 9. • Under independence there exist exponential inequalities for the median and
the MAD, see Serfling and Mazumder (2009). We are not aware of such exponential
inequalities under dependence, but looking at the proof in Serfling (1980) or Serfling and
Mazumder (2009) it only depends on the existence of a Hoeffding inequality, which is proven
under various dependence conditions, see Kontorovich and Ramanan (2008) or Kallabis
et al. (2006). However, proving such inequalities under the P-NED condition is not the
objective of this thesis.

• The condition of a continuous distribution might be relaxed if one slightly redefines median
and MAD, see also Serfling and Mazumder (2009).

4.4 Simulation

In this section we want to evaluate our proposed test statistic concerning two aspects: The
size under the null hypothesis and the power under the alternative. There are quite different
simulation scenarios possible, since we allow for quite diverse serial dependence structures and
distributions of the individuals. For the reason of comparison we orientate ourselves at the
AR(1) models considered in Horváth and Hušková (2012)

Xi,t = ρ ·Xi,t−1 + ai,t, t = 1, . . . , T, i = 1, . . . , N.

We compare the non-robust panel CUSUM statistic proposed by Horváth and Hušková (2012)
with our robust alternative. We use a two times continuously differentiable version of Hubers-
Ψ−function which is shown in Figure 4.3. Furthermore we choose the flat top kernel (4.5) with
a bandwidth bT = T 0.4 for both estimators. Note that Horváth and Hušková (2012) originally
use a rather small value of bT varying between 2.5 and 5 which is, however, not appropriate in
our simulations where we also look at relatively large T . Simulation results are based on 1000
runs each.
We first look at finite sample properties under the null hypothesis. In the case of ρ = 0, where
we have no serial dependence, both tests need at least T = 200 to work properly as one can see
in the upper quarter of Table 4.2. Furthermore the simulations confirm the theoretical results
that N must not grow much faster than T . We also notice that there is basically no differ-
ence between the tests under Gaussianity. In case of a more heavy tailed distribution like a
t-distribution with 3 degrees of freedom, results do not change much, as one can see in the third
quarter of Table 4.2. The non-robust test seems to work well under the null hypothesis though
its assumptions (finite 8-th moments) are violated. Somewhat surprisingly the results get better
under serial correlation (ρ = 0.5) where we get reasonable empirical sizes already for T = 100
for normal as well as t3 distributed innovations. This can be partly explained by the relatively
large bandwidth which better fits the case ρ = 0.5 than ρ = 0.
It is maybe preferable to use a data dependent bandwidth bT as proposed in Andrews (1991) or
Politis (2011). In this case one can either calculate a global bandwidth which is used for every
individual or customized bandwidths bT,i, i = 1, . . . , N . For the latter one has to ensure that
the conditions (4.7) are also fulfilled for the infimum respectively the supremum of the band-
widths. However, automatic bandwidth choices are also questioned since they can produce very
large bandwidths under the alternative of a level shift which considerably decrease the power of
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Figure 4.3: Two times continuously differentiable version of Hubers Ψ−function used in the
simulations.

non-robust test robust test
ρ N T 50 100 200 400 800 50 100 200 400 800

N

0

50 0.33 0.13 0.07 0.07 0.04 0.33 0.14 0.07 0.06 0.04
100 0.52 0.14 0.06 0.07 0.06 0.55 0.15 0.07 0.06 0.06
200 0.77 0.21 0.11 0.07 0.04 0.79 0.22 0.11 0.08 0.04
400 0.97 0.40 0.18 0.08 0.08 0.97 0.41 0.17 0.07 0.08
800 1.00 0.65 0.28 0.13 0.06 1.00 0.66 0.28 0.13 0.07

0.5

50 0.07 0.06 0.05 0.04 0.03 0.08 0.05 0.05 0.05 0.03
100 0.12 0.07 0.04 0.04 0.05 0.12 0.07 0.04 0.04 0.06
200 0.24 0.10 0.05 0.04 0.04 0.26 0.11 0.05 0.05 0.04
400 0.53 0.16 0.07 0.06 0.04 0.54 0.17 0.07 0.05 0.04
800 0.90 0.36 0.13 0.07 0.05 0.90 0.37 0.13 0.07 0.05

t3

0

50 0.30 0.11 0.05 0.08 0.06 0.34 0.10 0.05 0.08 0.06
100 0.47 0.15 0.08 0.06 0.06 0.54 0.16 0.08 0.06 0.06
200 0.74 0.19 0.10 0.06 0.05 0.77 0.25 0.11 0.07 0.06
400 0.97 0.36 0.12 0.08 0.06 0.97 0.41 0.15 0.09 0.06
800 1.00 0.65 0.23 0.14 0.08 1.00 0.68 0.26 0.15 0.08

0.5

50 0.07 0.04 0.05 0.04 0.05 0.08 0.04 0.04 0.04 0.05
100 0.11 0.05 0.03 0.04 0.04 0.10 0.06 0.05 0.06 0.04
200 0.25 0.10 0.05 0.04 0.04 0.26 0.10 0.06 0.05 0.04
400 0.52 0.19 0.06 0.04 0.04 0.54 0.20 0.07 0.05 0.05
800 0.90 0.38 0.12 0.07 0.05 0.89 0.39 0.14 0.07 0.06

Table 4.2: Empirical size under normal (N) and t3 distributed innovations, different AR(1)
parameters ρ, time dimensions T , number of individuals N and a significance level of 0.05.
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Figure 4.4: Empirical power under ρ = 0.25, different distributed innovations, N = 200, T = 400
and a jump at T = 200 which is generated by a normal distribution with mean 0 and standard
deviation ∆.

CUSUM tests. They can even lead to non-monotonic power curves, see for example Vogelsang
(1999) and Crainiceanu and Vogelsang (2007).
Now we turn our focus at the behaviour under the alternative. Therefore we choose ρ = 0.25,
set T = 400, N = 200 and add a jump at t0 = 200. Its height is generated for each individual
independently by a normal distribution with mean 0 and standard deviation ∆ varying between
0 and 0.2. Results for normal and t-distributed innovations with various degrees of freedom
can be found in Figure 4.4. We see that there is no visual difference between the tests under
the alternative in case of normal data. This changes as the innovations get more heavy tailed.
The robust test statistic performs superior in case of t5 distributed innovations. This advantage
increases if one looks at more heavy tailed distributions. Under t1 innovations the power of the
non-robust test even does not exceed its size. To sum up, the robust test performs compar-
ably to the non-robust one in the Gaussian case and clearly outperforms it under heavy tailed
distributions.

4.5 Summary

We have proposed a robust test for change-point detection in panel data where the number of
individuals and the time horizon is large. The procedure is based on residuals which are robustly
transformed via a Ψ-function. The null distribution is derived under very weak conditions,
allowing for arbitrarily heavy tailed distributions and heterogeneous serial dependence. To
the best of our knowledge this is the first contribution in the robust change-point literature
considering a data dependent choice of the tuning parameters σi, i = 1, . . . , N, which allows to
combine high robustness and efficiency.
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A simulation study illustrates that the robust procedure outperforms the non-robust one under
heavy tails and moreover indicates that there is little loss under Gaussian data. This at first
glance surprising observation is not unusual for robust methods applied in the high dimensional
setting. For instance, it is observed that the Pitman asymptotic efficiency under Gaussianity of
the spatial median approaches 1 if the dimension N is large (Möttönen et al., 1997). Asymptotic
variances of robust scatter estimators like the Tyler shape matrix, MCD, M- and S-estimators
tend to that of the empirical covariance matrix under multivariate normal distributions for large
N (see e.g. Croux and Haesbroeck, 1999; Taskinen et al., 2006). Relative efficiencies of sign
tests for uniformity on the unit sphere, independence against serial dependence and multivariate
independence tend to 1 under normality and growing dimension compared to classical Gaussian
competitors (see e.g. Paindaveine et al., 2016). With regard to these results it is interesting to
know whether one can prove similar results in the panel context.
There are also some limitations of our testing procedure. First there are no covariates (apart
from an individual mean) in the considered model. The test statistic uses robustly transformed
observations based on prior location- and scale-estimates. The intuitive generalisation would
be to substitute regression residuals (from a robust regression) for the standardized residuals.
However it is not clear under which conditions the asymptotic distribution is still the same as
in the much simpler panel model considered here. Another limitation is the exclusion of cross
sectional dependence. Promising in this regard looks the projection approach proposed by Aston
and Kirch (2014), which allows for an arbitrary dependence structure between the individuals.
The main challenge here, also in the non-robust case, is the choice of the projection, since the
power of the test crucially depends on it. Finally our test requires that the time dimension T
is large. It enables us to allow under some regularity conditions for arbitrary serial dependence
which can even differ between the individuals. If T is small one has to be more restrictive in
this regard and it is also more complicated to allow for different distributions of the particular
individuals.

4.6 Proofs

The main component of our proofs are moment inequalities, which are based on coupling ar-
guments. More in detail we use the following result by Philipp (1986) which describes how
dependent random variables can be substituted by independent ones.

Proposition 6. (Theorem 3.4 in Philipp (1986)): Let {Bk,mk, k ≥ 1} be a sequence of Polish
spaces. Let αk denote the Borel field over Bk, let {Xk, k ≥ 0} be a sequence of random variables
with values in Bk and let {γk, k ≥ 0} be a sequence of non-decreasing σ−fields such that Xk is
γk−measurable. Suppose that for some sequence {βk, k ≥ 0} of non-negative numbers

E sup
A∈αk

(|P (Xk ∈ A|γk−1)− P (Xk ∈ A)|) ≤ βk

for all k ≥ 1. Denote by Fk the distribution of Xk and let {Gk, k ≥ 0} be a sequence of
distributions on (Bk, αk) such that

Fk(A) ≤ Gk(A
ρk) + σk ∀ A ∈ αk

with ρk, σk ≥ 0 and Aϵ = ∪x∈A{y : mk(x, y) ≤ ϵ}. Then without changing its distribution,
one can redefine the sequence {Xk, k ≥ 0} on a richer probability space on which there exists
a sequence {Yk, k ≥ 1} of independent random variables with distribution Gk such that for all
k ≥ 1:

P (mk(Xk, Yk) > ρk) ≤ βk + σk.
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We use Proposition 6 to derive covariance inequalities for processes which are P-NED. Similar
inequalities have already been proved for processes which are strong mixing (see Davydov, 1970;
Deo, 1973) or L1-NED (see Borovkova et al., 2001).

Proposition 7. Let (Xt)t∈N be stationary and P-NED on an absolutely regular process (Zt)t∈Z
with approximation constants (ak)k∈N, functions (fk)k∈N, error function Φ and absolutely regu-
larity coefficients (βk)k∈N. There furthermore exists a > p ≥ 2 with E(|X1|a) < ∞,∫ 1
0 x

a
a−p+1

−1
Φ(x)dx < ∞,

∫∞
1 xa−1Φ(x)dx < ∞, then there are D1 and D2 independent of

m such that

|E(Xi1 . . . XikXik+1
. . . Xip)− E(Xi1 . . . Xik)E(Xik+1

. . . Xip)| ≤ D1a
a−p+1

a

⌊m/3⌋ +D2β
a−p
a

⌊m/3⌋
(4.9)

where 1 ≤ i1 ≤ . . . ≤ ip ≤ T and m = ik+1 − ik.

Proof of Proposition 7. The proof follows the ideas of Borovkova et al. (2001). First we build
independent blocks W̃1 = Z̃i1−⌊m/3⌋, . . . , Z̃ik+⌊m/3⌋ and W̃2 = Z̃ik+1−⌊m/3⌋, . . . , Z̃ip+⌊m/3⌋ where
the functions fm will work. Denote the original blocks by W1 = Zi1−⌊m/3⌋, . . . , Zik+⌊m/3⌋ and
W2 = Zik+1−⌊m/3⌋, . . . , Zip+⌊m/3⌋. We apply Proposition 6 with X1 = W1 and X2 = W2 as well

as ρk = σk = 0 for k = 1, 2. Then B1 = Rik−i1+2⌊m/3⌋+1 and B2 = Rip−ik+1+2⌊m/3⌋+1 are polish
spaces, γ1 = σ(. . . , Zik+⌊m/3⌋), γ2 = σ(. . . , Zip+⌊m/3⌋) and

E sup
A∈αr

(|P (Wr ∈ A|γr−1)− P (Wr ∈ A)|) ≤ βm−2⌊m/3⌋ ≤ β⌊m/3⌋ r = 1, 2

since both blocks are separated by m− 2⌊m/3⌋. Proposition 6 then guarantees the existence of
independent blocks W̃1 and W̃2 which are distributed as W1 and W2 such that:

P (W̃i ̸=Wi) ≤ β⌊m/3⌋ for i = 1, 2

which entails that the corresponding transformations f⌊m/3⌋(Z̃l−⌊m/3⌋, . . . , Z̃l+⌊m/3⌋) =: X̃l and

f⌊m/3⌋(Z̃n−⌊m/3⌋, . . . , Z̃n+⌊m/3⌋) =: X̃n are also independent as long as l ≤ ik and n ≥ ik+1. In

the following we need a bound for the error between X̃l and Xl for l ∈ i1, . . . , ip. For i1 ≤ l ≤ ik
one gets the following decomposition of the error

E(|Xl − X̃l|
a

a−p+1 ) = E(|(Xl − X̃l)IW1=W̃1
|

a
a−p+1 ) + E(|(Xl − X̃l)IW1 ̸=W̃1

|
a

a−p+1 ). (4.10)

For the first term one can use the P-NED property iii)

E(|(Xl − X̃l)IW1=W̃1
|

a
a−p+1 ) ≤ a⌊m/3⌋

∫ ∞

0
ϵ

a
a−p+1

−1
Φ(ϵ)dϵ ≤ a⌊m/3⌋ · C1

where C1 only depends on Φ. Using the cr inequality (see Loève, 1977, p. 157) and Hölder
inequality we get

E(|(Xl − X̃l)IW1 ̸=W̃1
|

a
a−p+1 )

≤ 2
a

a−p+1

(
E(|XlIW1 ̸=W̃1

|
a

a−p+1 ) + E(|X̃lIW1 ̸=W̃1
|

a
a−p+1 )

)
≤ 2

a
a−p+1

(
[E(|Xl|a)]

1
a−p+1P (W1 ̸= W̃1)

a−p
a−p+1 + [E(|X̃l|a)]

1
a−p+1P (W1 ̸= W̃1)

a−p
a−p+1

)
.

≤ 2
a

a−p+1β
a−p

a−p+1

⌊m/3⌋

(
[E(|Xl|a)]

1
a−p+1 + [E(|X̃l|a)]

1
a−p+1

)
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and since W̃1 is distributed as W1 we have

E(|X̃l|a) = E(|f⌊m/3⌋(Zl−⌊m/3⌋, . . . , Zl−⌊m/3⌋)|a)
≤ 2a−1[E(|f(Zl−⌊m/3⌋, . . . , Zl−⌊m/3⌋)−Xl|a) + E(|Xl|a)]
≤ 2a−1(a⌊m/3⌋C2 + E(|Xl|a)). (4.11)

Therefore (4.10) is bounded by

E(|Xl − X̃l|
a

a−p+1 ) ≤ C3(a⌊m/3⌋ + β
a−p

a−p+1

⌊m/3⌋ ) (4.12)

which also holds for ik+1 ≤ l ≤ ip. To derive covariance inequalities, we need a bound for the
error between products of random variables and its copies

E(|Xi1 . . . Xip − X̃i1 . . . X̃ip |) (4.13)

≤ E(|(Xi1 − X̃i1)(Xi2 . . . Xip)|) +
p−1∑
j=2

E(|X̃i1 . . . X̃ij−1(Xij − X̃ij )Xij+1 . . . Xip |)

+ E(|(X̃i1 . . . X̃ip−1)(Xip − X̃ip)|).

Using the generalized Hölder inequality and (4.12) one can bound the first summand on the
right hand-side of (4.13) by

E(|(Xi1 − X̃i1)(Xi2 . . . Xip)|)

≤
[
E
(
|(Xi1 − X̃i1)|

a
a−p+1

)]a−p+1
a

[E (|Xi2 |a)]
1
a · · ·

[
E
(
|Xip |a

)] 1
a

≤ C4(a⌊m/3⌋ + β
a−p

a−p+1

⌊m/3⌋ )
a−p+1

a .

Similar bounds for the other summands in (4.13) can be derived using (4.12) and (4.11) which
results eventually in

E(|Xi1 . . . Xip − X̃i1 . . . X̃ip |) ≤ C5a
a−p+1

a

⌊m/3⌋ + C6β
a−p
a

⌊m/3⌋. (4.14)

Analogously one gets

E(|Xi1 . . . Xik − X̃i1 . . . X̃ik |) ≤ C7a
a−k+1

a

⌊m/3⌋ + C8β
a−k
a

⌊m/3⌋ (4.15)

and

E(|Xik+1
. . . Xip − X̃ik+1

. . . X̃ip |) ≤ C9a
a−p+k+1

a

⌊m/3⌋ + C10β
a−p+k

a

⌊m/3⌋ . (4.16)

Finally we prove the covariance inequality (4.9). Denote A = Xi1 . . . Xik , B = Xik+1
. . . Xip ,

Ã = X̃i1 . . . X̃ik and B̃ = X̃ik+1
. . . X̃ip then we get by (4.14), (4.15) and (4.16)

|E(AB)− E(A)E(B)| = |E(AB)− E(A− Ã+ Ã)E(B − B̃ + B̃)|
≤ E(|AB − ÃB̃|) + E(|Ã|)E(|B − B̃|)
+ E(|B̃|)E(|A− Ã|) + E(|A− Ã|)E(|B − B̃|)

≤ C11a
a−p+1

a

⌊m/3⌋ + C12β
a−p
a

⌊m/3⌋,

which completes the proof.
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The result is a little sharper if the process is bounded.

Proposition 8. Let (Xt)t∈N be stationary and P-NED on an absolutely regular process (Zt)t∈Z
with approximation constants (ak)k∈N, functions (fk)k∈N, error function Φ and absolutely regu-
larity coefficients (βk)k∈N. There furthermore exists D such that |X1| ≤ D a.s. and

∫∞
0 Φ(x)dx <

∞, then there exists D1 independent of m such that

|E(Xi1 . . . XikXik+1
. . . Xip)− E(Xi1 . . . Xik)E(Xik+1

. . . Xip)| ≤ D1(a⌊m/3⌋ + β⌊m/3⌋),

where 1 ≤ i1 ≤ . . . ≤ ip ≤ T and m = ik+1 − ik.

The proof is analogous to that of Proposition 7. But instead of using the Hölder inequality
one uses the boundedness of Xi, which enables us to extract the largest possible absolute value
D out of the expectation.
The next theorem covers the case where one looks at transformations of the P-NED process.
It is necessary for the consistency of the long run variance estimation under estimated tuning
parameters.

Proposition 9. Let (Xt)t∈N be stationary and P-NED on an absolutely regular process (Zt)t∈Z
with approximation constants (ak)k∈N, functions (fk)k∈N, absolutely regularity coefficients (βk)k∈N
and error function Φ with

∫∞
0 Φ(x)dx <∞. Furthermore let g1, . . . , gp : R → R be bounded and

Lipschitz continuous, then there exists D1 independent of m such that

|E[g1(Xi1) . . . gk(Xik)gk+1(Xik+1
) . . . gp(Xip)]

− E[g1(Xi1) . . . gk(Xik)]E[gk+1(Xik+1
) . . . gp(Xip)]| ≤ D1(a⌊m/3⌋ + β⌊m/3⌋),

where 1 ≤ i1 ≤ . . . ≤ ip ≤ T and m = ik+1 − ik.

The proof is completely analogous to that of Proposition 8.
The next proposition is a Marcinkiewicz-Zygmund type inequality which bounds the p−th mo-
ment of the sum of the process.

Proposition 10. Let (Xt)t∈N be stationary and P-NED on an absolutely regular process (Zt)t∈Z
with approximation constants (ak)k∈N, functions (fk)k∈N, error function Φ and regularity coeffi-

cients (βk)k∈N. There furthermore exists a > p ∈ N such that E(|X1|a) <∞,
∫ 1
0 x

a
a−p+1

−1
Φ(x)dx <

∞,
∫∞
1 xa−1Φ(x)dx < ∞ and

∑∞
i=1 a

a−p+1
a

i ip−1 as well as
∑∞

i=1 β
a−p
a

i ip−1 < ∞, then there exist
G1 and G2 such that

|E(
T∑
i=1

Xi)
p| ≤ TG1|E(X1)|p +G2T

⌊p/2⌋, ∀T ∈ N. (4.17)

Proof of Proposition 10. First notice that

|E(
T∑
i=1

Xi)
p| ≤

T∑
i1,...,ip=1

|E(Xi1 . . . Xip)|. (4.18)

We actually show the result by induction applied to the right hand side of (4.18). For p = 1 the
right hand side of (4.18) is obviously bounded by the right hand side of (4.17). For the induction
step p→ p+ 1 we want to split the expectations where the time difference is largest. Ordering
of time indices yields

T∑
i1,...,ip+1=1

|E(Xi1 . . . Xip+1)| =
T∑

1≤i1≤...≤ip+1

|E(Xi1 . . . Xip+1)γ(i1, . . . , ip+1)| (4.19)
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where γ(i1, . . . , ip+1) denotes the number of possible permutations which is smaller or equal to
(p+ 1)!. Let js = is − is−1, s = 2, . . . , p+ 1 and j1 = i1, then (4.19) is bounded by

(p+ 1)!
T∑

j1,...,jp+1≥0 j1+...+jp+1≤T

|E(Xj1Xj1+j2 . . . Xj1+...+jp+1)|. (4.20)

We divide the sum (4.20) into A1, . . . , Ap where As contains all expectations in (4.20) where
js+1 is the maximum of j2, . . . , jp+1

1 and denote Is the related index set. If js+1 is maximal the
other indices can only assume the values 0, . . . , js+1 resulting in less than (p+1)!T (js+1+1)p−1

summands for fixed js+1. Proposition 7 yields

|As| = (p+ 1)!
∑

i1,...,ip+1∈Is

|E(Xi1 . . . Xip+1)|

≤ (p+ 1)!
∑

i1,...,ip+1∈Is

|E(Xi1 . . . Xis)E(Xis+1 . . . Xip+1)| (4.21)

+ (p+ 1)!T
T∑

js=0

(
C13a

a−p
a

⌊js/3⌋ + C14β
a−p−1

p

⌊js/3⌋

)
(js + 1)p−1 (4.22)

where the sum (4.22) is O(T ) by assumption. We use the induction hypothesis for (4.21) to
obtain

(p+ 1)!
T∑

i1,...,is=1

|E(Xi1 . . . Xis)|
T∑

is+1,...,ip+1=1

|E(Xis+1 . . . Xip+1)|

≤ (p+ 1)!(G1T
s|E(X1)|s +G2T

⌊ s
2
⌋)(G̃1T

p+1−s|E(X1)|p+1−s + G̃2T
⌊ p+1−s

2
⌋)

≤ (p+ 1)!
(
G1G̃1T

p+1|E(X1)|p+1 +G2G̃2T
⌊ p+1

2
⌋

+G1G̃2T
⌊ p+1−s

2
⌋T s|E(X1)|s + G̃1G2T

⌊ s
2
⌋T p+1−s|E(X1)|p+1−s

)
≤ Ĝ1T

p+1|E(X1)|p+1 + Ĝ2T
⌊ p+1

2
⌋

which completes the proof.

There is also a version for bounded processes.

Proposition 11. Let (Xt)t∈N be stationary and P-NED on an absolutely regular process (Zt)t∈Z
with approximation constants (ak)k∈N, functions (fk)k∈N, error function Φ and absolutely regu-
larity coefficients (βk)k∈N. There furthermore exists D ∈ R such that |X1| < D a.s.,

∫∞
0 Φ(x)dx <

∞ and
∑∞

i=1 aii
p−1 as well as

∑∞
i=1 βii

p−1 <∞, then there exist G1 and G2 such that

|E(
N∑
i=1

Xi)
p| ≤ G1(T |E(X1)|)p +G2T

⌊p/2⌋, ∀T ∈ N. (4.23)

The proof is analogous to that of Proposition 10 using Proposition 8 instead of Proposition 7.

The proof of Theorem 3 consists of four steps:

1. the mean function of (WN,T (x))x∈[0,1] converges to that of (Γ(x))x∈[0,1],

1To obtain a unique partition we add summands to the sum with the smallest index, if the maximum is attained
more than once.
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2. the covariance function of (WN,T (x))x∈[0,1] converges to that of (Γ(x))x∈[0,1],

3. all finite dimensional distributions of (WN,T (x))x∈[0,1] converge against a multivariate nor-
mal distribution,

4. (WN,T (x))x∈[0,1] is tight.

Let without loss of generality E(Yi,1) = 0 and denote γi(h) = E(Yi,tYi,t+h) the autocovariance
of lag h ∈ N. Furthermore we want to concentrate on the bounded case |Yi,1| < c1, i = 1 . . . , N.
The proof in the unbounded case is completely analogous. However, the covariance inequalities
then also depend on a, making calculations a little more extensive and harder to understand.

Step 1 of the proof of Theorem 3. First we look at one individual i. Let x, 0 < x < 1, be
arbitrary and k = ⌊Tx⌋

E([S(i)
T (x)]2) =

1

Tv2i
E

⎛⎝[T − k

T

k∑
t=1

Yi,t −
k

T

T∑
t=k+1

Yi,t

]2⎞⎠
=

1

Tv2i

(
T − k

T

)2

E

⎛⎝[ k∑
t=1

Yi,t

]2⎞⎠
  

A1

− 1

Tv2i
2
(T − k)k

T 2
E

([
k∑

t=1

Yi,t

][
T∑

t=k+1

Yi,t

])
  

A2

+
1

Tv2i

k2

T 2
E

⎛⎝[ T∑
t=k+1

Yi,t

]2⎞⎠
  

A3

.

Elementary calculations yield

A1 = kv2i − 2k

∞∑
h=k

γi(h)− 2

k−1∑
h=1

hγi(h)

A2 =
T∑

h=1

γi(h)min(h, k, T − k, T − h)

A3 = (T − k)v2i − 2(T − k)
∞∑

h=T−k

γi(h)− 2
T−k−1∑
h=1

hγi(h)

and therefore

E(WN,T (x)) =

√
N

T

1

N

N∑
i=1

(
1

v2i

(
T − k

T

)2
(
−2k

∞∑
h=k

γi(h)− 2

k−1∑
h=1

hγi(h)

)

+
1

v2i

(T − k)k

T 2

T∑
h=1

γi(h)min(h, k, T − k, T − h)

+
1

v2i

k2

T 2

(
−2(T − k)

∞∑
h=T−k

γi(h)− 2
T−k−1∑
h=1

hγi(h)

))
.

Using Assumption 1 2) a) ii) one has:

|E(WN,T (x))| ≤
√
N

T

1

N

N∑
i=1

C15

δ2

⎛⎜⎜⎜⎜⎝5

∞∑
h=1

h(1 + h)−b

  
B1

+2 k

∞∑
h=k

(1 + h)−b

  
B2

+2 (T − k)

∞∑
h=T−k

(1 + h)−b

  
B3

⎞⎟⎟⎟⎟⎠
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where by the integral criteria for sums

B1 ≤
∫ ∞

0
(1 + h)−b+1dh =

1

b− 2
and B2 ≤ k

∫ ∞

k−1
c(1 + h)−bdh =

k−b+2

b− 1
≤ 1

b− 1
.

and analogously B3 ≤ (T−k)−b+2

b−1 . By Assumption i) of Theorem 3 |E(WN,T (x))| → 0 which gives
the desired mean structure.

Step 2 of the proof of Theorem 3. Calculating the covariance structure is more tedious. By As-
sumption 1 I) we have

Cov(WN,T (x),WN,T (y)) =
1

N

N∑
i=1

Cov([S(i)(x)]2, [S(i)(y)]2),

so it is enough to compute the covariance structure of one individual i, i = 1, . . . , N. We denote
therefore k = [xn] < [yn] = j and expand E([S(i)(x)]2[S(i)(y)]2) to obtain

E([S(i)(x)]2[S(i)(y)]2) =
(T − k)2(T − j)2

T 6v4i
E

⎛⎝ k,k,j,j∑
s,t,u,v=1

Yi,tYi,sYi,uYi,v

⎞⎠
− 2

(T − k)2(T − j)j

T 6v4i
E

⎛⎝ k,k,j,T∑
s,t,u=1,v=j+1

Yi,sYi,tYi,uYi,v

⎞⎠
+

(T − k)2j2

T 6v4i
E

⎛⎝ k,k,T,T∑
s,t=1,u,v=j+1

Yi,sYi,tYi,uYi,v

⎞⎠
− 2

(T − k)k(T − j)2

T 6v4i
E

⎛⎝ k,T,j,j∑
s=1,t=k+1,u,v=1

Yi,sYi,tYi,uYi,v

⎞⎠
+ 4

(T − k)k(T − j)j

T 6v4i
E

⎛⎝ k,T,j,T∑
s=1,t=k+1,u=1,v=j+1

Yi,sYi,tYi,uYi,v

⎞⎠
− 2

(T − k)kj2

T 6v4i
E

⎛⎝ k,T,T,T∑
s=1,t=k+1,u,v=j+1

Yi,sYi,tYi,uYi,v

⎞⎠
+
k2(T − j)2

T 6v4i
E

⎛⎝ T,T,j,j∑
s,t=k+1,u,v=1

Yi,sYi,tYi,uYi,v

⎞⎠
− 2

k2(T − j)j

T 6v4i
E

⎛⎝ T,T,j,T∑
s,t=k+1,u=1,v=j+1

Yi,sYi,tYi,uYi,v

⎞⎠
+
k2j2

T 6v4i
E

⎛⎝ T,T,T,T∑
s,t=k+1,u,v=j+1

Yi,sYi,tYi,uYi,v

⎞⎠
= Ai,1 +Ai,2 +Ai,3 +Ai,4 +Ai,5 +Ai,6 +Ai,7 +Ai,8 +Ai,9.
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Exemplarily we look at Ai,1 which we divide into

Ai,1 =
(T − k)2(T − j)2

T 6v4i

⎡⎣E
⎛⎝ k,k,k,k∑

s,t,u,v=1

Yi,tYi,sYi,uYi,v

⎞⎠+ E

⎛⎝ k,k,j,j∑
s,t=1,u,v=k+1

Yi,tYi,sYi,uYi,v

⎞⎠⎤⎦
=

(T − k)2(T − j)2

T 6v4i
(Bi,1 +Bi,2).

We split B1,i further in parts which are substantial and parts which are negligible. Ordering
such that t ≤ s ≤ u ≤ v and substituting s− t = l, u− s = m, v − u = n yields

B1,i =
∑

t+l+m+n≤k

E (Yi,tYi,t+sYi,t+s+mYi,t+s+m+n) a(s,m, n)

where a(s,m, n) equals the number of permutations of Yi,tYi,s+tYi,t+s+mYi,t+s+m+n. Now we
want to apply Proposition 8 and split the expectations where the lag difference between the
random variables is largest:

B1,i =
∑

t+s+m+n≤k, m,n<s

E(Yi,t)E(Yi,t+sYi,t+s+mYi,t+s+m+n)a(s,m, n) +R1,i

+
∑

t+s+m+n≤k, s,n≤m

E(Yi,tYi,t+s)E(Yi,t+s+mYi,t+s+m+n)a(s,m, n) +R2,i

+
∑

t+s+m+n≤k, s,m<n

E(Yi,tYi,t+sYi,t+s+m)E(Yi,t+s+m+n)a(s,m, n) +R3,i

= R1,i +R2,i +R3,i

+
∑

t+s+m+n≤k, s,n≤m

E(Yi,tYi,t+s)E(Yi,t+s+mYi,t+s+m+n)a(s,m, n)

where by Proposition 8 and the integral criteria

|R1,i +R2,i +R3,i| ≤ 3 · 24C16

∑
t+s+m+n≤k, m,n≤s

(1 + s)−b

≤ 72kC16

∞∑
s=0

(s+ 1)2c(1 + s)−b ≤ kC17

b− 3

and therefore supi=1,...,N
(T−k)2(T−j)2

T 6v4i
|R1,i + R2,i + R3,i| → 0. Now we turn towards the non

vanishing part of B1,i. We change summation another time to arrive at∑
t+s+m+n≤k, s,n≤m

E(Yi,tYi,t+s)E(Yi,t+s+mYi,t+s+m+n)a(l,m, n)

=
k∑

s=0

k∑
n=0

3
k−s−n∑

m=max(s,n)

(k − s− n−max(s, n)−m)γi(s)γi(n)b(s, n)

= 3

k∑
s=0

k∑
n=0

γi(s)γi(n)b(s, n) ((k − s− n−max(s, n) + 1)(k − s− n−max(s, n))

−(k − s− n+ 1)(k − s− n)

2
+

max(s, n)(max(s, n)− 1)

2

)
=

3

2
k2v4i + 3Ui (4.24)

where b(i, j) =

⎧⎪⎨⎪⎩
1 i, j = 0

2 for (i, j) = (0, 1) ∧ (1, 0)

4 i, j > 0
and the factor 3 appears since there are three possibilities to partition four random variables
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into two pairs. The error Ui consists of a sum of autocovariances which do not appear in (4.24)
and one of autocovariances of improper quantity

|Ui| ≤ 12k2
⏐⏐⏐ ∞∑
m=0

∞∑
n=k+1

γi(m)γi(n)
⏐⏐⏐+ 12

⏐⏐⏐ k∑
s=0

k∑
n=0

γ(s)γ(n)
[
5k(s+ n) + (s+ n)2

] ⏐⏐
≤ C18k

2

∫ ∞

k
(1 + s)−bds+ C19k

(∫ ∞

0
(1 + s)−b+1ds

)2

+ C20

(∫ ∞

0
(1 + s)−b+2ds

)2

= C18
k−b+3

b− 1
+ C19k

(
1

b− 2

)2

+ C20

(
1

b− 3

)2

where the squared integrals arise through the integral criteria applied to the separated sums.

Therefore we get supi=1,...,N
(T−k)2(T−j)2

T 6v4i
|Ui| → 0. By analogous calculations one gets

A1,1 =
(T − k)2(T − j)2(3k2 + k(j − k))

2T 6
+Ri,4

Ai,2 = Ri,5

Ai,3 =
(T − k)2j2k(T − j)

2T 6
+Ri,6

Ai,4 = −2
(T − k)k(T − j)22k(j − k)

2T 6
+Ri,7

Ai,5 = 4
(T − k)k(T − j)2jk

2T 6
+Ri,8

Ai,6 = Ri,9

Ai,7 =
k2(T − j)2((T − j)(j − k) + k(j − k) + (T − j)k + 3(j − k)2)

2T 6
+Ri,10

Ai,8 = −2
k2(T − j)2j2(j − k)

2T 6
+Ri,11

Ai,9 =
k2j2(3(T − j)2 + (T − j)(j − k))

2T 6
+Ri,12

with supi∈1,...,N
∑12

k=4 |Ri,k| → 0. Term manipulations yield the desired covariance structure.

Step 3 of the Proof of Theorem 3. We show convergence of finite dimensional distributions. Let
k ∈ N and x1, . . . , xk be arbitrary, by the Cramer Wold device it is sufficient (and necessary) to
show convergence of linear combinations for arbitrary λ1, . . . , λk. By change of summation we
get

k∑
j=1

λjWN,T (xj) =
1√
N

N∑
i=1

k∑
j=1

λj

((
S
(i)
T (xj)

)2
− ⌊xjT ⌋(T − ⌊xjT ⌋)

T 2

)
  

Di

where Di are independent but not identically distributed. Since Di also depends on T, we apply
a central limit theorem for random arrays of Lyapunov type (see for example Serfling (1980) p.
30). Therefore one needs to show

∑N
i=1 E

(∑k
j=1 λj [S

2
i (xj)− E{S2

i (xj)}]
)4

(∑N
i=1 E

[∑k
j=1 λj

{
S2
i (xj)− E(S2

i (xj))
}]2)2 → 0. (4.25)
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For the nominator we repeatedly apply the cr inequality and Proposition 11 to get

N∑
i=1

E

⎛⎝ k∑
j=1

λj [S
2
i (xj)− E{S2

i (xj)}]

⎞⎠4

≤ 8k
k∑

j=1

λ4j

N∑
i=1

E(S2
i (xj)− E[S2

i {xj}])4

≤ 8k+1
k∑

j=1

λ4j

N∑
i=1

E(S8
i (xj)) + E(S2

i (xj))
4)

≤ 8k+2
k∑

j=1

λ4j

N∑
i=1

⎛⎝ 1

T 4
E

⎡⎣⌊xjT ⌋∑
t=1

Yi,t

⎤⎦8

+
1

T 4
E

⎡⎣ T∑
t=⌊xjT ⌋+1

Yi,t

⎤⎦8

+
1

T 4

⎡⎣E
⎛⎝⌊xjT ⌋∑

t=1

Yi,t

⎞⎠2⎤⎦4

+
1

T 4

⎡⎣E
⎛⎝ T∑

t=⌊xjT ⌋+1

Yi,t

⎞⎠2⎤⎦4
⎞⎟⎠

≤ 8k+2
k∑

j=1

λ4jN(G2 + G̃4
2).

For the denominator we exploit the cross-sectional independence and arrive at⎛⎝ N∑
i=1

E

⎛⎝ k∑
j=1

λj(S
2
i (xj)− E(S2

i (xj)))

⎞⎠2⎞⎠2

=

⎛⎝ N∑
i=1

k∑
j,l=1

λjλlCov(S
2
i (xj), S

2
i (xl))

⎞⎠2

=

⎛⎜⎜⎜⎜⎝
N∑
i=1

k∑
j,l=1

λj , λlCov(Γ(xj),Γ(xl))  
M

+Ri

⎞⎟⎟⎟⎟⎠
2

=M2N2 + 2MN
N∑
i=1

Ri + (
N∑
i=1

Ri)
2

where Ri denotes the remainder fulfilling supi=1,...,N Ri → 0, see the second step of the proof of
Theorem 1. Since the Gaussian process Γ possesses a positive definite covariance function, we
haveM > 0 and the denominator grows of the order N2 while the nominator only grows linearly
in N , which proofs (4.25) and hence the asymptotic normality. Together with step 1 and step 2
this proves that the finite dimensional distributions of (WN,T (x))x∈[0,1] converge against that of
(Γ(x))x∈[0,1].

Step 4 of the Proof of Theorem 3. We want to apply the moment criteria of Billingsley (1968)
(see page 95) and therefore look at the difference between WN,T (x) and WN,T (y). By an expan-
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sion we see that we need bounds for four different moments

E([WN,T (x)−WN,T (y)]
4)

=
1

N2
E

⎛⎜⎜⎝
⎡⎢⎢⎣ N∑

i=1

S2
i (x)−

⌊xT ⌋(T − ⌊xT ⌋)
T 2

− S2
i (x) +

⌊xT ⌋(T − ⌊xT ⌋)
T 2  

Mi

⎤⎥⎥⎦
4⎞⎟⎟⎠

=
1

N2

∑
i ̸=j ̸=k ̸=l

E(Mi)E(Mj)E(Mk)E(Ml) +
1

N2

∑
i ̸=j ̸=k

E(M2
i )E(Mj)E(Mk)

+
1

N2

∑
i ̸=j

E(M3
i )E(Mj) +

1

N2

∑
i ̸=j

E(M2
i )E(M2

j ) +
1

N2

N∑
i=1

E(M4
i ).

In the first step of the proof of Theorem 3 it it shown that

|E(Mi)| ≤
⏐⏐⏐⏐E(S2

i (x)−
⌊xT ⌋(T − ⌊xT ⌋)

T 2

) ⏐⏐⏐⏐+ ⏐⏐⏐⏐E(S2
i (y) +

⌊yT ⌋(T − ⌊yT ⌋)
T 2

) ⏐⏐⏐⏐ ≤ C21

T
,

where C21 is independent of i, x and y. Let ⌊Tx⌋ = u < ⌊Ty⌋ = v, for E(M2
i ) we apply

Cauchy-Schwarz and cr inequality to get

E(M2
i ) ≤ 2E([Si(x)2 − Si(y)

2]2) + 2

(
⌊xT ⌋(T − ⌊xT ⌋)

T 2
− ⌊yT ⌋(T − ⌊yT ⌋)

T 2

)2

≤
√
E([Si(x)− Si(y)]4)

√
8E([Si(x)]4) + 8E([Si(y)]4) + 2

(
(v − u)(u− T − v)

T 2

)2

.

Using Proposition 11 one has

|E(Si(x)4)| ≤
8

T 2δ4
E

(
T − u

T

u∑
t=1

Yi,t

)4

+
8

T 2δ4
E

(
u

T

T∑
t=u+1

Yi,t

)4

≤ C22

and also

E([Si(x)− Si(y)]
4) =

8

T 2δ4
E

⎛⎝[ v∑
t=u+1

Yi,t

]4
δ4

⎞⎠+
8(v − u)4

T 6
E

(
T∑
t=1

Yi,t

)4

≤ C23
(u− v)2

T 2
.

Together we have E(M2
i ) ≤ C24

v−u
T and analogously E(M4

i ) ≤ C25
(v−u)2

T 2 respectively |E(M3
i )| ≤

C26
(v−u)3/2

T 3/2 . Since N/T → 0, there is C27 such that N/T ≤ C27
2 and we arrive at

E([WN,T (x)−WN,T (y)]
4) ≤ 1

N2
N4

(
C21

T

)4

+
1

N2
N3C24

v − u

T

(
C21

T

)2

+
1

N2
N2C26

(v − u)3/2

T 3/2

C21

T
+

(
C24

v − u

T

)2

+
C25

N

(v − u)2

T 2

≤ C28
(v − u)2

T 2
+
C29

T 2
+
C30(v − u)

T 2
+
C31(v − u)3/2

T 5/2
≤ C32|x− y|2

which proves tightness of the process.

2To emphasise that N,T jointly tend to infinity it is maybe more convenient to use N(T ) instead of N
(respectively T (N) instead of T ). We have forgone on it for a better readability. However, the more elaborate
notation is here superior. Since what is meant and used is that N(T )/T ≤ C27, ∀T ∈ N.
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Proof of Theorem 4. We assume that |Yi,1| ≤ c1, i = 1, . . . , N, though the proof is analogous in
the unbounded case. We first calculate the mean squared error of v̂i. Equations for variance and
bias of v̂i are already known, see for example Anderson (1971) chapters eight and nine, though
these are for known location. Denote therefore

ṽi = γ̃i,0 + 2

bT∑
h=1

γ̃i,hk

(
h

bT

)
with γ̃i(h) =

1

T

N−h∑
t=1

(Yi,t − E(Yi,1)) (Yi,t+h − E(Yi,1))

the long run variance with known location, where we continue to assume that E(Yi,1) = 0, i =

1, . . . , N. We denote Y i =
1
T

∑T
t=1 Yi,t and describe v̂i by ṽi:

v̂i
2 = ṽ2i −

1

T

T∑
t=1

Yi,tY i − 2

bT∑
h=1

1

T

T−h∑
t=1

Yi,t+hY ik

(
h

bT

)

− 1

T

T∑
t=1

Yi,tY i − 2

bT∑
h=1

1

T

T−h∑
t=1

Yi,tY ik

(
h

bT

)
+

bT∑
h=−bT

1

T
Yi

2
k

(
h

bT

)
= ṽi

2 +R1 +R2 +R3 +R4 +R5.

Following the calculations of step 2 of the proof of Theorem 3 one finds upper bounds for the
errors R1 +R2 respectively R3 +R4

E([R1 +R2]
2) ≤ 1

T 4
6

bT∑
h=0

bT∑
k=−bT

(T 2v2i + C33T )k

(
h

bT

)
k

(
k

bT

)
≤ C34

b2T
T 2

and Proposition 11 yields

E(R2
3) ≤

1

T 6

bT∑
h=−bT

bT∑
k=−bT

T 2C35k

(
h

bT

)
k

(
k

bT

)
≤
b2T
T 4
C36.

Therefore we get

E
(
[v̂2i − ṽ2i ]

2
)
≤ C37

b2T
T 2
. (4.26)

In the next step we calculate the bias of ṽ2i . straightforward calculations yield:

|E(ṽ2i )− v2i | =
⏐⏐⏐⏐E
(

1

T

T∑
t=1

Y 2
i,t + 2

1

T

bT∑
h=1

T−h∑
t=1

Yi,tYi,t+hk

(
h

bT

))
−

∞∑
h=−∞

γi(h)

⏐⏐⏐⏐
≤
⏐⏐⏐⏐2 bT∑

h=1

((
1− h

T

)
k

(
h

bT

)
− 1

)
γi(h)

⏐⏐⏐⏐+ 2

⏐⏐⏐⏐ ∞∑
h=bT+1

γi(h)

⏐⏐⏐⏐
≤ 2

⏐⏐⏐⏐ bT∑
h=1

(
1− k

(
h

bT

))
γi(h)

⏐⏐⏐⏐+ 2

⏐⏐⏐⏐ bT∑
h=1

γi(h)k

(
h

bT

)
h

T

⏐⏐⏐⏐+ 2

⏐⏐⏐⏐ ∞∑
h=bT+1

γi(h)

⏐⏐⏐⏐
= A1 +A2 +A3.

The sum A1 describes the error which is generated by the kernel. To bound the error, we develop
the kernel k around 0. Since the first m − 1 derivatives are 0 by Assumption 2 iv), the first
non-vanishing term is of order m. However to ensure that the remainder is negligible, we only
develop the Taylor series up to order s− 1 :

|A1| ≤
bT∑
h=1

C38(1 + h)−b

(
h

bT

)s

≤ 1

bsT
C39

∞∑
h=1

(1 + h)−b+s =
1

bsT
C40. (4.27)
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Assumption 1 2) a) ii) and the integral criterion yields |A2| ≤ C41
T and |A3| ≤ C42b

−b+1
T and

therefore

|E(ṽ2i )− v2i | ≤
1

bsT
C40 +

C41

T
+ C42b

−b+1
T . (4.28)

Now we turn our attention to the variance of ṽi, where the following expansion is known (see
for example Anderson (1971), page 528, chapter 9.3.3)

Var(ṽi) =
1

T

bT∑
g,h=−bT

k

(
h

bT

)
k

(
g

bT

) T−1∑
r=−T+1

ϕ(r, g, h)

· (γi(r)γi(r + h− g) + γi(r − g)γi(r + g) + κi(h,−r, g − r))

= B1 +B2 +B3

where κi(r, s, t) = E(Yi,1Yi,r+1Yi,s+1, Yi,t+1)−γ(r)γ(t−r)−γ(s)γ(t−r)−γ(t)γ(s−r) for r, s, t ∈ N
is the fourth order cumulant and the formal definition of ϕ(r, g, h) can be found on page 528 of
Anderson (1971). For us it is only important that |ϕ(r, g, h)| ≤ 1. Following the calculations in
Anderson (1971) we get

|B2| ≤

⏐⏐⏐⏐⏐⏐ 1T
bT∑

g,h=−bT

min(g+bT ,h+bT ,T−1)∑
r=max(g−bT ,h−bT ,−T+1)

ϕ(r, r − g, h− r)k

(
r − g

bT

)
k

(
h− r

bT

)
γi(g)γi(h)

⏐⏐⏐⏐⏐⏐
+

(
8bT
T

+
4

bTT

) ∞∑
g=−∞

∞∑
h=bT+1

R|γi(g)γi(h)| = D1 +D2

where Proposition 8 yields |D1| ≤ C43
bT
T , |D2| ≤ C44

bT
T and similar arguments reveal |B1| ≤

C45
bT
T . We rearrange the sum of cumulants and split the expectation with Proposition 8 where

the lag difference is largest

|B3| ≤
8R

T

∞∑
r,s,t=0

|κ(r, s, t)|

≤ 24R

T

∞∑
r,s,t=0

|κ(r, r + s, r + s+ t)|

≤ 24R

T

∞∑
r=0

∑
s,t≤r

|E(Yi,1)E(Yi,1+rYi,1+r+sYi,1+r+s+t)− γi(r)γi(t)|

+
24R

T

∞∑
s=0

∑
r,t≤s

|E(Yi,1Yi,r+1)E(Yi,1+r+sYi,1+r+s+t)− γi(r)γi(t)|

+
24R

T

∞∑
t=0

∑
r,s≤t

|E(Yi,1Yi,r+1Yi,1+r+s)E(Yi,1+r+s+t)− γi(r)γi(t)|

+
24R

T

∞∑
r,s,t=0

|γi(r + s)γi(s+ t)|+ 24R

T

∞∑
r,s,t=0

|γi(r + s+ t)γi(s)|

= F1 + F2 + F3 + F4 + F5.
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We look exemplarily at F1, F2 and F4:

F1 ≤
C46

T

∞∑
r=0

r2(1 + r)−b +
C47

T

∞∑
r=0

r(1 + r)−b ≤ C48

T

F2 ≤
C49

T

∞∑
s=0

r2(1 + s)−b +
C50

T

∞∑
s=0

∞∑
r=s+1

(1 + r)−b
∞∑
t=0

(1 + t)−b

≤ C51

T
+

∞∑
s=0

C52

T
(1 + s)−b+1 ≤ C53

T

F4 =
C54

T

∞∑
s=0

∞∑
r=s+1

(1 + r)−b+1
∞∑

t=s+1

(1 + t)−b+1 ≤ C55

T

So we finally arrive at

Var(ṽi) ≤
C56bT
T

(4.29)

and therefore by (4.26), (4.28) and (4.29)

E([v̂2i − v2i ]
2) ≤ C57

b2T
T 2

+ C58b
−2s
T + C59b

−2b+2
T + C60

bT
T
. (4.30)

Now we show that the long run variance estimations v̂i are bounded from below for large T,N .
Denote by DN,T the event that v̂2i > v2i /2, i = 1, . . . , N, then

P (DN,T ) ≥ 1−
N∑
i=1

P (v̂2i < v2i /2)

≥ 1−
N∑
i=1

P (|v̂2i − v2i | ≥ v2i /2)

≥ 1− 4

(
C57

b2T
T 2

+ C58b
−2s
T + C59b

−2b+2
T + C60

bT
T

) N∑
i=1

1

v4i
→ 1

and therefore it is enough to prove Theorem 2 on DN,T . In the following we show that the
difference between WN,T (x) and W̃N,T (x) is negligible for every x ∈ [0, 1]. By an expansion one
can extract the error of the long run variance estimation from this difference

WN,T (x)− W̃N.T (x)

=
1√
N

N∑
i=1

(
1

v̂2i
− 1

v2i

)⎛⎝ 1

T

⎡⎣⌊Tx⌋∑
t=1

Yi,t −
⌊Tx⌋
T

T∑
t=1

Yi,t

⎤⎦2

− v2i
⌊Tx⌋(T − ⌊Tx⌋)

T 2

⎞⎠
+

⌊Tx⌋(T − ⌊Tx⌋)
T 2

1√
N

N∑
i=1

v2i − v̂2i
v̂i

2 = G1 +G2. (4.31)

The second term of (4.31) can be bounded by (4.26), (4.28) and (4.30)

E
(
G2

2

)
≤ 1

N

∑
i ̸=j

4

v2i v
2
j

|E(v̂2i − v2i )E(v̂2j − v2j )|+
1

N

N∑
i=1

4

v4i
E(v̂2i − v2i )

2

≤ C61N

(
b2T
T 2

+
1

b2sT
+

1

T 2
+ b−2b+2

T

)
+ C62

(
b2T
T 2

+ b−2s
T + b−2b+2

T +
bT
T

)
→ 0.
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Using the Cauchy-Schwarz inequality and (4.30) one gets for E1 :

E(|E1|) ≤
1√
N

N∑
i=1

4

δ4

√
E([v̂i2 − v2i ]

2)√E

⎛⎜⎝
⎡⎣ 1

T

⎧⎨⎩
⌊Tx⌋∑
t=1

Yi,t −
⌊Tx⌋
T

T∑
t=1

Yi,t

⎫⎬⎭
2

− v2i
⌊Tx⌋(T − ⌊Tx⌋)

T 2

⎤⎦2
⎞⎟⎠

≤
√
N

√
C62

(
b2T
T 2

+ b−2s
T + b−2b+2

T +
bT
T

)√(
1 +

C63

T 2

)
→ 0

where C63 can be calculated based on step 1 and 2 of the Proof of Theorem 1. The tightness of
(W̃N,T (x)−WN,T (x))x∈[0,1] can be proved like the tightness of WN,T (x) using that v̂i is bounded
from below, which completes the proof.

The proof of Theorem 5 consists of three steps:

1. showing pointwise convergence W̌N,T (x) − W̌N,T (x) → 0, ∀x ∈ [0, 1], under known long
run variances,

2. proving tightness of (W̌N,T (x)− W̌N,T (x))x∈[0,1] under known long run variances,

3. verifying supx∈[0,1] |W̌N,T (x)− W̌N,T (x)| → 0 under estimated long run variances.

First denote EN,T the event that σ̂i,T ≥ σi/2 for i = 1, . . . , N, then

P (EN,T ) ≥ 1−
N∑
i=1

P (|σ̂i,T − σi| > σi/2) ≥ 1− N

Tα
Tαmax

i≤N
P (|σ̂i,T − σi| > σ0/2) → 1

which enables us to assume this case in the following. Let furthermore FN,T denote the event
that |µ̂i,T − µi| ≤ T−β and | 1

σ̂i,T
− 1

σi
| ≤ T−β for i = 1, . . . , N :

P (FN,T ) ≥ 1−
N∑
i=1

P (|µ̂i,T − µi| ≥ T−β)−
N∑
i=1

P

(⏐⏐⏐⏐ σ̂i,T − σi
σiσ̂i,T

⏐⏐⏐⏐ ≥ T−β

)
≥ 1− N

Tα
Tαmax

i≤N
P (|µ̂i,T − µi| > T−β)− N

Tα
Tαmax

i≤N
P (|σ̂i,T − σi| > σ20/2T

−β) → 1

and so we can prove Theorem 5 under FN,T . Let furthermore w.l.o.g µi = 0, σi = 1, i = 1, . . . , N.

Proof of step 1 of Theorem 5. The expansion

Ψi

(
Xi,t − µ̂i,T

σ̂i,T

)
= Ψi

(
Xi,t +Xi,t

(
1

σ̂i,T
− 1

)
− µ̂i,T

(
1

σ̂i,T
− 1

)
− µ̂i,T

)
is almost impossible to work with, since µ̂i,T and σ̂i,T depend on (Xi,t)t=1,...,T . Instead one can
look at Ψi

(
Xi,t +Xi,tdT

−β + eT−β
)
= Zi,T (d, e), where d and e are non random with |d|, |e| ≤ 1,

since we are in the case of FN,T . Denote

S̄
(i)
d,e(x) =

1√
Tvi

⎛⎝⌊Tx⌋∑
t=1

Zi,t(d, e)−
⌊Tx⌋
T

T∑
t=1

Zi,t(d, e)

⎞⎠ , x ∈ [0, 1]
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the disturbed CUSUM-statistic

W̄N,T,d,e(x) =
1√
N

N∑
i=1

((
S̄
(i)
d,e(x)

)2
− ⌊xT ⌋(T − ⌊xT ⌋)

T 2

)
, x ∈ [0, 1]

the related panel-CUSUM. To prove

sup
d,e∈[−1,1]

|WN,T (x)− W̄N,T,d,e(x)| → 0, x ∈ (0, 1)

we have to bound the difference between the squared individual CUSUM-statistics(
S̄
(i)
d,e (x)

)2
−
(
S(i)(x)

)2
=

1√
Tvi

(
k∑

t=1

Zi,t(d, e)−
k

T

T∑
t=1

Zi,t(d, e)−
k∑

t=1

Ψi(Xi,t) +
k

T

T∑
t=1

Ψi(Xi,t)

)

· 1√
Tvi

(
k∑

t=1

Zi,t(d, e)−
k

T

T∑
t=1

Zi,t(d, e) +
k∑

t=1

Ψi(Xi,t)−
k

T

T∑
t=1

Ψi(Xi,t)

)
= AiBi

where k = ⌊Tx⌋. We will show that E
(
B2

i

)
is bounded while E

(
A2

i

)
converges to 0 sufficiently

fast. Essential in both calculations is a Taylor expansion of order m for Zi,t(d, e) around Xi,t

for t = 1, . . . , T :

Zi,t(d, e) = Ψi(Xi,t) +

m∑
r=1

Ψi(Xi,t)
(r)

r!

(
Xi,tdT

−β + eT−β
)r

+
Ψi(ξi,t)

(m+1)

(m+ 1)!

(
Xi,tdT

−β + eT−β
)m+1

(4.32)

for some ξi,t ∈ [Xi,t −Xi,t|d|T−β − |e|T−β, Xi,t +Xi,t|d|T−β + |e|T−β]. Denote

U
(r,s)
i (k) =

{∑k
t=1Ψ

(r)
i (Xi,t)X

s
i,t − k

T

∑T
t=1Ψ

(r)
i (Xi,t)X

s
i,t r = 0, . . . ,m∑k

t=1Ψ
(r)
i (ξi,t)X

s
i,t − k

T

∑T
t=1Ψ

(r)
i (ξi,t)X

s
i,t r = m+ 1

, s ≤ m

the non standardized CUSUM statistics which arises from the r− th Taylor-summand in (4.32).

In Ai the original CUSUM U
(0,0)
i (k) cancels out and by repeated application of the cr inequality

we obtain:

E(A2
i ) ≤

∑
r=1,...,m+1,s≤m

2(m+1)(m+2)/2−1

Tv2i
d2se2(r−s)T−2βr

(
r
s

)
r!

E
([
U

(r,s)
i (k)

]2)

Because of assumption i) and ii) of Theorem 5 the processes
(
Ψi(Xi,t)

(r)Xs
i,t

)
t∈N

is also P-

NED for r = 1, . . . ,m and s ≤ m, so we can apply the same calculations as in step 1 of

the proof of Theorem 3 and receive 1
T E
([
U

(r,s)
i (k)

]2)
≤ C63 + C64

T for r = 1, . . . ,m. For

m + 1 we use the upper bounds c and d of assumption i) and ii) of Theorem 5 to obtain

1
T 2E

([
U

(r,s)
i (k)

]2)
≤ C63. So we have E(A2

i ) ≤ C65T
−2β + 2C64T

−2β(m+1)+1 and by the same

calculations E(B2
i ) ≤ C66 + C67T

−2β + C68T
−2β(m+1)+1. Finally we apply the Cauchy-Schwarz

inequality to obtain

sup
d,e∈[−1,1]

E(|WN,T (x)− W̄N,T,d(x)|) ≤
1√
N

N∑
i=1

(
C69T

−β + C70T
−(m+1)β+1/2

)
→ 0

which implies pointwise convergence.
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Step 2 of the proof of Theorem 5. Denote ⌊Tx⌋ = u > v = ⌊Ty⌋, like in step 4 of the proof of
Theorem 3, we want to apply the tightness critierion of Billingsley (1968). But before we use
the Taylor expansion (4.32)

WN,T (x)− W̄N,T,d(x) =
1√
N

N∑
i=1

⎡⎣ 1

Tv2i
U

(0,0)
i (u)2 − 1

Tv2i

⎛⎝ ∑
r=0,...,m+1,s≤r

ar,sU
(r,s)
i (u)

⎞⎠2⎤⎦
=

∑
r=0,...,m+1,s≤r

∑
n=0,...,m+1,p≤n

1√
N

N∑
i=1

1

Tv2i
ar,san,pU

(r,s)
i (u)U

(n,p)
i (u)

where ar,s =
dser−sT−βr(rs)

r! to see that we only need to prove tightness for the individual sum-
mands

(AN,T (x)
rsnp)x∈[0,1] =

(
1√
N

N∑
i=1

1

Tv2i
ar,san,pU

(r,s)
i (⌊Tx⌋)U (n,p)

i (⌊Tx⌋)

)
x∈[0,1]

for r, n = 1, . . . ,m+ 1, s ≤ r and p ≤ n. Denote

M
(rsnp)
i =

1

Tv2i
ar,san,pU

(r,s)
i (u)U

(n,p)
i (u)− 1

Tv2i
ar,san,pU

(r,s)
i (v)U

(n,p)
i (u),

then we expand the difference of the fourth moment to

E(|AN,T (x)
rsnp −AN,T (y)

rsnp|4)

=
1

N2

∑
t̸=u̸=v ̸=w

E(M (rsnp)
t )E(M (rsnp)

u )E(M (rsnp)
v )E(M (rsnp)

w )

+
1

N2

∑
t̸=u̸=v

E
([
M

(rsnp)
t

]2)
E(M (rsnp)

u )E(M (rsnp)
v ) +

1

N2

∑
t̸=u

E
([
M

(rsnp)
t

]3)
E(M (rsnp)

u )

+
1

N2

∑
t̸=u

E
([
M

(rsnp)
t

]2)
E
([
M (rsnp)

u

]2)
+

1

N2

N∑
t=1

E
([
M

(rsnp)
t

]4)
.

Exemplarily we look at E(M (jk)
i ). If j, k < m+ 1 we can apply Proposition 11 to get

|E(M (rsnp)
i )| =

⏐⏐⏐⏐⏐ar,san,pTv2i
E

⎛⎝⎡⎣⌊Tx⌋∑
t=1

Ψ
(r)
i (Xi,t)X

s
i,t −

⌊Tx⌋
T

T∑
t=1

Ψ
(r)
i (Xi,t)X

s
i,t

⎤⎦
·

⎡⎣ ⌊Tx⌋∑
t=⌊Ty⌋+1

Ψ
(n)
i (Xi,t)X

p
i,t −

⌊Tx⌋ − ⌊Ty⌋
T

T∑
t=1

Ψ
(n)
i (Xi,t)X

p
i,t

⎤⎦
−

⎡⎣⌊Ty⌋∑
t=1

Ψ
(n)
i (Xi,t)X

p
i,t −

⌊Ty⌋
T

T∑
t=1

Ψ
(n)
i (Xi,t)X

p
i,t

⎤⎦
·

⎡⎣ ⌊Tx⌋∑
t=⌊Ty⌋+1

Ψ
(r)
i (Xi,t)X

s
i,t −

⌊Tx⌋ − ⌊Ty⌋
T

T∑
t=1

Ψ
(r)
i (Xi,t)X

s
i,t

⎤⎦⎞⎠⏐⏐⏐⏐⏐
≤ ar,san,p

δ2T

(√
C71⌊Tx⌋

√
C72(⌊Tx⌋ − ⌊Ty⌋) +

√
C73⌊Tx⌋

√
C74(⌊Tx⌋ − ⌊Ty⌋)

)
≤ C78T

−β(r+n)√x− y
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Analogously one can prove E([M (rsnp)
i ]2) ≤ T−2β(n+p)C79(x−y), |E([M rsnp

i ]3)| ≤ C80T
−3β(j+k)(x−

y)
3
2 and E([M rsnp

i ]4) ≤ C81T
−4β(n+p)(x − y)2 where non of these bounds depend on d or e, so

that

sup
d,e∈[−1,1]

E(|AN,T (x)
rsnp −AN,T (y)

rsnp|4) ≤ C82T
−4β(j+k)(x− y)2

(
N2 +N + 1 +

1

N

)
≤ C83|x− y|2

which proves tightness. We cannot use Proposition 11 for the Taylor-remainders which occur if
j = m+ 1 or k = m+ 1. In this cases we use assumption ii) of Theorem 5 to get

E

⎧⎨⎩
[

T∑
i=1

Ψ
(m+1)
i (ξi,t)X

s
i,t

]k⎫⎬⎭ ≤ T kd. (4.33)

So if only one of r, n equals m+ 1 we have

sup
d,e∈[−1,1]

E(|BN,T (x)
rs(m+1)p −BN,T (y)

rs(m+1)p)|4)

≤ C84T
−4β(r+m+1)+2(x− y)2

(
N2 +N + 1 +

1

N

)
≤ C85|x− y|2

respectively if both are m+ 1

E(|BN,T (x)
(m+1)s(m+1)p −BN,T (y)

(m+1)s(m+1)p|4)

≤ C86T
−8β(m+1)+4(x− y)2

(
N2 +N + 1 +

1

N

)
≤ C87|x− y|2.

Step 3 of the proof of Theorem 5. We continue to assume that w.l.o.g. µi = 0, σi = 1 for
i = 1, . . . , N. The proof follows that of Theorem 4. We first show that the difference between
the long run variance with known standardization v̂i and the long run variance with estimated
standardization

v̌i = γ̌i,0 + 2

bi,T∑
i=0

γ̌i,hk

(
h

bT

)
, i = 1, . . . , N,

where

γ̌i(h) =
1

T

N−h∑
t=1

(
Ψi

[
Xi,t − µ̂i,T

σ̂i,T

]
− Y̌i

)(
Ψi

[
Xi,t − µ̂i,T

σ̂i,T

]
− Y̌i

)
, h = 0, . . . , T − 1,

and Y̌i =
1
T

∑T
t=1Ψi

(
Xi,t−µ̂i,T

σ̂i,T

)
converge with rate T−min(2β,2β(m+1)−1).We use the Taylor series

(4.32) and denote Z
(k,l)
i,t = Ψi (Xi,t)

(k)X l
i,t − 1

T

∑T
r=1Ψi (Xi,r)

(k)X l
i,t to obtain

v̂2i − v̌2i =
1

T

T∑
s,t=1

(
Ψi(Xi,t)−

1

T

T∑
r=1

Ψi(Xi,r)

)(
Ψi(Xi,s)−

1

T

T∑
r=1

Ψi(Xi,r)

)
k

(
s− t

bT

)

−
m+1∑

k=0,l≤k

m+1∑
n=0,p≤n

ak,lan,p
1

T

T∑
s.t=1

Z
(k,l)
i,t Z

(n,p)
i,t k

(
s− t

bT

)
. (4.34)
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So by (4.34) and the cr inequality we see

E
([
v̂2i − v̌2i

]2) ≤ 2
(m+2)(m+1)

2
−1

∑
n, k = 0, . . . ,m + 1

n, k ̸= (0, 0)
l ≤ k; p ≤ n

a2k,la
2
n,p

1

T 2
E

⎛⎝⎡⎣ T∑
s,t=1

Z
(k,l)
i,t Z

(n,p)
i,s k

(
s− t

bT

)⎤⎦2⎞⎠ .

To shorten notation we set Ψ(Xi,t)(k)X l
i,t = Ψ(Xi,t)

(k)X l
i,t − E(Ψ(Xi,1)

(k)X l
i,1) for i = 1, . . . , N

and k, l ≤ m+ 1 and arrive at

1

T 2
E

⎛⎝⎡⎣ T∑
s,t=1

Z
(k,l)
i,t Z

(n,p)
i,s k

(
s− t

bT

)⎤⎦2⎞⎠
≤ 24

T 2
E

⎛⎝⎡⎣ T∑
s,t=1

Ψ(Xi,t)(k)X l
i,t Ψ(Xi,s)(n)X

p
i,sk

(
s− t

bT

)⎤⎦2⎞⎠
+

24

T 4
E

⎛⎝⎡⎣ T∑
s,t,r=1

Ψ(Xi,t)(k)X l
i,t Ψ(Xi,r)(n)X

p
i,rk

(
s− t

bT

)⎤⎦2⎞⎠
+

24

T 4
E

⎛⎝⎡⎣ T∑
s,t,r=1

Ψ(Xi,r)(k)X l
i,r Ψ(Xi,s)(n)X

p
i,sk

(
s− t

bT

)⎤⎦2⎞⎠
+

24

T 6
E

⎛⎝⎡⎣ T∑
s,t,r,u=1

Ψ(Xi,r)(k)X l
i,r Ψ(Xi,u)(n)X

p
i,uk

(
s− t

bT

)⎤⎦2⎞⎠ = A1 +A2 +A3 +A4.

We exemplarily look at A1. Let r, n < m + 1, like in the proof of Proposition 10 we want
to rearrange the summands and split the expectations where the time lag is largest by apply-
ing Proposition 9. Here we have the problem that we apply two different functions g1(x) =
Ψ(k)(x)xl − E(Ψ(k)(Xi,1)X

l
i,1) and g2(x) = Ψ(n)(x)xp − E(Ψ(n)(Xi,1)X

p
i,1) to the random vari-

ables Xi,t, so after the rearrangement we have six different sums, the one where g1 is applied to
the two random variables with two smallest indices and g2 to the other and so on:

A1 ≤ 4
∑

a, b, c, d ∈ {1, 2}
a+ b+ c+ d = 6

∑
1≤s≤t≤u≤v≤T

|E[ga(Xi,s), gb(Xi,t), gc(Xi,u), gd(Xi,v)]|

≤ 4
∑

a, b, c, d ∈ {1, 2}
a+ b+ c+ d = 6

∑
s, t, u, v = 1

s+ t+ u+ v ≤ T

|E[ga(Xi,s), gb(Xi,s+t), gc(Xi,s+t+u), gd(Xi,s+t+u+v)]|

≤ 4T
∑

a, b, c, d ∈ {1, 2}
a+ b+ c+ d = 6

⎛⎝∑
u,v≤t

|E[ga(Xi,s), gb(Xi,s+t), gc(Xi,s+t+u), gd(Xi,s+t+u+v)]|

+
∑
t,v≤u

|E[ga(Xi,s), gb(Xi,s+t), gc(Xi,s+t+u), gd(Xi,s+t+u+v)]|

+
∑
t,u≤v

|E[ga(Xi,s), gb(Xi,s+t), gc(Xi,s+t+u), gd(Xi,s+t+u+v)]|

⎞⎠ = B1 +B2 +B3.
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Proposition 9 yields

B1 ≤ C88T
∑
t=1

t2(1 + t)−b = TC89 ≥ B3

and

B2 ≤ TC90 + C91

∑
a, b, c, d ∈ {1, 2}
a+ b+ c+ d = 6

T∑
u,v=1

E[ga(Xi,s), gb(Xi,s+t)]

T∑
u,v=1

E[gc(Xi,s), gd(Xi,s+t)]

≤ TC92 + C93T
2.

If r = m+1 or n = m+1 one can use (4.33) which yields A1 ≤ C94T
3 respectively A1 ≤ C95T

4

if r = n = m+ 1. Together we obtain

sup
d,e∈[−1,1]

E
([
v̂2i − v̌2i

]2) ≤ C96T
−2β + C97T

−2β(m+1)+1 + C98T
−4β(m+1)+2,

from now on we follow the proof of Theorem 4.

Proof of Theorem 6. First we show that I{Xi≤x} is P-NED for x ∈ R with approximating con-

stants ãk = aκk+Φ(aκk)ak and error function Φ̃(x) = I(0,1)(x). Denote therefore R = supx∈R f(x),
then

P (|I{X0≤x} − I{fk(Z−k,...,Zk)≤x}| > ϵ)

= P (|I{X0≤x} − I{fk(Z−k,...,Zk)≤x}| > ϵ||X0 − x| ≤ aκk)P (|X0 − x| ≤ aκk)

+ P (|I{X0≤x} − I{fk(Z−k,...,Zk)≥x}| > ϵ||X0 − x| ≤ aκk)P (|X0 − x| ≥ aκk)

≤ 2aκkR+Φ(aκk)ak.

The above probability is 0 for ϵ ≥ 1, so we can choose Φ̃(x) = I(0,1)(x) for x > 0. Now we
follow the proof in Serfling (1980), except for using Markov’s inequality in combination with
Proposition 11 instead of Hoeffding’s inequality. For better readability we abbreviate µmed as
µ and σMAD as σ as well as its empirical versions µ̂med,T as µ̂ and σ̂MAD,T as σ̂. Let F denote

the distribution function of X1 and F̂T the empirical distribution of (X1, . . . , XT ), then

P (|µ̂− µ| > ϵ) = P (µ̂ > µ+ ϵ) + P (µ̂ < µ− ϵ). (4.35)

For the first summand in (4.35) one has

P (µ̂ > µ+ ϵ) = P (1/2 > F̂T (µ+ ϵ)) = P

(
T∑
t=1

I{Xt>µ+ϵ} > T/2

)

≤ P

(
T∑
t=1

{
I{Xt>µ+ϵ} − E

[
I{Xt>µ+ϵ}

]}
> T [F (µ+ ϵ)− 1/2]

)

≤ G2T
⌊p/2⌋

T pF (µ+ ϵ− 1/2)p
≤ G2

T p/2ϵpMp

where the last inequality is due to the mean value theorem. The same calculation for the second
summand in (4.35) yields (4.8). Now we proof the inequality for the MAD in the same way as
the one for the median. Denote G the distribution function of Y1, then

P (|σ̂ − σ| > ϵ) = P (σ̂ > σ + ϵ) + P (σ̂ < σ − ϵ). (4.36)
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For the first summand in (4.36) we have:

P (σ̂ > σ + ϵ) = P

(
T∑
t=1

I{Yi>σ+ϵ}>T/2

)

≤ P

(
T∑
t=1

I{|Xt−µ̂|>σ+ϵ} > T/2
⏐⏐⏐|µ̂− µ| < ϵ/2

)
P (|µ̂− µ| < ϵ/2)

+ P

(
T∑
t=1

I{|Xt−µ̂|>σ+ϵ} > T/2
⏐⏐⏐|µ̂− µ| > ϵ/2

)
P (|µ̂− µ| > ϵ/2)

≤ P

(
T∑
t=1

I{|Xt−µ̂|>σ+ϵ/2} > T/2

)
+ P (|µ̂− µ| > ϵ/2)

≤ G̃2

T p/2(ϵ/2)pM̃p
+

G2

T p/2(ϵ/2)pMp

which one also obtains for the second summand in (4.36).
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Möttönen, J., Oja, H., Tienari, J., 1997. On the efficiency of multivariate spatial sign and rank tests.
The Annals of Statistics 25, 542–552.

Nevalainen, J., Larocque, D., Oja, H., 2007. On the multivariate spatial median for clustered data.
Canadian Journal of Statistics 35, 215–231.

Nordhausen, K., Oja, H., 2011. Multivariate L1 methods: The package MNM. Journal of Statistical
Software 43, 1–28.

Nordhausen, K., Sirkia, S., Oja, H., Tyler, D.E., 2012. ICSNP: Tools for Multivariate Nonparametrics.
R package version 1.0-9.

Oja, H., 2010. Multivariate nonparametric methods with R. An approach based on spatial signs and
ranks. Lecture Notes in Statistics 199, New York: Springer.

Paindaveine, D., 2008. A canonical definition of shape. Statistics & Probability Letters 78, 2240–2247.

Paindaveine, D., Verdebout, T., et al., 2016. On high-dimensional sign tests. Bernoulli 22, 1745–1769.

Parzen, E., 1957. On consistent estimates of the spectrum of a stationary time series. The Annals of
Mathematical Statistics , 329–348.

109



Pearson, E.S., 1931. The analysis of variance in cases of non-normal variation. Biometrika 23, 114–133.

Pearson, K., 1907. Mathematical contributions to the theory of evolution. XVI. On further methods of
determining correlation. Drapers’ company research memoirs: Biometric series, London: Dulau & Co.

Philipp, W., 1986. Invariance principles for independent and weakly dependent random variables, in:
Dependence in Probability and Statistics (Proc. Conf. Oberwolfach. 1985). Boston, pp. 225–268.

Politis, D.N., 2009. Financial time series. Wiley Interdisciplinary Reviews: Computational Statistics 1,
157–166.

Politis, D.N., 2011. Higher-order accurate, positive semidefinite estimation of large-sample covariance
and spectral density matrices. Econometric Theory 27, 703–744.

Prucha, I., Pötscher, B., 1997. Dynamic nonlinear econometric models: asymptotic theory. Springer.
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