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The time- and frequency dependent energy fluctuations in the Heisenberg chain are studied by means of a continued fraction 
representation. In a broad wave vector and temperature range, the energy fluctuations are found to display dominant oscillatory 
behavior. 

It is well known that the time evolution of the 
energy density of the Heisenberg chain in the hy- 
drodynamic region is governed by the diffusion 
equation. In particular, the diffusion constant at 
infinite temperature has been calculated by com- 
puter simulation [ I, 2]. 

The aim of this paper is to investigate the dy- 
namic properties of the energy fluctuations at low 
temperature and to shed light on the question 
whether the diffusive nature of the energy fluctua- 
tions in the hydrodynamic region persists in the 
wave vector range where hydrodynamic theory is 
not valid. 

Here, we will confine ourselves to the analytic 
results obtained by means of a continued fraction 
representation for the energy-energy correlation 
functions for the classical Heisenberg chain. The 
Hamiltonian is given by 

N 
H = - J  E Si°Si+l, (1)  

i = l  

and the energy density Eq is given by the Fourier 
transformed local energy 

J 
En = - ' 2  Sn)(Sn+I -t- S n_l).  (2)  

In order to study the time-dependent energy- 
energy correlation functions we write its Fourier 
transform in the exact continued fraction repre- 
sentation [3] and we truncate this expansion follow- 
ing the method given in ref. [4]. Application of this 
method requires the knowledge of the frequency 
moments 

< [ [ . . . [ e  q,n] . . . .  nl, e,]> (3) 
~ ( ( E _ q E q )  - -  ~E)2~q,  0) ' 

where the number of commutators equals 2n, and 
because of the nature of the spin commutation 
relations evaluation results in complicated expres- 
sions. 

In order to evaluate the commutators analyti- 
cally, we have developed an interactive computer 
program. This program takes the various symmetry 
properties of the Hamiltonian into account and 
writes the final results in terms of eigenvalues of 
the transfer operator of the Hamiltonian (1). The 
final results for the second and fourth moment are 

(J)q = (12 / f l 2 ) y~u /  (I  - 3y~ + 2y2), (4) 

= 8u y~ - 4y~y2 + 3y~ + y~(4 + Sy2)u 

(~4)q f12 1 -- 3Yl 2 + 2y 2 ' 

(5) 

where Yl = coth fl - 1/ f l ,  Y2 = 1 - 3y~/ f l  [5], u 
1 - cos q and fl denotes the inverse temperature 

in units of J S ( S  + 1). Note that these expressions 
do not depend on the sign of J.  To our knowledge, 
the general result eq. (5) is new. For infinite tem- 
perature, our expressions reduce to those given in 
ref. [1]. We were unable to calculate higher mo- 
ments because of lack of sufficient computer time. 

Truncating the continued fraction at the corre- 
sponding level, we have [4] 

SEE(q, w)/SEE(q ,  O) = ((Wa)q -- (w2)2q) 

X ((034)q/(Oj2)q) 1/2 

/ [  (02( 0)2 - -  <0j4>q/<O.)2>q) 2 

"1- (03')q(O) 2 - -  (032)q) 2 

/ ( w 2 ) q ] ,  (6) 
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Fig. 1. The normalized energy-energy structure factor for q = 
*r/16 and some temperatures. The propagating mode has the 
largest spectral weight if the wave vector is larger than the 

inverse correlation length. 
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Fig. 2. The normalized energy-energy structure factor for q =, 
3,r/16 and a set of temperatures. 

with 

S~E(q, 0) ---- (1 -- 3y 2 + 2),2)(1 + cos q) /6 .  

In  the limit T --, O, we obtain  

(7) 

SEE(q, 0) ----- T2(I + COS q) /2 ,  (8) 

( ~ O 2 ) q  ----- 8 sin 2 q /2 ,  (9) 

(o~4)q - 96 sin 4 q/2 ,  (10) 

F r o m  eq. (8), it follows that  the probabil i ty for 
energy excitations to occur  vanishes for T--> 0. 
F r o m  eqs. (9) and (10) we conc lude  that, in con-  
trast with the spin excitation spectrum, the normal-  
ized excitation spect rum for T = 0 canno t  be writ- 
ten as a sum of two delta funct ions because this 
requires (o~4)q = (~02)~. 

In  the limit T ~ 00 and  q ~ 0, eq. (6) reduces to 
a Lorentz ian  centered a round  ¢o = 0. The  width is 
de termined by DEq 2. The energy diffusion cons tant  
D E = 0.821dlS is larger than the one obta ined by  a 
Gauss ian  approximat ion  [1] bu t  is in serious dis- 
agreement  with the result D E = ( 3 _  1)IJIS ob-  
tained by computer  s imulat ion [1, 2]. This can be 
due to the fact that  the approximat ions  that  lead to 

eq. (6) are invalid at infinite temperature.  In  figs. 1, 
2 some typical lineshapes for the energy density 
f luctuations are depicted. It  is clear that  for small 
wave vectors and low temperatures,  energy fluctua- 
tions are characterized by a d o m i n a n t  propagat ing  
mode  and  a relaxation mode.  The spectral weight 
of the propagat ing par t  decreases with increasing 
temperature.  In general, we f ind that  the propagat-  
ing mode  disappears if the inverse correlat ion 
length K = - In Y t is larger than  the wave vector.  
It  is remarkable  that  the three pole expansion for 
the ene rgy-ene rgy  correlat ion funct ion does no t  
lead to the criterion q >> ~1/2 which seems to be the 
typical criterion for the three pole approximat ion  
of  the sp in-sp in  correlat ion funct ion [4, 5]. 
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