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Abstract. A previous isothermal study (Estevez et al., Journal of Mechanics and Physics of Solids 48,
2585–2617, 2000) has shown that the toughness of glassy polymers is governed by the competition
between shear yielding and crazing. The present work aims at investigating loading rates for which
thermal effects need to be accounted for. The influence of the heat coming from the viscoplastic shear
yielding and from crazing on their competition and on the toughness is examined. Crazing is shown
to be the dominant heat source, and the dependence of the craze properties on temperature appears
to be key in controlling the toughness of the material.
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1. Introduction

Studies of temperature effects during fracture of glassy polymers aim at investigat-
ing how the toughness varies with loading rates (e.g. Döll, 1973, 1976; Fuller et al.,
1975). Plastic dissipation during the fracture process is converted into heat, the mea-
sure of which can be correlated with the energy release rate (Döll, 1976). Döll (1973)
has argued that the heat originates from localized plastic dissipation ahead of the
crack tip, within a Dugdale zone. This picture is consistent with early evidence of
crazing as the mechanism for fracture in glassy polymers (Kambour, 1973) and with
the traces of crazes along the fracture surface of PMMA observed by Fuller et al.
(1975) for a crack speed up to 300 m/s. For higher crack velocities (observed up to
650 m/s,) the fracture surfaces become rougher and no evidence of crazes is avail-
able. Although clearly observed for cracks running at speeds up to 300 m/s, crazing
was assumed to operate for any crack velocity and serves as the only heat source
by Fuller et al. (1975). These authors also report a steady increase of heat generated
with crack speed. The increase of the amount of heat is accompanied by an increase
of the temperature which is estimated by Döll (1973) and Fuller et al. (1975) to be
hundreds of Kelvins. Recently, Bjerke and Lambros (2003) have reported estimates of
the temperature increase from infrared measurements. Their study suggest that the
temperature rise is not as large but about one hundred Kelvins. The discrepancy is
likely to come from the intermediate analysis of the experimental data of Döll (1973)
and Fuller et al. (1975).
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The fracture of glassy polymers shows a marked increase of the toughness in the
transient regime between static and dynamic conditions. This has been observed by
Williams and Hodgkinson (1981) for various polymers with Charpy tests in which
different loading rates are prescribed by changing the dimensions of the specimen
and the speed of the impact striker. The measured energy release rate Gc shows a
noticeable increase for loading times till fracture of about 0.2 ms. In studies devoted
to the analysis of the dynamic fracture of PMMA (Wada, 1992; Wada et al., 1996;
Rittel and Maigre, 1996), a similar feature is observed for loading rates around K̇I =
104 MPa

√
m/s. By combining the experimental results with FEM calculations, an

estimate of the dynamic toughness of a few MPa
√

m is derived, which is consistent
with the results reported by Williams and Hodgkinson (1981).

The above mentioned increase in toughness corresponds to a second transition
opposite to the classical ductile-to-brittle transition operating at lower rates. This sec-
ond one is observed for intermediate loading rates, between quasi-static and dynamic
conditions, for which thermal effects become important. Temperature variations are
thought to occur prior to crack propagation from plastic conversion into heat
(Williams and Hogdkinson, 1981) but also from thermoelastic cooling as reported by
Rittel (1998).

The present investigation aims at exploring the variations of the toughness with
loading rate of glassy polymers when temperature effects need to be accounted for.
It is now established that their failure involves both shear yielding and crazing. Shear
yielding is the typical high-stress inelastic response of glassy polymers featuring soft-
ening upon yielding followed by progressive hardening. Crazing also involves some
plasticity during the thickening of craze fibrils, but this takes place at a smaller
size scale. A previous analysis (Estevez et al., 2000) has used a small-scale yielding
model to investigate the influence of these two mechanisms on the fracture tough-
ness. Shear yielding is incorporated through a viscoplastic model, while a cohesive
surface is used to describe crazing. Although restricted to isothermal conditions,
it was demonstrated that the predicted fracture toughness for a given loading rate
is governed by the competition between the natural time scales of both mecha-
nisms.

The extension of the above-mentioned work to a coupled thermo-mechanical anal-
ysis is necessary to study loading rates at which the isothermal assumption does
not hold anymore. The coupled thermo-mechanical framework used here has been
detailed in (Basu and Van der Giessen, 2002) for a study on stationary crack tip
fields for mode I loading. This study is extended here to incorporate crack growth
by crazing, including the plastic dissipation involved in the crazing process and its
conversion to heat. The temperature rise at the crack tip can originate from plas-
ticity in the bulk material and plastic dissipation during the crazing process. The
consequences of the temperature variation on shear yielding and crazing, and their
influence on the fracture toughness are investigated.

Tensors are denoted by bold-face symbols, ⊗ is the tensor product and · the scalar prod-
uct. For example, with respect to a Cartesian basis ei , AB =AikBkjei ⊗ ej , A ·B =AijBij

and LB =LijklBklei ⊗ ej , with summation implied over repeated Latin indices. The sum-
mation convention is not used for repeated Greek indices. A prime ( )′ identifies the devi-
atoric part of a second-order tensor, I is the second-order unit tensor and tr denotes the
trace.
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2. Constitutive law for amorphous polymers

When crazing does not take place or is suppressed, as in compression or shear tests,
amorphous glassy polymers can undergo quite large strains (up to about 100%).
Their response shows softening upon yielding followed by progressive hardening as
the deformation continues. In a numerical investigation of inelastic deformation and
localization in polycarbonate, Lu and Ravi-Chandar (1999) pointed out that mac-
roscopic softening of the specimen does not necessarily imply softening to be an
intrinsic property of the material. However, in an analysis of the stress and strain
fields around the tip of a blunted crack under mode I, Lai and Van der Giessen
(1997) showed that intrinsic softening is necessary to capture the localized strain
fields observed experimentally as in (Ishikawa et al., 1977).

We start out with the constitutive description of amorphous polymers at large
plastic strains for temperatures below the glass transition Tg, postponing that for
T �Tg for the moment. The constitutive model is based on the formulation of Boyce
et al. (1988) but we use a modified version introduced by Wu and Van der Giessen
(1993). Details of the governing equations and the computational aspects can be
found in Wu and Van der Giessen, (1996). The reader is also referred to the review
by Van der Giessen (1997) together with a presentation of the thermo-mechanical
framework in Basu and Van der Giessen (2002).

The constitutive model makes use of the decomposition of the rate of deforma-
tion D into an elastic De and a plastic part Dp as D=De +Dp. Prior to yielding, no
plasticity takes place and Dp = 0. In this regime, most amorphous polymers exhibit
visco-elastic effects but these are neglected here since we are primarily interested in
the effect of the bulk plasticity. Assuming the elastic strains and the temperature
differences (relative to a reference temperature T0) to remain small, the thermo-elastic
part of the response is taken to be governed by

∇
σ=LeD

e −CαcṪ I , (1)

where
∇
σ is the Jaumann rate of the Cauchy stress and LLLe the usual fourth-order iso-

tropic elastic modulus tensor. The parameters C and αc are the bulk modulus and the
coefficient of cubic thermal expansion. Assuming that the yield response is isotropic,
the isochoric visco-plastic strain rate

Dp = γ̇ p

√
2 τ

σ̄ ′ , with τ =
√

1
2 σ̄ ′ · σ̄ ′ (2)

is specified in terms of the equivalent shear strain rate γ̇ p = √
Dp ·Dp, the driving

stress σ̄ = σ − b and the related equivalent shear stress τ . The back stress tensor b

describes the progressive hardening of the material as the strain increases and will
be defined later on. The equivalent shear strain rate γ̇ p is taken from Argon’s (1973)
expression

γ̇ p = γ̇0 exp

[
−As0

T

{
1−

(
τ

s0

)5/6
}]

for T <Tg, (3)

where γ̇0 and A are material parameters and T the absolute temperature. Argon’s
model is based on the notion that shear yielding below Tg originates from the motion
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of molecular segments through a thermally activated kinking process (note that plas-
tic flow is inherently temperature dependent). The shear strength s0 in Equation (3) is
related to elastic molecular properties in Argon’s original formulation but is consid-
ered here as a separate material parameter. It has been found in a number of works
to give a fair description of rate and temperature yield of polymers including PMMA
(Arruda et al., 1995), SAN (Steenbrink and Van der Giessen, 1999) and PC (Boyce
and Arruda, 1990). In order to account for the effect of strain softening and for the
pressure dependence of the plastic strain rate, s0 in (3) is replaced by s +αp, where α

is a pressure sensitivity coefficient and −p= (1/3)tr σ . The shear strength s is taken
to evolve from the initial value s0 with the plastic strain rate through

ṡ =h(1− s/sss)γ̇
p (4)

as a simple way to incorporate strain softening. Here, h controls the rate of softening
while sss represents the final, steady state value of s. The energy dissipation rate per
unit volume Ḋ is given by

Ḋ = σ̄ ′ ·Dp =
√

2 τ γ̇ p . (5)

The resulting temperature rise will be accounted for in the coupled analysis to be pre-
sented later on. As discussed in more detail by Basu and Van der Giessen (2002),
Equation (5) emphasizes that only part of the plastic work σ ′ · Dp in amorphous
polymers is dissipated; the rest, b′ ·Dp, is stored in the distorted network.

Completion of the constitutive model requires the description of the progressive
hardening of amorphous polymers upon yielding due to deformation-induced stretch
of the molecular chains. This effect is incorporated through the back stress b in the
driving shear stress τ in Equation (2). Its description is based on the analogy with
the stretching of the cross-linked network in rubber elasticity, but with the cross-
links in rubber being replaced with the physical entanglements in a flowing amor-
phous glassy polymer (Boyce et al., 1988). The deformation of the resulting network
is assumed to derive from the accumulated plastic stretch (Wu and Van der Giessen,
1993) so that the principal back stress components bα are functions of the principal
plastic stretches λβ as

b=
∑

α

bα(e
p
α ⊗ ep

α) , bα =bα(λβ) ,

in which e
p
α are the principal directions of the plastic stretch. In a description of the

fully three-dimensional orientation distribution of non-Gaussian molecular chains in
a network, Wu and Van der Giessen (1993) showed that b can be estimated accu-
rately with the following combination of the classical three-chain model and the
eight-chain description of Arruda and Boyce (1993)

bα = (1−ρ)b3−ch
α +ρb8−ch

α , (6)

where the fraction ρ = 0.85λ̄/
√

N is based on the maximum plastic stretch λ̄ =
max(λ1, λ2, λ3) and on N , the number of segments between entanglements. The use
of Langevin statistics for calculating bα implies a limit stretch of

√
N . The expres-

sions for the principal components of b3−ch
α and b8−ch

α contain a second material



Analysis of temperature effects 253

parameter: the initial shear modulus CR =nkT , in which n is the volume density of
entanglements (k is the Boltzmann constant).

Based on a study of the temperature dependence of strain-induced birefringence
in amorphous polymers, Raha and Bowden (1972) suggested that the thermal disso-
ciation of entanglements can be described by

n (T )=B −D exp (−Ea/RT ) , (7)

where Ea is the dissociation energy, R the gas constant, and where B and D are
material constants. As pointed out by Arruda et al. (1995), this evolution law is sub-
ject to the side condition nN = constant in order to keep the number of molecular
links constant. Therefore, the back stress according to (6) is also temperature depen-
dent through N(T ) and CR = n(T )kT . The material parameters B and D are esti-
mated here from the assumption that the back stress vanishes as the temperature
approaches Tg, resulting in n

(
Tg

)=0 so that B/D = exp
(−Ea/RTg

)
.

The formulation above is assumed to hold for temperatures up to the glass tran-
sition Tg. In an earlier preliminary study, Estevez et al. (2000b) observed that locally
the temperature can reach Tg at quite early stages of the crack propagation. The area
affected by such a large temperature increase was concentrated at the craze-crack
interface of a running crack, over a region of the order of a micron. When this situa-
tion was encountered, the calculations were aborted thus restricting the loading range
under investigation.

In order to overcome this, the constitutive law is extended here with a formula-
tion of the material response for T > Tg. Most studies found in the literature focus
on the description of the molten state (Agassant et al., 1991) due to its practical
importance while little attention is paid to the response of glassy polymers in the
rubbery state, near Tg. The mechanical response of molten material is Newtonian for
low strain rates (γ̇ <1 s−1) and non-Newtonian (pseudo-plastic) for strain rates larger
than 1 s−1. One of the most common non-Newtonian models is of the form τ =ηγ̇ m,
where m and η are material parameters with η being also temperature dependent. For
the loading rates to be considered in the present work, we will assume that this non-
Newtonian response prevails as soon as Tg is exceeded by replacing (3) with

γ̇ p =κ γ̇0

(
τ

s0

)1/m

for T >Tg. (8)

In this expression, η has been substituted for convenience by s0/(κ γ̇0)
m, with s0

and γ̇0 being below-Tg parameters in (3), and κ a non-dimensional constant. The
deformation in the molten state is generally believed to involve chain slippage and
temporary entanglements between the moving chains resulting in the non-Newtonian
viscosity (Agassant et al., 1991). The details of the deformation process are lumped
into the parameters η (or κ) and m so that no back stress contribution appears above
Tg.

The exponent m is observed to vary between 0.3 and 1 for molten polymers
(Agassant et al., 1991) but for those exhibiting a marked non-Newtonian response
like most glassy polymers, m ranges from 0.3 to 0.5; the value of 0.4 is adopted.
For a given temperature, the variation of the viscosity η with increasing strain rate
is observed to decrease from a Newtonian value η0 at low strain rates to a level
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five or six decades smaller (Van Krevelen, 1990; Agassant et al., 1991). For a tem-
perature around Tg, the value of η0 can be estimated from (Van Krevelen, 1990) to
be of the order of some MPa’s for materials like PMMA or PC. A smaller value
is expected in the non-Newtonian regime so that for temperatures above Tg a con-
stant value of η = 0.35 MPa (κ = 0.02) is used to describe the material response in
the molten state. With this simple description, we only aim at being able to continue
our calculations if the temperature exceeds Tg locally, when the crack propagates.
We need to keep in mind that we are primarily concerned with temperatures below
Tg and the incorporation of more sophisticated models as found in (Van Krev-
elen, 1990; Agassant et al., 1991) is out of the scope of the present investiga-
tion.

Figure 1 shows the material’s response for uniaxial tension that is obtained
with the constitutive model described above under adiabatic conditions, i.e. when
all the dissipated energy, defined in Equation (5), is converted into a tempera-
ture rise. The material parameters used are given in Table 1 and are representa-
tive of SAN in the glassy state. The parameters of SAN have been adopted since
its response is intermediate between that of PMMA which exhibits a higher yield
stress under compression and an early failure under tension and that of polycar-
bonate which deforms plastically for a lower yield stress than SAN and PMMA
in compression and which is one of the most ductile glassy polymers under ten-
sion. The thermal properties reported in Table 2 are borrowed from (Basu and Van
der Giessen, 2002). These are not varying noticeably for most of the glassy poly-
mers so that the parameters of Table 2 are thought to be representative of the
thermal properties of this class of materials. Before the glass transition tempera-
ture is attained, the constitutive response is given by Equation (3) while beyond the
glass transition temperature, it switches to Equation (8). At strain rates of 102 s−1

and 104 s−1, the material abruptly loses almost all its stress carrying capacity as
soon as the glass transition temperature is reached. However, at even higher strain
rates of 106 s−1, the flow strength of the melt remains comparable to that of the
solid.

0 0.5 1 1.5 2
0

0.5

1

1.5

ε

/s0

104 /s

106 /s

102 /s

σ

Figure 1. Stress (σ )– strain (ε) response of the bulk material for a uniaxial tension at different strain
rates with the parameters of Table 1.
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Table 1. The set of bulk parameters used in this study, representative of SAN at room temperature
with s0 = 120MPa (Steenbrink and Van der Giessen, 1999) supplemented with κ and m involved in
the description for T >Tg in Equation (8).

γ̇0(s−1) E/s0 ν sss/s0 As0/T h/s0 α N CR/s0 κ m

1.06×108 12.6 0.38 0.79 52.2 12.6 0.25 12.0 0.033 0.02 0.4

Table 2. The set of parameters used in the thermal part of the analysis (Basu and Van der Giessen,
2002).

Ea/R k αc ρ cv Tg

2.8×103 K 0.35 W/mK 2×10−4 K−1 1.08×103 kg/m3 1.38×103 J/kgK 383 K

3. Craze modelling

Failure of glassy polymers is assumed to originate from crazing. A craze appears geo-
metrically similar to a crack but the craze surfaces are bridged by a web of polymer
fibrils which provide some load-bearing capacity, in contrast to the traction-free faces
of a crack. Crazing proceeds in three stages: (1) initiation; (2) thickening of the craze
fibrils; (3) breakdown of the fibrils and nucleation of a crack. We adopt a model of
crazing within the framework of a cohesive zone which has been initiated by Tijssens
et al. (2000). The reader is referred to this reference together with (Estevez et al.,
2000) for details of the formulation.

Following the experimental study by Sternstein and Ongchin (1969) and under
plane strain conditions, crazing is taken to be initiated when

σn ≥σm − A0

2
+ B0

6σm
, (9)

in which σn is the stress normal to the plane of initiation and σm = (1/3) tr σ is the
mean stress. The coefficients A0 and B0 are material parameters and possibly tem-
perature dependent (Sternstein and Myers, 1973). As crazes appear perpendicular to
the direction of maximal principal stress, the condition (9) is checked throughout the
material by taking the local maximum principal stress as σn.

Based on Kramer’s description (1983, 1990), the growth of craze fibrils involves
plastic flow, concentrated within a thin layer between the fibrils and the bulk. Moti-
vated by this, we take the thickening of a craze, i.e. the lengthening of the fibrils, to
be governed by an expression similar to Equation (3) (Tijssens et al., 2000; Estevez
et al., 2000)

�̇c
n = �̇0 exp

[−Acσ c

T

{
1− σn

σ c

}]
, (10)

where �̇0, Ac and σ c are material parameters (σ c is the athermal stress for craze
thickening). Thus, the thickening rate of the craze is temperature and time dependent.
Although initially developed for the analysis of craze thickening at temperatures
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below the glass transition Tg, the formulation of the craze growth rate in Equa-
tion (10) is assumed to remain valid above Tg, during the propagation of the crack.
Thus, we neglect the possible contribution from chain disentanglement to the craze
thickening when the temperature is close to Tg. Once crazing has initiated, the thick-
ening process continues until �c

n reaches a critical thickness �c cr
n , a material param-

eter that primarily depends on the molecular weight.
The complete traction–separation law used to describe crazing is

σ̇n =kn
(
�̇n − �̇c

n

)
, (11)

in which �̇n is the prescribed thickening rate on the craze surface, �̇c
n is the craze

thickening rate from Equation (10) once the craze initiation criterion (9) is satisfied.
When the condition �c

n =�c cr
n is attained, the related crack nucleation is accounted

for by prescribing σn =0 at the location of fibrils breakdown along the cohesive zone.
Figure 2 gives a schematic traction-thickening response of a craze to a constant

thickening rate �̇n in accordance with Equation (11). In the regime [1], crazing has
not yet initiated and the increase of σn results in a small reversible opening of the
cohesive surface, controlled by the elastic stiffness kn in (11). Once craze initiation
has taken place, the craze widens and depending on the stress state prior to craze ini-
tiation and the prescribed thickening rate �̇n, a transient [2a] hardening or [2b] soft-
ening takes place prior to fibrillation at approximately constant normal stress. This
process continues up to point [3] where the condition of craze breakdown is reached
and a crack is formed locally.

As a craze thickens, the related energy dissipation is accounted for through the
viscoplastic thickening rate (10). Within a two-dimensional cohesive zone representa-
tion of a craze, the heat generated during the craze thickening process is accounted
for by defining a heat flux over the cohesive surface, as will be discussed in the next
section.

[3]

[3]
[1] Craze initiation

Craze breakdown

[2b]

[2a]

∆cr
n ∆n

σn

Figure 2. Schematic representation of the cohesive surface traction–opening law: [1] no crazing, [2]
craze thickening for either a hardening (a) or a softening (b) response, [3] craze fibril breakdown at
�n =�cr

n and subsequent crack formation.
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4. Problem formulation

Like Estevez et al. (2000), we perform a plane strain, small-scale yielding analysis of
mode I crack growth in a homogeneous polymer. The crack is initially blunted with
a tip radius rt. Crazing is restricted to take place along the crack symmetry plane
and we exploit the symmetry of the problem to analyse only half of the geometry
(see Figure 3). Within a standard small-scale yielding framework, loading is applied
via the mode I elastic K field prescribed at the remote boundary, and positioned at
a distance R =200rt from the crack tip. The mesh has been designed and verified to
be able to accurately capture the emerging localized fields.

The formulation is extended here to account for thermal effects associated with
the heat generated by plastic dissipation in the bulk and from the craze process. With
the bulk plastic dissipation being given by (5), the energy balance inside the material
can be written as

ρcvṪ =k∇2T + σ̄ ′ ·Dp (12)

with k the isotropic heat conductivity in accordance with Fourier’s law, ρ the mass
density and cv the specific heat.

There is a second source of energy dissipation, namely the fibrillation process dur-
ing craze thickening, as described in Section 3. Per unit of area, the rate of dissipa-
tion amounts to σn�̇

c
n and, in the cohesive surface methodology, represents a heat

flux q =k∇T into the system through the surface of the craze. When crazing has not
yet initiated, there is no heat flux across the symmetry plane x2 =0. The energy bal-
ance (12) thus becomes subject to the following boundary condition on the cohesive
surfaces:

∂T

∂x2
=

{
0 on x2 =0, without a craze,
1
2σn�̇

c
n/k on x2 =± 1

2�n(x1),along the craze surfaces,
(13)

where �n is the thickness along the cohesive surface ahead of the crack (the factor
1/2 is due to symmetry). All other boundaries are assumed to be insulated. For this

thermally insulatedR

rt

craze heat u x

2

1

Ti 0

KI displacement fields u1 and u2

Figure 3. Schematic representation of the problem formulation and boundary conditions for the cou-
pled thermal and mechanical analysis.



258 R. Estevez et al.

Table 3. The set of craze parameters used in this study (case 8 in Estevez et al., 2000).

A0/s0 B0/(s0)
2 �c cr

n /rt σ c/s0 Acσ c/T �̇0/rt(s−1)

0.68 1.4 0.1 0.83 136.5 100

second source of heat, we assume that the heat flux originates from the full conver-
sion of the plastic work σn�̇

c
n involved in the craze widening process. In this case,

the fraction of the energy that remains blocked by the craze structure is difficult to
estimate and the assumption of a full conversion in the definition of the heat flux in
(13) provides an upper bound for the estimate of the temperature variations.

The heat Equation (12) is coupled to the equations governing the mechanical
response through the temperature dependence of the bulk viscoplastic strain rate (3),
the craze thickening rate (10) and the thermal expansion in (1). A quasi-static finite
strain analysis which uses a total Lagrangian description for the continuum field
equations is carried out while the cohesive surface is analyzed in the current config-
uration. The virtual work rate expression for this problem then reads

∫

V

τ · δη̇ dV +
∫

Scz

σnδ�̇n dS =
∫

∂V

T · δν dS (14)

with V and ∂V denoting the volume of the region in the initial configuration and
its boundary, respectively, and where Scz is the cohesive surface in the current state.
In (14), τ is the second Piola–Kirchhoff stress tensor, T the corresponding traction
vector; η̇ and ν are the conjugate Lagrangian strain rate and velocity. The governing
equations are solved in a linear incremental fashion based on the rate form of (14),
supplemented with an equilibrium correction, the details of which can be found in
Wu and Van der Giessen (1996), Tijssens et al. (2000) and Basu and Van der Giessen
(2002).

The system of differential equations resulting from the finite element discretization
of the energy balance from Basu and Van der Giessen (2002) are modified to include
the heat flux vector DDDc from the crazing process

C�̇+D�=DDDb +DDDc (15)

Here, is the vector of nodal temperatures and DDDb is the heat source vector due to
plastic dissipation in the bulk. The matrices C and D depend on the properties ρcv

and k, respectively. Equation (15) is integrated in time by an unconditionally stable
central difference scheme and the same finite element mesh is used as for the mechan-
ical part (14). The coupled problem is handled in a staggered manner.

5. Results

The aim of the present study is to give insight into the influence on fracture of the
temperature elevation due to dissipation caused by both shear yielding in the bulk
and by crazing. The material and craze parameters are reported in Tables 1–3.

As mentioned in Section 2, the parameters of the bulk in the glassy state are rep-
resentative of SAN. These are adopted in the present numerical investigation as SAN
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exhibits an intermediate response between the brittle PMMA and the ductile PC. The
set of material parameters is supplemented with those of κ and m for the description
above Tg in Equation (8). The parameters involved in the thermal part of the analy-
sis for the estimation of the temperature dependence of the entanglement density and
for the bulk conductivity are given in Table 2. These are copied from Basu and Van
der Giessen (2002) and are thought representative to be for most glassy polymers .
The values for the craze description are borrowed from the previous isothermal study
(Estevez et al., 2000, case 8) because these were shown to be able to capture a ductile
to brittle transition at low rates.

The range of loading rates where thermal diffusion needs to be considered is
estimated through an argument (Basu and Van der Giessen, 2002) based on a one-
dimensional problem. The following non-dimensional quantity κ compares a charac-
teristic time scale t0 associated with the loading conditions to the time for heat to
diffuse over a characteristic length L0 of the problem

κ = kt0

ρcvL
2
0

.

For κ �1, isothermal conditions prevail while κ �1 when the situation is adiabatic.
The characteristic time scale t0 for the present study is defined as the time to attain
the material toughness Kcr

I for a given loading rate as t0 = Kcr
I /K̇I . The toughness

of amorphous polymer ranges from 1 MPa
√

m for PMMA to 3 ∼ 4 MPa
√

m for PC
under quasi-static conditions; for our estimate of t0, we use Kcr

I = 1 MPa
√

m. The
characteristic length L0 is taken to be the size of the plastic zone for perfectly plas-
tic material, i.e. L0 ≈ (

KI/τy
)2

, in which τy is the yield stress of the bulk. The latter
value can be obtained from pure shear tests at prescribed strain rates and tempera-
tures, but a useful definition of the shear rate near the crack tip is ambiguous. For
simplicity, we just use the high strain-rate, low temperature estimate τy ≈ s0 so that
L0 ≈ (KI/s0)

2.
For κ ≈ 1, heat conduction needs to be accounted for. In terms of loading rate,

this yields the estimate

K̇I = ks4
0

ρcvK
3
I

≈100 MPa
√

m/s

beyond which a coupled thermo-mechanical analysis is required. To illustrate the
transition from isothermal to coupled thermo-mechanical conditions, loading rates of
30, 300 and 3 × 103 MPa

√
m/s will be considered (values smaller than 30 MPa

√
m/s

have already been investigated in Estevez et al. (2000)).

5.1. Reference case

For the lower loading rate of 30 MPa
√

m/s, the calculated resistance curve is shown
in Figure 4. The applied stress intensity factor is non-dimensionalized with s0 and√

rt, and is plotted against the length of the craze Lc plus that of the crack length
La (relative to the initial crack tip position) normalized with rt. Three regimes are
observed which are typical for the present model. The triangle indicates the onset of
craze initiation when the condition (9) is fulfilled. When crazing initiates, the bulk
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Figure 4. Crack growth resistance vs. craze length Lc plus crack length La for K̇I = 30 MPa
√

m/s.
The triangle identifies the initiation of crazing, while the square marks the start of crack propaga-
tion after craze fibril breakdown. The circle marks a state during crack propagation, which is referred
to in Figures 5 and 6.

response is elastic in this case and crazing nucleates at the crack tip. As the load-
ing is further increased, crazing proceeds and due to the load-carrying capacity of
the fibrils, some R-curve effect is observed. As the loading marked by the square
is attained, the critical craze thickness �c cr

n is reached at the tail of the craze and
crack propagation starts. As the crack propagates, the resistance hardly increases,
indicating the rather brittle response of the material. The level of the corresponding
stress intensity factor is then taken as the critical toughness. Once crazing devel-
ops, the craze length Lc increases steadily until the condition for craze fibrils break-
down is attained. Then, crack propagation starts and La increases as the crack
advances (Figure 4). At early stages of crack propagation, the craze length dimin-
ishes which corresponds to the breakdown of the first fibrils. Then, a stationary
regime with a roughly constant craze length of about 100 µm during crack propa-
gation is observed. Note that this craze length is obtained with a crack tip radius
rt =0.1 mm and �c cr

n =10µm (see Table 3). Reducing the crack tip radius and keep-
ing the critical craze thickness the same did not change this prediction. On the other
hand, reducing the critical craze thickness down to �c cr

n = 3µm results in a craze
length of about 60–70 µm. For this range of parameters, the predicted craze length
is consistent with the measured ones reported by Döll (1983; Döll and Könczöl,
1990).

Figure 5 shows the distributions of the plastic shear rate at the loadings marked
by the square and the circle in Figure 4, i.e. at the onset of and during crack propa-
gation. The plastic strain rate γ̇ p from (3) is normalized by �̇0 = K̇I/

(
s0

√
rt

)
, a refer-

ence strain rate at a distance rt from the crack tip. Prior to crack propagation, it can
be seen in Figure 5a that shear bands are active away from the crack symmetry plane
rather than at the crack tip, due to the stress relaxation caused by crazing. Dur-
ing crack propagation (see Figure 5b), however, the plastic activity is concentrated
around the crack–craze interface. At this stage, most of the deformation is accom-
modated by crazing while the bulk material behaves primarily elastic, thus resulting
in a brittle response.
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Figure 5. Plastic shear rate distribution (a) at the onset of crack propagation (square in Figure 4)
and (b) during crack propagation (circle in Figure 4) for K̇I =30 MPa
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m/s.

The temperature distributions prior to and during crack propagation are reported
in Figure 6. At the onset of craze initiation, no temperature change is observed as
there is very little plastic deformation in this case. Prior to crack propagation (see
Figure 6a), a slight increase of about 3K is observed at the crack tip, due to the craze
viscoplasticity only. Heat generation is not observed from the emerging shear bands.
Figure 6b shows the temperature distribution during crack propagation. The intense
plasticity in the bulk around the crack–craze interface combined with craze thicken-
ing generates a heated zone along the crack path. The temperature increase is notice-
able when the crack runs, but no toughening effect results from this temperature
rise. Since the temperature remains unchanged during unstable crack propagation,
the toughness found for the low loading rate with the thermo-mechanical analysis is
identical to that found in the isothermal study (Estevez et al., 2000).

5.2. Temperature effects on shear yielding and craze thickening

Estevez et al. (2000) have shown that the fracture toughness is related to the com-
petition between shear yielding and crazing, as expressed through their characteristic
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Figure 6. Temperature distribution (a) at the onset of crack propagation and (b) during crack prop-
agation (corresponding to the square and circle in Figure 4, respectively) for K̇I =30 MPa
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time scales. For instance, when crazing takes place, the condition for craze fibril
breakdown defines the time tc until crack propagation. This time scale can be defined
through

∫ tc

0
�̇c

n(T , σn)dt =�c cr
n . (16)

For a given loading rate K̇I , the viscoplastic craze thickening �̇c
n governs the time tc

till craze breakdown, and the related toughness as Kcr
I = K̇I tc. Therefore, the tough-

ness is not a material constant but is time and temperature dependent, which origi-
nates from the viscoplasticity of crazing.

Figure 7 gives the resistance curves obtained for increasing loading rates. The
three regimes reported above for K̇I = 30 MPa

√
m/s are seen to occur for higher

rates as well. Craze initiation takes place at the loading level indicated by the trian-
gle. In all cases shown, the bulk of the material is still elastic when the craze nucle-
ates at the crack tip. The onset of crack propagation is marked with a square and
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Figure 7. Resistance curves for loading rates increasing over two decades compared to the reference
value of Figure 4. The onset of craze initiation is indicated by the triangle, the square shows when
the condition for craze fibril breakdown is first encountered and the circle corresponds to the prop-
agation of the crack, which takes place at a constant load used to define the material’s toughness.

the loading level at this instant shows negligible variations with the loading rate, as
does the length of the craze that has developed prior to crack propagation.

For the higher loading rates of K̇I =300 MPa
√

m/s and 3000 MPa
√

m/s, the tem-
perature distributions prior to crack propagation reported in Figure 8 shows that
the maximum temperature increase is located near the original crack tip. This is
where the craze has initiated and attained its maximum thickness. It appears that
heat generated solely from the craze is responsible for the temperature rise along
the craze faces. At this location, the temperature rise increases as the loading rate
increases with a rise of 13 K for K̇I = 300 MPa

√
m/s (Figure 8a) and 40 K for

K̇I = 3000 MPa
√

m/s (Figure 8b) at the onset of crack propagation. As the crack
advances, plasticity occurs only at the crack–craze interface so that the heat gener-
ated from the craze thickening and from bulk yielding is responsible for the temper-
ature increase as shown in Figure 9.

In order to check if crazing is the dominant heat source in the problem for these
two loading rates, we have performed calculations in which crazing is suppressed so
that heat generates only from the bulk. At the same load level as the crack started to
propagate with crazing accounted for, Figure 10 shows the plastic strain rate distribu-
tions without crazing. For the two highest loading rates considered, shear bands have
developed from yielding at the crack tip with a progressive expansion of the plastic
zone characteristic of intrinsic softening materials as analyzed by Lai and Van der
Giessen (1997). The plastic zone is slightly larger for the lowest loading rate since
yielding takes place earlier during the loading history but with minor consequences
for the plastic strain rate distribution. A noticeable temperature rise is observed
for the highest loading rate of K̇I = 3000 MPa

√
m/s as reported in Figure 11. Its

magnitude is about 10 K; a factor of four lower than that found with crazing (see
Figure 8b). Apparently, crazing causes a stress relaxation which reduces the heat gen-
eration in the bulk. Since this heat source is already modest without crazing, heat
generated by bulk viscoplasticity is probably negligible all together as soon as craz-
ing takes place.
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Figure 8. Temperature distribution prior to craze fibril breakdown marked by the square in Figure 7
for (a) K̇I =300 MPa
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Thus, while a noticeable temperature increase can be observed prior to or during
the early stages of crack propagation investigated here, no influence on the toughness
is observed. Although the temperature increase prior to crack propagation can be up
to 40 K, it has no consequences for crack growth. At this point, with the ingredients
we put in the modeling, we are not able to predict any brittle-to-ductile transition as
observed experimentally to occur in the loading range investigate here. The question
if this may originate from the fact that we miss out on important temperature effects
will be addressed in the next section.

5.3. Temperature-dependent craze initiation and breakdown

The fracture toughness determined by the onset of crack propagation depends on
the competition between the kinetics involved in shear yielding and in crazing; or in
other words, on how much energy has been dissipated when the condition for craze
fibril breakdown is fulfilled. In the present study, we account for the influence of the
temperature on this competition through the temperature dependence of plasticity of
the bulk, Equation (3), and of the craze thickening rate, Equation (10).



Analysis of temperature effects 265

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

393
383
373
363
353
343
333
323
313
303
293

T(K)
y/rt

x/rt

crack

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

393
383
373
363
353
343
333
323
313
303
293

T(K)
y/rt

x/rt

crack

(a)

(b)

Figure 9. Temperature distribution during crack propagation marked by the circle in Figure 7 for (a)
K̇I =300 MPa
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m/s and (b) K̇I =3000 MPa
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At this point we have not considered the temperature dependence of craze initia-
tion, which has been reported in (Sternstein and Myers, 1973). They have observed
that craze initiation can be described by Equation (9) for temperatures above room
temperature. There is no need to include this feature here since the temperature dis-
tributions presented above show that practically no heat is generated prior to craze
initiation in all the cases analyzed.

The critical craze thickness is defined as a material parameter, which is primary
dependent on the average molecular weight Mw. There are some conditions, however,
where temperature effects on the critical craze thickness are observed. As reported in
(Döll, 1983; Döll and Könczöl, 1990), there is a critical molecular weight Mcr

w below
which no stable crazes are observed in glassy polymers. This corresponds to a van-
ishing �c cr

n and a very brittle response. As the molecular weight is larger than Mcr
w ,

the critical craze thickness �c cr
n can be considered approximately constant at a given

temperature. However, for a material whose molecular weight is larger than this criti-
cal value, the critical craze thickness increases with temperature. Döll (1983) and Döll
and Könczöl (1990) have investigated the critical craze thickness �c cr

n of stable crazes
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Figure 10. Plastic strain rate distributions at the critical toughness Kcr
I found in Figure 7, but without

accounting for crazing for (a) K̇I = 300 MPa
√

m/s and (b) K̇I = 3000 MPa
√

m/s.
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Figure 12. Resistance curves obtained with a temperature dependent critical craze thickness for
K̇I = 30,300 and 3000 MPa

√
m/s. The triangles indicate craze initiation and the squares indicate

craze fibril breakdown.

in PMMA between 20◦C and 70◦C . They have observed that a factor of 1.5 can
be found between the �c cr

n at 20◦C and 70◦C for Mw >2 ×106g/mol. Since the glass
transition temperature for PMMA is about 100◦C, we now incorporate this effect
in our analysis by assuming a linear temperature dependence of �c cr

n from its value
at room temperature (see Table 3) up to a two times larger value of �c cr

n = 0.2rt at
Tg.

Figure 12 shows the resistance curves for the three loading rates with this tempera-
ture dependence included. The curves are qualitatively similar to the ones in Figure 7
for a constant critical craze thickness, but the critical toughness is now observed to
increase with increasing loading rate. For K̇I =30 MPa

√
m/s, the toughness is almost

identical to that obtained with a temperature-independent craze critical thickness. A
small increase is already observed for K̇I = 300 MPa

√
m/s while it appears to be

around 20% higher for K̇I =3000 MPa
√

m/s.
For the two highest loading rates, the temperature increase due to the heat gener-

ated during crazing induces an increase of the craze critical thickness. The load car-
rying capacity of the craze is prolonged at the load level where craze fibril breakdown
takes place with a constant �c cr

n . Thus, the onset of crack propagation is delayed
so that a higher toughness is observed as reported in Figure 12 when compared to
the cases in which a constant �c cr

n is assumed (see Figure 7). Because of the same
temperature effect, a small amount of crack growth resistance is observed for K̇I =
300 MPa

√
m/s at early stages of crack propagation until (Lc +La)/rt = 2.4. We can

also notice that as �c cr
n increases with temperature, the time tc for craze fibril break-

down also rises so that more time is available for heat to diffuse. This promotes a
slightly wider hot zone for K̇I = 300 MPa

√
m/s and K̇I = 3000 MPa

√
m/s which is

also observed during crack propagation (see Figure 13).

6. Discussion

In the vicinity of the crack tip, the temperature observed prior to unstable crack
propagation is noticeably enhanced for loading rates higher than K̇I =300 MPa

√
m/s.



268 R. Estevez et al.

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

393
383
373
363
353
343
333
323
313
303
293

T(K)
y/rt

x/rt

crack

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

393
383
373
363
353
343
333
323
313
303
293

T(K)
y/rt

x/rt

crack

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

403
393
383
373
363
353
343
333
323
313
303
293

T(K)
y/rt

x/rt

crack

(a)

(c)

(b)

Figure 13. Temperature distribution during crack propagation for (a) K̇I = 30 MPa
√

m/s, (b)
K̇I = 300 MPa

√
m/s and (c) K̇I = 3000 MPa

√
m/s, with a temperature dependent critical craze

thickness. Compare with temperature-independent results in Figures 6, 9a and 9b, respectively.

The heat from craze thickening results in a hot zone along the craze surfaces, the
extent of which is comparable to that of the craze thickness. In an experimental study
of heat generated during the fracture of PMMA, Fuller et al. (1975) estimated the
width of the hot zone along the crack path to be about one to three micrometers.
The maximum craze thickness of PMMA reported by Döll (1983; Döll and Könczöl,
1990) is about two to three micrometers. Thus, although coming from different exper-
iments, the size of the hot zone during crack propagation and the maximum craze
thickness appear to be of the same order of magnitude. The corresponding quan-
tities in our calculations are consistent with these observations. The heat originates
primarily from craze thickening; the contribution from the bulk is negligible. This
is demonstrated for K̇I = 3000 MPa

√
m/s in which a difference of factor four in

the temperatures observed prior to crack propagation is observed when crazing is
accounted for. The present observation is not restricted to static conditions. The
minor importance of heat generated from the bulk for dynamic conditions has been
demonstrated by Bjerke et al. (2002) for PC, which is considered as one of the most
ductile glassy polymers. Thus, thermal effects come from craze thickening and the
resulting hot zone along the craze surfaces extends over a few microns.

These observations tend to invalidate the interpretation by Williams and Hodgkinson
(1981) of the marked increase of toughness with increasing loading rate. Their idea is



Analysis of temperature effects 269

based on the assumption that crack propagation switches from isothermal to adiabatic
conditions when the loading rate increases from static to dynamic conditions. Heat is
assumed to originate from crazing and its diffusion around the craze surfaces is supposed
to significantly reduce the yield stress of the bulk material surrounding the craze. Then,
thermal effects are assumed to be large enough to promote plasticity in the bulk which
results in blunting the crack. This picture has been named “thermal blunting” and some
of its ideas can also be found in Fuller et al. (1975). However, this interpretation has been
partially revoked by Williams and Adams (1987), who suggested that the toughness rise is
due to dynamic effects. For loading rates at which inertia effects do not prevail, Williams
and Adams (1987) caution that an interpretation in terms of thermal blunting or “some
property variation” is to be considered.

One of such property variations, which we have studied here, is the possible vari-
ation of the critical craze thickness with temperature. Although the predicted tough-
ness for K̇I = 3000 MPa

√
m/s is only about 20% larger than that with a constant

craze critical thickness, it appears that, at least, this effect is to be accounted for up
to loading rates at which crazing is observed while inertia effects do not prevail.

Results have not been reported for loading rates higher than 104 MPa
√

m/s. For
these conditions, the glass transition temperature is reached during craze thicken-
ing, before the condition for craze fibril breakdown is attained. In this case, further
craze thickening possibly involves a different mechanism than the one considered in
Section 3 with localized plasticity at the craze–bulk interface. Other processes such
as chain disentanglement or chain slippage may contribute to craze thickening and
influence the toughness. Such a transition is not accounted for in the present study
and would require a drastic modification of the crazing model.

For the quasi-static conditions investigated here, our description gives rise to a
normal stress along the craze surface which is approximately constant during craze
thickening. The level of the normal stress depends on the loading rate, so that our
formulation resembles a visco-plastic strip model. In the predictions, the length of
the craze is about hundred microns (see Figure 7) which is of the same order of
magnitude as experimental data (Döll, 1983; Döll and Könczöl, 1990). From experi-
ments on notched specimens of PMMA with various crack radii tested under three-
point bending and tension, Elices et al. (2002) have identified a cohesive law with a
constant traction zone to be suitable for capturing the experimental load vs notch
opening displacement curves (also for static conditions). This is consistent with our
findings.

Following the analysis of Bjerke et al. (2002) in which heat originating only from
the bulk plasticity was accounted for, Bjerke and Lambros (2003) have investigated
the temperature fields subsequent to heat generated during the dynamic failure of
PMMA. They used the elastodynamic solution of a steady crack growth superposed
with a cohesive zone description (Freund, 1990) to model the failure process. Vari-
ous formulations of rate-independent cohesive zone laws were used together with the
dissipation term σcδ̇c, in which σc and δ̇c refer to the cohesive stress and opening
displacement. The work σcδ̇c is considered as the only heat source. From the ultimate
stress measured for tensile tests, they adopted a maximum stress of σc =120 MPa for
all cohesive zones. The maximum opening of the cohesive zones is derived from the
value of σc and the measure of the energy release rate at different crack velocities.
With these parameters, the heat flux can be estimated as in the present investigation



270 R. Estevez et al.

but Bjerke and Lambros (2003) defined an energy per unit volume by dividing σcδ̇c

by an additional length H which represents the extent of material affected by the fail-
ure process of which radiation are measured. The temperature sensors are propor-
tional to the radiating area so that the profile of the recorded temperature and the
predictions can be compared.

It is worth noting that the predicted length (Bjerke and Lambros, 2003) of the
cohesive zone is about 400 µm to 1 mm while that of a craze ahead of propagat-
ing cracks under quasi-static conditions is about or less than 100 µm (Döll, 1983;
Döll and Könczöl, 1990). In order to interpret the discrepancy between Döll’s data
and their estimate of the craze length, Bjerke and Lambros (2003) pointed out that
the cohesive zone of their analysis does not only represent crazing but the entire
source of heat during crack propagation. Therefore, they argued that the cohesive
zone accounts for the viscoplastic process of crazing but also includes thermal effects
operating after fibrils break down, due to e.g. chain recoiling. These two contribu-
tions to heat are then lumped in the representative cohesive zone which would result
in a length larger than that observed for crazing under static conditions. While a
cohesive zone model for crazing at dynamic conditions is not available yet, the results
of Bjerke and Lambros (2003) suggest the use of a formulation in which the nor-
mal stress reduces during thickening, which is different than the strip model used
for static conditions. If two mechanisms are necessary to describe quasi-static and
dynamic crazing, the switch from one to the other may contribute to the sharp tran-
sition reported in (Wada, 1992; Wada et al., 1996). More work on craze models is
definitely needed.

Comments about the limitations of the present two-dimensional analysis are in
place here. Craze initiation depends on the local level of hydrostatic stress (see Equa-
tion (9)) and its nucleation is enhanced if plane strain conditions prevail. Shear band-
ing can be promoted under plane stress conditions if crazing does not nucleate. Such
an influence has been observed experimentally by Inberg and Gaymans (2002) on
PC with a noticeable decrease of the toughness with increasing specimen thickness.
Thus, as the fracture toughness is primarily governed by the competition between
crazing and shear yielding, a three-dimensional analysis may actually be required for
a proper investigation of the relation between toughness and loading rate for real
specimens.

A craze initiation criterion based on a critical stress state has been used so that
the onset of crazing takes place at identical load levels for all loading rates as long
as the bulk material is elastic. A time-dependent initiation criterion may be necessary
under dynamic conditions since the characteristic time scale associated with the load-
ing can be comparable to that involved in the craze nucleation process.

Thermo-elastic effects have not been considered since we first investigate the
influence of the dissipative processes from shear yielding and crazing. In a study
devoted to dynamic fracture of PMMA, Rittel (1998) shows that a cooling of
about 30◦C precedes crack propagation. It is generally thought that crazing operates
for temperatures higher than the secondary transition temperature Tβ . For PMMA
or polystyrene this temperature coincides with the room temperature. Therefore, a
thermo-elastic cooling as large as that reported by Rittel (1998) could inhibit crazing
in these polymers and promote shear banding instead, resulting in a higher tough-
ness.
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The present study is restricted to a quasi-static formulation and focusses on the
beginning of crack propagation. Our attention has been devoted to exploring possi-
ble causes for the onset of the brittle to ductile transition for such loading conditions.
Therefore, arguments based on crack branching at high crack speed (as presented by
Cotterell, 1965) are not considered and nor is a change from single to multiple craz-
ing observed in the dynamic regime by Bjerke and Lambros (2003).

7. Conclusion

The present thermo-mechanical study extends a previous isothermal analysis
(Estevez et al., 2000) to investigate loading rates for which thermal effects need to be
accounted for, under quasi-static conditions. For the material parameters chosen here,
the heat is shown to originate primarily from the craze thickening for loading rates
higher than 300 MPa

√
m/s. The resulting hot zone affects the bulk material adjacent

to the craze surfaces and extends over a distance comparable to that of the craze crit-
ical thickness. Despite the fact that shear yielding is temperature dependent, (1) the
temperature increase is too localized to promote plasticity over a large area, and (2)
thermal blunting is not seen.

The temperature dependence of the critical craze thickness has been shown to
have a significant influence on toughness at loading rates in which thermal effects
take place. The increase of Kcr

I is about 20% when compared to that with a constant
critical craze thickness.

For loading rates above 104 MPa
√

m/s, the glass transition temperature is attained
during craze thickening, prior to fibril breakdown and unstable crack propagation.
For such conditions, the mechanism for craze thickening adopted here, with localized
plasticity at the craze–bulk interface, becomes questionable. Further progress in the
understanding of the brittle-to-ductile transition in amorphous polymers requires a
better understanding and improved models for crazing.
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Döll, W. (1983). Optical interference measurements and fracture mechanics analysis of crack tip craze

zones. Advances in Polymer Science 52–53, 105–168.
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