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Optical spectra and localization of excitons in inhomogeneous helical
cylindrical aggregates
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We study the linear optical properties of helical cylindrical molecular aggregates accounting for the
effects of static diagonal disorder. Absorption, linear dichroism, and circular dichroism spectra are
presented, calculated using brute force numerical simulations and a modified version of the coherent
potential approximation that accounts for finite size effects by using the appropriate open boundary
conditions. Excellent agreement between both approaches is found. It is also shown that the
inclusion of disorder results in a better agreement between calculated and measured spectra for the
chlorosomes of green bacteria as compared to our previous report, where we restricted ourselves to
homogeneous cylindefB®idraga, Klugkist, and Knoester, J. Phys. Cheni, 11474(2002]. For

the excitons that govern the optical response, we also investigate the disorder-induced localization
properties. By analyzing an autocorrelation function of the exciton wave function, we find a strongly
anisotropic localization behavior, closely following the properties of chiral wave functions which
previously have been found for homogenoeus helical cylinfieidraga and Knoester, J. Chem.
Phys.121, 946 (2004)]. It is shown that the circular dichroism spectrum may still show a strong
dependence on the cylinder length, even when the exciton wave function is localized in a region
small compared to the cylinder’s size. 8004 American Institute of Physics.

[DOI: 10.1063/1.1807825

I. INTRODUCTION to several hundreds of nanometers. Recently, (tredical)
arrangement of the molecules inside the bilayer wall of such
The optical properties and optical dynamics of moleculargggregates has been determined for the first time. This was
aggregates with a cylindrical geometry currently draw con-ygne for the aggregates of the dye '3t8s(3-sulfopropy)-
siderable attention. Both natural and synthetic forms of S”C%,S’,G,G’ tetrachloro-1, 1-dioctylbenzimidacarbocyanine

molecular nanotubes are .investigated.. Among the n_aturetbssa, by modeling the data from cryo-TEM, absorption,
systems, the rod-shaped light-harvesting complexes in th§nd linear dichroism measuremetftsA Frenkel exciton

hlor m f green ri re well-known xm’pl. . . .
chlorosomes of green bacteria are VET-KNOWN €XampieS:y5del based on two weakly interacting bricklayer monolay-
The chlorosomes dfhloroflexus aurantiacusontain tens of

thousands of bacteriochlorophyll molecules self-assemblegrS wrapped on cyImdnca} surfaces of approprlr.:lte diameter
: o ) gave a good fit to experiment. Very recently, it has been
in cylindrical structures with a monolayer wall of roughly 5 di d that bil | | tubieiameter 14

nm diameter and a length of hundreds of nanométérghe Iscovered that biiayer malectiar hanotutesameter

light-harvesting system of the bacteriuBhlorobium tepi- n?) hT’ayh also b?‘ foaned through self-?ssefrg bly cr)1f am-
dumalso contains cylindrical aggregates, with a bilayer wal|PNIPAIIC hexIPer-hexabenzocoronene moiecu another

and a diameter of roughly 10 nThese natural systems class of synthetic cylindrical aggregates are those formed

should be referred to abaggregates, as the absorption specihrough  self-assembly of the dye meso-tetra

trum is redshifted relative to the transition frequency of aSulfonatophenyborphyrin in acidic aqueous SO_'““‘}'Z'-B
single bacteriochlorophyll molecule. From small angle x-ray scatteritfg and atomic force

J aggregates with a cylindrical geometry have recentlymicroscopy® it has been concluded that these aggregates are
also been prepared via synthetic routes. In particular a clag¥llow monolayer tubes with a diameter of about 20 nm.
of substituted 5,56,6'-tetrachlorobenzimidacarbocyanine Finally, it has been shown that under the influence of tetra-
dyes has been created that forms such aggregates; the cylitedral chemical defects conjugated polymers may also adopt
drical geometry was revealed using cryo-TEfIit has been  ordered cylindrical conformatiorfé.
demonstrated that the precise morphology as well as the de- In previous model studies of cylindrical aggregates, we
tails of the optical properties depend on the nature of thdave mainly restricted ourselves to homogeneous aggregates,
substituents and the solveh® These synthetic cylinders i.e., we have ignored the role of disorder on the Frenkel
usually have bilayer walls with an outer diameter of about 15exciton states that determine the optical respdhisé.An
nm and a wall thickness of 4 nm. The cylinder length extend$mportant simplification occurs in this case, as the cylindrical
symmetry may then be used to distinguish excitons in classes

dAuthor to whom correspondence should be addressed. Fax: 31-5d-band_$ of different transverse quamum numbey, WhIC_h )
3634947. Electronic mail: knoester@phys.rug.nl describes the Bloch nature of the exciton wave function in
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the direction along the circumference of the cylintfefhe
exciton eigenstates may then be determined from a set of
one-dimensional effective Hamiltonians for each value of
k,. Importantly, the introduction of the transverse quantum
number dictates simple selection rules, which state that only
states withk,=0 or k,=*1 can be observed in linear op-
tics. States in thé&,=0 band give rise to absorption polar-
ized along the cylinder’s axis, while states wikh==+1
yield a polarization perpendicular to this axis. For each of
these three bands only a few strongly allowedperradiant
exciton states occuf:'®

In spite of the fact that usually appreciable energetic or
interaction disorder occur in self-assembled molecular aggre-
gates, it turns out that a homogeneous aggregate model, WithG. 1. Cylindrical aggregate consisting of a stack\gfrings, labelech,
the simple selection rules discussed above, does describe thé.2....N;, that each contaii, molecules, labeled,=1,2,..,N,. The

; ; -arrows indicate the transition dipoles, which are equal in magnituded
salient features of experimentally observed spectra. For Inra;mke an angl@ with the cylinder axis. The projection of each dipole on the

stance, using this model, the experimentally observed varigsane of the rings makes an anglewith the local tangent to the ringsee
tion in the circular dichroism(CD) spectra of the chlo- projection of one ring displayed to the righEach ring is rotated with
rosomes of Chloroflexus aurantiacuswas explained.7 respect to the previoqs one over an angleso that we may ’view the
Similarly, the polarization dependent spectra of the bilayerggngeres%ifhzslifisc?:jic;;g dbff parallel helices on the cylinder's surface.
. . . y the dashed curve. The Iapah fact labels

C8S3 cylinders are rather well described neglecting the rol@e nhelices.
of disorder!® We have shown, however, that the inclusion of
static energy disorder does improve the comparison to ex-
periment for the latter cas8.Similarly, model results for spectra are presented and discussed in Sec. IV, while in Sec.
chlorosomes that do account for disorder also show a bettéf we do the same for the localization characteristics. Finally,
quantitative comparison to experiment. we present our conclusions in Sec. VI.

The aim of this paper is to systematically study the effect
of static diagonal disorder on the optical spectra of cylindri-; MoDEL AND QUANTITIES OF INTEREST
cal molecular aggregates and to study the exciton localiza-
tion properties caused by the presence of disorder. While the @. Aggregate structure, Hamiltonian, and eigenstates
formalism used applies to general cylindrical aggregates, wE©r the structure of the cylindrical aggregate we will use the
will in explicit calculations restrict ourselves to cylinders of Same model and notation as described in Ref. 17 and de-
the structure of chlorosomes Ghloroflexus aurantiacug\s ~ Picted in Fig. 1. The aggregate consists of a stad¥ ofings
observable quantities, we will focus on the absorption, lineaPf radiusR (labeledn; =1,...N;), each containing\, mol-

dichroism (LD), and CD spectra. The disorder averages 01ecu|es. The distance between neighboring rings is dertoted

these specta are calculated using numerical simulations #eighboring rings are rotated relative to each other over a

well as a modified version of the coherent potential approxi- elllcal (Iamgley, W.'tr;]g$.7<2.77/N2' Cor:)nectmg :Eet (;LOSESI
mation (CPA) that accounts for finite-size effects by using molecuies on Neignboring rings, one observes that the aggre-

the appropriate open boundary conditions. gate may be viewed ay, helices each containiny; mol-

Localization properties have been extensively studied foreCUIes’ winding around the cylindéhe dashed line in Fig. 1

. L _ : _ indicates one such helixEach molecule may now be la-
Frenkel excitons in linedf~2*and circula?® 22 aggregates. ) y

: . : L eledn=(nq,n,), wheren, denotes the ring on which the
For the higher-dimensional cylindrical aggfeg?‘tesz such Stuo?nolecule resides, whila, denotes the helix on which it lies.
ies have not been performed yet. We will fill this gap by

) L : 0 . The total number of molecules in the aggregate is denoted
investigating the inverse participation ratio and an autocorre;

lation f . fth ¢ ion. Using the | il N=N;N,. In Ref. 17 we explained the general nature of this
ation function of the wave function. Using the latter, we will .\ ' 21 model.

sho_wastron_g anisotropy in the localization properties pf the Al molecules are modeled as identical two-level sys-
excitons, which may be traced back to the recently disCOViemg \ith transition dipoleg, that are equal in magnitude
Ered chiral behav:prdqf tf|1e excnont\évayet f[ur(;ctll)onfhonbflnlteu and have equal orientations relative to the frame of the
omogeneous cylindrical aggregateslictated by the be- cyjinder at the position of the molecule. In particular, all
havior of the dipolar excitation exchange interactions in theyglecular dipoles make an ang@with the cylinder axis
system. We will also demonstrate that the CD spectrum mayeferred to as the axis), while the projection of each dipole
exhibit a dependence on the cylinder’s length, even when thgn thex-y plane makes an angte with the local tangent to
excitons are localized on regions small compared to its sizghe rings. Explicitly, thex, y, andz components of the mo-

The outline of this paper is as follows. In Sec. Il we will |ecular position vectors and dipole moments are given by the
present the exciton model and give the general expressiongree-dimensional vectors,

for the quantities of interest, in particular for the spectra and _IR Rsi h 1
the localization characteristics. Section IIl is dedicated to '~ LRCOSMN26b27N1%),RSINNz ¢+ 117),Nh] @)
explain the modified version of the CPA. Results for theand
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sa=[ = sinBsin(N,,+n;y—a),u sinp dimensional problems. In the current general case of disor-
der, we cannot make this decomposition of the quantum
Xcogny¢p+nyy— ), cospl, (2 Jabels, and we will keep the general laltel We note that
respectively, withgp,=27/N,. with the breakdown of the separation into transveesand

The electronically excited states of the aggregate are ddongitudinalk, quantum numbers, also the strict distinction
scribed by the Frenkel exciton Hamiltonian with static diag-Petween states polarized paralléh0) and perpendicular

onal disorder. Setting =1, we have (k,==1) to thez axis breaks down. In general, the dipoles
of the exciton states in disordered cylinders may have any
H= wo+e)bib + > I(n—m)blb,. . 3 orientation relative to the axis.
En: (@0 €n)babn 2” ( Pnbm ® b. Optical spectra We will be interested in calculating

the absorption, LD, and CD spectra in the presence of diag-
onal disorder. The general expressions for these spectra in
terms of the one-exciton energiég and eigenvector com-
ponentseq(n) follow from linear response theory and take
the generic forr/

wherebﬁ andb, denote the Pauli operators for creation and
annihilation of an excitation on molecute respectively® 32
Furthermore,w, is the average molecular transition fre-
qguency ande, is the static random energy offset at site
induced by slow solvent effectd(n—m) is the excitation
transfer interaction between moleculesand m. Due to the

symmetry of the system the interaction only depends on the S(®w)= < > Xq5(w_Eq)>a ()
relative positions of the two molecules. The prime on the a

summation indicates that the term with=m is excluded with strength

from the summation. We assume tlign—m) results from

dipole-dipole interactions, giving it the explicit form qug:n <Pq(n)<P§(m)Xn,m- @)

Mn'l‘m_s(ﬂn'rnm)(l‘m'rnm) 4
It ol It oml® ’ 4) Here,S(w) stands forA(w), LD(w), andCD(w) in case of
With 1 —r —r the absorption, LD, and CD spectrum, respectively, and the
m> i me . . . angular bracketg:--) denote the average over the random
The Hamiltonian equatioi3) differs from the one dis- g ) 9

i ; . . energy offsets. Furthermore, the quanti are the cor-
cussed in Ref. 17 only in the inclusion of random energ 9y a tesm

Yresponding strengths in the site representation, which take
offsetse,. We will assume that the energy offsets on differ- th eF:‘orm g g P '

ent molecules are uncorrelated and follow a Gaussian distri-

J(n—m)=

bution P(e,) with standard deviatiow. Hence, eact,, is XA =1u?cod B+ ku?cosésir? B, 9
taken independently from the distribution '
1 2 XL = u? cog B— 3 u? cosé sir B, (10
Plen)=—==exp — 57| 5 and
N2mo 20 an

To describe the linear optical response of the aggregate,
it suffices to consider the space of one-exciton states, i.e.,
those states in which the molecules of the cylinder share one
excitation. The general form of these eigenstates reads

o TH .
Xn,m:ﬁ[R(l_ cosé)sin(2B)cosa

—(ny—my)hsinésir? B]. (12)

for the three spectra considered. Hekes[(n,—m,) ¢,
lay="2> ¢q(nbllg), (6)  +(n;—m,)y] and\ denotes the wavelength of the light. In
" the above expressions for the absorption and CD spectra, an

where|g) denotes the overall ground state, in which all mol-isotropic average over orientations of the cylinder has been
ecules are in their ground state. We have used the pb@l used(appropriate for an isotropic solutipnwhile in case of
distinguish theN one-exciton states; the quantigy(n) de-  the LD spectrum, a uniform average over angles of rotation
notes the amplitude of thgth state on molecul®. These around the cylinder's axis was inferre@ppropriate for
amplitudes are obtained by diagonalizing tNe<N one-  samples with perfect alignment of the cylinder&ny (un-
exciton Hamiltonian, which has the quantitieg+ €, as di-  likely) correlation between orientation and disorder realiza-
agonal elements and tl¥n—m) as off-diagonal ones. The tion has been neglected. For future reference it is useful to
eigenvectorsp,(n) will be assumed to be normalized to note that also the density of state@v), follows the generic
unity. Unless stated otherwise, we will impose open boundexpression Eq(7), with X{ .= 8, m, implying Xg=1.
ary conditions along the axis. The disorder averaged spectra and density of states in

In the absence of disorder&0), the labelg may be  principle may be calculated using straightforward numerical
replaced by a two-dimensional labe (kq,k,), wherek,  simulations, in which one generates a number of random
denotes the wave number describing the Bloch momenturdisorder realizationge,} and for each realization performs
of the exciton state along the ring direction, whidlglabels  an explicit diagonalization of the one-exciton Hamiltonian to
the N, possible exciton states in each of thg different  obtain the quantities€s, and ¢4(n). For one-dimensional
bands characterized by one valuelgf'”!® The diagonal- (linear or circulay molecular aggregates this is common
ization then separates intd, independent effective one- practice. For higher-dimensional aggregates, however, such
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as planes or cylinders, this method may be quite demanding,
due to the large number of molecules involved in these sysC(N;w)= > > |¢q(m)¢3(m+n)|5(“’_Eq)> / p(w),
tems and the tendency for the collective excitations to be an (13)
more delocalized in higher dimensions. This motivates the
use of alternative, albeit approximate, methods to calculateshere the summation ovem extends overm;=1,...N;
the average spectra. A well-known example is the P&, —n, andm,=1,... N, in order to be consistent with open
which previously has been applied with success to calculatboundary conditions in the, direction.
spectra of, for instance, isotopically mixed aromatic crystals  The generic form of’(n;w) on the (;,n,) plane is a
(dichotomic disorder*>3® one-component systems with structure that peaks at the origi®, 0) (where it has the value
Gaussian diagonal disord€r?®and two-component systems unity) and which(after averaging over a sufficient number of
with bi-Gaussian diagonal disord&r. disorder realizationshas inversion symmetry with respect to
In this paper, we will use both brute-force numerical the origin. The form of the peak shows in what direction the
simulations and the CPA to calculate the spectra and thexciton wave functions at energy are most localized or
density of states. We will extend the usual CPA to accounextended. Finally, from the autocorrelation one can define a
for finite-size effectgSec. Il)) and show that this modified localization measurgalternative to£ ~*(w)] for the total
CPA gives excellent agreement with numerical simulationsnumber of molecules participating in the typical wave func-
in fact significantly better than its conventional implementa-tion at energyw. We will denote this measure by, ()
tion. and define it as the total numbermf/alues(molecule$ with
c. Localization characteristicsAs is well known, the  C(n;w)>C(0;w)/e=1/e (e the base of the natural loga-
presence of diagonal disorder leads to the localization of théithm). It should be stressed that both the participation ratio
excitonic eigenstate¥.In order to have quantitative informa- and NS, (») represent typical numbers and cannot be ex-
tion on this localization, we will analyze the inverse partici- pected to give exactly the same result. However, one does
pation ratio and an autocorrelation function of the waveexpect these two measures to vary in a similar way with
function. Both quantities can only be addressed within a nuenergy, disorder strength, or system size. We will come back
merical simulation. The energy dependent inverse participato this in Sec. V.
tion ratio is defined througfi-2%4

I1l. MODIFIED COHERENT POTENTIAL
£<w>=<2{2 |qoq<n>|“a<w—Eq>}>/p<w>. (120 APPROXIMATION
q n

In this section, we address some essential technical as-
pects to use the CPA when calculating the optical spectra.
The participation raticC ~* is generally accepted as a typical 1he method as such is well-documented in text bdBKs,

value for the number of molecules participating in the eigenVhich is why we only focus on two aspects that are specific
states at energy. For example, a state localized on a singleto our application. The first one concerns reducing the gen-
molecule has(w) =1, whereas for the completely delocal- eral expression Ed7) for the spectra to a form that can be
ized states on a homogeneous cylindgiw)~1/N. In the addressed within the CPA. The second one concerns the
latter case, the precise value depends on the boundary coff¢atment of finite systems, where periodic boundary condi-
ditions and on the possible combination of degenerate confions should be avoided. _ _
plex eigenstates to real ones. If we use periodic boundary The CPAis a method that yields an approximate form
conditions along the axis and use real sin and cos forms for for the disorder averagedretarded Green's function
the transverse and longitudinal Bloch wave functions, al{G(w)), with
states(except a fe®?) have an inverse participation ratio R R
9/(4N). For the same boundary conditions using complex G(w)=(wl—H+izn)* (14
wave functions, all states hav&{ w)=1/N. If we use open R
boundary conditions with real transverse wave functions andiere, 1is the unit operator,; is a positive infinitesimal
accept the ansatz solutions for the longitudinal wave funcconstant, andH is the Hamiltonian Eq.(3). Using the
tions analyzed in Ref. 18, we obta{again with a few ex- Green’s function, we may rewrite E(7) for the spectra as
ceptions the value 9/4(N;+ 1)N,]~9/(4N). 1

Alternative measures for the extent of the exciton wave _ A
function have also been considered, for instance, autocorre- S(w)= T Im< % Xq<q|G(w)|q)>. (19
lation functions of the wave function were used to study the
ring-shaped LH2 antenna systéif2 Correlation functions As the eigenstatefy) and the strengthX, depend on the
are particularly useful when dealing with anisotropic higher-disorder realization, some care is needed to reduce .
dimensional systems, such as cylindrical aggregates, as théy a form that only contain(sé(w)).
allow for a study of the localization properties along differ- We first use Eq(8) for X, in terms ofX, ,,. Realizing
ent spatial directions. Such information cannot be extractethat ¢,(n)=(n|q) and using the fact that th¥, , do not
from the inverse participation ratio. Hence, we define thedepend on the disorder realizatipsee Eqgs(9), (10), and
autocorrelation function (11)], we may rewrite
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1 . the only remaining problem is to determine the self-energy
S(w)=— —Im 2 Xnm{n[(G(w))|m). (16)  S(w). Within the CPA,3(w) obeys a self-consistency equa-
mm tion, derived by neglecting correlations between scattering
We now change to the basis of eigenstates of the system ivents on different molecules. The resulting self-consistency
the absence of disordesr&0), in which case we replace the equation readé*°
state labelq by the two-dimensional labek=(k,k,)

(eigenvectorspy(n) and energie€,), as explained in Sec. en—2(w)
Il. The advantage to do this will become clear below. On this " =0, (21)
basis, Eq(16) takes the form 1-[en—2 (@) {G(®))nn

1 N , where the disorder average now is a simple integration over
S(w)=~ ;'mkzk, Xk (KI(G(@))[K"), (17 ¢ weighted by the distributiof(w,). The site diagonal
' element of the averaged Green'’s function is
where we defined
R |l e(m)?
Xk =2 Xm0 el (). (19 (Glom=2  —E “S(w) Ty 22

We now take advantage of the fact that within the CPA  The CPA has been developed for large systems, where

the averaged Green's functiotG(w)) is replaced by the Periodic boundary conditions can safely be applied to obtain
Green’s function of the same system in the absence of disofhe homogeneous solutions. In that case we Hayén)|®
der, but with anw dependent andk independent Comp'ex :1/N, with N the total number of molecules in the System.
Se|f-energy2(w) added to the exciton energiﬁ_ Thus, Substltutlng this in Eq(22), we observe that the diagonal
within the CPA(G(w)) is by definition diagonal in thé element of the Green’s function becomes site-independent,
basis. Hence, which in fact is necessary in order for the self-energy follow-
ing from Eq. (21) to be site-independent. The latter fact is
implicit in the CPA by assuming from the very beginning
that the self-energy does not dependkorConversely, if in
Eq. (22) we would boldly substitute the solution for the ho-
__ ilm 2 X 1 (19) mogeneous solution with open boundary conditions applied
7 LK —E—S(w)tin’ along then, direction, we would obtain a site-dependent (

1 -
S(w)==—Im 2 X (K(G(@)]k)

We proceed by using the Bloch nature of the eigenvectorgependeﬂtself-energy, which would be inconsistent in the

: . LY context of the CPA.
¢i(n) in the ring direction, Yet, as we will be interested in studying the effect of the

@k(n):(Nz)‘l’zexp{iZwkznlez]cpkl(nl;kz) (20 cylinder length on the spectra, we prefer not to use periodic
) ] boundary conditions in the; direction. One way out of this
with the integer k, the transverse wave number and jjnasse is to construct artificially a diagonal element of the
¢k (n11k;) the longitudinal wave functio! Then the  Green's function which is site invariant. This can be done by
strengthsXg ., X%, and X}, for the three spectra consid- approximatingG(w))m, by its mean
ered can be expressed in terms of t;b}g(nl;kz). This al- "

gebra was already performed in Ref. 17, yielding the oscil- N 1 .

lator strengthO,, the LD strengthL,, and the rotational <G("’)>nn~ﬁ; (G(@))mn

strengthR,.. Combining all these expressions, we recover for

the final CPA results Eq$20), (24), and(31) of Ref. 17 for 1 1 B

the absorption, the LD, and the CD spectrum, respectively, TN<% w—E—3(w)+i 77=g0(w), (23

except thaté(w—Ey) in these expressions is replaced by
— UmIm(w—Ey—3(w)+in) L. In particular, we find that, which implies in particular, that the local density of states is
such as in the homogeneous case, only terms WjthO,  approximated by the normalized total one. We note that in
+1 contribute to the three spectra, with tke=0 states spite of this approximation, the self-energy still contains in-
having a transition dipole along ttzeaxis and the other two formation about the system’s finite size, as the finite-size
(degeneratebands having a dipole perpendicular to it. In energiesE, will be used when evaluating,(w). Moreover,
contrast to the homogeneous case, however, to calculate theéhen calculating the spectra and density of stakes (19)
CPA spectra we still need the eigenenergies of all states in allith the properX, ] again we will use the exciton energies
k, bands. The reason is that these energies occur in the quaBy as well as the strengtK, , calculated for the finite ho-
tity go(w) [Eg. (23], which is needed to solve for the self- mogeneous system. Thus, one may hope that the approxima-
energy. tion Eq. (23) only affects the results for the spectra and the
We finally mention that within the CPA, the density of density of states in a rather weak way. In Sec. IV we will
states is simply given by Eq19) with X{ , replaced by 1.  check the validity of the approximation by comparing this
Since the numerical diagonalization of the effective  new application of the CPA directly to exact numerical simu-
one-dimensional problems that yield the longitudinal eigendations as well as to its traditional application, which uses
functionSqakl(nl;kz) and the energieB, is straightforward, periodic boundary conditions.
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Absorption Linear Dichroism ,Circular Dichroism x 103

Strength (107N p?/nm)

1 N1 =150

1 N1 =250

640 680 720 760 640 680 720 760 8 —6i0 680 720 760
Wavelength (nm) Wavelength (nm) Wavelength (nm)

FIG. 2. Absorption, LD, and CD spectra calculated for cylindrical aggregates with the geometry of the rod elements in the chloro€imeesfextus
aurantiacus(see text for detaijsand a disorder strength of=600 cm 1. The solid lines are obtained by numerical simulatiémgerage over 1000 disorder
realization$ while the dashed lines are obtained using the modified CPA discussed in Sec. Ill. The dotted lines represent the usual implementation of the CPA,
which starts from periodic boundary conditions. From top to bottom, the cylinder length is varied as follpw&5, 50, 85, 150, and 250.

We end this section by noting that solving E&1) for  stack of rings representation, the chlorosomal cylinders, con-
the self-energy usually requires numerical schemes. Our agisting of tens of thousands of bacteriochlorophylmol-
proach is to rewrite this equation in the form ecules, have the following model parametésse Refs. 19
and 46 and our discussion in Ref. )17N,=6, h
=0.216 nm,a=189.6°,8=236.7°, andy=20°. The radius
is given by R=2.297 nm, while the length may extend to

1 hundreds of nanometers. Finally, we use an average single-
1—[x—3()]do(w) molecule transition frequency, that agrees with a wave-

hich b ved iterativel _ _ | length of 660 nnf’~°° while for the dipole squared of a
VEV Ic _moa%h € slo Ve leteraftlveﬂ)]/, lrj]smg as starting ;/a Y€single molecule we have usgtf~20 D?. The latter value

olw)= , the value ol () or the homogeneous SyStem. , a< obtained from the integrated extinction coefficient of
The solution(w) to this equation in combination with the

; ; ; 8-50
results described below EQO0) determines our CPA results monomeric solutions of bacteriochlorophyll (BCHI}

. using the expression from Ref. 47.
for the spectra and density of states. : . .
Figure 2 presents the optical spectra for several cylinder

lengthsN, calculated using these model parameters and con-
verted to a wavelength scale to facilitate the comparison to
In this paper, we restrict ourselves to the application ofexperiment® All intermolecular dipole-dipole interactions
our formalism to the cylindrical aggregates occurring in thewere accounted for in these spectra. The solid lines represent
chlorosomes of the bacteriu€hloroflexus aurantiacu§*#®  the results obtained by numerical simulation, where we av-
The application to the bilayer synthetic aggregates of careraged over 1000 disorder realizations and used the rigorous
bocyanine dyes is discussed elsewH8rén terms of our smoothening technique proposed by Maklebal 32°3to re-

S(w)=

X
f PP T =S (@) 190 @)
-1

X , (29

f dxP(x)

IV. NUMERICAL RESULTS FOR THE SPECTRA
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duce the noise in the spectra. For the disorder strength weence on the length, of the cylinder. This length depen-
usedo=600 cm !, a value that was chosen such that thedence, specifically the change of the CD line shape around
theoretical absorption linewidth agrees with the one observetl; =100, was an important point in our previous work, as it
experimentally at room temperature. Also plotted in Fig. 2suggests that the strong variation in the reported CD spectra
(dashed linesare the results obtained using the CPA modi-of chlorosome¥ 8 results from the fact that different
fied for open boundary conditions, as described in Sec. lllsamples contain chlorosomes of different length. Apparently
Finally, the dotted lines represent the spectra obtained withighis conclusion survives the incorporation of disorder and the
the traditional CPA, which assumes periodic boundary congoncomitant localization of the exciton states.
ditions in then, direction (at finite N, values. We stress that at the disorder value considered the typi-

As is clear from Fig. 2, the modified CPA is in excellent cal exciton localization size in the region of the absorption
agreement with the numerical simulations for all spectra anghand is several tens of molecul&ec. \j. Thus, one would
at all sizes. Both shape and position of the spectral featuresxpect the spectra to be size saturated at cylinder lengths of
agree almost perfectly. We conclude that the finite-size efat most several tens of rings. For the absorption and LD
fects in the spectra are captured in an excellent way by thepectra, this indeed is the case, except that small shifts of the
approximation made in E423). These results justify the use entire line shape still occur for longer cylinders as a result of
of the CPA to model the spectra of wider cylindefsyhere  the jong-range dipole-dipole interactions. The slower size
the size of the one-exciton space becomes so large that thgtyration for the CD spectrum results from two aspects.
brute-force numerical simulation of the spectra becomegirst, the presence of the intermolecular distances in the ex-
computationally too expensive. L pression for the rotational strengtfef. Eq. (11)] contribute

To demonstrate that the proposed modification of thg 5 prolonged size dependence. Second, being a difference
CPA is in fact essential to cover the finite-size effects, Wegpecirum, the CD spectrum is much more sensitive to the
have also applied the CPA in the traditional way, imposingyready mentioned small shifts in the exciton energies that
periodic boundary conditions in the, direction. In an at- g it from the long-range interactions. The fact that for clo-
tempt to still account for finite-size effects, we have, how- ,s,mes the length dependence of the CD spectrum survives
ever, kept the lengthi; of the cylinder finite. We thus used . inciusion of disorder was also suggested by Prokhorenko

Bloch _k""a‘l’;"‘ih for tl?ef I?Eg'tut?malt, Waved L];lDJnCtIOHtS et al!® They based this conclusion on a study of the CD-
(’Dkl(nl’ 2)- € results for the absorption an SPeclra L atrix over a limited length interval, rather than a direct

are shown as dotted curves in Fig. 2. For the CD spectrurrbtudy of the spectrum.
the use of periodic boundary conditions may be shown to be  \yhjle the spectra for the model with disorder follow the

- - . . 17 . .
consistent only in the limifN;—o,*" which is why dotted  g3me general trends as those without disorder, the more de-
curves are absent in the CD panels. Itis clear from Fig. 2 thglyjieq comparison to experiment is better for the case with

the CPA with periodic boundary conditions yields spectraisarer. First, in the presence of disorder the high-energy

that differ notably from the exact ones, both in the positiond}igjl in the CD spectra foN,> 100 is seen to have a smaller

and shape of spectral features. The agreement is especiag plitude than the low-energy dip, while this ratio is oppo-

bad for short cylinders, where finite-size effects are mosgite for the homogeneous caen experiment, the type of

prorr.u.nent. At all sizes considerdgven f_orm 250) the CD spectra with two negative dips indeed always have a
modified CPA constitutes a better approximation than the one . . . )
. L o Smaller amplitude for the high-energy dip. The effect of dis-
with periodic boundary conditions. We note that the spectra . . ST
. X . » order is to smear out the high-energy dip, giving it a smaller
obtained by using periodic boundary conditions are alwaysam litude. Second. the presence of disorder aives the ab
redshifted relative to the exact and the modified-CPA spectra, b ‘ ' P g

This results from the fact that for periodic boundary condi->°"Ption and LD spectra a more pronounced high-energy tali

tions every molecule interacts with other molecules that ar han is obtained for the homogeneous model. Indeed, these

at most half a cylinder length away, while using the correctf[ails’ quite typical for disordered aggregates, are observed

open boundary conditions, the molecules near one edge §1 €XPeriment.. _ o .

the cylinder f, smal) have much weaker interactions with 10 finish this section, we present in Fig. 3 the density of
the molecules at the other edge & N,). Thus, using peri- states for the disordered modgolid line, obtained from
odic boundary conditions, one overestimates the effect of théimulations and the homogeneous ortéashed ling both

interactions, which shifts the spectrum too far away from thd@r N1=250. As above, the disorder was taken to de
monomer transition. =600 cni 1; the sticks in the density of states for the homo-

As final issue, we discuss the comparison between th§€neous case were convoluted with Lorentzian curves of full
exact spectra and the experimental ones. In our previoudidth at half maximum (FWHM)=20 cm *. The disorder
work!” we made this comparison neglecting the effects ofclearly smears the discrete peaks still visible for the homo-
disorder in the model. One may consider those previous regéneous case and leads to one broad feature that peaks some-
sults as one extreme case, where all spectral broadening \i¥here in the middle of the exciton band. This is in marked
assumed to arise from homogeneous broadening, while thgontrast to the frequently studied one-dimensional aggre-
current spectra constitute the other extreme situation, whemgates, where the density of states, even in the presence of
the widths are assumed to purely result from inhomogeneitydisorder, peaks at the band edges. So, even while the cylinder
Like in the homogeneous case reported in Ref. 17, we seeonstitutes a strongly anisotropic system, its density of states
that, in particular, the CD spectra exhibit a strong dependeviates from a simple one-dimensional picture.
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0.02 —— '.| . \ In Fig. 4b) we see that the disorder strength of
0.016 | . 'i;:u‘ 600 cm ! leads to clear localization of the exciton states at
U all energies, even in the center of the band, where the robust-
2 2 E,""."* "' "., ] ness against localization always is strongest. The fact that the
= 0.008} ' ) ] band edge states are rather strongly localized is not surpris-
0.004| E V ] ing: the ratio of the disorder strengthand the total exciton
f H "‘«\ ‘ ] bandwidth is=0.26. In the spectral region where the absorp-
O%®o 0 w0 o0 tion band occur§720—750 nmy the participation ratio yields

length . :
Wavelength (nm) a number of several tens of molecules over which the exciton

FIG. 3. Density of states for homogeneoldashed ling and disordered ~ States are delocalized. We emphasize that this number varies
(solid line) cylindrical aggregates of the chlorosome structure with a lengthsubstantially(by a factor of 8 over the width of the absorp-
of N;=250 rings. In the_ former case, thg excitgns_ were homogeneousl)ﬁon band. On the other hand, it is seen that in this energy
broadened by a Lorentzian of FWHM 20 ¢y while in the latter case a . . . . . .
disorder strength of-=600 cm  was used. The disorder results were ob- region, the part|C|pa_t|on_ ra_mo hardly depends on the cylinder
tained from numerical simulations, averaging over 1000 realizations. length anymore, which is in accordance with the fact that the
exciton states are localized on a region of the cylinder that is
much smaller than its total size. At the peak of the absorption
g spectrum(abou n e calculated participation ratio
V. NUMERICAL RESULTS FOR THE LOCALIZATION pect (about 740 nmy th Iculated participat t
CHARACTERISTICS implies that the excitons are shared coherently by about 15
We now turn in more detail to the localization of the molecules(the autocorrelation function yields 11 molecules,
exciton wave functions. As a first step, we consider the par§ee below Th's value may be c_ompared with Fhe ““T“b_er of
ticipation ratio £~ Xw). In Fig. 4, we have plotted 7.4—7.6 obtained from measuring the bleaching ratio in ab-
9L ~Y(w)/4 for chlorosomes within thé homogeneous modelSOrption difference experimerft™ Given the large varia-
[Fig. 4@, N;=250] and the disordered modgFig. 4(b) tion in the localization size over the absorption band, the
N _'150 ’206 250, and 3Q0In the homogeneous rﬁodel’we arbitrariness and uncertainty present in any definition of a
1= ’ ) ’

replaced the delta functions in E6L2) and the density of :;)_;:fahzatlon size, and thehnonlmear natulr)e of the absorptu;n
states by Lorentzians with a FWHM of 20 ¢ while in ifference experiments, the agreement between our simula-

the disordered casisorder strengthr=600 cm %, as in tions and these experimental data is good. Our localization
the previous section we used the smoothening tsge E,Ciﬁs'd?ra?l¥. smaIIfeFr) thfhn theéiol—lgostr.rl}o:cec%es ob-
techniqué®®® to reduce the noise in the simulations. The '&/N€d N (€ SImulalions of Frokhorengbal.™ Still, Tor the

normalization factor 9/4 was introduced to guarantee that foP@Me reasons as stressed above already, considerable room
the homogeneous case we recover the total number of mofXists for deviations in the values reported from different

eculesN in the cylinder, see discussion below Eg2). This ~ model studies. _ _
is clear from Fig. 4a), where, indeed, inside the exciton To obtain insight into the possible anisotropy of the lo-
band & ~*(w)/4 obtains an almost constant value of 1500¢C@lization properties, we also studied the autocorrelation

molecules, the total number of molecules in a cylinder of 25gunction C(n;») defined in Eq.(13). We note that this an-
rings. isotropy may also be studied by plotting individual wave

functions, as we did in Fig. 10 of Ref. 18, but such plots have

the drawback that they represent arbitrarily picked hope-
2000 . . . . fully typical states, while the correlation function gives sta-
tistical information. In Fig. 5 we present three-dimensional
plots [(a)—(c)] as well as contour plot$(d)—(f)] of
C(n;w) for frequencies corresponding to wavelengths of, re-
spectively, 700 nm, 740 nm, and 780 nm for a cylinder of
lengthN; =250 and a disorder strength @600 cm 1. To
make these plots, the cylinder was cut along a line parallel to
the z axis (the n; axis in the ploty and unwrapped.

Several observations can immediately be made from Fig.

5. First, with increasing energy the wave functions clearly
get more extended, which is in agreement with Figp) 4In
fact, if we calculateN§, () (defined at the end of Sec) I
from C(n;w), we find for N;=250 the values
NS,(700 nm)=147, N§.,(740 nm)=11, andNS,(780 nm)
=3. These values are in reasonably good agreement with
those  obtained from the  participation ratio:
FIG. 4. (a) Energy dependent participation ratio for homogeneous cylindri-9£ ~ (700 nm)/4=119, 9C ~1(740 nm)/4=15, and
cal aggregates of the chlorosome structure with a lengtd,ef 250 rings. 9L _1(780 nm)/4=2.9. We also note that the values for

The dotted line indicates the total number of molecles00 in the cylin- c .
der. () As in panel @), but now in the presence of diagonal disorder of Ndel(w) [and the p|0tS fOC(n,w)] at 740 and 780 nm do not

strengtho=600 cnm* and considering four cylinder lengths. From top to depend on the CylinQe_r |en_9th anymoreNgt= 250. Second,
bottom the curves correspond kg =300, 250, 200, and 150, respectively. as iS most clearly visible in the contour plots, at the short

1600 -
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() ]

9L (w)/4

160 -
120 +
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FIG. 5. Three-dimensional plofga)—(c)] and contour plot§(d)—(f )] of the autocorrelation functio@(n; w) [Eg. (13)] for cylindrical aggregates of the
chlorosome structure with a length bff; =250 rings and a disorder strength @600 cm * (averaged over 150 realizationat three different energies,
corresponding to 700 nif(a) and d)], 740 nm[(b) and ()], and 780 nm[(c) and (f )]. The cylinder surface is represented by cutting it along a line
parallel to thez axis and unwrapping it. This cutting line is the axis in the plots; points with constant valuergflie on the same ring of the cylinder. Due
to the helical structure of chlorosomes, lines of constgniake a finite angle with the, direction(compare the dashed line in Fig.. The contour plots
distinguish 25 equally large intervals for the valued§h; ), represented on a grayscagee legend above the contour pjots

length scale the wave functions exhibit a clear anisotropystates of interests=k,/|k,|, vy is the helical angle of the
along a direction that is neither given loy=constant, nor cylinder (see Fig. 1, and bk, is a phase angle that is used to

by n,=constant, i.e., neither in the ring direction, nor in the gptimize the quality of the ansatz for the complex effective
direction of the helices drawn as dashed line in Fig. 1. Ingne-dimensional Hamiltonian of the band with wave number
fact, the slanting direction of the contours relative to they, 18 The ansatz Eq25) is exact if transfer interactions only

vertical axis observed in Fig. &vhich varies slightly with  ccyr petween molecules on nearest-neighbor rings; in that
varying energy, closely resembles the slanting of the equal-case . the total anglé,_+|k,|y is the phase of the effective
2

phase lines of the wave functions in thg= =1 bands of the nearest-ring interaction. Optimizin approximately ac-
homogeneous cylinder discovered in Ref. 18. In the remain- 9 o - OP gk_z P y
der of this section, we will explain this behavior, starting €ounts for mixing of the wave functions E@S) by non-
with a perturbative picture in which weak disorder mixesN€arest-neighbor interactions. The anglgwas found to be
exciton states within and between thebands that exist for  responsible for the slanting of equal-phase lines of the wave
homogeneous cylinders. functions in thek,=*=1 band of the homogeneous cylinder
In Ref. 18, we have shown that the optically dominant(chirality of the wave functionsrelative to the vertical axis,
exciton states in thk,=0 andk,= *1 bands of the homo- which seems essential to understand the behavi6(miw)
geneous cylinder are well approximated by analytical expresebserved in Fig. &)—5(f). We therefore reconsider the an-

sions of the form Eq(20) with the ansatz satz solutions Eq(25), with a special focus o, and ex-
2

2 ki tending the treatment to the bottom regions ofkallbands.

¢, (N15ko) = \/ N1 sin Nl-lkll gst,*kalmn1 (25 The k=0 band The Hamiltonian for thé,=0 band is

real, implying that also the wave functions can be chosen
Here,k, is a positive integer, small compared g for the  real. Hence, we havé,=0. It was shown in Ref. 18 that the
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ke =0 ko==2£1 ko=22 ky=3 range interactions does not diverge. This eventually yields
.. ,=3.8° (for N;=250), which only slightly differs from
the phase angle in the superradiant region.

If we plot the amplitude squared of the exciton wave
function on the unwrapped cylinder, a state of the form Eq.
(20) with Eq. (25) gives lines of equal intensity that are
dictated by lines of equal phases( 0k2+|k2|y)n1
+2mk,n,/N,. The angley of these lines with the axis is
easily derived to obey

250

6 R

m. (26)

tany=—

This implies that the wave function rotates around the cylin-
der over a number rings given by

ny =2m| k2/0k2|. (27
0123456123456123456123456
N9 19 19 9 From this we find that itk,= = 1 band:} ~ 84 for the wave
functions of the superradiant states arjd~95 for the bot-
(a) (b) (C) (d) tom states. In Fig. ®) we show the amplitude squared for

FIG. 6. Grayscale density plots of the squared amplitidesker represents the bo“‘?m _State of thkzzl band Obt_amed b_y numerical

a higher amplitudeof the lowest states in the six exciton bands of homo- diagonalization. Of course, on every ring we find a modula-
geneous cylindrical aggregates of the chlorosome structure with a length dion with two maxima, as is appropriate for this band. More

N, =250 ringstk,=0 (a), k,=*1 (b), k;=*2 (c), andk,=3 (d). Plots  jmportantly, we find good agreement between the value of

are given on the unwrapped cylinder surface. The wave functions were : . .
obtained from exact diagonalization of the corresponding homogeneou%|1 that may be obtained from this plot and the above esti

Hamiltonians and are well described by Eg0), with the ansatz Eq25) ~ Mate obtained from the ansatz wave function.
(see text for details Relative to the average molecular transition enesgy The k= *=2 bands These bands, which contain no os-

the lowest states ﬁlave the energie3288-7§lcrﬁ ' (a), —1291.92cm’  cillator strength in the homogeneous limit, were not consid-
(b), —1244.97 cm™ (c), and —1166.09 cm™ (d). ered in Ref. 18. They may be treated in a way similar to the
k,==*1 bands. If we focus on optimizing the ansatz at the
bottom of the bands, we find.,=6.6° for N;=250 and
bottom state of this band@he k,=1 state, which carries 81% that for this value the ansatz E@5) for k;=1 indeed gives
of the oscillator strength in this banis well described by a good description of the numerically obtained lowest state.
the ansatz. For this band, the wave function has equal amplFrom Eg.(27) and 6.,=6.6° a value ofn} ~109 can be
tude on all molecules of a certain ring, while the quantumestimated, which is seen to be in good agreement with the
numberk; gives the number of maxima along theaxis of  exact wave function plotted in Fig(®. Of course, the states
the cylinder. This is illustrated in Fig.(8), where we plotted in thek,= *2 bands exhibit a modulation of squared ampli-
the amplitude squared of the exact wave functiobtained tudes inside each ring with four maxima.
by numerical diagonalizationof the lowest state in th&, The k=3 band This band, too, has no oscillator
=0 band of the homogeneous cylinder. strength. Like thek,=0 band, thek,=3 band is nondegen-
The kb= *1 bands The effective Hamiltonian for these erate and is governed by a real Hamiltonian. Thisst 3y
two degenerate bands is essentially complex and the phase0 and, like for thek,=0 case, no optimization condition
factor in Eq.(25) is needed. In Ref. 18 we have shown thatfor #; has to be solved. Figure(® gives the amplitude
the superradiant statdshree in each bandall occur near squared of the numerically obtained lowest state in this band,
k;=k* =nint| 6;|/(N1+1)/#] (nint denoting the nearest in- which exhibits no modulation inside ringthe Bloch factor
teger function, which is a finite energy above the bottom of is (—1)"2 which gives unity upon taking the squaré®©ne
thek,;= =1 bands. Excellent agreement was found betweeoes observe a vertical modulation with a high periodicity,
the ansatz wave functions and those for the superradianthich is due to the fact that for this band the lowest state is
states of the homogeneous cylinder obtained by numericalot thek,;=1 state, but rather a state that corresponds to a
diagonalization for the optimized value dof.,;=4.3°%  high value ofk,. This is due to the fact that for this band the
Presently, we are not only interested in the superradiargffective Hamiltonian has dominant positive in stead of
states, but even more so in the states near the bottom of timegative interactions.
k,=*1 bands k; in the order of unity, because these states The important conclusion of the above analysis is that
are closest to the bottom of thHe=0 band and should be the bottom states in thk,=0 andk,=3 bands exhibit no
expected to mix with those states in the presencevelk  chiral behavior(no equal-intensity lines slanted relative to
disorder. We may apply the same approach as followed ithe z axis), while the bottom states of thHe,= =1 and the
Ref. 18 for the superradiant states to the states near the bakg= +2 bands do show a chirality which, moreover, is very
bottom. Thus, we fixd..; such that the mixing between the similar in magnitude as estimated by the numbgr. If we
bottom states in th&,=*=1 bands resulting from the long- now allow for weak disorder, mixing of thie states within
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ke =0 ko==41 ko=42 ko=3 account for finite-size effects by applying the appropriate
open boundary conditions. By comparison to the simulation
results, we have shown that this new implementation yields
an excellent approximation, in fact significantly better than
the usual CPA, which starts from periodic boundary condi-
tions. We have shown that for the chlorosomes the inclusion
of disorder improves the comparison to experiment in sev-
eral respects. Most importantly, however, the inclusion of
disorder does not affect the main conclusion of Ref. 17 that
the CD spectrum has a strong size dependence up to cylin-
ders of hundreds of rings long. We demonstrated and dis-
cussed that this effect occurs in spite of the fact that the
exciton localization size is far smaller than the cylinder size.
The localization behavior of the excitons was studied by
examining two quantities: the participation ratio and an au-
tocorrelation function of the exciton wave functions. While
the former only yields an approximate measure for the num-

r2 3n425 612 37;‘25 6 1z 37;‘25 612 3n425 6 ber of molecules participating in the excitation, the latter
gives additional information about the direction of localiza-
(a) (b) (c) (d) tion on the cylinder. In the case of chlorosomes, we found

that the excitons that dominate the optical propertibe

FIG. 7. Als in Fig. 6, but now including diagonal disorder of a strength  gnes near the band bottarhave a strongly anisotropic lo-
=20 cm *. The weakness of the disorder allows for an identification to the __,. . . . ; .
k states of the homogeneous aggregate in Fig. 6. Relative to the averaé:eallzatlon behavior, belng extended mamly along helices,

molecular transition energy, the energies of the plotted states ar¥vhose direction is dictated by the interplay of the various
—-1288.96 cm?® (a), —1292.67 cm' (b), —1245.97 cm' (c), and intermolecular excitation transfer interactions in the cylinder.
—1167.55 cm* (d). As we have demonstrated, this chiral behavior finds its roots
_ ] in the chirality of the fully extended exciton states for the
and between bands will occur. Focusing on the bottom repomageneous cylinder. Both the participation ratio and the
gion of the density of states, we thus find that the wave,iocorrelation function show that, starting from the bottom
functions in the homogeneols=0 andk,=3 bands will ot the exciton band, the exciton states become more ex-
(perturbatively acquire a slanted contribution as well. In aded with increasing enerdpoth quantities give compa-
view of the fact that the slant angle varies little inside as well.3pje values for the energy dependent localization) sideo
as between thie,=+ 1 andk,=+2 bands, we thus expect a he chirality of the wave functions is energy dependent, but
similar slanting for all low-energy states at weak disorder.njs effect is small. It is of interest to speculate whether the
This is clearly confirmed by Fig. 7, where we presented the:hira| nature of the wave functions could be detected in
bottom states of th&,=0, 1, 2, and 3 bands weakly per- (erms of a rotating polarization of the light emitted by an
turbed by the presence of a very small disorder strength ofyciton while propagating. This would require single-

= -1 i i . ; . . .
o=20 cm . If we further increase the disorder strength, theaggregate experiments with high spatial resolution and a

mixing Wi|| become nonpt_arturbative_ and will also involve {jme-resolved detectioft:62

higher-lying states, described by differegtvalues and a

diffgrent n_umber of nodes in th_e ve(tigal Qiregtion. These are\ckNOWLEDGMENT

the ingredients for the localization visible in Fig. 5; however, ) ) )
the slanting of the autocorrelation function still clearly re- ~ This work is part of the research program of the Stich-
flects the fact that locally the wave functions have a chiralityting voor Fundamenteel Onderzoek der Mate(OM),
that derives from the homogeneous states. The reason is th4fich is financially supported by the Nederlandse Organi-
this chirality is mainly driven by the dominant transfer inter- Satie voor Wetenschappelijk Onderzo@WO).

actions, which occur over a few rings.
L. A. Staehelin, J. R. Golecki, and G. Drews, Biochim. Biophys. /88,
30(1980.

VI. CONCLUSIONS 2A. R. Holzwarth and K. Schaffner, Photosynth. Rés, 225 (1994.

. . . . 3T. S. Balaban, A. R. Holzwarth, and K. Schaffner, J. Mol. Str@dg, 183
In this paper we have theoretically investigated the ef- ;g95° 2

fects of disorder on the linear optical properties and the l0-4g. J. van Rossum, G. J. Boender, F. M. Mulé¢ral, Spectrochim. Acta,
calization behavior of the exciton states of cylindrical mo- Part A54, 1167(1998. _
lecular aggregates. As specific example, we have used thel;c'\rf:n‘]’g;Ch':)'t’oi-i0?637"""2";32’9;—8)K°Vama' K. Ogura, and F. Inagaki, Pho-
Stru?ture for the Cy“ndr'cal aggregates found 'n the “ght har'GB. J. van Rossum, D. B. Steensgaard, F. M. Mulder, G. J. Boender, K.
vesting systemgchlorosomek of green bacteria. We have  Schaffner, A. R. Holzwarth, and H. J. M. de Groot, Biochemigy1587
calculated the absorption, LD, and CD spectra for various7(200_D- ) )

cylinder lengths in the presence of Gaussian diagonal disor-:r'lg'éstfg'n S'Eﬁgﬁgﬂﬁgéﬂfifg?zeébg' Burger, A. Ouart, G. Reck,
der, using both numerical simulations and the CPA. To thissy yon Beﬂe’psch C. Bicher, A. Ouart, C. Burger, S. Dae, and S.

end, we modified the usual implementation of the CPA to Kirstein, J. Phys. Chem. B04, 5255(2000.

Downloaded 23 Aug 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



10698  J. Chem. Phys., Vol. 121, No. 21, 1 December 2004

9H. von Berlepsch, S. Kirstein, R. Hania, C. Didraga, A. Rygzand C.
Béttcher, J. Phys. Chem. BO7, 14176(2003.

10C. Didraga, A. Pugys, P. R. Hania, H. von Berlepsch, K. Duppen, and J.
Knoester, J. Phys. Chem. B)8 14976(2004).

13, P. Hill, W. Jin, A. Kosaka, T. Fukushima, H. Ichihara, T. Shinomura, K.
Ito, T. Hashizume, N. Ishii, and T. Aida, Scien864, 1481(2004).

125, €. M. Gandini, E. L. Gelamo, R. Itri, and M. Tabak, Biophys83,
1259(2003.

18R. Rotomskis, R. Augulis, V. Snitka, R. Valiokas, and B. Liedberg, J.
Phys. Chem. BLO8 2833(2004.

4D, Hu, J. Hu, B. Bagchi, P. R. Rossky, and P. F. Barbara, Ndtumadon
405, 1030(2000.

15M. Bednarz and J. Knoester, J. Phys. Chenl.(, 12913(2001).

16C. Spitz, J. Knoester, A. Ouart, and S.lib@, Chem. Phys275 271
(2002.

17C. Didraga, J. A. Klugkist, and J. Knoester, J. Phys. Cherh0g 11474
(2002.

18C. Didraga and J. Knoester, J. Chem. PHy&1, 946 (2004).

C. Didraga and J. Knoester

S7A. Boukahil and D. L. Huber, J. Lumird5, 13 (1990.

38A. Boukahil and D. L. Huber, J. Lumir8-49 255 (1991).

9L, D. Bakalis, I. Rubtsov, and J. Knoester, J. Chem. PHyg, 5393
(2002.

40p, W. Anderson, Phys. Re%09, 1492(1958.

41D, J. Thouless, Phys. Rep., Phys. L&8C, 93 (1974.

“The statesk=(0,0) and N,/2,N,/2) have a participation ratid, while a
participation ratio of N/3 is obtained for the states @), (k;,0),
(N4/2k,), and k;,N»/2), with k; ¢ {O,N;/2}; of course the statehl;/2
exist only whenN; is even.

40, Kihn and V. Sundstm, J. Chem. Physl07, 4154(1997.

“G. RickayzenGreen’s Functions in Condensed Mattgcademic, New
York, 1980.

4E. N. EconomouGreen's Functions in Quantum PhysitSpringer, Ber-
lin, 1983.

46\ |. Prokhorenko, D. B. Steengaard, and A. R. Holzwarth, Biophy&9J.
2105 (2000).

19V, I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, Biophys. J.*’C. Houssier and K. Sauer, J. Am. Chem. S@2, 779 (1970.

85, 3173(2003.

20, Schreiber and Y. Toyozawa, J. Phys. Soc. Jih.1528(1987).

2'M. Schreiber and Y. Toyozawa, J. Phys. Soc. Ji.1537(1981).

22H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. PI9§.7880
(1992,

ZA. V. Malyshev and V. A. Malyshev, Phys. Rev. &, 195111(2001); V.
A. Malyshev, Opt. Spektroskz1, 873 (1991); 71, 505 (199); V. Maly-
shev and P. Moreno, Phys. Rev.58, 14587(1995.

24D. B. Balagurov, G. C. L. Rocca, and V. M. Agranovich, Phys. ReG8B
045418(2003.

25M. Chachisvilis, O. Kian, T. Pullerits, and V. Sundsim J. Phys. Chem.
B 101, 7275(1997).

2T, Meier, V. Chernyak, and S. Mukamel, J. Phys. Cheml1®, 7332
(1997.

270. Kihn and V. Sundstm, J. Chem. Physl07, 4154(1997).

283, Jang, S. E. Dempster, and R. J. Silbey, J. Phys. Chef®5B6655
(2001).

29y, Agranovich, Zh. Eksp. Teor. Fi&7, 430(1959; Sov. Phys. JETR7,
307 (1960.

30y, Agranovich, Fiz. Tverd. TeldLeningrad 3, 811 (1961); Sov. Phys.
Solid State3, 592 (1962.

31A. S. Davydov,Theory of Molecular ExcitonéPlenum, New York, 1971

32y, M. Agranovich and M. D. Galanin, irfElectronic Excitation Energy
Transfer in Condensed Matteedited by V. M. Agranovich and A. A.
Maradudin(North-Holland, Amsterdam, 1982

33p, Soven, Phys. Re56, 809 (1967).

34D. W. Taylor, Phys. Rev156 1017(1967).

353, Hoshen and J. Jortner, J. Chem. PI5@.5550(1972.

36H. Port, H. Nissler, and R. Silbey, J. Chem. Ph§&. 1994(1987).

48N. U. Frigaard, K. L. Larsen, and R. P. Cox, FEMS Microbiol. Ecology
20, 69 (1996.

“A. Dudkowiak, C. Francke, J. Amesz, A. Planner, |. Hargmd D. Frak-
owiak, Spectrochim. Acta, Part B2, 251(1996.

50M. Umetsu, Z. Y. Wang, M. Kobayashi, and T. Nozawa, Biochim. Bio-
phys. Actal41Q 19(1999.

51\We useS(\)=S(w)dw/d\.

52D. V. Makhov, V. V. Egorov, A. A. Bagaturyants, and M. V. Alfimov,
Chem. Phys. Lett246, 371(1995.

3D, V. Makhov, V. V. Egorov, A. A. Bagaturyants, and M. V. Alfimov, J.
Chem. Phys110, 3196(1999.

54K. Griebenow, A. R. Holzwarth, F. van Mourik, and R. van Grondelle,
Biochim. Biophys. Actal058 194 (1991).

%5R. P. Lehmann, R. A. Brunisholz, and H. Zuber, Photosynth. Bs165
(1999.

567. Y. Wang, G. Marx, M. Umetsu, M. Kobayashi, M. Mimuro, and T.
Nozawa, Biochim. Biophys. Acta232 187 (1995.

’R. Frese, U. Oberheide, I. van Stokkum, R. van Grondelle, M. Foidl, J.
Oelze, and H. van Amerongen, Photosynth. Fs.115(1997).

58D, B. Steensgaard, C. A. van Walree, H. Permengteal, Biochim. Bio-
phys. Actal457 71 (2000.

593, savikhin, D. Buck, W. S. Struve, R. E. Blankenship, A. S. Taisova, V. I.
Novoderezhkin, and Z. G. Fetisova, FEBS Ldt0, 323(1998.

%0A. Yakovlev, V. I. Novoderezhkin, A. Taisova, and Z. Fetisova, Photo-
synth. Res71, 19 (2002.

61C. Hofmann, M. Ketelaars, M. Matsushita, H. Michel, T. J. Aartsma, and
J. Kohler, Phys. Rev. Lett90, 013004(2003.

623, Yu, D. Hu, and P. F. Barbara, Scier2@9, 1327(2000.

Downloaded 23 Aug 2006 to 129.125.25.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



