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We study the exciton wave functions and the optical properties of cylindrical molecular aggregates.
The cylindrical symmetry allows for a decomposition of the exciton Hamiltonian into a set of
effective one-dimensional Hamiltonians, characterized by a transverse wave numberk2 . These
effective Hamiltonians have interactions that are complex if the cylinder exhibits chirality. We
propose analytical ansa¨tze for the eigenfunctions of these one-dimensional problems that account
for a finite cylinder length, and present a general study of their validity. A profound difference is
found between the Hamiltonian for the transverse wave numberk250 and those withk2Þ0. The
complex nature of the latter leads to chiral wave functions, which we characterize in detail. We
apply our general formalism to the chlorosomes of green bacteria and compare the wave functions
as well as linear optical spectra~absorption and dichroism! obtained through our ansa¨tze with those
obtained by numerical diagonalization as well as those obtained by imposing periodic boundary
conditions in the cylinder’s axis direction. It is found that our ansa¨tze, in particular, capture the
finite-length effect in the circular dichroism spectrum much better than the solution with periodic
boundary conditions. Our ansa¨tze also show that in finite-length cylinders seven superradiant states
dominate the linear optical response. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1762874#

I. INTRODUCTION

Lately, an increased interest has emerged in the optical
properties and exciton dynamics of molecular aggregates
with a cylindrical geometry. In nature, such aggregates exist
as light-harvesting systems in the chlorosomes of green pho-
tosynthetic bacteria.1 These light-harvesting systems are self-
assembled aggregates consisting of bacteriochlorophyll
~BChl! molecules, arranged in a cylindrical way. They are
responsible for the absorption of sunlight and the transport of
its energy in the form of excitons to the photosynthetic reac-
tion centers in the base plate of the chlorosomes. On the
basis of various kinds of spectroscopies and molecular mod-
eling, a detailed model for the organization of the BChl mol-
ecules in these aggregates has been proposed.2–6 In this
model, the molecules form helices that wrap around a cylin-
der with a diameter of;5 nm ~for Chloroflexus aurantiacus!
or ;10 nm~for Chlorobium tepidum! and a length that may
reach several hundreds of nanometers. In the traditional lan-
guage of molecular aggregates, these systems should be re-
ferred to asJ aggregates, as their absorption band is red-
shifted relative to that of a single BChl molecule.

Interestingly, cylindricalJ aggregates have recently also
been prepared synthetically, through self assembly of poly-
methine cyanine dye molecules with amphiphilic side
groups.7,8 Polymethine cyanine molecules are the prototype
class of molecules that form self-assembledJ aggregates.
Due to their strong transition dipoles, they are among the
molecules with the strongest tendency to self assemble, with

the largest absorption strength, and the largest exciton trans-
fer interaction.9 Their special optical properties are the rea-
son for their abundant use as light sensitizers in classical
color photography.10 In fact, their strong absorption and en-
ergy transport properties also make them ideal candidates to
prepare synthetic light-harvesting systems. In this context,
the new cylindrical aggregates of amphiphilic cyanine mol-
ecules are of great interest, as they closely mimic the natural
antenna systems of green bacteria. Optical techniques and
cryogenic transmission electron microscopy are employed
abundantly to unravel the molecular arrangement and the
microscopic properties of the cylindrical cyanine
aggregates.11–15 It has also been established that these syn-
thetic cylindrical aggregates exhibit a chiral~helical! struc-
ture. In fact, chirality is an interesting and important property
of many currently investigated~quasi-!one-dimensional su-
pramolecular structures.16,17

In a recent study,18 we have calculated the linear absorp-
tion, linear dichroism~LD!, and circular dichroism~CD!
spectra of cylindrical molecular aggregates and shown that
the helicity may give rise to a complicated and seemingly
erratic behavior of the CD spectrum with varying cylinder
length. In our calculations we took advantage of the cylin-
drical symmetry by reducing the problem of finding the ex-
citon eigenstates of the cylinder to the problem of solving for
the eigenstates of a set of independent effective one-
dimensional exciton systems. For general cylinder lengths,
these effective systems were diagonalized numerically. For
long cylinders, we also found analytical expressions for the
spectra, by imposing periodic boundary conditions~PBC!
along the direction of the cylinder’s axis. In this limit, stud-
ied previously by Somsenet al.,19 the linear spectra are gov-
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erned by three superradiant states. Unfortunately, while it is
of obvious interest to have analytical expressions for the ex-
citon wave functions and spectra as a function of the cylinder
length, the analytical solution with PBC is strictly valid only
in the limit of infinite length. Of course, one may impose
PBC on cylinders with a finite length, but it turns out that,
while for the absorption and LD spectra this gives reasonable
results, for the calculation of the CD spectrum a finite cylin-
der length is incompatible with imposing PBC. This is due to
the helical term in the CD spectrum,18 which involves the
relative position vector of pairs of molecules along the axis
direction. A similar type of size consistency problem occurs
for the absorption spectrum in tight-binding models for one-
dimensional electron systems, in which the dipole is given
by the electron position measured along the direction in
which one would like to apply PBC.20,21 For the electron
chains, this problem may be solved by making the chain’s
geometry consistent with the PBC, i.e., by turning it into a
circle. The equivalent for our cylinder would be to consider a
torus arrangement, which, however, for general sizes de-
stroys the cylindrical symmetry and only would be a reason-
able approximation again at very large cylinder lengths.

Motivated by the above, we investigate in this paper
analytical ansa¨tze for exciton wave functions that explicitly
account for the finite length of the cylinder and that also
incorporate the helical nature of the system. In general, the
problem to be solved boils down to diagonalizing one-
dimensional exciton Hamiltonians which contain long-range
interactions~which at long distances behave like dipolar in-
teractions! and which, due to the helicity, in general lack
inversion symmetry. In analogy to previous work for a sym-
metric exciton chain with point–dipole interactions,22 we
show that it is possible to find good analytical approxima-
tions to the optically dominant exciton states. These solu-
tions may be separated into two types, distinguished by their
transverse wave number (k250 andk2561, respectively!
describing the Bloch state in the circumferential direction of
the cylinder. In thek2561 states, the helical nature of the
cylinder plays a prominent role, leading to a clear chiral
behavior of the wave functions.

The outline of this paper is as follows: In Sec. II we
present the model and the reduction to effective one-
dimensional Hamiltonians. In particular, we present the ef-
fective HamiltoniansH(k250) andH(k2561) which de-
scribe the two classes of exciton states that are optically
active. In Sec. III we study the exciton eigenfunctions of
H(k250), while in Sec. IV we investigate the eigenfunc-
tions and their optical selection rules forH(k2561). Sec-
tion V is dedicated to the application of our general results
for the exciton eigenstates to the special case of the chlo-
rosomes ofChloroflexus aurantiacus. Finally, in Sec. VI, we
present our conclusions.

II. MODEL AND REDUCTION TO ONE-DIMENSIONAL
PROBLEMS

For the cylindrical aggregates, we consider the same
model of as we did previously,18 depicted schematically in
Fig. 1. The model consists of a perpendicular stack ofN1

rings of radiusR, each one containingN2 equidistant mol-

ecules. Adjacent rings are separated by a distanceH are ro-
tated relative to each other over a helical angleg. We will
label the molecules by a two-dimensional vectorn
5(n1 ,n2), wheren151,2,...,N1 gives the position along the
helices~i.e., the ring number! and n251,2,...,N2 labels the
helix ~i.e., the position along the ring!. Each molecule is
modeled as a two-level chromophore, with transition fre-
quencyv0 and with a transition dipolemn that is equal in
magnitude ~m! for all molecules. Each molecular dipole
makes an angleb with respect to the cylinder axis, while its
projection on a plane perpendicular to this axis makes an
angle a with the local tangent to the ring. The reader is
referred to Ref. 18 for comments concerning the general na-
ture of this model.

The electronically excited states of the aggregate are de-
scribed by a Frenkel exciton Hamiltonian on the above de-
scribed two-dimensional manifold, with intermolecular exci-
tation transfer interactionsJ(m)5J(m1 ,m2) that are
determined by the relative position vectorm of the two mol-
ecules under consideration. This interaction is given by the

FIG. 1. Cylindrical aggregate consisting of a stack ofN1 rings, labeledn1

51,...,N1 , each containingN2 molecules, labeledn251,...,N2 . The ar-
rows indicate the molecular transition dipoles, which are all equal in mag-
nitude ~m! and make an angleb with the cylinder axis. The projection of
each dipole on the plane of the rings makes an anglea with the local tangent
to the ring. Each ring is rotated with respect to the previous one over an
angleg, so that we may view the aggregate as a collection ofN2 parallel
helices on the cylinder’s surface. One such helix is indicated by the dashed
curve.
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interaction between the transition dipoles of the two mol-
ecules. Using the cylindrical symmetry of the model, which
prescribes a Bloch wave;exp(i2pk2n2 /N2) @k250,61,
62,...,6(N2/221),N2/2#23 for the dependence of the exci-
ton wave functions onn2 , the total Hamiltonian is easily
decoupled into a set ofN2 effective one-dimensional
Hamiltonians,18 labeled by the transverse wave numberk2 .
This effective Hamiltonian reads:

H~k2!5@v01J~0;k2!# (
n151

N1

cn1 ,k2

† cn1 ,k2

1 ( 8
n1 ,m151

N1

J~n12m1 ;k2!cn1 ,k2

† cm1 ,k2
, ~1!

where cn1 ,k2

† and cn1 ,k2
are the operators for creation and

annihilation of an excitation of transverse wave numberk2

on the ringn1 , respectively, and the prime on the second
summation excludes the term withn15m1 . Furthermore,
J(n12m1 ;k2) is the effective interaction for transfer of an
exciton of wave numberk2 from ring m1 to ring n1 . This
effective transfer interaction is given by

J~m1 ;k2!5 ( 8
m251

N2

J~m1 ,m2!e2 i2pk2m2 /N2, ~2!

whereJ(m1 ,m2) is the intermolecular dipole–dipole inter-
action introduced above and the prime excludes the term
with m250 if m150. In the effective one-dimensional
model, each one of the rings plays the role of an effective
site on a one-dimensional chain of lengthN1 , with effective
transition frequencyv01J(0;k2) @where the termJ(0;k2)
accounts for the dipole–dipole interactions between the mol-
ecules that reside in the same ring# and effective excitation
transfer interactions given byJ(m1 ;k2) from siten1 to site
n11m1 .

The effective interactionsJ(m1 ;k2) andJ(m1 ;2k2) are
each other’s complex conjugates, implying thatH(k2) and
H(2k2) have the same set of eigenvalues, while their corre-
sponding eigenvectors are related by complex conjugation.
This allows us to focus onH(k2) with k2>0, as all other
eigenvalues and eigenvectors follow from those. It should
also be stressed that the effective interactionJ(m1 ;k2) is
complex in general, and as a result of the helicity
@J(m1 ,m2)ÞJ(2m1 ,m2)#, it lacks inversion symmetry:
J(m1 ;k2)ÞJ(2m1 ;k2). Thus, the effective one-
dimensional Hamiltonians also lack inversion symmetry; of
course, they are Hermitian for allk2 . Only in the special
casek250, is the effective interaction real and the Hamil-
tonian has inversion symmetry.

We will be interested mainly in the bands withk250
andk2561, as these are the only ones that contribute to the
linear optical spectra.18 The general expressions for the linear
absorption spectrum and the linear and circular dichroism
spectra in terms of the eigenvalues and eigenfunctions of
H(k250) andH(k2561) were given in Ref. 18 and will
not be repeated here. As the band withk2521 is related to
the one withk251 by complex conjugation~see above!, we
will concentrate in the remainder of this paper on two effec-
tive Hamiltonians:H0[H(k250) and H1[H(k251). To

stress the one-dimensional nature of these Hamiltonians and
to simplify the notation, we omit the indexk2 and label the
effective sites simply asn ~i.e., we drop the subscript ‘‘1’’!;
the total length of the system is still denoted asN1 . The
Hamiltonian of thek250 and thek251 bands then have
matrix elements denoted by, respectively,

^nuH0um&5~v01J0~0!!dn,m1J0~n2m!~12dn,m!, ~3!

and

^nuH1um&5~v01J1~0!!dn,m1J1~n2m!~12dn,m!. ~4!

Here,un& denotes the state of the linear chain in which siten
is excited and all other sites are in the ground state. Further-
more,J0(m)5J(m;k250) andJ1(m)5J(m;k251) denote
the two relevant effective interactions. For future reference
we note that the long-range behavior of both of these inter-
actions is of the dipole–dipole type, i.e., forumu large
(umuh@R), bothJ0 andJ1 drop off like 1/umu3. The system-
atic long-range~multipole! expansions forJ0(m) andJ1(m)
are given in Appendix A. The first correction to point–dipole
interactions is on the order 1/umu5 for J0(m) and 1/umu4 for
J1(m). At short distances, the effective interactions differ
markedly from point–dipole ones, due to the finite radiusR
of the rings.

As we will see below, the band withk250 and its
HamiltonianH0 is fundamentally different from thek251
band, with HamiltonianH1. As discussed above,H0 is gov-
erned by real and symmetric interactions, whileH1 is essen-
tially complex and not symmetric. This requires a different
approach, which is why both cases are treated separately in
Secs. III and IV, respectively. Moreover, we will find that the
optical selection rules for the two bands differ. In particular,
for predominantly negative intermolecular interactions (J ag-
gregate!, the optically allowed states fork250 occur at the
band bottom, while fork251 they lie a finite energy above
the band bottom.

III. EIGENSTATES OF H0

The effective HamiltonianH0 describes a linear chain
with real and symmetric interactionsJ0(m). In the long
range (umu@2R/h), the interactions behave like point–
dipole ones: J(m)52J/umu3 with an effective nearest-
neighbor interaction2J522(N2m2/h3)cos2 b ~see Appen-
dix A!, but at short distances the deviations from this limiting
form in general are significant. The case of a chain with real
and pure point–dipole interactions~i.e., ;1/umu3 for all val-
ues of m) was investigated before by Malyshev and
Moreno,22 by starting from a simple ansatz for the exciton
wave functions. We will closely follow their strategy, being
more careful, however, in defining the criterion for the va-
lidity of the ansatz. This care is of crucial importance for the
k251 case.

The ansatz which we make for the eigenstates ofH0

reads

uk&5A 2

N111(
n51

N1

sin~kfn!un&, ~5!
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with f5p/(N111) and k51,2,...,N1 . In the notation of
Ref. 18 the state Eq.~5! takes the form of Eq.~47! in that
reference, withk replacingk1 and uk250 set to zero. The
ansatz Eq.~5! is exact for a chain with nearest-neighbor
interactions24 and is based on the intuition that for largeN1

~smallf! and small wave numberk, i.e., for eigenstates that
slowly oscillate in space on the scale of the lattice constant,
the long-range contributions to the interaction hardly affect
the form of the eigenstate.22 It should be noted that generally
speaking the states with small values ofk dominate the op-
tical spectra,25 implying that having a good approximation
for the wave functions of these slowly varying states should
give good approximations to the spectra. In particular, of the
above states, thek51 state contains 81% of the total oscil-
lator strength in the limit of largeN1 . For negative~positive!
nearest-neighbor interactions, this state lies at the bottom
~top! of the exciton band. We will assume that also for our
long-range interactionsJ0(m) this property holds. For
point–dipole interactions, numerical simulations confirm
this.25

In Ref. 22 the validity of the ansatz Eq.~5! for the opti-
cally dominant states was argued by showing that the matrix
elements of the actual Hamiltonian with dipolar interactions
between states with differentk values are small fork!N1 . It
should be pointed out, however, that this is a necessary, but
not sufficient condition for negligible mixing of differentk
states by the long-range interactions. The proper criterion for
negligible mixing of statesuk& and uk8& by the long-range
interactions involves the mixing ratio

r 0~k,k8!5
uHk,k8

0 u

uHk,k
0 2Hk8,k8

0 u
, ~6!

with Hk,k8
0

5^kuH0uk8&. As for close values ofk andk8 the
energy separationuHk,k2Hk8,k8u decreases with increasing
N1 , and the denominator in Eq.~6! plays an important role.
In order to show that the ansatz Eq.~5! is a good one for the
optically dominant states, we have to show thatr 0(k,k8)
!1 if eitherk or k8 ~or both! are among those states, i.e., in
particular for one of them being 1.

Using the effective Hamiltonian Eq.~3! and the ansatz
Eq. ~5!, we arrive at the following general expressions for the
relevant matrix elements:

Hk,k
0 5v01J0~0!12 (

m51

N121

J0~m!cos~kfm!

1
2

N111 Fcot~kf! (
m51

N121

J0~m!sin~kfm!

2 (
m51

N121

mJ0~m!cos~kfm!G ~7!

and forkÞk8

Hk,k8
0

5
11~21!k2k8

2~N111! H cot
~k1k8!f

2 (
m51

N121

J0~m!

3@sin~kfm!1sin~k8fm!#2cot
~k2k8!f

2

3 (
m51

N121

J0~m!@sin~kfm!2sin~k8fm!#J . ~8!

In deriving these expressions, we used the symmetry of the
interactions,J0(2m)5J0(m). The fact that states with odd
k are not coupled to those with evenk reflects this symmetry.
We also note that the third term in Eq.~7! is identical to the
dispersion of a one-dimensional aggregate with PBC, with
the exception thatf in the case of PBC is given by 2p/N1 .25

The fourth and fifth terms in Eq.~7! together are on the order
of 1/N1 and give an explicit correction due to edge effects.

In order to estimate the mixing ratior 0(k,k8), we have
to estimate the summations in Eqs.~7! and ~8!, in particular
for N1@1, which is the case of our interest as then we expect
the ansatz Eq.~5! to be good. We will first do this for the
case of a pure dipole–dipole interaction and in the end of this
section consider corrections due to the deviations from
1/umu3 behavior at short distances.

Thus, we start by assuming that the interactions for allm
take the formJ0(m)52J/umu3 ~with J0(0)[0) and esti-
mate the mixing ratior 0(k,k8). As argued above, we have to
do this for one of the wave numbers~sayk) referring to one
of the optically dominant states~i.e.,k on the order of unity!,
while for the other (k8) we have to consider all other states.
Clearly, however,r 0(k,k8) will be largest in the case of
neighboring states, i.e., foruk2k8u on the order of unity, as
for long chains these states get close to degeneracy. We may
thus limit ourselves to considering the situation where bothk
and k8 are on order of unity. The only situation where this
would not suffice, occurs if at certain highk values the un-
perturbed energŷkuH0u k& happens to be equal to the one at
small k values. We will assume that such degeneracy of the
exciton band edge does not occur. We will check this as-
sumption explicitly when applying the formalism in Sec. V.

For largeN1 , the summations in Eqs.~7! and~8! may be
written as

(
m51

N121

maJ0~m!F~mf!

5 (
m51

`

maJ0~m!F~mf!2E
N1

`

maJ0~m!F~mf!dm, ~9!

with a50 or 1, andF(mf) the appropriate combination of
trigonometric functions ofmf. Here, we have extended the
summation to infinity and, using the smooth behavior of the
summand for largem, approximated the correction term by
an integration. ForJ0(m)52J/umu3, this correction term
leads to contributions inHk,k

0 andHk,k8
0 starting at the order

1/N1
2;f2, which is the highest order inf that we will be

interested in keeping. The error made in transforming the
summation in this correction term into an integration appears
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only in terms on the order off3 and higher, which will be
neglected. Using various standard summations for combina-
tions of trigonometric functions and powers26 and the ap-
proach developed in Ref. 22 to evaluate(m51

` cos(kfm)/m3

for f small, fork!N1 and neglecting terms of orderf3 and
higher, we arrive at

Hk,k
0 5v022Jz~3!1Jf2@k2~3/22 ln~kf!!2 f ~k!#.

~10!

Here, z(x) is the Riemann zeta function, withz(3)
51.202. . . , andf (k) is defined as

f ~k!5k/22k2ci~pk!1~k/p!si~pk!, ~11!

with si(x) and ci(x) the sine and cosine integral functions,
respectively.26 The term f (k) in Eq. ~10! gives a correction
to the dispersion relation derived in Ref. 22, which results
from the correction integral in Eq.~9!.

In a similar way, the nondiagonal matrix elements (k
Þk8) we arrive at

Hk,k8
0

52
11~21!k2k8

2
a~k,k8!Jf2, ~12!

with

a~k,k8!5
kk8

k1k8
2

2

p

kk82si~pk8!2k8k2si~pk!

k22k82 . ~13!

As above, we neglected terms of orderf3 and higher. The
second term in Eq.~13! is due to the correction integral in
Eq. ~9!.

From Eqs.~6!, ~10!, and~12!, we arrive at

r 0~k,k8!5
11~21!k1k8

2 U a

b ln~N111!1cU, ~14!

wherea stands fora(k,k8) defined above,b5k822k2, and
c5 f (k)2 f (k8)1k2 ln(pke23/2)2k82 ln(pk8e23/2). It is now
clear thatr 0(k,k8) goes to zero logarithmically forN1 large,
implying that for long chains~cylinders!, the ansatz Eq.~5!
is a good approximation to the exact eigenstates fork on the
order of unity. If we consider the superradiant statek51, its
strongest mixing occurs with the statek853. Substituting
these values in the above expressions, givesa51.50734,b
58, andc529.03323. ForN1550, 100, and 250, this gives
r 0(1,3)50.067, 0.054, and 0.043, respectively, which clearly
indicates the smallness of the mixing between these two
states.

We note that in Ref. 22 the validity of the ansatz Eq.~5!
for the case of point–dipole interactions was argued by di-
rectly calculating the ratio ofHk,k8 (kÞk8) with the energy
Hk,k and not with the energy difference, as we did. This ratio
was found to be of the order 1/(N111). We believe the right
criterion involves the energy difference, which still shows
that the validity of the ansatz improves with growing system
lengthN1 , but only logarithmically.

We end this section by discussing the effects of the de-
viation of the actual interactionJ0(m) from the point–dipole
form considered above. In Appendix B, we show that for
cylinders that have a large aspect ratioN1h/2R, the logarith-
mic N1 dependence Eq.~14! still holds, albeit with possibly

different coefficientsa, b, andc. In the special case thath
.2R, J0(m) for all m may be expressed through a conver-
gent multipole expansion~Appendix A!, and only the coeffi-
cient c changes to a new value, given by Eq.~B5!. If h
,2R, the coefficientsa and b also obtain new values. In
general, the values of the coefficientsa, b, andc depend on
the structural parameters of the cylinder (h/2R, N2 , a, b,
andg!. In Sec. V, we will numerically address these values
when discussing the example of chlorosomes of green bac-
teria.

IV. EIGENSTATES OF H1

We now turn toH1, which in contrast toH0 is complex
and asymmetric. Again, we base our ansatz for finding the
optically dominant wave functions on the solution for a chain
with nearest-neighbor interactions, which now are complex.
This yields

uk&5A 2

N111 (
n51

N1

sin~kfn!ein(u1g)un&, ~15!

with f5p/(N111) andk51,2,...,N1 , as before. In the no-
tation of Ref. 18 the state Eq.~15! takes the form of Eq.~47!
in that reference, withk replacingk1 and u1g replacing
uk251 . The latter represents a phase angle which, in the case
where only a nearest-neighbor interaction occurs, is given by
the phase of this interaction, arg@J1(1)#. We have chosen to
separate the role of the helical angleg in this phase angle, as
this simplifies the expressions below. Moreover, as we will
see in Sec. V,u is the part of the phase angle that leads to
chiral behavior of the wave function on the cylinder surface.
As we are dealing with effective long-range interactions, in-
stead of nearest-neighbor ones, it is not cleara priori on
what interaction to base the total phase angle. Therefore, we
will consideru a free parameter, which will be fixed in order
to optimize the quality of the ansatz Eq.~15! for the optically
dominant states in the band.

Following the same steps as we did for thek250 band,
we first look where in thek251 band the optically dominant
states occur. The oscillator strengthM (k) of states of the
type Eq. ~15! was already derived as Eq.~50! in Ref. 18.
Normalizing the result to the total oscillator strength
N1N2m2, the result reads

M ~k!5
1

2N1~N111! Fsin@N1~kf2u!/2#

sin@~kf2u!/2#

2~21!k
sin@N1~kf1u!/2#

sin@~kf1u!/2# G2

. ~16!

Analyzing this result we find that forN1@1,ucot(u)u three
superradiant states occur that are located a finite energy sepa-
ration above the bottom of thek251 band. In other words,
the superradiant states in thek251 band do not occur at the
lower band edge. These three states are characterized by the
wave numbers k5k* 21, k* , and k* 11. Here k*
5nint@ uuu(N111)/p# with nint the nearest integer function:
uuu(N111)/p5nint@ uuu(N111)/p#1j, with 20.5,j
<0.5 the remainder.
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If N1@1,ucot(u)u, the oscillator strength of the three su-
peradiant states is to a good approximation given by

M ~k* !5
1

2 Fsinpj/2

pj/2 G2

, ~17!

and

M ~k* 61!5
1

2 Fsinp~j71!/2

p~j71!/2 G2

. ~18!

These results are plotted as functions ofj in Fig. 2. We see
that k* carries roughly half of the total oscillator strength,
while the statesk* 61 are complementary and together carry
roughly the other half. The three states together carry be-
tween 85.6% and 90.5% of the total strength in thek251
band~in the limit of largeN1).

In direct analogy with theH0 case, the smallness of the
mixing ratio r 1(k,k8)5uHk,k8

1 u/(uHk,k
1 2Hk8,k8

1 u), with Hk,k8
1

5^kuH1uk8&, seems a good criterion for the validity of the
ansatz Eq.~15!. Since we now deal with three superradiant
states, we should consider the various ratios involving these
states. However, as two of these states (k* 61) have
complementary behavior of the oscillator strength as a func-
tion of N1 , it is more appropriate to weigh the mixing ratio
by the corresponding oscillator strengths. We will therefore
consider as criterion for the validity of the ansatz Eq.~15! for
the optically dominant states the smallness of the weighted
mixing ratio

r̃ 1~k,k8!5~M ~k!1M ~k8!!
uHk,k8

1 u

uHk,k
1 2Hk8,k8

1 u
, ~19!

with k5k* 21, k* , or k* 11 andk8 one of the neighboring
states ofk.

The diagonal matrix elements of the HamiltonianH1

read

Hk,k
1 5v01J1~0!12 (

m51

N121

J1
1 ~m!cos~kfm!

1
2

N111 Fcot~kf! (
m51

N121

J1
1 ~m!sin~kfm!

2 (
m51

N121

mJ1
1 ~m!cos~kfm!G , ~20!

with

J6
1 ~m!5 1

2 @J1~m!e2 im(u1g)6c.c.#. ~21!

Clearly, J1
1 (m) is real and, owing to the fact thatH1 is

Hermitian, we also haveJ1
1 (2m)5J1

1 (m); conversely,
J2

1 (m) is imaginary andJ2
1 (2m)52J2

1 (m). We note that
the diagonal element Eq.~20! is identical in form to Eq.~7!,
with J1

1 (m) replacingJ0(m). Naturally, the diagonal matrix
elements are real. By contrast, the off-diagonal elements
Hk,k8

1 (kÞk8) are complex and we will split them into their
real and imaginary parts. As we will see, these parts behave
fundamentally different for smallf.

The real part ofHk,k8
1 is nonzero only ifk2k8 is even

and reads

ReHk,k8
1

5
11~21!k2k8

2~N111! H cot
~k1k8!f

2 (
m51

N121

J1
1 ~m!

3@sin~kfm!1sin~k8fm!#2cot
~k2k8!f

2

3 (
m51

N121

J1
1 ~m!@sin~kfm!2sin~k8fm!#J ,

~22!

which is identical toHk,k8
0 of Eq. ~8!, except thatJ1

1 (m)
replacesJ0(m). The imaginary part of the off-diagonal ma-
trix elements appears as a new ingredient in thek251 Hami-
tonian; it is only nonzero ifk2k8 is odd and reads

Im Hk,k8
1

5
12~21!k2k8

2i ~N111! H cot
~k1k8!f

2 (
m51

N121

J2
1 ~m!

3@sin~kfm!2sin~k8fm!#2cot
~k2k8!f

2

3 (
m51

N121

J2
1 ~m!@sin~kfm!1sin~k8fm!#J .

~23!

Before estimating the various summations involved in
the above expressions, it is useful to notice that, as we show
in Appendix C, we may exclude the caseu50 ~nonchiral
wave functions! in order to obtain a good approximation to
the wave function. The reason is thatu50 yields a
~weighted! mixing ratio that diverges for largeN1 . As ar-
gued below Eq.~16!, for uÞ0, the three superradiant states
k* , k* 61 do not occur at the bottom of thek251 band
~except if N1 is very small, which is not of our interest!.

FIG. 2. Oscillator strengths~in units of N1N2m2) of the three statesk
5k* 21, k* , andk* 11 in thek251 band as a function of the mismatchj
betweenk* and uuu(N111)/p in the limit of N1@1, ucotuu @cf. Eqs.~17!
and ~18!#. The dot-dashed line gives the total oscillator strength in these
three transitions.
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Rather the region of interest is characterized byk*
5nint@ uuu/f#5nint@ uuu(N111)/p#. Hence, unlike the situ-
ation in thek250 band, thek values of the superradiant
states in thek251 band are not fixed, but scale linearly with
N1 . This scaling complicates the treatment ofHk,k

1 , ReHk,k8
1 ,

and ImHk,k8
1 in a way directly analogous to Sec. III, as the

quantitykf, which could be considered of the orderf in the
previous section, now becomes essentially a constant inf.
We thus have to be more careful in dealing with the orders of
f. As we will be primarily interested in states withk values
close tok* , we may considerr̃ (k,k8) with k5k* 1p and
k85k* 1q, wherep andq are integers of the order of unity
and pÞq. Since k* f5uuu2jf with 20.5,j<0.5, we
have kf5uuu1(p2j)f and k8f5uuu1(q2j)f. For N1

large, (p2j)f and (q2j)f are small, on the order off,
and may be used as an expansion parameter in the various
functions that occur in the matrix elements Eqs.~20!, ~22!,
and ~23!.

The results of this procedure are as follows. For the en-
ergy difference, neglecting terms of the orderf2 and higher,
we find

Hk* 1p,k* 1p
1

2Hk* 1q,k* 1q
1

522~p2q!S~u!f, ~24!

with S(u)5(m51
N121J1

1 (m)m sin(muuu). Similarly, the real
parts of the coupling elements read~up to orderf!

ReHk* 1p,k* 1q
1

52
11~21!p2q

p
Sr~u!f, ~25!

with Sr(u)5(m51
N121J1

1 (m)@m cos(mu)2cot(u)sin(mu)#.
Clearly, the functionsS(u) andSr(u) only depend onf ~or
N1) through the upper summation boundary and a possible
dependence ofu on N1 . Both dependencies are weak~see
below for theN1 dependence ofu! and do not add systematic
orders of f to the matrix elements. Hence, both
Hk* 1p,k* 1p

1
2Hk* 1q,k* 1q

1 and ReHk*1p,k*1q
1 have as leading

contributions terms that are linear inf.

The imaginary part ofHk* 1p,k* 1q
1 requires more care.

Substituting the above expressions forkf5(k* 1p)f and
k8f5(k* 1q)f into Eq. ~23!, applying several standard
manipulations of trigonometric functions, and expanding in
powers off yields ~neglecting terms of the orderf2 and
higher!

Im Hk* 1p,k* 1q
1

52
12~21!p2q

p i F 2

p2q
Si1~u!

1
p1q22j

p2q
Si2~u!fG , ~26!

with Si1(u)5(m51
N121J2

1 (m)sin(muuu) and Si2(u)

5(m51
N121J2

1 (m)cos(muuu). We thus find that, unlessSi1(u)
vanishes, the mixing ratior̃ 1(k* 1p,k* 1q) has a leading
contribution proportional to 1/f, which grows for increasing
N1 . The conclusion would be that the ansatz Eq.~15! is not
very useful and, contrary to our expectations, deteriorates for
growing N1 . We can avoid this situation by demanding that
the angleu is such thatSi1(u) vanishes, i.e., we fix the
choice ofu5u0 such that

(
m51

N121

J2
1 ~m!sin~muu0u!50. ~27!

Notice that, as argued earlier, we do not admit the trivial
solutionu050 of this condition.

After having setu5u0 , the Si2(u0) term in Eq. ~26!
gives the leading contribution~order f! in Im Hk*1p,k*1q

1 .
Combining this with Eqs.~24! and~25! shows that the lead-
ing contribution tor̃ 1(k* 1p,k* 1q) is of order unity and
reads

r̃ 1~k* 1p,k* 1q!5H @M ~k* 1p!1M ~k* 1q!#

pup2qu
uSr~u0!u
uS~u0!u

, p2q even

@M ~k* 1p!1M ~k* 1q!#up1q22ju
p~p2q!2

uSi2~u0!u
uS~u0!u

, p2q odd.

~28!

The important difference with the ratior 0 in thek250 band
is that r̃ 1 does not systematically decrease with increasing
N1 . Hence, the quality of the ansatz Eq.~15! does not im-
prove with growing cylinder size. The solutions foru0 and
the numerical value of the ratior̃ 1 close to the superradiant
transitions will be studied for the special case of chlorosomes
in Sec. V.

V. APPLICATION TO CHLOROSOMES
AND DISCUSSION

We now consider as an example of cylindrical aggre-
gates the rod elements of chlorosomal antennae of green

bacteria2,3,5,6and apply the above formalism to calculate the
opticaly dominant states and resulting spectra. The param-
eters for the BChlc aggregates ofChloroflexus aurantiacus
are: R52.297 nm, N256, h50.216 nm, a5189.6°, b
536.7°, andg520°.27 The lengthN1 of these aggregates
may extend to hundreds of rings. Furthermore, we have
takenv0 to agree with a single-molecule absorption peak at
675 nm and, in order to calculate the intermolecular interac-
tions @Eq. ~A1!#, we have usedm2520 De2 for the square of
the single-molecule transition dipole.

We first consider the validity of the ansatz Eq.~5! for the
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k250 band. In Fig. 3, we plotted as diamonds the exact ratio
r 0(1,3) as a function of the cylinder lengthN1 , numerically
calculated from Eqs.~6!, ~7!, and~8! @the ratior 0(1,2) van-
ishes identically#. Clearly, the ratior 0(1,3) already is small
for intermediate length (N1'100) and reduces even further
when increasingN1 . The solid line in Fig. 3 shows a fit of
the exact data in the interval 700<N1<1000 to the expres-
sion Eq.~14!, usingb/a andc/a as fit parameters. Although,
due to the deviation of the effective interactionsJ0(m) from
point-dipole ones at smallm values, the best-fit parameters
(b/a58.00 andc/a5229.75) differ from the ones obtained
analytically in Sec. III, the largeN1 dependence clearly fol-
lows the logarithmic behavior generally predicted in that sec-
tion. The obtained values forr 0(1,3) suggest that Eq.~5! is
already a good approximation for the optically dominant
state in thek250 band for cylinders of intermediate length
~chlorosomes as short as 20 nm! and that the approximation
further improves for increasingN1 . This is demonstrated
directly in Fig. 4, where the (n1 dependence of the! ansatz
wave function fork51 is compared to the optically domi-

nant wave function as obtained from numerical diagonaliza-
tion of H0 for several values ofN1 . Finally, we have plotted
in Fig. 5 ~solid line! the numerically obtained unperturbed
dispersion relationHk,k

0 in the k250 band forN1→`. This
plot clearly demonstrates that, as assumed in Sec. III, indeed
Hk,k

0 does not exhibit degeneracies between the superradiant
k51 bottom state~solid arrow! and the higher-lyingk states.

We now turn to thek251 band and the ansatz Eq.~15!.
At convergence (N1→`), numerically solving the condition
Eq. ~27! yields the chiral angleu054.3035°. Although this
angle is small, we will see that it plays a crucial role in the
optical properties, in particular in the CD spectrum. As is
demonstrated in Fig. 6, theN1 dependence ofu0 is weak, a
fact that was anticipated below Eq.~25! already. The value of
u0 at largeN1 implies that the three superradiant states in the
k251 band are located aroundk* 'uuu(N111)/p
'0.0239(N111). The dashed curve in Fig. 5 gives the nu-
merically obtained unperturbed dispersion relationHk,k

1 in
thek251 band forN1→` ~usingu054.3035°). The dashed
arrow in this plot indicates the energy of the three superra-
diant states~at kf/p'0.0239), which again demonstrates
that no degeneracies exist between the superradiant states
and the higher-lyingk states, implying that we may indeed
solely concentrate on the weighted ratiosr̃ 1(k,k8) for k and

FIG. 3. The ratior 0(1,3) as a function ofN1 for cylindrical aggregates of
the chlorosome structure. The diamonds are the exact values obtained by
numerically evaluatingH1,3

0 /uH1,1
0 2H3,3

0 u, while the solid line represents a fit
of the largeN1 behavior to the limiting analytical expression Eq.~14!, using
b/a andc/a as free parameters.

FIG. 4. Comparison between the ansatz wave function Eq.~5! with k51 in
thek250 band~thick solid line! to the superradiant state in this band found
by numerical diagonalization ofH0 for various cylinder lengths~thinner
lines!. Structural parameters used are those that apply to the chlorosomes of
green bacteria. The numerical solutions correspond, in the direction of the
arrows, toN1550, 100, 300, 500, and 1000, respectively.

FIG. 5. Unperturbed dispersion relationsHk,k
0 ~solid! andHk,k

1 ~dashed! as a
function of kf for N1→`. Structural parameters used are those that apply
to the chlorosomes of green bacteria. The solid and dashed arrows indicate
the energies of the superradiant states in thek250 and thek251 bands,
respectively.

FIG. 6. The chiral angleu0 , obtained by numerically solving Eq.~27!, as a
function of the cylinder lengthN1 . Structural parameters used are those that
apply to the chlorosomes of green bacteria.
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k8 in the immediate vicinity ofk* . This yields in total nine
ratios of interest to be considered, all of which are plotted as
a function of N1 in Fig. 7, as obtained from numerically
evaluating the matrix elements Eqs.~20!, ~22!, and~23!. Pan-
els ~a!–~e! involve combinations of states in which the real
coupling ReHk,k8

1 is nonzero, while the imaginary coupling
Im Hk,k8

1 vanishes and vice versa for panels~f!–~i!.
Several comments are in place concerning these results.

First, we observe that the ratios oscillate as a function ofN1 ,
which is a consequence of the fact that the remainderj
defined above Eq.~17! oscillates. This remainder enters
r̃ 1(k,k8) because the expression fork* in terms ofu contains

j. Second, we see that the weighted ratios are small over the
entire range ofN1 values considered (N1.50), suggesting
that the ansatz Eq.~15! is a good approximation for the op-
tically dominant wave functions. Third, we see that in con-
trast to the ratior 0 in thek250 band,r̃ 1(k,k8) does not tend
to zero in the limit of largeN1 . This agrees with the smallf
expansion made in Sec. IV@Eq. ~28!#, which indicated that
the leading contribution tor̃ 1(k,k8) is zeroth order inf. In
the limit of largeN1 , the weighted ratior̃ 1(k,k8) oscillates
between two boundaries, which may be calculated analyti-
cally using theN1→` values of the summationsS(u0)
521881 cm21, Sr(u0)5691 cm21, and Si2(u0)
5483 cm21. The resulting boundaries for the ratios of inter-
est are given in Table I and agree well with the limiting
values observed in Fig. 7.

To further demonstrate the validity of the ansatz Eq.~15!
and to clarify the~chiral! nature of the wave functions, in
Fig. 8 we plotted the squared amplitude of the wave func-
tions for the three superradiant statesk5k* 21, k* , and
k* 11 as a function of the position on the cylinder surface.
To this end, the cylinder was cut along a line parallel to the
cylinder’s axis~taken as vertical axis in the plots! and un-
wrapped. To the right of each result obtained from the ansatz
is plotted the corresponding exact result obtained by numeri-
cally diagonalizing the HamiltonianH1. Here, the correspon-
dence was defined through the number of nodes in the wave
function along the axis direction. In the example considered
here, we used a cylinder withN15300 rings. For this length
we havek* 57, which clearly is reflected in the number of
nodes in the wave function along the axis direction. We also
see that the ansatz gives an excellent description of the exact
wave functions, in particular it describes the slanting of the
equal-phase lines away from the vertical in an excellent way.
This slanting is a direct consequence of the fact thatu0 does
not vanish~the slant angle is given byu0) and is a manifes-
tation of the chiral behavior of the wave function on the
cylinder surface. This may easily be seen by considering the
complex factor in the amplitude of the total wave function,
which reads exp@i(g1u0)m11i2pm2 /N2#. We note that going
up three rings along the cylinder’s surface (Dm153) and
going back one step along the ring (Dm2521), due to the
fact thatN256 andg520°, is exactly a vertical displace-
ment over the surface, i.e., parallel to the cylinder axis.
Clearly, this displacement induces a change exp(iu0Dm1) in
the phase factor, which vanishes foru050. Hence, the slant
angle of equal-phase lines away from the axis direction in-

FIG. 7. The weighted mixing ratior̃ 1(k,k8) for nine pairs of statesk andk8
close around the superradiant transitions in thek251 band for cylindrical
molecular aggregates of the chlorosome structure. The lines on the left axis
indicate the upper and lower boundaries in the largeN1 limit given in
Table I.

TABLE I. Lower and upper boundaries for the weighted mixing ratio
r̃ 1(k,k8) in the limit of long cylinders for various combinations ofk andk8
close to the superradiant transitions in thek251 band. Structural parameters
used are those for the chlorosomes of green bacteria. The values in the table
were derived using Eq.~28!.

k k8 r̃ 1,min
` r̃ 1,max

`

k* 21 k* 11 0.0236 0.0263
k* k* 62 0.0246 0.0292
k* 61 k* 63 0.0031 0.0246
k* k* 61 0 0.0736
k* 61 k* 62 0.0200 0.0736
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deed is given byu0 .28 We note that if we assume PBC in the
n1 direction, u0 vanishes identically for the superradiant
state,18 and the wave functions are nonchiral, having equal-
phase lines that coincide with the axis direction. This is dem-
onstrated in Fig. 8, by plotting in panel~d! the squared am-
plitudes for the only superradiant state that occurs with PBC.

Finally, we demonstrate the power of the two ansa¨tze,
Eqs.~5! and~15!, for the optically dominant states by calcu-

lating the spectra generated from them using the general ex-
pressions in Ref. 18. For the energies of thek states in the
two bands, we used the valuesHk,k

0 andHk,k
1 . The thus gen-

erated absorpion and CD spectra are given by the solid lines
in Fig. 9, for cylinders ofN15100, N15300, andN15500
rings long. The dashed and dotted lines give the same spectra
generated using exact diagonalization and PBC, respectively.
The PBC spectra were calculated in the infiniteN1 limit. The

FIG. 8. ~a!–~c! Gray-scale plots of the squared amplitudes~darker is larger amplitude! of the three superradiant states in thek251 band for cylinders of the
chlorosome structure with a length ofN15300 rings. To generate these plots, the cylinder surface is cut along a line parallel to the axis and unrolled. Thus,
horizontal lines in the plot correspond to molecules lying on the same ring of the cylinder, having the same position indexn1 . Due to the helical structure of
chlorosomes, lines of constantn2 make a finite angle with the vertical direction@the dashed line in panel~a! corresponds ton251; also cf. dashed line in Fig.
1#. For each superradiant state, the dependence of the wave function onn1 given by the ansatz Eq.~15! @with u5u0 obeying Eq.~27!# is plotted to the left,
while for comparison immediately next to the right of it is plotted the corresponding wave function found by numerical diagonalization ofH1. For all plots,
the dependence onn2 is given by the Bloch wave exp@i2pn2 /N2#. For further comparison, we plotted in panel~d! the wave function of the only superradiant
state@;exp(ign11i2pn2 /N2)# that occurs in thek251 band if we impose PBC in then1 direction. We note that the ansatz and exact wave functions in~a!–~c!
all exhibit a clear chiral behavior, reflected in the slanting of the equal-phase lines with respect to the vertical axis; the slant angle is given byu0 . Such a chiral
behavior is missing in~d!.

FIG. 9. Absorption spectra@~a!–~c!# and circular dichroism spectra@~d!–~f!# for cylinders of the chlorosome structure with three different lengthsN1 . The
smooth curves represent the results as obtained from our ansatz wave functions Eqs.~5! and~15! ~solid!, from exact numerical diagonalization~dashed!, and
from PBC~dotted!. The underlying stick spectra of the numerical solution are also given, with the dashed sticks referring to states in thek250 band and the
solid ones resulting from thek2561 bands. The strengths of the transitions obtained from the ansatz wave functions are given as diamonds for thek250
band and crosses for thek2561 bands.
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smooth spectra were obtained by convoluting the stick spec-
tra at the exciton resonances with a Gaussian line shape func-
tion of full width at half maximum of 500 cm21. The stick
spectra for the exact diagonalization are presented as dashed
lines for the k250 band and solid lines for thek2

561 bands. The strengths of the stick spectra obtained via
the analytical ansa¨tze are represented as diamonds for the
k250 band and crosses for thek2561 bands.

From Figs. 9~a!–9~c! it is clear that at all cylinder
lengths considered, the absorption spectrum generated by the
ansatz wave functions generally is better than the one gener-
ated by using PBC. In particular at intermediate lengths, on
the order ofN15100, the spectrum has not converged yet to
the infinite-length PBC solution, while the analytical ansatz
does capture correctly the finite-size effects in the spectral
position. Also the comparison between the exact and analyti-
cal stick spectra shows how good the comparison is at all
lengths. We remind the reader that for the case of PBC, we
have only one resonance~one superradiant state! in the k2

561 bands, while we clearly see that in the finite-size spec-
tra more such states occur.

If we consider Fig. 9~d!, we observe that for the CD
spectra not only the position, but rather the entire spectral
shape, is at intermediate length much better represented by
the analytical ansa¨tze for the wave functions than when using
PBC. As we discussed in detail in Ref. 18, the CD spectrum
converges only very slowly to the PBC result, due to the fact
that this spectrum results from subtle interference between
close lying positive and negative contributions. This makes
the spectrum extremely sensitive to the exact positions of
resonances and values of transition dipoles. In fact, as was
noted in Sec. I, the poor behavior of the PBC results for the
CD spectrum was one of the main motivations to search for
better analytical solutions to the wave functions. We observe
from the stick spectra that the CD is characterized by more
than three strong transitions in thek2561 bands. Extra
transitions occur in the so-called helical part of the CD
spectra,18 where statesk* 62 and further also become im-
portant. These states further away fromk* generally turn out
not to conform to the ansatz Eq.~15! as well, which is re-
sponsible for the fact that for increasing cylinder length the
ansatz spectrum does not fully converge to the exact spec-
trum, while the PBC spectrum does~albeit at very large
length!. In particular we observe that forN15500 the ansatz
CD spectrum and the PBC one have roughly equal deviations
from the exact spectrum@Fig. 9~f!#.

VI. CONCLUSIONS

In this paper, we have investigated approximate analyti-
cal solutions for the exciton wave functions of general cylin-
drical molecular aggregates, in particular for the optically
dominant wave functions in the exciton bands with trans-
verse wave numberk250 and k2561. We had a special
interest in accounting for a finite cylinder length, i.e., in go-
ing beyond the analytical solutions that are obtained when
imposing PBC along the cylinder’s axis direction. We have
found that the two ansa¨tze, Eqs.~5! and ~15!, which are
inspired on solutions for cylinders in which only interactions
between neighboring rings in the cylinder occur, give good

approximations even when we include all long-range dipole–
dipole interactions between the molecules in the aggregate.

We have found that a fundamental difference exists be-
tween thek250 band and thek2561 bands. In the former
case, the effective one-dimensional Hamiltonian that has to
be solved is real and symmetric and we have shown quite
generally that the ansatz Eq.~5! for the optically dominant
states at the bottom of the band improves logarithmically for
increasing cylinder length. For thek2561 bands, the
Hamiltonian is complex and asymmetric and the ansatz Eq.
~15! does not improve systematically with cylinder size. We
have shown that the phase angleu in this ansatz can be
determined by requiring the ansatz to be optimal@Eq. ~27!#
and that the thus obtained angleu0 determines the chiral
nature of the wave functions as reflected in the slanting of
the equal-phase lines when plotting the wave functions on
the cylinder surface~Fig. 8!. In, case we impose PBC along
the cylinder axis, this phase angle vanishes. The phase angle
is of particular importance for the shape of the CD spectrum:
small changes in this angle cause strong effects in this shape.

To illustrate our general formalism, we have used the
ansatz wave functions to describe the exciton states and re-
sulting absorption and CD spectra for the chlorosomes of
green bacteria, and compared the results to those obtained

FIG. 10. Amplitude squared on the unrolled cylinder surface~cf. Fig. 8! for
a typical wave function obtained numerically when accounting for Gaussian
diagonal disorder. Parameters used are those for the chlorosomes of green
bacteria of lengthN15250 rings, while for the disorder we used a standard
deviation of 400 cm21.
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numerically by brute force diagonalization of the Hamil-
tonian as well as those obtained analytically by using PBC.
The results confirm that for cylinder lengths longer than
roughly 50 rings, the ansatz wave functions give good de-
scriptions of the optically dominant states and the spectra.
This is, in particular for the CD spectrum, far shorter than the
length at which the PBC approach gives good results.

As we have demonstrated earlier,18 in case we impose
PBC, three superradiant states dominate the absorption spec-
trum, one in each of thek250 andk2561 bands. The ones
in thek2561 bands are degenerate. In this paper, we found
that if we correctly account for finite-length effects, seven
superradiant states occur~unless the length is very short!: the
k51 state in thek250 band @Eq. ~5!#, and the statesk
5k* 21, k* , and k* 11 in the k2561 bands@Eq. ~15!#.
Again, the latter are doubly degenerate. In the limit of long
cylinders, the three superradiant states in each of theK25
61 bands become degenerate, and occur at the same energy
as the single superradiant state that exists in these bands if
we impose PBC.

We finally notice that we have restricted ourselves in this
paper to the homogeneous, cylindrically symmetric, limit~no
disorder!, which allows us to use the Bloch decomposition in
the transverse direction, leading to effective one-dimensional
exciton bands. In reality, disorder may play an important role
and break the cylindrical symmetry. A study of the effect of
disorder will be described elsewhere.29 In the context of this
paper, however, it is of interest to illustrate that even if the
disorder is large enough to localize the exciton wave func-
tions, they locally do exhibit the same chiral behavior as the
homogeneous solutions. This is clear from Fig. 10, in which
we plot the amplitude squared of one of the optically impor-
tant exciton states found by numerically diagonalizing a ran-
dom realization of a cylinder with the chlorosome structure
and lengthN15250 rings, with Gaussian diagonal disorder
of standard deviation 400 cm21. The phase jumps that occur
at n1'150 andn1'180 clearly demonstrate the disorder-
induced mixing of unperturbed eigenstates. We finally note
that inclusion of dynamic disorder through, e.g., a stochastic
model, is of interest to study transport properties.30
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APPENDIX A: MULTIPOLE EXPANSION

In this Appendix, we derive multipole expansions for the
effective interactions J0(m)5J(m;k250) and J1(m)
5J(m;k251) defined through Eq.~2!. We start from the
dipole–dipole interaction on the cylinder, which reads

J~m1 ,m2!

5
m2

~ um1uh!3 cos3wH cos2 b1sin2 b cos~f2m21gm1!

2
3

2
@sin2 b sin2 w ~cos~2a!1cos~f2m21gm1!!

12 cos2 b cos2 w1sin~2b! sin~2w! cosa

3cos~f2m2/21gm1/2!#J , ~A1!
with

tanw5
2R sin~f2m2/21gm1/2!

m1h
[y ~A2!

(2p/2,w,p/2). To make a multipole expansion, we will
need the following expansions~for uyu,1):

cos3~arctan~y!!5(
s50

`

~21!s
y2s~2s11!!

~2ss! !2 [(
s50

`

k~s,y!,

~A3!

cos5~arctan~y!!5(
s50

`
2s13

3
k~s,y!, ~A4!

cos3~arctan~y!!sin2~arctan~y!!5(
s50

`
2s13

3
y2k~s,y!,

~A5!

cos3~arctan~y!!sin~2 arctan~y!!5(
s50

`

2
2s13

3
yk~s,y!.

~A6!

Now the original interaction may be written

J~m1 ,m2!

5
m2

~ um1uh!3 (
s51

`

k~s,y!

3H 22~s11!cos2 b1sin2 b cos~f2m21gm1!

2
2s13

2
@sin2 b@cos~2a!1cos~f2m21gm1!#y2

12 sin~2b! cosa cos~f2m2/21gm1/2!y#J . ~A7!

Furthermore, using the definition ofy, we find

y2s5S 2R

m1hD 2s ~21!s

22s (
p50

2s S 2s
p D ~21!p

3exp@ i ~s2p!~f2m21gm1!#. ~A8!

We may now perform the summation overm2 in Eq. ~2!
and, omitting the subscript ‘‘1,’’ we get for the effective one-
dimensional interaction in thek250 band the multipole ex-
pansion~valid for umuh.2R)

J0~m!52
1

umu3 FJ1(
s51

`
j s

m2sG , ~A9!

with

J5
2N2m2 cos2 b

h3 ~A10!

and
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j s5
~21!s~2s11!!! ~2s!!

23s~s! !3

N2m2

h3 S 2R

h D 2s

32@2~s11!cos2 b2s sin2 b sin2 a#. ~A11!

In a similar way, we may derive the effective interaction
J1(m) in thek251 band which, using the decomposition Eq.
~21!, yields for umuh.2R the multipole expansion

J1
1 ~m!5

1

umu3 (
s50

` F gs

m2s cos~mu!1
hs

m2s11 sin~mu!G ,
~A12!

and

J2
1 ~m!52

i

umu3 (
s50

` F gs

m2s sin~mu!2
hs

m2s11 cos~mu!G ,
~A13!

with

gs505
N2m2 sin2 b

2h3 , ~A14!

gs>15
~21!s~2s11!!! ~2s!!

23s~s! !3

N2m2

h3 S 2R

h D 2s

3F ~2s!cos2 b1
2s11

~s11!~s12!
sin2 b

12
s2

s11
sin2 b sin2 a G , ~A15!

and

hs5
~21!s~2s11!!! ~2s!!

23s~s! !3

N2m2

h3 S 2R

h D 2s11

3
~2s11!~2s13!

2~s11!~s12!
sin~2b!cosa. ~A16!

We observe thatJ1
1 is even inm, while J2

1 is odd, as was
clear from Eq.~21! already.

APPENDIX B: DEVIATIONS FROM POINT–DIPOLE
INTERACTIONS

In this, Appendix, we consider how the deviations of the
actual interactionsJ0(m) from the point–dipole form affect
the ratior 0(k,k8) (k andk8 both of the order of unity!. We
start by assuming that the multipole expansion Eq.~A9!
holds for all m, which is the case ifh.2R. Using the ex-
pansion in Eqs.~7! and~8! then gives rise to summations of
the type

(
m51

`
cos~kmf!

m2s 5~21!s21
1

2

~2p!2s

~2s!!
B2s~kf/2p!,

~B1!

and

(
m51

`
sin~kmf!

m2s11 5~21!s21
1

2

~2p!2s11

~2s11!!
B2s11~kf/2p!,

~B2!

with Bn the Bernoulli polynomial of degreen.26 These sum-
mations for the special cases51 were used in the main text
~Sec. III!.

An important property of the Bernoulli polynomials is
that for sÞ1 B2s(x) does not contain a term linear inx,
while B2s11(x) does not contain terms linear inx0 andx2.
Using these properties in Eq.~8!, one finds that terms in the
expansion Eq.~A9! with s>2 only give corrections to the
result Eq.~12! for Hk,k8

0 that are on the orderf3 and higher.
The corrections due to extending the summations in Eq.~8!
to infinity are of the orderf4. As before, we will neglect
these contributions beyond the orderf2.

We now turn toHk,k
0 , given by Eq.~7!, which involves

summations of the type Eqs.~B1! and ~B2! in its last two
terms, as well as(m51

` cos(kfm)/m2s11 ~third term!. Follow-
ing an approach similar to the one used in Ref. 22 for evalu-
ating the latter summation for the special cases51 in the
small-f limit and neglecting terms of the orderf4 and
higher, we arrive at

(
m51

`
cos~kmf!

m2s11

5H z~3!1 1
2 @2 3

2 1 ln~kf!#~kf!2, for s51

z~2s11!2 1
2 z~2s21!~kf!2, for s>2

~B3!

with z the Riemann zeta function~this summation fors51
was used in Sec. III!. We thus find that the higher-order
multipole interactions (s>2) in the third term of Eq.~7!
contribute terms of the orderf0 and f2. Moreover, from
Eqs. ~B1! and ~B2! and the special properties of the Ber-
noulli polynomials, we find that the higher-order multipole
interactions contribute to the last two terms in Eq.~7! to-
gether, with only corrections of the orderf3 and higher
~terms of the orderf cancel!. Hence, up to and including
terms of the orderf2, the total contribution of the higher-
order multipole interactions toHk,k

0 is given by adding to Eq.
~10! a termdHk,k

0 defined by

dHk,k
0 5(

s52

`

@2 j sz~2s11!2 j sz~2s21!k2f2#. ~B4!

Combining the thus obtained correctionsH0(k,k) and
H0(k,k8) due to the higher-order multipole interactions, we
find that, if h.2R, the ratior 0(k,k8) still has the form Eq.
~14!, except that the coefficientc is replaced by

c85c1(
s52

`
j s

J
~k22k82!z~2s21!. ~B5!

We finally make the step to the situation of more general
interest, where 2R is not smaller thanh and, thus, the mul-
tipole expansion can only be applied from a certain value
mc5 int@2R/h#.1 for the intersite separationsm. As long as
the cylinder has an aspect ratioN1h/2R@1 ~which is a
physically obvious assumption to make for cylindrical aggre-
gates!, we havemc!N1 . To treat this general situation, we
split the summations of interest as follows (a50 or 1!:
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(
m51

N121

maJ0~m!F~mf!

5 (
m51

mc

maJ0~m!F~mf!1 (
m5mc11

N121

maJ0~m!F~mf!,

~B6!

where in the second right-hand side term we use the multi-
pole expansion Eq.~A9! for J0(m), while in the first we
cannot. The first summation on the right-hand side can be
estimated by using a Taylor expansion for the sines and the
cosines described byF, because fork on the order of unity
kmf is a small number over the range 1<m<mc . By doing
this it can be shown that forHk,k

0 2Hk8,k8
0 this first summa-

tion contributes terms of the orderf2 and higher, while for
Hk,k8

0 it only contributes terms of the orderf3 and higher.
This again implies a correction of the coefficientc in
Eq. ~14!.

We now turn to estimating the contributions generated
by the second term in Eq.~B6!, where we use the multipole
expansion for the interactionsJ0(m). Of course, the previous
discussion concerning the corrections due to extending the
summations to infinity remains valid. Thus, the only remain-
ing question is what is the contribution due to the missing
termsm51,...,mc in the summations. Again by using Taylor
expansions of the functionsF(mf) in the range 1<m<mc

it can be proven that these missing terms in the summations
Eqs.~B1!, ~B2!, and~B3! do not change the orders occurring
in f, but only the coefficients in the expansions. Hence, the
general result forr 0(k,k8) is still given by Eq.~14!, except
that the coefficientsa, b, and c obtain different values,
which depend on the detailed structure of the cylinder.

APPENDIX C: EXCLUSION OF uÄ0

In this Appendix, we argue thatu50 does not render the
ansatz Eq.~15! a good approximation for the optically domi-
nant states. In this special case, we have cotu→`, which
makes Eqs.~17! and ~18! invalid. Instead, we can see di-
rectly from Eq.~16! that the only superradiant state now is
the one withk51, which for a usualJ-aggregate dispersion
lies at the bottom of thek251 band. Now we can closely
follow the treatment of Sec. III. Settingu50 in the multi-
pole expansions forJ1

1 and J2
1 given in Eqs.~A12! and

~A13!, respectively, we find in direct analogy with Sec. III
that Hk,k

1 2Hk8,k8
1 has a leading contribution of the order

f2 ln f, while ReHk,k8
1 has a leading contribution of the order

f2. Moreover, it turns out that ImHk,k8
1 in the caseu50

contains terms of orderf, which is a consequence of the fact
that, unlike for the cases of ReHk,k8

1 andHk,k8
0 , the terms of

order f do not cancel, because (k2k8)/(k1k8)2(k
1k8)/(k2k8)Þ0. Therefore, we find that if we takeu50,
the ~weighted! mixing ratio r̃ 1 for the superradiant state~i.e.,
at the bottom of the band! is of the orderN1 /ln N1, which
diverges for growingN1 , making the ansatz useless.
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