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Chiral exciton wave functions in cylindrical J aggregates
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We study the exciton wave functions and the optical properties of cylindrical molecular aggregates.
The cylindrical symmetry allows for a decomposition of the exciton Hamiltonian into a set of
effective one-dimensional Hamiltonians, characterized by a transverse wave nkynbEnhese
effective Hamiltonians have interactions that are complex if the cylinder exhibits chirality. We
propose analytical aniz for the eigenfunctions of these one-dimensional problems that account
for a finite cylinder length, and present a general study of their validity. A profound difference is
found between the Hamiltonian for the transverse wave nurkpe0 and those wittk,# 0. The
complex nature of the latter leads to chiral wave functions, which we characterize in detail. We
apply our general formalism to the chlorosomes of green bacteria and compare the wave functions
as well as linear optical spect(absorption and dichroisnobtained through our ang2 with those
obtained by numerical diagonalization as well as those obtained by imposing periodic boundary
conditions in the cylinder’s axis direction. It is found that our ‘@msain particular, capture the
finite-length effect in the circular dichroism spectrum much better than the solution with periodic
boundary conditions. Our artga also show that in finite-length cylinders seven superradiant states
dominate the linear optical response. 2004 American Institute of Physics.

[DOI: 10.1063/1.1762874

I. INTRODUCTION the largest absorption strength, and the largest exciton trans-
fer interaction” Their special optical properties are the rea-
Lately, an increased interest has emerged in the opticalon for their abundant use as light sensitizers in classical
properties and exciton dynamics of molecular aggregatesolor photography? In fact, their strong absorption and en-
with a cylindrical geometry. In nature, such aggregates exisérgy transport properties also make them ideal candidates to
as light-harvesting systems in the chlorosomes of green phgrepare synthetic light-harvesting systems. In this context,
tosynthetic bacteriaThese light-harvesting systems are self-the new cylindrical aggregates of amphiphilic cyanine mol-
assembled aggregates consisting of bacteriochlorophy#icules are of great interest, as they closely mimic the natural
(BChl) molecules, arranged in a cylindrical way. They areantenna systems of green bacteria. Optical techniques and
responsible for the absorption of sunlight and the transport ofryogenic transmission electron microscopy are employed
its energy in the form of excitons to the photosynthetic reacabundantly to unravel the molecular arrangement and the
tion centers in the base plate of the chlorosomes. On thgicroscopic properties of the cylindrical cyanine
basis of various kinds of spectroscopies and molecular modaggregate$'—° It has also been established that these syn-
eling, a detailed model for the organization of the BChl mol-thetic cylindrical aggregates exhibit a chirdlelica) struc-
ecules in these aggregates has been propoSeth this  ture. In fact, chirality is an interesting and important property
model, the molecules form helices that wrap around a cylinof many currently investigatefjuasijone-dimensional su-
der with a diameter of-5 nm (for Chloroflexus aurantiacys  pramolecular structure$:*’
or ~10 nm(for Chlorobium tepidumand a length that may In a recent study? we have calculated the linear absorp-
reach several hundreds of nanometers. In the traditional lanion, linear dichroism(LD), and circular dichroism(CD)
guage of molecular aggregates, these systems should be gpectra of cylindrical molecular aggregates and shown that
ferred to asJ aggregates, as their absorption band is redthe helicity may give rise to a complicated and seemingly
shifted relative to that of a single BChl molecule. erratic behavior of the CD spectrum with varying cylinder
Interestingly, cylindricall aggregates have recently also length. In our calculations we took advantage of the cylin-
been prepared synthetically, through self assembly of polydrical symmetry by reducing the problem of finding the ex-
methine cyanine dye molecules with amphiphilic sideciton eigenstates of the cylinder to the problem of solving for
groups7.'8 Polymethine cyanine molecules are the prototypethe eigenstates of a set of independent effective one-
class of molecules that form self-assembledggregates. dimensional exciton systems. For general cylinder lengths,
Due to their strong transition dipoles, they are among thehese effective systems were diagonalized numerically. For
molecules with the strongest tendency to self assemble, witlbng cylinders, we also found analytical expressions for the
spectra, by imposing periodic boundary conditiaf®BC)
9Author to whom correspondence should be addressed. Electronic maiplong the direction of the cylinder’s axis. In this limit, stud-
knoester@phys.rug.nl ied previously by Somseet al,® the linear spectra are gov-
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erned by three superradiant states. Unfortunately, while it is 2
of obvious interest to have analytical expressions for the ex-
citon wave functions and spectra as a function of the cylinder
length, the analytical solution with PBC is strictly valid only
in the limit of infinite length. Of course, one may impose
PBC on cylinders with a finite length, but it turns out that,
while for the absorption and LD spectra this gives reasonable
results, for the calculation of the CD spectrum a finite cylin-
der length is incompatible with imposing PBC. This is due to
the helical term in the CD spectrutfiwhich involves the
relative position vector of pairs of molecules along the axis
direction. A similar type of size consistency problem occurs
for the absorption spectrum in tight-binding models for one-
dimensional electron systems, in which the dipole is given
by the electron position measured along the direction in
which one would like to apply PB&?! For the electron
chains, this problem may be solved by making the chain’s
geometry consistent with the PBC, i.e., by turning it into a
circle. The equivalent for our cylinder would be to consider a
torus arrangement, which, however, for general sizes de-
stroys the cylindrical symmetry and only would be a reason-
able approximation again at very large cylinder lengths.

Motivated by the above, we investigate in this paper
analytical ansae for exciton wave functions that explicitly
account for the finite length of the cylinder and that also
incorporate the helical nature of the system. In general, the
problem to be solved boils down to diagonalizing one-
dimensional exciton Hamiltonians which contain long-range
interactions(which at long distances behave like dipolar in-
teraction$ and which, due to the helicity, in general lack N9 = 1, 2, cees N2
inversion symmetry. In analogy to previous work for a sym-
metric exciton chain with point—dipole interactio??swe FIG. 1. Cylindrical aggregate consisting of a stack\afrings, labeledh;
show that it is possible to find good analytical approxima-—L:+:Ni. each containingN, molecules, labelea,=1,... N,. The ar-
. . . . rows indicate the molecular transition dipoles, which are all equal in mag-
tions to the optically dominant exciton states. These solUpjtyde (1) and make an anglg with the cylinder axis. The projection of
tions may be separated into two types, distinguished by thekach dipole on the plane of the rings makes an aagiéth the local tangent
transverse wave numbek =0 andk,=+1, respectively to the ring. Each ring is rc_)tated with respect to the prev_ious one over an
describing the Bloch state in the circumferential direction of2"9!7: SO that we may view the aggregate as a collectiohpparallel

. . helices on the cylinder’s surface. One such helix is indicated by the dashed

the cylinder. In thek,= =1 states, the helical nature of the qyye.
cylinder plays a prominent role, leading to a clear chiral

behavior of the wave functions. ecules. Adjacent rings are separated by a distkhege ro-

The outline of this paper is as fqllows: In Seg. Il We tated relative to each other over a helical angleNe will
present the model and the reduction to effective oner,po the molecules by a two-dimensional vector

dimensional Hamiltonians. In particular, we present the ef-_ _ : .
. L ' ) =(nq,n,), wheren;=1,2,..,N; gives the position along the
fective HamiltoniansH (k,=0) andH(k,= *=1) which de- (n1,n5) ! 19 P 9

ibe the | ¢ i tates that " IIhelices(i.e., the ring numbegrandn,=1,2,..,N, labels the
SCMbe the two classes of exclion states that are opticalyaliy (je., the position along the ring Each molecule is
active. In Sec. Il we study the exciton eigenfunctions of

H(k,—0), while in Sec. IV we investigate the eigenfunc modeled as a two-level chromophore, with transition fre-
AT . o " quenc and with a transition dipolgu, that is equal in
tions and their optical selection rules fbi{k,=*+1). Sec- d Yo RO n d

tion V is dedicated to th licati ¢ | it magnitude (u) for all molecules. Each molecular dipole
lon v 1S dedicated to the application of our general resulitSy, 5y og an angl@ with respect to the cylinder axis, while its
for the exciton eigenstates to the special case of the chl

Chlorofl tiacusinally. in Sec. VI Qpirojection on a plane perpendicular to this axis makes an
rosomes o.hiorotlexus aurantiacus-inatly, in Sec. Vi, we angle o with the local tangent to the ring. The reader is
present our conclusions.

referred to Ref. 18 for comments concerning the general na-
ture of this model.

The electronically excited states of the aggregate are de-
scribed by a Frenkel exciton Hamiltonian on the above de-

For the cylindrical aggregates, we consider the samacribed two-dimensional manifold, with intermolecular exci-
model of as we did previoush, depicted schematically in tation transfer interactionsJ(m)=J(m;,m,) that are
Fig. 1. The model consists of a perpendicular stackNef determined by the relative position vectarof the two mol-
rings of radiusR, each one containindl, equidistant mol- ecules under consideration. This interaction is given by the

1. MODEL AND REDUCTION TO ONE-DIMENSIONAL
PROBLEMS
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interaction between the transition dipoles of the two mol-stress the one-dimensional nature of these Hamiltonians and

ecules. Using the cylindrical symmetry of the model, whichto simplify the notation, we omit the indek, and label the

prescribes a Bloch wave-exp(27k,n,/N,) [k,=0,+1, effective sites simply anm (i.e., we drop the subscript “1);

+2,...,72(N,/2—1),N,/2]? for the dependence of the exci- the total length of the system is still denoted Mg. The

ton wave functions om,, the total Hamiltonian is easily Hamiltonian of thek,=0 and thek,=1 bands then have

decoupled ?&Eo a set ofN, effective one-dimensional matrix elements denoted by, respectively,

Hamiltonians;® label the transverse wave num

Tr?is egec?ive Hzlrjrﬁl'?odnil;% reiadsé sverse wave numbet (n[HOM) = (wo+3%(0)) 8 m+ I%(N—=M) (1= &y, m), 3
Ny and

H<kz>=[wo+~’<°ikz>1n§1C31,k20n1,k2 (N[HYM)=(wo+3%(0)) 8yt I (N—M)(1=8p ). (@)

Ny Here,|n) denotes the state of the linear chain in which site

+ > d(ng—mpko)el L cm ks (1)  is excited and all other sites are in the ground state. Further-
1h2 e more,J°(m)=J(m;k,=0) andJ*(m)=J(m;k,=1) denote

the two relevant effective interactions. For future reference

wherec, . andc, , are the operators for creation and . .
ini 172 ¢ v ¢ we note that the long-range behavior of both of these inter-
annihilation of an excitation of transverse wave numker . ions is of the dipole—dipole type, i.e., fom| large

on the r.ingnl, respectively, and _the prime on the second(|m|h>R)l bothJ° andJ® drop off like 1/m|3. The system-
summation excludes the term witlh,=m,;. Furthermore, atic long-ranggmultipole) expansions fod%(m) andJ(m)

J(n;—my ko) is the effective interaction for transfer of an 4.6 given in Appendix A. The first correction to point—dipole
exciton of wave numbek, from ring m; to ring n,. This interactions is on the order|i|® for J°(m) and 1/m|* for

effective transfer interaction is given by JY(m). At short distances, the effective interactions differ

ny,mp=1

+

Ny . markedly from point—dipole ones, due to the finite radius
Jmyiky)= 2" J(my,my)e 12mkema /Ny, (2)  of the rings.
my=1 As we will see below, the band withk,=0 and its

where J(m,,m,) is the intermolecular dipole—dipole inter- HamiltonianH® is fundamentally different from thé,=1
action introduced above and the prime excludes the terrR@nd, with HamiltoniarH*. As discussed abové{® is gov-
with m,=0 if m;=0. In the effective one-dimensional erned by real and symmetric interactions, whilé is essen-
model, each one of the rings plays the role of an effectivdially complex and not symmetric. This requires a different
site on a one-dimensional chain of lendth, with effective ~ @pproach, which is why both cases are treated separately in
transition frequencyw,+J(0;k,) [where the terml(0;k,) Secs. lll and IV, respectively. Moreover, we will find that the
accounts for the dipole—dipole interactions between the moloptical selection rules for the two bands differ. In particular,
ecules that reside in the same fjrand effective excitation for predominantly negative intermolecular interactiodsig-
transfer interactions given by(m, ;k,) from siten, to site  gregate, the optically allowed states fdr,=0 occur at the
ny+my. band bottom, while fok,=1 they lie a finite energy above
The effective interactiond(m; ;k,) andJ(m,; —k,) are  the band bottom.
each other's complex conjugates, implying tiétk,) and
H(—k,) have the same set of eigenvalues, while their corre-
sponding eigenvectors are related by complex conjugation;; EIGENSTATES OF H°
This allows us to focus ol (k,) with k,=0, as all other
eigenvalues and eigenvectors follow from those. It should The effective HamiltoniarH® describes a linear chain
also be stressed that the effective interacti§m,:k,) is  with real and symmetric interactiond’(m). In the long
complex in general, and as a result of the helicityrange (m|>2R/h), the interactions behave like point—
[J(m;,m,)#J(—m;,m,)], it lacks inversion symmetry: dipole ones:J(m)=—J/|m|® with an effective nearest-
J(my;ky)#J(—my:k,).  Thus, the effective one- neighbor interaction-J=—2(N,u?/h%cog B (see Appen-
dimensional Hamiltonians also lack inversion symmetry; ofdix A), but at short distances the deviations from this limiting
course, they are Hermitian for ai,. Only in the special form in general are significant. The case of a chain with real
casek,=0, is the effective interaction real and the Hamil- and pure point—dipole interactiofise., ~ 1//m|2 for all val-
tonian has inversion symmetry. ues of m) was investigated before by Malyshev and
We will be interested mainly in the bands wiky=0 Moreno?? by starting from a simple ansatz for the exciton
andk,= *1, as these are the only ones that contribute to thevave functions. We will closely follow their strategy, being
linear optical spectr& The general expressions for the linear more careful, however, in defining the criterion for the va-
absorption spectrum and the linear and circular dichroisntidity of the ansatz. This care is of crucial importance for the
spectra in terms of the eigenvalues and eigenfunctions df,=1 case.
H(k,=0) andH(k,==*=1) were given in Ref. 18 and will The ansatz which we make for the eigenstatedH8f
not be repeated here. As the band vk —1 is related to  reads
the one withk,=1 by complex conjugatiofsee abovg we

Ny
will concentrate in the remainder of this paper on two effec- K= sinkémIn 5
tive Hamiltonians:H°=H(k,=0) andH'=H(k,=1). To o N1+1n§=:1 nCkm)|m), ©
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with ¢=m/(N;+1) andk=1,2,..,N;. In the notgtion of . 1+(_1)k—k’ (k+k )b Ny

Ref. 18 the state E(5) takes the form of Eq(47) in that Hew = 2N+ 1) ot

reference, withk replacingk; and bx,—o Set to zero. The 1 m=

ansatz Eq.(5) is exact for a chain with nearest-neighbor ) ) (k=k") ¢
interaction$* and is based on the intuition that for lartye X[sin(k¢m) +sin(k’ gm) ] —cot——7——

(small ¢) and small wave numbdy, i.e., for eigenstates that
slowly oscillate in space on the scale of the lattice constant, 0 ] o
the long-range contributions to the interaction hardly affect X mz:l JE(m)[sin(k¢m) —sin(k’dm)] 1. (8)
the form of the eigenstat@.lt should be noted that generally
speaking the states with small valueskoflominate the op-

tical spectr&® implying that having a good approximation
for the wave functions of these slowly varying states shoul
give good approximations to the spectra. In particular, of th
above states, thke=1 state contains 81% of the total oscil-

lator strength in the limit of larg®l,;. For negativepositive the exception thai in the case of PBC is given byN, .25

nearest-neighbor interactions, this state lies at the bottorﬁlhe fourth and fifth terms in Eq7) together are on the order
(top) of the exciton band. We will assume that also for our ¢ 1IN, and give an explicit correction due to edge effects.

. B 0 -
long-range interactions]“(m) this property holds. For In order to estimate the mixing ratig(k,k'), we have

thlnz'[;d|pole interactions, numerical simulations conﬁrm,[0 estimate the summations in Eq#) and (8), in particular
IS- for N;>1, which is the case of our interest as then we expect

I In dRef 22tthf ;’al'd'ty of the gnbsatzhEQS) fotrhthteﬂ:)ptl - ‘the ansatz Eq(5) to be good. We will first do this for the
cally dominant states was argued by showing that the matri ase of a pure dipole—dipole interaction and in the end of this

elements of the actual Hamiltonian with dipolar mteractlonsSection consider corrections due to the deviations from

between states with differektvalues are small fok<<N;. It 1//m|? behavior at short distances.

should be pointed out, however, that this is a necessary, but Thus, we start by assuming that the interactions fomall
not sufficient condition for negligible mixing of differerk take the formJ°(m)=—J/|m[® (with J°(0)=0) and esti-
states by the long-range interactions. The proper criterion folrnate the mixing ratioo(k,k'). As argued above, we have to

neghgﬂa_le m_|xmg of statest!(). and “.( ) by the long-range do this for one of the wave numbe(sayk) referring to one
interactions involves the mixing ratio of the optically dominant statdge., k on the order of unity;
while for the other k') we have to consider all other states.
Clearly, however,ry(k,k’) will be largest in the case of
neighboring states, i.e., fok—k’| on the order of unity, as
for long chains these states get close to degeneracy. We may
thus limit ourselves to considering the situation where Ikoth
andk’ are on order of unity. The only situation where this
with H(k)k’:<k|HO|k/>' As for close values ok andk’ the  would not suffice, occurs if at certain highvalues the un-
energy separatiofHy ,—Hy /| decreases with increasing perturbed energyk| H‘f| k) happens to be equal to the one at
N,, and the denominator in E¢6) plays an important role. Smallk values. We will assume that such degeneracy of the
In order to show that the ansatz B8) is a good one for the €xciton band edge does not occur. We will check this as-
optically dominant states, we have to show thatk,k’) sumption explicitly when appllylng' the formalism in Sec. V.
<1 if eitherk ork’ (or both are among those states, i.e., in _ForlargeNy, the summations in Eq¢7) and(8) may be

Np—1

In deriving these expressions, we used the symmetry of the
interactions J°(—m) =J°m). The fact that states with odd
are not coupled to those with evinmeflects this symmetry.
SVe also note that the third term in E(,) is identical to the
dispersion of a one-dimensional aggregate with PBC, with

R
ro(k,k")= W (6)
k', k'

particular for one of them being 1. written as
Using the effective Hamiltonian Eq3) and the ansatz N1
Eqg.(5), we arrive at the following general expressions for the < 20
relevant matrix elements: m§=: meI5(m)F(m¢)
N -1 => m”‘JO(m)F(m¢)—f m*J%(m)F(me¢)dm, (9)
H = wo+3°(0) +2 21 J%(m)cog kpm) m-t N
-
Ny-1 with =0 or 1, andF(m¢) the appropriate combination of
0 . trigonometric functions om¢. Here, we have extended the
* N;+1 cottke) E J(m)sinCkém) summation to infinity and, using the smooth behavior of the
Np-1 summand for largen, approximated the correction term by
S mJO(m)cos{kqu)} (7 an integration. ForJO(m)——J/|m|3 this correction term
m=1 leads to contributions |rI=Hk K andH «k Starting at the order
1/N2 ¢?, which is the highest order i that we will be
mterested in keeping. The error made in transforming the
and fork#k’ summation in this correction term into an integration appears
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only in terms on the order of® and higher, which will be different coefficientsa, b, andc. In the special case that

neglected. Using various standard summations for combina> 2R, J°(m) for all m may be expressed through a conver-

tions of trigopnometric functions and powétsand the ap- gent multipole expansiotAppendix A), and only the coeffi-

proach developed in Ref. 22 to evalu&g_, coském)/m®  cient ¢ changes to a new value, given by E®5). If h

for ¢ small, fork<N; and neglecting terms of ordef® and ~ <2R, the coefficientsa and b also obtain new values. In

higher, we arrive at general, the values of the coefficierstsb, andc depend on

the structural parameters of the cylindé/ZR, N,, «, B,
HEvk:w0_2J§(3)+J¢2[k2(3/2_ In(ke)) —(k)]. and ). In Sec. V, we will numerically address these values
(10 when discussing the example of chlorosomes of green bac-
Here, {(x) is the Riemann zeta function, with{(3) teria.
=1.202. .., andf(k) is defined as

— 2~ H
f(k)=k/2—k=ci(mk) + (k/ m)si(7k), (12) V. EIGENSTATES OF Al
with si(x) and cik) the sine and cosine integral functions,
respectively’® The termf(k) in Eq. (10) gives a correction We now turn toH*, which in contrast tdH° is complex
to the dispersion relation derived in Ref. 22, which resultsand asymmetric. Again, we base our ansatz for finding the
from the correction integral in Ed9). optically dominant wave functions on the solution for a chain
In a similar way, the nondiagonal matrix elements ( with nearest-neighbor interactions, which now are complex.
#k’) we arrive at This yields
1+(-1k ¥ 2§ in(6+)
Hp o= — ——5——a(kk)I¢2, (12) 0=\ 51 2, sinkene™ 7n), (15)
with with ¢=m/(N,+1) andk=1,2,..,N;, as before. In the no-
, o o tation of Ref. 18 the state E¢L5) takes the form of Eq47)
alk k') = kk' 2 kk'Zsi(ark’) —k'k’si( k) 13 in that reference, wittk replacingk; and 6+ vy replacing
' k+k" k?—k'? ' Ok,-1- The latter represents a phase angle which, in the case

where only a nearest-neighbor interaction occurs, is given by
the phase of this interaction, #(1)]. We have chosen to
separate the role of the helical anglén this phase angle, as
this simplifies the expressions below. Moreover, as we will
see in Sec. V4 is the part of the phase angle that leads to
1+ (—1)k+K a ‘ chiral behavior of the wave function on the cylinder surface.
2 bIn(N;+1)+¢|’ (14 As we are dealing Wlth effective ang-range |nterz_1ct_|ons, in-
stead of nearest-neighbor ones, it is not claapriori on
wherea stands fora(k,k’) defined aboveb=k’?—k? and  what interaction to base the total phase angle. Therefore, we
c="f(k)—f(k")+k?In(mke 39 —k'2In(zmk’'e *?). Itis now  will consider @ a free parameter, which will be fixed in order
clear thatry(k,k") goes to zero logarithmically fa¥, large,  to optimize the quality of the ansatz H35) for the optically
implying that for long chaindcylinders, the ansatz Eq’5)  dominant states in the band.
is a good approximation to the exact eigenstateskfon the Following the same steps as we did for #ye=0 band,
order of unity. If we consider the superradiant stiatel, its  we first look where in thé,=1 band the optically dominant
strongest mixing occurs with the staké=3. Substituting states occur. The oscillator strength(k) of states of the
these values in the above expressions, gaved.50734,b  type Eq.(15 was already derived as E¢50) in Ref. 18.
=8, andc=—9.03323. FolN; =50, 100, and 250, this gives Normalizing the result to the total oscillator strength
ro(1,3)=0.067, 0.054, and 0.043, respectively, which clearlyN;N,u?, the result reads
indicates the smallness of the mixing between these two

As above, we neglected terms of ordgt? and higher. The
second term in Eq(13) is due to the correction integral in
Eq. (9).

From Egs.(6), (10), and(12), we arrive at

ro(k,k")=

states. M (k) = 1 S|r{N1(k¢— 0)/2]
We note that in Ref. 22 the validity of the ansatz E5). 2Ny (N;+1) | sinl(k¢—6)/2]
for the case of point—dipole interactions was argued by di- SNy (ke + 6)/2]]2
rectly calculating the ratio ofl, ,» (k#k’) with the energy —(—1)k S (ko +0)/2] |- (16)

Hy x and not with the energy difference, as we did. This ratio
was found to be of the order Mg+ 1). We believe the right Analyzing this result we find that foN;>1,|cot(¢)| three
criterion involves the energy difference, which still shows superradiant states occur that are located a finite energy sepa-
that the validity of the ansatz improves with growing systemration above the bottom of the,=1 band. In other words,
lengthN4, but only logarithmically. the superradiant states in tke=1 band do not occur at the

We end this section by discussing the effects of the detower band edge. These three states are characterized by the
viation of the actual interactiod®(m) from the point—dipole wave numbersk=k*—1, k*, and k*+1. Here k*
form considered above. In Appendix B, we show that for=nint|8|(N;+ 1)/7] with nint the nearest integer function:
cylinders that have a large aspect radtigh/2R, the logarith- | §|(N;+1)/7=ninf|§|(N,+1)/m]+ €&, with —0.5<¢
mic N; dependence Ed14) still holds, albeit with possibly =<0.5 the remainder.
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& Ny—1
1 T T T T T
3 sum HE = wo+J4(0)+2 X 3% (m)cogkem)
T T T = —_—— ' m=1
g/o.s - - Ny—1
= + cotkep) >, I (m)sin(kém)
L - + =
'§006 M(k*) Nl 1 m=1
2 / \_ Nt
450.4 .......... _ - -> mJi(m)cos(kqu)} (20)
hX TN - =
8 M(k* _1) .......... — - M(k*—|—1) m=1
= 02 - T 1 with
P T T e
© 003 02 0 02 04 JL(m)=3[IY(m)e M Nxcc]. (21)
5 Clearly, 31 (m) is real and, owing to the fact that?® is

a 1 _11 .
FIG. 2. Oscillator strengthgin units of N;N,u2) of the three statek Hlerm't'f"mj we also ha\{eh(—m)—‘lﬁ(m), conversely,
—k*—1,k*, andk* +1 in thek,=1 band as a function of the mismateh  J_(m) is imaginary andJ- (—m)=—J-(m). We note that
betweenk* and|6|(N;+ 1)/ in the limit of N;>1, |cot 6] [cf. Egs.(17)  the diagonal element E¢R0) is identical in form to Eq(7),
and (18)]. The dot-dashed line gives the total oscillator strength in theseith 3t (m) replacingJO(m) Naturally, the diagonal matrix
three transitions. + ' ' .
elements are real. By contrast, the off-diagonal elements
Hi « (k#Kk') are complex and we will split them into their
real and imaginary parts. As we will see, these parts behave
If N;>1,cot(6)], the oscillator strength of the three su- fundamentally different for smalp.

peradiant states is to a good approximation given by The real part oH t’k, is nonzero only ifk—k’ is even
and reads
M (k) — 1[sinmél2]? L , -
e e o Re, PO KIS
Kk~ 2(N;+1) =
and /
. o (k=k") ¢
_ _ 5 X[sin(k¢pm) + sin(k ¢m)]—cotT
M k*+1)—3 sinm(£¥1)/2 18)
(kK=D=3 m(E¥1)2 |- Np—1

X 2 L (m)[sintkgm)—sin(k’ gm)] |,
These results are plotted as functionséah Fig. 2. We see m=1
that k* carries roughly half of the total oscillator strength, (22
while the state&* =1 are complementary and together carry ] 0 1
roughly the other half. The three states together carry behich is identical toH, ,, of Eg. (8), except thatd’ (m)
tween 85.6% and 90.5% of the total strength in kye=1  replaces)®(m). The imaginary part of the off-diagonal ma-
band (in the limit of largeN;). trix elements appears as a new ingredient inkjre 1 Hami-
In direct analogy with thed° case, the smallness of the tonian; it is only nonzero ik—k’ is odd and reads

mixing ratio r1(k,k")=[Hi . [/(IHE = Hie o)), with Hi

k—k’ ry o N1—1
=(k|H|k"), seems a good criterion for the validity of the ~ |mH: ,:1_.(_1) t(k+k )¢ S tm)
ansatz Eq(15). Since we now deal with three superradiant ok 2i(N1+1) 2 m=1
states, we should consider the various ratios involving these (k—Kk')
states. However, as two of these statds 1) have X[sin(k¢pm) —sin(k’ ¢m)]—cot————
complementary behavior of the oscillator strength as a func- 2
tion of N4, it is more appropriate to weigh the mixing ratio Np—1
by the corresponding oscillator strengths. We will therefore X > I (m)[sin(kem)+sin(k’ pm)] .
consider as criterion for the validity of the ansatz Ek) for m=1
the optically dominant states the smallness of the weighted (23
mixing ratio

Before estimating the various summations involved in
the above expressions, it is useful to notice that, as we show
—, (19) in Appendix C, we may exclude the cage=0 (nonchiral
|H§,k—Hkgk/| wave functiong in order to obtain a good approximation to
the wave function. The reason is th#=0 yields a
with k=k* —1, k*, ork* +1 andk’ one of the neighboring (weighted mixing ratio that diverges for largdl;. As ar-

S o IHl
F1(kk')=(M(K)+M(K')

states ofk. gued below Eq(16), for 6+ 0, the three superradiant states
The diagonal matrix elements of the Hamiltoniat ~ k*, k* =1 do not occur at the bottom of tHe,=1 band
read (except if N; is very small, which is not of our intergst
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Rather the region of interest is characterized ky The imaginary part 0Hi*+p,k*+q requires more care.

=nint | 0|/ ¢]=nint | 8| (N, + 1)/7]. Hence, unlike the situ- Substituting the above expressions fap=(k* +p)¢ and
ation in thek,=0 band, thek values of the superradiant k’¢=(k*+q)¢ into Eq. (23), applying several standard
states in the&k,=1 band are not fixed, but scale linearly with manipulations of trigonometric functions, and expanding in
N; . This scaling complicates the treatmenl-qlfk, ReHik,, powers of ¢ yields (neglecting terms of the ordep? and
and ImH,,, in a way directly analogous to Sec. IlI, as the highep
quantityk'¢, which could be considered of the ordgin the

previous section, now becomes essentially a constait in

We thus have to be more careful in dealing with the orders of |m Hi* oKk ra= == .1)p q[ 2 Si1(6)
¢. As we will be primarily interested in states wikhvalues P l P—q
close tok*, we may considef (k,k') with k=k* +p and p+q-2¢&
"=k* +q, wherep andq are integers of the order of unity + ———Six( 0)4, (26)
and p#q. Since k*¢p=|6|—£¢ with —0.5<¢<0.5, we P4

havekgp=16|+(p— &) ¢ and k' p=|6|+(q— &) ¢. For Ny

large, p—¢)¢ and (@—¢) ¢ are small, on the order ap, i 31(6)=EN1_1J1_(m)sin(m|0|) and S,(0)

and may be used as an expansion parameter in the variou_sENl_l m=1
m—

1 .
functions that occur in the matrix elements E¢0), (22), m=1 J*(m)c".s(.m' &- \i\{e trlus f'”f' that, unlesSil(Q)
and (23). vanishes, the mixing rati®,(k* +p,k* +q) has a leading

contribution proportional to ¥, which grows for increasing
N;. The conclusion would be that the ansatz Ed) is not
very useful and, contrary to our expectations, deteriorates for
growingN;. We can avoid this situation by demanding that
Hi*+pyk*+p—Hi*+q,k*+q=—2(p—q)S(6)¢, (24)  the angled is such thatS;;(6) vanishes, i.e., we fix the
choice of 6= 6, such that

The results of this procedure are as follows. For the en
ergy difference, neglecting terms of the ordgr and higher,
we find

with S(0)=3""13% (m)ymsinmd)). Similarly, the real

m=1

parts of the coupling elements reasp to orderg)
1+(—1)Pd R
ReHIi*+p,k*+q:_TSr(a)¢u (25 mzzl Jl*(m)Sin(m|00|):0' (27)

with S, (6)=3=M" 3% (m)[ m cosne)—cot(e)sin(mé)].

Clearly, the functionsS(#) andS;(6#) only depend onp (or  Notice that, as argued earlier, we do not admit the trivial
N;) through the upper summation boundary and a possibleolution ,=0 of this condition.

dependence o on N,. Both dependencies are weésee After having setf= 6y, the S,(0,) term in Eq.(26)
below for theN; dependence of) and do not add systematic gives the leading contributioforder ¢) in Im Hi*er,k* +q-
orders of ¢ to the matrix elements. Hence, both Combining this with Eqs(24) and(25) shows that the lead-
Higx s pir + p— Higx 4 quee + q @D ReH . have as leading  ing contribution toF ,(k* +p,k* +q) is of order unity and
contributions terms that are linear i reads

[M(K* +p) +M(K* + )] [Si(8o)]

[p—dl [S(8o)l S

Tip— 0

. 28

Fi(k*+p,k*+q) [M(K*+p)+M(K*+0q)][p+g—2¢| [S2(6o)] p—q odd -
7(p—a)? IS(6o)] |

The important difference with the ratig in thek,=0 band  bacteri&*>*>®and apply the above formalism to calculate the
is thatT, does not systematically decrease with increasingpticaly dominant states and resulting spectra. The param-
N;. Hence, the quality of the ansatz H4Q5) does not im-  eters for the BCht aggregates ofhloroflexus aurantiacus
prove with growing cylinder size. The solutions fs and  gre: R=2.297 nm, N,=6, h=0.216 nm, a=189.6°, 8

the numerical value of the ratit, close to the superradiant =36.7°, andy=20°2" The lengthN; of these aggregates

transitions will be studied for the special case of chlorosome§hay extend to hundreds of rings. Furthermore, we have

In Sec. V. takenwg to agree with a single-molecule absorption peak at

V. APPLICATION TO CHLOROSOMES 675 nm and, in order to calculate the intermolecular interac-

AND DISCUSSION tions[Eq. (A1)], we have used?= 20 D& for the square of
We now consider as an example of cylindrical aggre-the single-molecule transition dipole.

gates the rod elements of chlorosomal antennae of green We first consider the validity of the ansatz E§) for the
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FIG. 3. The ratioro(1,3) as a function oN, for cylindrical aggregates of ~ FIG. 5. Unperturbed dispersion relatioHg , (solid) andHj,, (dashedlas a
the chlorosome structure. The diamonds are the exact values obtained Iiynction of k¢ for N;—o. Structural parameters used are those that apply
numerically evaluatingd 4|HS ,—HJ 4, while the solid line represents a fit to the chlorosomes of green bacteria. The solid and dashed arrows indicate

of the largeN, behavior to the limiting analytical expression Egi4), using  the energies of the superradiant states inkhe 0 and thek,=1 bands,
b/a andc/a as free parameters. respectively.

k,=0 band. In Fig. 3, we plotted as diamonds the exact ratid?am wave function as obtained from numerical diagonaliza-
ro(1,3) as a function of the cylinder lenghy , numerically ~ ion .of HO for.se\./eral values dﬂ_l. Finally, we have plotted
calculated from Eqs(6), (7), and(8) [the ratiory(1,2) van- N Fig. 5 (solid line) the numerically obtained unperturbed
ishes identicall}. Clearly, the ratioro(1,3) already is small dispersion relatiorH}, in the k=0 band forN;—c=. This

for intermediate lengthN,;~100) and reduces even further plot clearly demonstrates that, as assumed in Sec. lll, indeed
when increasing\; . The solid line in Fig. 3 shows a fit of Hy « does not exhibit degeneracies between the superradiant
the exact data in the interval 780N, <1000 to the expres- K=1 bottom statésolid arrow and the higher-lyind states.
sion Eq.(14), usingb/a andc/a as fit parameters. Although, We now turn to thek,=1 band and the ansatz E@.5).

due to the deviation of the effective interactialf§m) from At convergenceN;— ), numerically solving the condition
point-dipole ones at smaih values, the best-fit parameters EQ. (27) yields the chiral anglejy=4.3035°. Although this
(b/a=8.00 andc/a= —29.75) differ from the ones obtained angle is small, we will see that it plays a crucial role in the
analytically in Sec. IlI, the largél,; dependence clearly fol- Optical properties, in particular in the CD spectrum. As is
lows the logarithmic behavior generally predicted in that secdemonstrated in Fig. 6, th¥, dependence of, is weak, a
tion. The obtained values for,(1,3) suggest that Ed5) is fact that was anticipated below E@5) already. The value of
already a good approximation for the optically dominant %o at largeN; implies that the three superradiant states in the
state in thek,=0 band for cylinders of intermediate length k2=1 band are located ~aroundk* ~[6|(Ny+1)/m
(chlorosomes as short as 20 nand that the approximation ~0.02390N,+1). The dashed curve in Fig. 5 gives the nu-
further improves for increasingl,. This is demonstrated Merically obtained unperturbed dispersion relatidfy, in
directly in Fig. 4, where ther(; dependence of theansatz thek,=1 band forN;— (using 6,=4.3035°). The dashed

wave function fork=1 is compared to the optically domi- &rrow in this plot indicates the energy of the three superra-
diant stategat k¢/7~0.0239), which again demonstrates

that no degeneracies exist between the superradiant states
' ' ' ' ' ' ' ' ' and the higher-lyingk states, implying that we may indeed

8 ! solely concentrate on the weighted raffgék,k’) for k and
~
< 0.8
g T T T T T T T I T
“'q;' 0.6 43} ]
< —_ L 4
B 04 2 ool 8
X %90 :
-] 02 L o |
T g :
Z"IN = 4281 o i
%001 02 03 04 05 06 07 08 09 1 S te :
n/(Ny + 1) a21f ° |
FIG. 4. Comparison between the ansatz wave function&qvith k=1 in Y 200 400 600 800 1000
thek,=0 band(thick solid line to the superradiant state in this band found N1

by numerical diagonalization ofl® for various cylinder lengthgthinner

lines). Structural parameters used are those that apply to the chlorosomes BfG. 6. The chiral angl®,, obtained by numerically solving EQ7), as a
green bacteria. The numerical solutions correspond, in the direction of théunction of the cylinder lengtiN, . Structural parameters used are those that
arrows, toN; =50, 100, 300, 500, and 1000, respectively. apply to the chlorosomes of green bacteria.
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0.1 ( gy TABLE I. Lower and upper boundaries for the weighted mixing ratio
a) - - + T1(k,k") in the limit of long cylinders for various combinations lofandk’
close to the superradiant transitions in l3e=1 band. Structural parameters

005 .
e e e A A A used are those for the chlorosomes of green bacteria. The values in the table
-’ were derived using Eq28).
0 1 1 1 1 1 1 1 1 1
— ¥ I I.%
(b) k=k*k =k*1+2 K K 7 i T e
0.05 \\ k*—1 k*+1 0.0236 0.0263
N N\ N\ anaaaasaaaaam s K* K* +2 0.0246 0.0292
0 L L L L L L L L k*=1 k*+3 0.0031 0.0246
(c) k=k*kK = k* k* k*=1 0 0.0736
k*=1 k*+2 0.0200 0.0736

o
3

H\\I\\\I\\I\\ 1 1 1 1

C)) E=F tLE =Kk 13

o

& Second, we see that the weighted ratios are small over the
- . entire range oilN; values consideredN;>50), suggesting
//////////////////////— that the ansatz Eq15) is a good approximation for the op-
i 4 tically dominant wave functions. Third, we see that in con-
(e) k=k"-1LK =k -3 trast to the ratioy in thek,=0 bandF,(k,k") does not tend
to zero in the limit of largeN, . This agrees with the smaf
- expansion made in Sec. INEQ. (28)], which indicated that
_..mm&&m the leading contribution t@,(k,k") is zeroth order ing. In
(f E=FKEFKF=k"+1 the limit of largeN,, the weighted rati@,(k,k’) oscillates
between two boundaries, which may be calculated analyti-
cally using theN;— values of the summation$(6y)
111 1 =-1881cm?,  S(6)=691cm?l, and S(6p)
@ = F —F —1 =483 cm' L. The resulting boundaries for the ratios of inter-
est are given in Table | and agree well with the limiting
values observed in Fig. 7.
To further demonstrate the validity of the ansatz 8d)
e and to clarify the(chiral) nature of the wave functions, in
— Fig. 8 we plotted the squared amplitude of the wave func-
0.05} ////////////////////// tions for the three superradiant statesk*—1, k*, and
/_ k* +1 as a function of the position on the cylinder surface.
0 To this end, the cylinder was cut along a line parallel to the
k k* < 1 K= k* -2 cylinder’s axis(taken as vertical axis in the plgtand un-

o
o
G

(=]

=]

Weighted mixing ratio 71(k, k')

0.05 L \ wrapped. To the right of each result obtained from the ansatz
\\ . is plotted the corresponding exact result obtained by numeri-
0 cally diagonalizing the HamiltoniaH®. Here, the correspon-

0 "TO0 200 300 400 500 600 700 800 900 1000 . .
3 > 800 9 dence was defined through the number of nodes in the wave

Nl function along the axis direction. In the example considered
FIG. 7. The weighted mixing ratib, (k,k’) for nine pairs of statek andk’ here, we liSf'd a Cy.“nder WIN1_= 300 “ngsf For this length
close around the superradiant transitions in khe 1 band for cylindrical we havek 7, which clearly is reflected in the number of
molecular aggregates of the chlorosome structure. The lines on the left axidodes in the wave function along the axis direction. We also
indicate the upper and lower boundaries in the lakgelimit given in  see that the ansatz gives an excellent description of the exact
Table I. wave functions, in particular it describes the slanting of the
equal-phase lines away from the vertical in an excellent way.
. . ) o o ) ) This slanting is a direct consequence of the fact thadoes
k” in the immediate vicinity ok*. This yields in total nine ot vanish(the slant angle is given bg,) and is a manifes-
ratios of interest to be considered, all of which are plotted asation of the chiral behavior of the wave function on the
a function of N; in Fig. 7, as obtained from numerically cyjinder surface. This may easily be seen by considering the
evaluating the matrix elements E@80), (22), and(23). Pan-  complex factor in the amplitude of the total wave function,
els (a)—(e) mvolve combinations of states in which the real yhich reads ex(y+ 6;)m,+i27m,/N,]. We note that going
COUD“”Q ReH, ki 1S nonzero, while the imaginary coupling up three rings along the cylinder's surfacani;=3) and
Im Hkk, vanishes and vice versa for pan€éis(i). going back one step along the ringr,=—1), due to the
Several comments are in place concerning these resultfact thatN,=6 and y=20°, is exactly a vertical displace-
First, we observe that the ratios oscillate as a functioNgf ~ ment over the surface, i.e., parallel to the cylinder axis.
which is a consequence of the fact that the remaingler Clearly, this displacement induces a change igkA(n,) in
defined above Eq(17) oscillates. This remainder enters the phase factor, which vanishes fégy=0. Hence, the slant
T1(k,k") because the expression fdf in terms off contains  angle of equal-phase lines away from the axis direction in-
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k=k*—1 k=Fk* k=k"+1 p-b.c.
ansatz exact ansatz exact ansatz exact

50E§2
200-%232 |
. %

{ 150

300

2

FIG. 8. (a)—(c) Gray-scale plots of the squared amplitudéarker is larger amplitudeof the three superradiant states in #ye=1 band for cylinders of the
chlorosome structure with a length Nf, =300 rings. To generate these plots, the cylinder surface is cut along a line parallel to the axis and unrolled. Thus,
horizontal lines in the plot correspond to molecules lying on the same ring of the cylinder, having the same position .if2iex to the helical structure of
chlorosomes, lines of constam make a finite angle with the vertical directifime dashed line in panéh) corresponds to,=1; also cf. dashed line in Fig.

1]. For each superradiant state, the dependence of the wave functiongiven by the ansatz E@15) [with 6= 6, obeying Eq.27)] is plotted to the left,

while for comparison immediately next to the right of it is plotted the corresponding wave function found by numerical diagonalizdfiofraf all plots,

the dependence am, is given by the Bloch wave ekj2mn,/N,]. For further comparison, we plotted in partd) the wave function of the only superradiant
state[ ~exp({yn,+i27n,/N,)] that occurs in thé&,=1 band if we impose PBC in the, direction. We note that the ansatz and exact wave functiofe-c)

all exhibit a clear chiral behavior, reflected in the slanting of the equal-phase lines with respect to the vertical axis; the slant angle i8gi&rrchya chiral
behavior is missing irfd).

deed is given by,.?® We note that if we assume PBC in the lating the spectra generated from them using the general ex-
n, direction, 6, vanishes identically for the superradiant pressions in Ref. 18. For the energies of kstates in the
state!® and the wave functions are nonchiral, having equaltwo bands, we used the valubl@’k andH&’k. The thus gen-
phase lines that coincide with the axis direction. This is demerated absorpion and CD spectra are given by the solid lines
onstrated in Fig. 8, by plotting in pané) the squared am- in Fig. 9, for cylinders ofN; =100, N; =300, andN; =500
plitudes for the only superradiant state that occurs with PBCrings long. The dashed and dotted lines give the same spectra
Finally, we demonstrate the power of the two @mea generated using exact diagonalization and PBC, respectively.
Egs.(5) and(15), for the optically dominant states by calcu- The PBC spectra were calculated in the infimtglimit. The

g oot (a) ¢ Ny = 1001 001} (b) « N1 = 300 {001
~ % i
Ni X3
2
z
L]
0 0 0
= 0.02
g 0.01
S~ 4
2 J-0.01
< -0.02} ]
a ‘ ‘ . . L X ‘ .
© 700 740 780 700 740 780 700 740 780

Wavelength (nm)

FIG. 9. Absorption spectrf@—(c)] and circular dichroism spectféd)—(f)] for cylinders of the chlorosome structure with three different lengths The
smooth curves represent the results as obtained from our ansatz wave functio(® BEud(15) (solid), from exact numerical diagonalizatigdashed, and
from PBC(dotted. The underlying stick spectra of the numerical solution are also given, with the dashed sticks referring to staties=i® thend and the
solid ones resulting from thie,= *=1 bands. The strengths of the transitions obtained from the ansatz wave functions are given as diamonéis=fd the

band and crosses for thg=+1 bands.
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smooth spectra were obtained by convoluting the stick spe@pproximations even when we include all long-range dipole—

tra at the exciton resonances with a Gaussian line shape fundipole interactions between the molecules in the aggregate.

tion of full width at half maximum of 500 cm!. The stick We have found that a fundamental difference exists be-

spectra for the exact diagonalization are presented as dashiaeen thek,=0 band and thé&,= =1 bands. In the former

lines for the k,=0 band and solid lines for thé&, case, the effective one-dimensional Hamiltonian that has to

= =1 bands. The strengths of the stick spectra obtained vihe solved is real and symmetric and we have shown quite

the analytical angae are represented as diamonds for thegenerally that the ansatz E¢p) for the optically dominant

k,=0 band and crosses for thg=*1 bands. states at the bottom of the band improves logarithmically for
From Figs. %9a)—9(c) it is clear that at all cylinder increasing cylinder length. For th&,==*1 bands, the

lengths considered, the absorption spectrum generated by thmiltonian is complex and asymmetric and the ansatz Eq.

ansatz wave functions generally is better than the one genet5) does not improve systematically with cylinder size. We

ated by using PBC. In particular at intermediate lengths, ofave shown that the phase anglein this ansatz can be

the order ofN; =100, the spectrum has not converged yet todetermined by requiring the ansatz to be optifizd. (27)]

the infinite-length PBC solution, while the analytical ansatzand that the thus obtained anghg determines the chiral

does capture correctly the finite-size effects in the spectratature of the wave functions as reflected in the slanting of

position. Also the comparison between the exact and analytihe equal-phase lines when plotting the wave functions on

cal stick spectra shows how good the comparison is at athe cylinder surfacéFig. 8). In, case we impose PBC along

lengths. We remind the reader that for the case of PBC, wéhe cylinder axis, this phase angle vanishes. The phase angle

have only one resonandene superradiant statén the k, is of particular importance for the shape of the CD spectrum:

==+ 1 bands, while we clearly see that in the finite-size specsmall changes in this angle cause strong effects in this shape.

tra more such states occur. To illustrate our general formalism, we have used the
If we consider Fig. &), we observe that for the CD ansatz wave functions to describe the exciton states and re-

spectra not only the position, but rather the entire spectradulting absorption and CD spectra for the chlorosomes of

shape, is at intermediate length much better represented lgyeen bacteria, and compared the results to those obtained

the analytical angae for the wave functions than when using

PBC. As we discussed in detail in Ref. 18, the CD spectrum

converges only very slowly to the PBC result, due to the fact 250

that this spectrum results from subtle interference between

close lying positive and negative contributions. This makes

the spectrum extremely sensitive to the exact positions of

resonances and values of transition dipoles. In fact, as was

noted in Sec. |, the poor behavior of the PBC results for the 200

CD spectrum was one of the main motivations to search for

better analytical solutions to the wave functions. We observe

from the stick spectra that the CD is characterized by more

than three strong transitions in the=*1 bands. Extra

transitions occur in the so-called helical part of the CD 1 50

spectra® where statek* +2 and further also become im-

portant. These states further away fr&fngenerally turn out

not to conform to the ansatz E¢L5) as well, which is re-

sponsible for the fact that for increasing cylinder length the

ansatz spectrum does not fully converge to the exact spec- 100

trum, while the PBC spectrum dodalbeit at very large

length. In particular we observe that fof; =500 the ansatz

CD spectrum and the PBC one have roughly equal deviations

from the exact spectruffig. Af)].

ni

50

VI. CONCLUSIONS

In this paper, we have investigated approximate analyti-
cal solutions for the exciton wave functions of general cylin-
drical molecular aggregates, in particular for the optically 0
dominant wave functions in the exciton bands with trans-
verse wave numbek,=0 andk,==*1. We had a special
interest in accounting for a finite cylinder length, i.e., in go- ’n/2
ing beyond the analytical solutions that are obtained when
imposing PBC a|0ng the cyIinder’s axis direction. We haveF!G. _10. Amplitude §quared_on the unrplled cylinder surf@d_eFig. 8) for _
found that the o arisze, Eqs.(5) and (L5, which are 52 ave nclon oianea numercaly uhen sceouning o Gavesien
inspired on solutions for cylinders in which only interactions pacteria of lengt, = 250 rings, while for the disorder we used a standard
between neighboring rings in the cylinder occur, give gooddeviation of 400 cm?.
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numerically by brute force diagonalization of the Hamil- w? _
tonian as well as those obtained analytically by using PBC. = Tmah coS'e{ cos B+ Sir? B cog ¢pom,+ ymy)

The results confirm that for cylinder lengths longer than
roughly 50 rings, the ansatz wave functions give good de-
scriptions of the optically dominant states and the spectra.
This is, in particular for the CD spectrum, far shorter than the

- g[sin2 B sir? ¢ (cos(2a) + cog ¢omy+ ymy))

length at which the PBC approach gives good results. +2 co$ B cos ¢+ sin(2p) sin(2¢) cosa
As we have demonstrated earltrin case we impose
PBC, three superradiant states dominate the absorption spec- X cog ¢,m,/2+ yml/Z)]] , (A1)
trum, one in each of thk,=0 andk,= +1 bands. The ones Wit
in thek,= =1 bands are degenerate. In this paper, we found 2R sin( ¢pomy/2+ ym,/2)
that if we correctly account for finite-length effects, seven ~ t@n¢= myh =Y (A2)

superradiant states occlumless the length is very sharthe
k=1 state in thek,=0 band[Eqg. (5)], and the statek
=k*—-1, k*, andk*+1 in thek,==*1 bands[Eq. (15)].

(= 72<¢<w/2). To make a multipole expansion, we will
need the following expansiorfor |y|<1):

Again, the latter are doubly degenerate. In the limit of long y3(2s+1)1 &

cylinders, the three superradiant states in each oKije CO§(arCtaWY)):SZO (-1 SWES: k(S,Y),

+1 bands become degenerate, and occur at the same energy (A3)

as the single superradiant state that exists in these bands if -

we impose PBC. coS(arctarty))= >, 28+3K(s ) (A4)
We finally notice that we have restricted ourselves in this Y)=& 73 o

paper to the homogeneous, cylindrically symmetric, lini * 5ei3
disordej, which allows us to use the Bloch decomposition in coS(arctariy))sir?(arctary)) = > St y2k(s,y)
the transverse direction, leading to effective one-dimensional so 3

exciton bands. In reality, disorder may play an important role (AS5)
and break the cylindrical symmetry. A study of the effect of
disorder will be described elsewhétein the context of this cos'(arctarfy))sin(2 arctarty)) = 2 2 yK(s y).

paper, however, it is of interest to illustrate that even if the
disorder is large enough to localize the exciton wave func-
tions, they locally do exhibit the same chiral behavior as théNow the original interaction may be written
homogeneous solutions. This is clear from Fig. 10, in whichd(m,,m,)
we plot the amplitude squared of one of the optically impor-
tant exciton states found by numerically diagonalizing a ran-
dom realization of a cylinder with the chlorosome structure
and lengthN; =250 rings, with Gaussian diagonal disorder
of standard deviation 400 cm. The phase jumps that occur
at n;~150 andn;~180 clearly demonstrate the disorder-
induced mixing of unperturbed eigenstates. We finally note
. . S - 2s+3
that inclusion of dynamic disorder through, e.g., a stochastic _
model, is of interest to study transport properties. 2

(A6)

2

= |m |h)32 K(S Y)

—2(s+1)cog B+sir? B cog pomy+ ymy)

[sir® Blcog2a)+cog ¢pmy+ ymy) ]y?

+2 sin(2B) cosa cog ¢p,m,/2+ ym1/2)y]) . (A7)
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We may now perform the summation oves in Eq. (2)
and, omitting the subscript “1,” we get for the effective one-
dimensional interaction in thke,=0 band the multipole ex-

APPENDIX A: MULTIPOLE EXPANSION pansion{valid for |m| h>2R)

In this Appendix, we derive multipole expansions for the ~ J°(m)=— |3 J+ 2 2s]v (A9)
effective interactions J°(m)=J(m;k,=0) and J'(m) _
=J(m;k,=1) defined through Eq(2). We start from the With
dipole—dipole interaction on the cylinder, which reads 2N, u?cog B
= (A10)

‘J( ml ’ m2)
and
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(—1)5(2s+1)11(2s)! Nou?[2R\?S

235(s1)3 h® | h
X 2[—(s+1)cog B—ssir? Bsir? a]. (A11)

In a similar way, we may derive the effective interaction
JX(m) in thek,=1 band which, using the decomposition Eq.
(22), yields for|m|h>2R the multipole expansion

Js=

1 &g hs
3 (m)= ngo [m—sscos(ma)vL stHsm(mﬁ)},

(A12)
and
= s 3 s - gz cnsma
IL(m)=- Z 7 sin(mé) — —cry cog M)
(A13)
with
N, u? sir?
gs:OZZMTslB, (A14)
(—1)S(2s+1)!1(2s)! Nou?(2R\?s
Os=1= 235(3!)3 h3 (T
s+1 )
X (23)C0§ﬁ+ msmzﬁ
2
+2—S|r12,85|r12a (A15)
and
_(—1)%2s+1)!1(2s)! Nz,uz(ZR)ZS“
s— 235(3!)3 h3 T
(2s+1)(2s+3) .
mSII’\(Zﬁ)COSa’. (A16)

We observe thaf® is even inm, while J! is odd, as was
clear from Eq.(21) already.

APPENDIX B: DEVIATIONS FROM POINT-DIPOLE
INTERACTIONS

In this, Appendix, we consider how the deviations of the

actual interactiong®(m) from the point—dipole form affect
the ratioro(k,k") (k andk’ both of the order of unity We
start by assuming that the multipole expansion E&Q)
holds for allm, which is the case ih>2R. Using the ex-
pansion in Eqs(7) and(8) then gives rise to summations of
the type

“ cogkme) 1(2m)*
mEjlm—zS‘L 175 g Baslkei2m)
(B1)
and
« sin(kme) 1(2 )25+1
mZ;lmTj_( 1575 (Z;TT)!stH(k(ﬁ/ZW),
(B2)

C. Didraga and J. Knoester

with B,, the Bernoulli polynomial of degree.?® These sum-
mations for the special case=1 were used in the main text
(Sec. ).

An important property of the Bernoulli polynomials is
that for s#1 B,4(x) does not contain a term linear i
while B,s. 1(x) does not contain terms linear k! andx.
Using these properties in E¢B), one finds that terms in the
expansion Eq(A9) with s=2 only give corrections to the
result Eq.(12) for H(k"k, that are on the ordep® and higher.
The corrections due to extending the summations in(Bg.
to infinity are of the orderp*. As before, we will neglect
these contributions beyond the ordgf.

We now turn toHSvk, given by Eq.(7), which involves
summations of the type Eq#B1) and (B2) in its last two
terms, as well a&},_, coskgm)/m?** (third term). Follow-
ing an approach similar to the one used in Ref. 22 for evalu-
ating the latter summation for the special casel in the
small-< limit and neglecting terms of the ordep* and
higher, we arrive at

cog kme)
= Y S
L(3)+ 3[— 2+In(kg)](kg)?, for s=1
= B3
(2s+1)— 37(2s—1)(kg)?, for s=2 (B3

with ¢ the Riemann zeta functiotthis summation fos=1
was used in Sec. Il We thus find that the higher-order
multipole interactions €=2) in the third term of Eq.(7)
contribute terms of the ordep® and ¢?. Moreover, from
Egs. (B1) and (B2) and the special properties of the Ber-
noulli polynomials, we find that the higher-order multipole
interactions contribute to the last two terms in K@) to-
gether, with only corrections of the ordes® and higher
(terms of the orderp cancel. Hence, up to and including
terms of the ordewp?, the total contribution of the higher-
order multipole interactions tHE’k is given by adding to Eq.
(10) a termSH  defined by

0

6H8,k=s§2[2js§<2s+1>—js§<2s—1>k2¢2]. (B4)

Combining the thus obtained correctior®(k,k) and
HO(k,k’) due to the higher-order multipole interactions, we
find that, if h>2R, the ratiory(k,k") still has the form Eq.
(14), except that the coefficiemt is replaced by

c'=c+ szjs(kz—k’z)g(ZS—l). (B5)

We finally make the step to the situation of more general
interest, where R is not smaller tharh and, thus, the mul-
tipole expansion can only be applied from a certain value
m.=int[2R/h]>1 for the intersite separatioms. As long as
the cylinder has an aspect rat,h/2R>1 (which is a
physically obvious assumption to make for cylindrical aggre-
gates, we havem.<N,. To treat this general situation, we
split the summations of interest as follows=€0 or 1):
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Np—1 contains terms of ordep, which is a consequence of the fact
>, m*3°%(m)F(mg) that, unlike for the cases of R&,, andHy ,, , the terms of
m-t order ¢ do not cancel, becausek{-k M (k+k")—(k
Ni—1 +k")/(k—k")#0. Therefore, we find that if we take=0,
=mE “Jo(m)F(m¢>)+m ; m*J°(m)F(me), the (weighted mixing ratioT; for the superradiant statee.,

at the bottom of the bands of the orderN,/In Ny, which
(B6) diverges for growing\;, making the ansatz useless.
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