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Abstract Magnetic tracking is a popular technique that exploits static and low-

frequency magnetic fields for positioning of quasi-stationary objects. One important

system design aspect, which substantially influences the performance of the tracking

system, is how to collect as much information as possible with a given number of

measurements. In this work, we optimize the allocation of measurements given a

large number of possible measurements of a generic magnetic tracking system that

exploits time-division multiplexing. We exploit performance metrics based on the

Fisher information matrix. In particular, the performance metrics measure worst-

case or average performance in a measurement domain, i.e. the domain where the

tracking is to be performed. An optimization problem with integer variables is

formulated. By relaxing the constraint that the variables should be integer, a convex

optimization problem is obtained. The two performance metrics are compared for

several realistic measurement scenarios with planar transmitter constellations. The

results show that the worst performance is obtained in the most distant parts of the

measurement domain. Furthermore, measurement allocations optimized for worst-

case performance require measurements in a larger area than measurement alloca-

tions optimized for average performance.
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1 Introduction

Magnetic tracking systems are designed to estimate the position and/or orientation

of a specially designed object by means of its interaction with static or low-

frequency magnetic fields. Given that the human body is transparent to magnetic

fields at these frequencies, magnetic tracking systems are popular within the

biomedical engineering community. For example, magnetic tracking has been used

for eye tracking to diagnose Ménière’s disease (Plotkin et al. 2010), positioning of

wireless capsule endoscopes within the gastro-intestinal tract (Yang et al. 2009),

real-time organ-positioning during radiotherapy of cancer tumors (Iustin et al.

2008), catheter tracking (Krueger et al. 2005; Biosense Webster 2011), monitoring

of heart valve prostheses (Baldoni and Yellen 2007), tongue movement track-

ing (Gilbert et al. 2010; Wang et al. 2013), tracking of lung segment move-

ments (Leira et al. 2012), and positioning of bone-embedded implants (Sherman

et al. 2007). Examples of non-medical applications of magnetic tracking include

head tracking for helmet-mounted sights in military aircraft (Raab et al. 1979),

underground drilling guidance (Ripka et al. 2012), augmented and virtual real-

ity (Liu et al. 2004), and tracking of the ball during an American football

game (Arumugam et al. 2011).

In general, the performance of a measurement system is improved if the number

of measurements increases because more information is collected and noise tends to

be averaged. Nevertheless, this comes at the cost of more expensive hardware,

lengthier measurement time and longer post-processing of the collected data.

Therefore, a key issue in the design of measurement systems is how to maximize the

information gained per measurement.

This question is fundamental to the theory on the (optimal) design of experiments

that has been extensively applied to geo-spatial sciences for problems in agriculture,

geology, meteorology etc. The reader is referred to Walter and Pronzato (1997),

Uciński (2005), Pukelsheim (2006), Atkinson et al. (2007), and Pronzato and

Pázman (2013) for an introduction to the subject. Joshi and Boyd (2009) studied

sensor selection by means of convex optimization without a specific application in

mind. Examples of electromagnetic applications include optimization of measure-

ment setups for antenna measurements in the near-field (Nordebo and Gustafsson

2006), tracking of human tongue movements (Wang et al. 2013), estimation of

current densities in magnetic resonance imaging magnets (Begot et al. 2002), and

reconstruction of AC electric currents flowing in massive parallel conductors (Di

Rienzo and Zhang 2010).

Within the magnetic tracking community, the impact of the number of

measurements has been studied by Schlageter et al. (2001) and Plotkin and Paperno

(2003). Schlageter et al. (2001) found that the accuracy of their magnetic tracking

system was improved when the number of transmitters, and thus the number of

measurements, was doubled. Plotkin and Paperno (2003) found that using more

transmitters reduces the number of local minima present in the inverse problem. In

contrast, how to obtain as much information as possible from a given number of

measurements has received little attention. A rare example of such a study is the
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work by Shafrir et al. (2010) in which the positions of a fixed number of

transmitters are optimized using a two-step evolutionary algorithm. However, their

approach is devoted to a specific estimator and it requires that a positioning

algorithm is executed a large number of times to build statistics.

In this work, we consider magnetic tracking systems that exploit time-division

multiplexing and study how to allocate measurement efforts in an optimal way

given a large number of possible measurements. We exploit the theory on the

optimal design of experiments and formulate performance metrics based on the

Fisher information matrix. The optimization of measurement allocation yields an

optimization problem with integer variables. We approximate the integer variables

by real variables, which gives us a convex optimization problem. In contrast to the

method presented by Shafrir et al. (2010), the proposed method is valid for all

unbiased estimators and it does not require a massive amount of computation.

Furthermore, the convex nature of the proposed method is very attractive because it

removes two difficulties commonly encountered in design of experiments

optimization problems, namely, high dimensionality and presence of several local

minima that are not globally optimal. Also, the convexity of the method proposed in

this work makes it feasible to treat large scale problems.

In this work, we optimize for a measurement domain of arbitrary shape by

formulating two cost functions that improve (i) the worst-case performance

(minimax approach) and (ii) the expected performance for an assumed prior

distribution of the position and orientation of the object we wish to track (average

approach). The two approaches are compared for several test cases. Furthermore, we

investigate optimal measurement allocation for a realistic measurement scenario.

Finally, we study the impact of restrictions on the transmitter positions, which are

commonly encountered in practice.

The paper is organized as follows. The modeling of a generic magnetic tracking

system is presented in Sect. 2. Section 3 presents performance metrics and the

proposed solution methods. The results are then presented in Sect. 4 and discussed

in Sect. 5. Finally, the work is concluded in Sect. 6.

2 Modeling of the measurement system

Consider a quasi-magnetostatic tracking system operating at a single frequency. The

tracking system consists of (i) one receiving coil with unknown position ~x r; ~y r; ~z rð Þ
and unknown orientation m̂r ¼ ðmr

x;m
r
y;m

r
zÞ, and (ii) N t identical transmitting coils

(also referred to as transmitters) with known positions ~xk
t; ~yk

t; ~zk
tð Þ and known

orientations m̂t
k. Here and in the following, a vector a ¼ aâ is represented by the

magnitude a and the unit vector â. The tracking system exploits time-division

multiplexing to separate the signals from the different transmitters, i.e., the

transmitters are operated in sequence such that only one transmitter is transmitting

at any given time instant.

The aim of the tracking system is to estimate the position and orientation of the

receiving coil, i.e. to estimate

Convex optimization of measurement allocation for magnetic... 851

123



~p ¼ ~xr; ~yr; ~zr; ~mr
x; ~m

r
y; ~m

r
z

h iT
2 R6 j ð ~mr

xÞ
2 þ ð ~mr

yÞ
2 þ ð ~mr

zÞ
2 ¼ ð ~mrÞ2

� �
: ð1Þ

We assume that the physical properties of the sensor are known, which is normally

the case in practice. Thus, ~mr is known and we can use the unit vector m̂r ¼ ~mr= ~mr

directly instead of ~mr, without loss of generality.

To obtain entries with identical units in the vector that we wish to estimate, the

spatial coordinates are normalized with the distance d, which yields

rr ¼ xr; yr; zrð Þ ¼ ~x r=d; ~y r=d; ~z r=dð Þ ð2Þ

rtk ¼ xtk; y
t
k; z

t
k

� �
¼ ~xk

t=d; ~yk
t=d; ~zk

t=dð Þ: ð3Þ

Thus, the p ¼ 5 degrees of freedom that are to be estimated are described by

p ¼ xr; yr; zr;mr
x;m

r
y;m

r
z

h iT
2 R6 j ðmr

xÞ
2 þ ðmr

yÞ
2 þ ðmr

zÞ
2 ¼ 1

� �
: ð4Þ

Let Rk ¼ rr � rtk denote the distance vector of length Rk from the transmitting coil k

to the receiving coil. By modeling the transmitting and receiving coils as magnetic

dipoles and exploiting Faraday’s law, the scaled induced voltage in the receiving

coil generated by transmitting coil k is given by Jackson (1998)

Vk ¼ �jx
ak
V0

l0
4p

3ðm̂r � RkÞðm̂t
k � RkÞ

R5
k

� m̂r � m̂t
k

R3
k

� �
ð5Þ

where x is the angular frequency, l0 is the permeability of free space, and V0 is a

reference voltage that renders Vk unit-less and thereby independent of the unit of

measurement. The parameter ak is assumed to be known and it describes the

diameter, number of turns, and the excitation current for each transmitting coil k.

We use xak=V0 ¼ xa=V0 ¼ 4:33� 106 Am/Vs for all k throughout this work,

which implies that all transmitting coils are identical.

The gradient of the scaled induced voltage in the receiver generated by

transmitting coil k with respect to the position of the receiver r r is given by

rðr rÞVk ¼
oVk

oxr
;
oVk

oyr
;
oVk

ozr

� 	T

¼ �jx
a
V0

l0
4p

 
15

m̂r � Rkð Þ m̂t
k � Rk

� �
Rk

R7
k

� 3
m̂r � Rkð Þm̂t

k þ m̂t
k � Rk

� �
m̂r þ m̂r � m̂t

k

� �
Rk

R5
k

!
ð6Þ

and the gradient of the scaled voltage with respect to the magnetic dipole moment of

the receiver mr is given by
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rðmrÞVk ¼
oVk

omr
x

;
oVk

omr
y

;
oVk

omr
z

" #T
¼ �jx

a
V0

l0
4p

3 m̂t
k � Rk

� �
Rk

R5
k

� m̂t
k

R3
k

� �
: ð7Þ

Notice that the gradient with respect to the position in (6) scales as R�4
k whereas the

gradient with respect to mr in (7) scales as R�3
k .

Consider a measurement scenario where the receiver can be assumed to be

stationary in both position and orientation during a time DT . The time to perform

one measurement is Dt, which corresponds to the time required to record and

process the signal generated by one of the transmitters. In this article, we are

focused on the positioning of a mechanical object that is quasi-stationary on time

scales that are many order of magnitudes larger than the time scale associated with

the electrical system that performs the measurement. Therefore, we make the

assumption that DT is many orders of magnitude larger than Dt, which reflects many

real-life situations. Thus, the maximum number of measurements that can be

collected during the time DT with stationary conditions is limited by the large

number Nmeas ¼ DT=Dt, which follows from that the measurement system is based

on time-division multiplexing. For convenience, we assume that Nmeas is an integer

in the following given the nature of an actual measurement system, i.e.

measurements are collected and processed as single units by standard off-the-shelf

measurement instruments.

3 Optimization problem

In this work, we seek to improve the performance of the tracking system by

allocating the Nmeas measurements among N t candidate transmitters in an optimal

way.

Let wk 2 N be the number of measurements performed with transmitter k.

Clearly, it is advantageous to perform as many measurements as possible during the

stationary time-interval DT and, thus, we have
P

k wk ¼ Nmeas. Let

w ¼ w1;w2; . . .;wN t½ �T . Thus, we want to

minimize
w

Jðp;wÞ

subject to wk 2 0; 1; 2; . . .;Nmeasf g; k ¼ 1; . . .;N t

XN t

k¼1

wk ¼ Nmeas

p 2 Xp

ð8Þ

where J is a cost function quantifying the system’s performance and Xp is the

measurement domain for which we want to optimize the tracking system. This is a

combinatorial optimization problem and an exhaustive search requires ðN tÞN
meas

cost

function evaluations, which is prohibitive from a computational perspective. This is
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particularly true for more complicated measurement scenarios that may require

parameter studies that involve the solution of many optimization problems.

Now, let kk ¼ wk=N
meas denote the fraction of the total number of measurements

that are performed with transmitter k. Thus, kk 2 0; 1=Nmeas; 2=Nmeas; . . .; 1f g. We

use the approximation kk 2 0; 1½ � because Nmeas is large as discussed in Sect. 2

above. By using the notation K ¼ k1; k2; . . .; kNt½ �T , we obtain the relaxed

optimization problem

minimize
K

Jðp;KÞ

subject to kk 2 0; 1½ �; k ¼ 1; . . .;N t

XNt

k¼1

kk ¼ 1

p 2 Xp;

ð9Þ

which is a good approximation to the problem in (8). The feasible domain dictated

by the constraints is convex. Thus, if the cost function J is convex with respect to K,
the entire optimization problem is convex and can be readily solved.

In the following subsections, we introduce a performance metric, present the cost

functions that are used, and present the method to solve the corresponding

optimization problems.

3.1 Cost functions

3.1.1 Performance metric

Let Vmeas
k ðp0Þ denote the measured signal generated by transmitting coil k for an

arbitrary receiver position and orientation p0 2 R3 � S3 in the parameter space,

where R3 is the position in three dimensional space and S3 is all possible directions

of orientation on the unit sphere in R3. Noise that is caused by, for example, thermal

noise in amplifiers can degrade the performance of the positioning system.

Therefore, we model the measured signal as the true signal Vkðp0Þ corrupted with

additive Gaussian noise as

Vmeas
k ðp0Þ ¼ Vkðp0Þ þ nk ð10Þ

where the noise terms nk �Nð0; r2Þ are independent and identically distributed and

Nðl; r2Þ denotes the Gaussian distribution with mean l and variance r2. Below, we
denote the gradient of VkðpÞ with respect to the parameters in p at the point p0 by

rpVkðp0Þ.
A metric for the performance of the parameter estimation is provided by the

Fisher information matrix M 2 Rp�p (Kay 1993) given by
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Mðp0;KÞ ¼
XN t

k¼1

kkMkðp0Þ ¼
XN t

k¼1

kk



rpVkðp0Þ

�

rpVkðp0Þ

�T
r2

ð11Þ

because the Cramér-Rao inequality (Walter and Pronzato 1997)

cov p̂ � M�1 ð12Þ

yields a lower bound for the covariance of the estimate p̂ for all unbiased estimators.

Here, A � B signifies that the matrix A� B is positive semi-definite. Furthermore,

the bound can be attained, for example, asymptotically by the maximum-likelihood

estimator. Therefore, the performance of the measurement system is expected to

improve by maximizing M (in some sense). However, to find an optimal Fisher

information matrix M� that fulfills M� � M; 8M 6¼ M� is, in general, not possi-

ble (Uciński 2005) and a real-valued function JðMÞ is often optimized instead.

Here, we use

JDðMÞ ¼ � log detðMÞ ð13Þ

that yields a so-called D-optimal (Determinant-optimal) solution. If the model VkðpÞ
is linear in p, the D-optimal solution minimizes the volume of the lower bound for

the confidence ellipsoid described by M�1 in (12). The volume of the b-confidence
ellipsoid is given by Pronzato and Pázman (2013)

VolumeðbÞ ¼ pð Þp=2

C p
2
þ 1

� � F�1
v2p
ðbÞ

� 
p=2
detM�1
� �1=2 ð14Þ

where Fv2p
is the cumulative distribution function for the v2-distribution with p

degrees of freedom and C denotes the Gamma function. The geometric mean of the

lengths of the confidence ellipsoid’s semi-axes, which we refer to as the mean

confidence-radius, is given by Joshi and Boyd (2009)

qðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�1
v2p
ðbÞ

q
detM�1
� �1=2p

: ð15Þ

An attractive feature of the D-optimality criterion is that it is invariant to scaling of

the parameters in p (Uciński 2005).

By using the cost function from (11) and (13) as well as Xp ¼ p0 in (9), we

obtain the relaxed local design problem

minimize
kk

� log det
PNt

k¼1

kkMkðp0Þ
� �

subject to kk 2 0; 1½ �; k ¼ 1; . . .;Nt

PNt

k¼1

kk ¼ 1

ð16Þ

which is a convex optimization problem as shown by Boyd and Vandenberghe

(2004, Section 7.5).

Convex optimization of measurement allocation for magnetic... 855

123



3.1.2 Local and non-local designs

The Cramér-Rao inequality in (12) yields a lower bound for the covariance of the

estimated parameters. Given that the covariance is a measure of the linear

relationship between the estimated parameters, it does not capture their true

relationship when the functions VkðpÞ are non-linear in p. In addition, M�1 is a

function of p0 because of this non-linearity. This is the reason why an optimal

experiment design based on (11) and (12) for VkðpÞ non-linear in p is referred to as

a local design (Walter and Pronzato 1997). The region of validity of a local design

depends on the size of the region where the linearization VkðpÞ ffi Vkðp0Þ þ
rpVkðp0Þðp� p0Þ is a good approximation to the true non-linear VkðpÞ.

In contrast to local designs, it is often desired to optimize the performance of the

measurement system not just for one point in the parameter space Rp but rather for a

measurement domain Xp 
 Rp. In this work, we optimize the measurement

performance in Xp for (i) average optimality and (ii) minimax optimality. To this

aim, we exploit a discrete set of linearization points Xlin ¼ fpigNlin

i¼1 
 Xp that

constitutes a sufficiently dense discretization of Xp.

Average optimality In this case, we assign a prior probability distribution ppðpÞ
for the parameters that are to be estimated. We then find the so-called ELD-optimal

(Expectation of Log Determinant-optimal) experiment design (Walter and Pronzato

1997) by minimizing the cost function

JELDðKÞ ¼ �E
p
flog detMðp;KÞg ð17Þ

where E denotes the expectation with respect to ppðpÞ. In our case, we assume a

uniform prior probability density

ppðpÞ ¼
R
Xp

dp
� 
�1

; p 2 Xp

0; p 62 Xp

8<
: ð18Þ

and so the cost function can be written as

JELDðKÞ ¼ �
Z

Rp

log detMðp;KÞppðpÞdp

¼ �1R
Xp

dp

Z

Xp

log detMðp;KÞdp:
ð19Þ

We evaluate this integral by quadrature at the linearization points pi 2 Xlin with

weights qi as

JELDðKÞ � �
XNlin

i¼1

qi log detMðpi;KÞ; ð20Þ

with the quadrature scheme described in Quadrature. This quadrature scheme fea-

tures weights qi that are positive, which is important to preserve the convexity of the
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optimization problem. In addition, it preserves symmetries with respect to the mr
xm

r
z-

and mr
ym

r
z-planes. Furthermore, the value of detM is unaffected if m̂r is multiplied

by -1, which is exploited by performing the quadrature for the half sphere mr
z � 0

only. Notice that minimization of the continuous cost function in (17) and its dis-

cretized version in (20) are equivalent within the accuracy of the quadrature

scheme. Also, notice that there are other more efficient quadrature schemes for

evaluating the expectation in (17) than the one presented in Quadrature. An

example of such a scheme is the one given by Gotwalt et al. (2009) and Gotwalt

(2010) that, however, includes negative weights in situations where more than 7

parameters are to be estimated.

Thus, we obtain the relaxed average optimality problem

minimize
kk

�
PNlim

k¼1

qi log det
PNt

k¼1

kkMkðpiÞ
� �

subject to kk 2 0; 1½ �; k ¼ 1; . . .;Nt

PNt

k¼1

kk ¼ 1

pi 2 Xlin

ð21Þ

that is also a convex problem because the cost function is a sum of convex functions

with positive weights.

Minimax optimality In many applications, it is often desired to guarantee a

certain accuracy of the measurements. In these cases, the worst-case performance is

optimized instead of the average performance. This leads to a so-called minimax

problem, where we seek to minimize the MMLD (MiniMax Log of Determinant)

cost function

JMMLDðKÞ ¼ max
p2Xp

� log detMðp;KÞf g: ð22Þ

The computation of JMMLDðKÞ involves solving a separate optimization problem

defined by the right hand side of (22). We solve this optimization problem by

computing JMMLDðKÞ at Nlin linearization points pi 2 Xlin and taking the maximum

value, i.e.

JMMLDðKÞ � max
pi2Xlin

� log detMðpi;KÞf g; ð23Þ

which yields the relaxed minimax optimality problem

minimize
kk

max
pi

� log det
PNt

k¼1

kkMkðpiÞ
� �� �

subject to kk 2 0; 1½ �; k ¼ 1; . . .;Nt

PNt

k¼1

kk ¼ 1

pi 2 Xlin

ð24Þ

This is a convex problem because the pointwise maximum of convex functions is

convex (Boyd and Vandenberghe 2004).
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3.2 Solution method

In this work, we seek to allocate a limited number of measurements given a large

number of possible candidate measurements in an optimal way. Apart from the

information on the measurement allocation, the solutions to our optimization

problems also inform us of the number of transmitters to use and their positions. A

lower bound on the number of transmitters is given by the number of parameters p

that are to be estimated. The number of measurements to use is limited by the

constraint
PN t

k¼1 kk ¼ 1 in (21) and (24) and this constraint shows strong similarity

with penalty terms encountered in compressed sensing and related prob-

lems (Bruckstein et al. 2009). Such a penalty term typically involves the L1-norm

of the solution vector and it is added with a weight to the cost function that should

be minimized. In the context of compressed sensing and related problems, the

penalty term favors a sparse solution with only a few non-zero entries, should such a

solution be consistent with the rest of the problem statement. Here, we find that the

optimized measurement allocation vectors K� computed from (21) and (24) feature

only a few non-zero entries in comparison to the number of transmitter candidates,

which is confirmed by the results presented in this article.

3.2.1 Thresholding and clustering of weights

The weights kk that are obtained in the solutions of the convex problems (21) and

(24) above can, for the examples we have studied in this work, be grouped as

follows: (i) a handful of the weights are large ([ 10�3); (ii) many are zero; (iii)

several are nearly zero (\10�9). That the weights of the last group are not zero is

due to the finite precision arithmetic and termination criteria tolerances of the

exploited numerical solver. In addition, the weights of the last group are several

orders of magnitude smaller than the weights of the first group. Therefore, we use

the threshold kth ¼ 10�6 and set all weights kk\kth equal to zero. We refer to

weights kk � kth as non-zero.

Furthermore, the finite resolution of a Cartesian grid of transmitter candidates

may cause several neighboring transmitters to obtain non-zero weights kk. We

replace such a cluster Xcl of non-zero weights kk; k 2 Xcl with only one weight kkcl
placed at rkcl according to

kkcl ¼
X
k2Xcl

kk

rkcl ¼
1

kkcl

X
k2Xcl

kkrk
t

ð25Þ

if all the non-zero weights kk in the cluster are vertices of the same cell in the

Cartesian grid. If this is not the case, e.g. there are five non-zero kk in the cluster or

the cluster consists of three non-zero kk on a straight line, we do not perform the

clustering. Instead, the problem should be solved again for a denser grid of trans-

mitter candidates.
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3.2.2 Evaluation of derivatives

To solve the optimization problems (21) and (24), the Fisher information matrix for

a given receiver position and orientation pi 2 Xlin must be computed. Thus, the

derivatives with respect to the two degrees of freedom given by

mr
x;m

r
y;m

r
z

h iT
2 R3 j ðmr

xÞ
2 þ ðmr

yÞ
2 þ ðmr

zÞ
2 ¼ 1

� �
ð26Þ

are needed. However, the gradient rðmrÞV in (7) includes the derivatives with

respect to the Cartesian components of the receiver’s magnetic dipole moment mr.

If all three of these components are included in the Fisher information matrix, the

constraint in (26) makes the Fisher information matrix rank-deficient. We therefore

introduce a local Cartesian coordinate system ðûi; v̂i; ŵiÞ with ŵi ¼ m̂r
i to express

rðmr
i
ÞV . The ui- and vi-components of rðmr

i
ÞV are then used in the computation of

the Fisher information matrix. (The wi-component of rðmr
i
ÞV is always zero because

of the constraint in (26).) The cost functions that are exploited in this work are

unaffected by a rotation of ûi and v̂i around ŵi because determinants are invariant to

rotations.

3.2.3 Solver

The relaxed average optimality problem in (21) and the relaxed minimax optimality

problem in (24) are solved directly with the routine SNOPT (Gill et al. 2005)

provided in the TOMLAB (Tomlab Optimization AB 2012) package of optimization

algorithms. The SNOPT-routine is an implementation of the sequential quadratic

programming algorithm. All gradients that are needed are computed analytically by

SNOPT.

4 Results

Planar transmitter constellations have become increasingly popular, see for

example (Iustin et al. 2008; Plotkin et al. 2010). In this work, we therefore

consider only planar constellations of transmitters. More specifically, we consider

constellations where all transmitters lie in the plane z ¼ 0 with dipole moments

oriented along the z-axis, i.e. ztk ¼ 0 and m̂t
k ¼ ẑ for all k. (It should be noted that the

proposed method can handle any geometry of the transmitter constellation.

Furthermore, transmitters with different orientations can also be considered with

the method, should this be desired.) In particular, we consider two types of planar

transmitter constellations based on (i) a Cartesian grid of transmitter candidates and

(ii) a polar grid of transmitter candidates. These transmitter constellations are

referred to as Cartesian arrays and polar arrays, respectively, in the following.

Examples of the two transmitter array types are shown in Fig. 1. The transmitters

in a Cartesian array are placed on a Cartesian grid with jxtkj 
 xmax, jytkj 
 ymax and

an inter-transmitter distance h in both the x- and y-directions. The transmitters in a
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polar array are placed on a polar grid with Narms transmitters per circle, 0
ðxtkÞ
2 þ

ðytkÞ
2 
 r2max and a radial distance h between neighboring circles. On each circle, the

transmitters are placed at the polar angles wl ¼ l 2p
Narms

where l ¼ 1; . . .;Narms.

Below, we compare the average and minimax cost functions in Sect. 4.1. Then,

we study a realistic measurement scenario in Sect. 4.2. Finally, we investigate the

impact of restrictions on the permissible size and position of the transmitter array

(Sect. 4.3). Note that we use r2 ¼ 1 in the following tests without loss of generality.

All the results in this section are presented in terms of the continuous weights K,
which we find useful and informative in an engineering setting. The continuous

weight kk can directly be interpreted as the fraction of measurements that are to be

collected based on transmitter candidate k, which is useful since kk is not explicitly
dependent on Nmeas. In other words, the solution kk describes a variety of

measurement systems that feature different values of Nmeas, which may involve

widely different hardware implementations. In addition, the continuous weights

may be used as a good starting point for the combinatorial optimization

problem (8), which may be approached in a number of different ways depending

on the application at hand and computational resources available. For sufficiently

large values of Nmeas, the weights kk can be rounded to an integer multiple of

1=Nmeas without any significant change in the performance of the measurement

system, i.e. the objective function in (8) is basically unaltered given the real-world

measurement situation. Should Nmeas not be sufficiently large for the application at

hand, the approach presented by Joshi and Boyd (2009) can be used to pursue the

solution of the combinatorial optimization problem in (8), where the relaxed

solution may be used as a starting guess. However, we are focused on positioning of

a mechanical system that is quasi-stationary on time scales that are many orders of

magnitude larger than the time scale associated with the electrical system that

performs the measurement, which implies that Nmeas is indeed very large for any

practical purposes.

−xmax 0 xmax

−ymax
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ymax

x [.]
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[.]

h

h

(a) Cartesian

−rmax 0 rmax

−rmax

0
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x [.]

y 
[.]

rmax

h

Narms = 3

(b) Polar

Fig. 1 Cartesian transmitter array defined by xmax, ymax, and h (left). Polar transmitter array defined by
rmax, h, and Narms (right). Transmitters are represented by circular markers and transmitter candidate
array boundaries are indicated with dashed lines
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4.1 Cost function comparison

In order to illustrate the differences between average and minimax optimality, we

consider a simple problem with cylindrical symmetry. The measurement domain is

given by

Xp ¼ ½xr; yr; zr; m̂r�T j xr ¼ 0; yr ¼ 0; zr 2 ½0:1; 1�; m̂r ¼ ẑ
� �

ð27Þ

where Nlin ¼ 1000 linearization points for zr 2 ½0:1; 1� are exploited by the

quadrature scheme described in Quadrature. We consider a polar array defined by

rmax ¼ 1:1, h ¼ 0:0025 and Narms ¼ 3 with N t ¼ 1321 candidate transmitters. Next,

we constrain the transmitters on each circle of constant radius in the array to have

equal weights, which is motivated by the symmetry of the problem. (It should be

noted that the symmetry is broken by the transmitter array. However, we obtain

identical results for Narms ¼ 3; 4; . . .; 7. Furthermore, circles centered at the origin

are formed by the transmitters with non-zero weights obtained by solving the

problem with a Cartesian array of transmitter candidates, where no additional

constraints on the weights are incorporated.)

Figure 2 shows the non-zero weights of the solution to the relaxed average

optimality problem (21) and the relaxed minimax optimality problem (24). For this

measurement scenario, the clustering procedure described in Sect. 3.2.1 is modified

such that all radially adjacent weights kk � kth are clustered into one single weight

kkcl placed at rkcl according to (25). The corresponding radii and total weights of the

circles with non-zero weights are given in Table 1. The non-zero weights for

minimax optimality are fewer and constitute a larger constellation than the non-zero

weights for average optimality. Furthermore, optimizing for minimax optimality

yields the same result as optimizing only for the sensor position that is furthest away

from the transmitter plane, i.e. zr ¼ 1, cf. (Talcoth and Rylander 2013).

Figure 3 shows the pointwise cost JDðpi;K�Þ as a function of zr by dashed and

solid curves for the solutions to the average and minimax optimality problems,

−1 0 1

−1

0

1

x [.]

y 
[.]

(a) Average optimality

−1 0 1

−1

0

1

x [.]

y 
[.]

(b) Minimax optimality

Fig. 2 Measurement allocations for average optimality (left) and minimax optimality (right). Clustered
non-zero weights are represented by circular markers whose size is proportional to the weight kkcl .
Transmitter candidate array boundaries are indicated with dashed lines
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respectively. As can be seen in Fig. 3, the performance of the system degrades as

the distance between the sensor and the transmitter plane increases. This can also be

seen by combining (6), (7) and (11) with Sect. 3.2.2, to obtain

JD / 36 logR ð28Þ

where the distances R to the sensor are assumed to scale in the same way for all

contributing transmitters. This also explains why the optimum of the minimax

optimality problem is identical to the optimum for pointwise D-optimality at

zr ¼ 1 (Talcoth and Rylander 2013) and the larger constellation size as compared to

the clustered non-zero weights that correspond to average optimality.

As can be seen from the curves in Fig. 3, optimizing for minimax optimality

gives a slight improvement in worst-case performance as compared to optimizing

for average optimality because qðKMinimaxÞ=qðKAverageÞ � 0:81 at zr ¼ 1. Here, q is

the mean confidence-radius from (15). Further, KMinimax and KAverage denote the

measurement allocations optimized for minimax and average optimality, respec-

tively, and their clustered non-zero weights are shown in Fig. 2. However, the

improvement in worst-case performance comes at the expense of a large

Table 1 Radii and weights for

clustered non-zero weights
Optimality Radius, rkcl Weight, kkcl

Average 0.0484 0.2149

0.1283 0.2735

0.2568 0.2575

0.6268 0.2541

Minimax 0.2663 0.5998

0.9149 0.4002
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Fig. 3 Pointwise cost JDðpi;K�Þ as a function of zr for the solutions to the average and minimax
optimality problems
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degradation in performance close to the transmitter plane, e.g.

qðKMinimaxÞ=qðKAverageÞ � 125 at zr ¼ 0:1.

We also examine the impact of linearization point density by varying the number

of linearization points in the measurement domain. For average optimality, at least

30 linearization points are needed to obtain the same constellation of clustered non-

zero weights as described above. In contrast, only one linearization point at zr ¼ 1 is

needed for minimax optimality because the worst performance is governed by the

point furthest away from the transmitter plane.

4.2 A realistic measurement scenario

We investigate a realistic measurement scenario and quantify the potential for

improvement of measurement allocation optimization as compared to an ad-hoc

measurement allocation procedure.

The measurement domain is given by

Xp ¼ ½xr; yr; zr; m̂r�T j xr 2 ½�0:25; 0:25�; yr 2 ½�0:25; 0:25�;
�

zr 2 ½0:5; 1�; m̂r 2 S3
�
:

ð29Þ

The quadrature scheme from Quadrature is exploited with [5, 5, 4] points in the x-,

y-, and z-directions, respectively, and 77 points on half the unit sphere, which gives

Nlin ¼ 7700.

We solve the relaxed average optimality problem in (21) and the relaxed

minimax optimality problem in (24) with a transmitter candidate array of Cartesian

type defined by xmax ¼ 1:44, ymax ¼ 1:44, and h ¼ 0:09 with N t ¼ 1089 candidate

transmitters. Thresholding and clustering is applied as described in Sect. 3.2.1.

Furthermore, we introduce an ad-hoc measurement allocation procedure consisting

of a Cartesian array defined by xmax ¼ 1, ymax ¼ 1, and h ¼ 0:5 with 25 equally

weighted transmitters, i.e. kk ¼ 1=25 for all k. This ad-hoc measurement allocation

constitutes a natural choice for collecting measurements, should an optimization

algorithm for measurement allocation not be available.
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Fig. 4 Ad-hoc measurement allocation (left) and measurement allocations optimized for average
optimality (middle) and minimax optimality (right). The clustered non-zero weights are represented by
circular markers whose size is proportional to the weight kkcl . Transmitter candidate array boundaries are
indicated with dashed lines
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Figure 4 shows the ad-hoc measurement allocation as well as the measurement

allocations optimized for average and minimax optimality. The optimized

measurement allocations are symmetric with respect to the x- and y-axes. Notice

that these symmetries are not imposed during the solution of the optimization

problems but are due to the symmetries present in the optimization problems. Also

notice that all three measurement allocations require 25 transmitters. Similar to the

results in Sect. 4.1, minimax optimality requires measurements over a larger area

than average optimality. This is because of the scaling with respect to the distance

R for the derivatives (6) and (7) and the cost function (28).

Figure 5 shows JDðMðpiÞ;K�Þ for all linearization points pi 2 Xlin as a function

of the linearization point index. Notice that these indices have been sorted

individually for each case in non-decreasing order of the cost. All curves in Fig. 5

show four different levels that correspond to the different zr-values of the

linearization points. Larger cost and, thus, worse performance is obtained for the

most distant linearization points.

The cost function values for average optimality JELD and minimax optimality

JMMLD are given in Table 2 for the different measurement allocations. The best

performance in terms of average optimality is shown by the measurement allocation

optimized for average optimality, as expected. The mean confidence-radius of the

minimax-optimal measurement allocation is 15% larger than the mean confidence-

radius of the average-optimal measurement allocation. Similarly, the mean

confidence-radius of the ad-hoc measurement allocation is 73% larger than the

mean confidence-radius of the average-optimal measurement allocation. For

minimax optimality, the increase in mean confidence-radius is 23% for the ad-
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Fig. 5 Pointwise cost JDðMðpiÞ;K�Þ as a function of linearization point index i for the ad-hoc
measurement allocation as well as for the measurement allocations optimized for average and minimax
optimality. Note that the indices i are sorted individually for each case to yield non-decreasing curves
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hoc measurement allocation and 35% for the average-optimal measurement

allocation as compared to the minimax-optimal measurement allocation. Thus, we

have shown an example where measurement allocation optimization provides

substantial improvement of a measurement system as compared to an ad-hoc

measurement allocation procedure. In this example, the improvement is especially

large when average optimality is considered.

Next, we consider the possible effect of rounding the elements in the optimized

measurement allocation vector K� to multiples of 1=Nmeas, where we use a

simplified analysis. Given an optimized measurement allocation vector K�, we

consider the corresponding perturbed vector ~K ¼ nK�. Here, all weights kk are

scaled by the multiplicative factor n ¼ 1þ dn, where dn is small in comparison to

unity. For a perturbation dn, the relative perturbation in the mean confidence-radius

(15) is ~qðbÞ=qðbÞ ¼ ð1þ dnÞ�1=2 � 1� dn=2. If kkNmeas [ 20 for all non-zero

weights kk, a pessimistic estimate of the relative change in the mean confidence-

radius could be coarsely approximated by rounding all weights downwards to an

integer multiple of 1=Nmeas. If we assume that the rounding (in the worst-case

scenario) would correspond to roughly dn ¼ �0:05, we would have a relative

perturbation in the mean confidence-radius of ~qðbÞ=qðbÞ ¼ 1:026, i.e. a degradation
of about 2.5%. This is a rather small degradation in the performance of the

measurement system in relation to the improvements achieved by the relaxed

solution, when the relaxed solution is compared to the ad-hoc measurement

allocation. Should the combinatorial problem be solved, it is rather likely that the

degradation in mean confidence-radius is much smaller than 2.5% for such a

situation. Given the vast difference in time-scales of the quasi-static object and the

measurement of the electrical system, we find that such improvements are in many

cases of minor importance but could be pursued by, e.g., the technique presented

by Joshi and Boyd (2009).

4.3 Impact of restrictions on transmitter candidate array size and position

In some measurement situations, it may be impossible to perform measurements

underneath the sensor, i.e. the receiver is located such that its orthogonal projection

onto the transmitter plane is located outside the region occupied by transmitter

candidates. Also, only a part of the transmitter plane may be available for

measurements. We study this scenario by considering the measurement domain

Table 2 Cost function values for the ad-hoc measurement allocation and the measurement allocations

optimized for average or minimax optimality

Measurement allocation JELD JMMLD

Ad-hoc 6.5 16.0

Optimized for average optimality 1.0 17.0

Optimized for minimax optimality 2.4 13.9
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Xp ¼ ½xr; yr; zr; m̂r�T j xr ¼ 0; yr ¼ dvy; z
r ¼ 1þ dvz;

�

m̂r 2 S3
� ð30Þ

where d corresponds to the distance to the point rrcenter ¼ ð0; 0; 1Þ above the center of
the transmitter candidate array and ½vy; vz� ¼ ½3; 1�=

ffiffiffiffiffi
10

p
. The relaxed minimax

optimality problem in (24) is solved for different values of the distance d with

Nlin ¼ 605 linearization points on half of the unit sphere as described in Quadrature

and a Cartesian transmitter candidate array defined by xmax ¼ 1:2, ymax ¼ 1:2, and
h ¼ 0:04 with N t ¼ 3721 candidate transmitters. The thresholding and clustering

procedure from Sect. 3.2.1 is exploited. The receiver is above the edge of trans-

mitter candidate array for d ¼ dedge ¼ ymax=vy � 1:26. Furthermore, the receiver is

above the transmitter candidate array for 0
 d\dedge and outside the transmitter

candidate array for d[ dedge.

Figure 6 shows the cost function and some optimized measurement allocations

for different values of d. For small d, the receiver is above the transmitter candidate

array and close to rrcenter. For these receiver positions, non-zero weights are found in

all parts of the transmitter candidate array without any effect of its limited size and

the performance of the measurement system is almost constant. For increased values

of d, the receiver is found further away from rrcenter either above or outside the

transmitter candidate array. For receiver positions in this region, the limited size of

the transmitter candidate array strongly influences the measurement allocation and

non-zeros weights are primarily obtained for positive yt-coordinates. Thus, weights

with a shorter distance to the receiver are preferred to weights with a longer distance

to the receiver. The measurement system performance decreases moderately with
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Fig. 6 Cost function for optimized measurement allocations as a function of d. Examples of optimized
measurement allocations are shown as inlaid plots with clustered non-zero weights (circles) and
transmitter candidate array boundaries (dashed rectangle). The size of the circular markers is proportional
to the corresponding weights kkcl
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increasing d above the transmitter candidate array and substantially outside the

transmitter candidate array. In contrast, for receiver positions far outside the

transmitter candidate array corresponding to large values of d, measurements are

also allocated to weights with a negative yt-coordinate far away from the receiver.

This suggests that more information can be gained by diversifying the measure-

ments than what is lost by the increased distance to the receiver.

For d[ 4, the cost function scales approximately as 49 log d instead of 36 log d

as indicated by (28). The increase in the distance scaling factor is likely due to that

measurements can only be allocated within a region that does not scale with d.

5 Discussion

Many of the difficulties and approximations in this work are related to the model

being non-linear in the parameters that we wish to estimate. For example, the Fisher

information matrix approximates the confidence volume with an ellipsoid. If the

model is linear in the parameters, the confidence volume is indeed an ellipsoid.

However, our model is non-linear in the parameters and, then, the confidence

volume can take other shapes and does not even have to form a connected set.

Therefore, the mean confidence-radius should only be considered as a qualitative

metric because it is based on this approximation.

Local designs are based on the assumption that the parameter values that we wish

to estimate are known. However, if the parameters are known, we do not need to

estimate them. In this work, we have addressed this issue by optimizing for a range

of possible sensor positions and orientations, where we have considered minimax

and average optimality. An alternative approach is to exploit so-called sequential

designs that updates the measurement procedure depending on already measured

data. Plotkin and Paperno (2003) constructed a magnetic tracking system based on

this idea (without using the design of experiments-terminology), where a subset of

the transmitters in a 8 by 8 transmitter array is activated as a function of the most

recently estimated sensor position.

To solve the average and minimax optimality problems, we perform quadrature

in the measurement domain at a finite set of linearization points. As shown by the

results in Sect. 4.1, few linearization points are needed when optimizing for

minimax optimality if they are positioned at the most distant part of the

measurement domain, i.e. where the worst performance is obtained due to the

considerable distance scaling of the cost function. In contrast, more linearization

points are needed for average optimality.

The optimization method for measurement allocation presented in this work can

also be useful in other situations. For example, the measurement allocation result

could be exploited as a starting guess for an optimization method that considers

integer variables, a more elaborate physical model, or the impact of non-linearities

and the choice of estimation procedure. Moreover, the convex nature of the method

is advantageous. In particular, it permits large scale problems to be addressed and

extensive parameter studies to be performed.
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We have limited this study to planar transmitter constellations with known

transmitter orientations due to their importance in practice. However, the proposed

method can handle any type of transmitter constellation geometry. That is,

transmitter candidates can take any position and orientation. Thus, transmitter

constellations that occupy curved surfaces, several disjoint surfaces, volumes, etc.,

can be handled.

We have studied the situation where Nmeas is large. Should a situation where

Nmeas is not large be encountered, the proposed method could be exploited as a first

step. The obtained weights would then have to be ensured to be multiples of

1=Nmeas. This could for example be achieved by a local optimization procedure

similar to the ones proposed by Joshi and Boyd (2009).

In this work, we have optimized measurement allocations to yield large changes

in the measured signals for a change in the parameters that are to be estimated. We

have not considered in full the characteristics of the estimation problem that is

obtained with the optimized measurement allocation during the optimization

procedure; for example, if the parameters can be uniquely determined everywhere in

the measurement domain and if there are local minima present in the estimation

problem. This is related to the concepts of identifiability and estimability and the

reader is referred to Pronzato and Pázman (2013) for further information.

6 Conclusion

Magnetic tracking is a popular technique that exploits static and low-frequency

magnetic fields for positioning of quasi-stationary objects. In this work, we have

proposed a method for optimizing the allocation of measurements given a large

number of candidate transmitters of a generic magnetic tracking system that exploits

time-division multiplexing. The sensor and the transmitters are modeled as

magnetic dipoles in free space. Performance metrics based on the Fisher

information matrix are exploited to quantify the worst-case performance (minimax

optimality) and the expected performance with respect to a prior distribution of the

sensor’s position and orientation (average optimality). Optimization problems with

integer variables are formulated. By means of a convex relaxation, the integer

variables are approximated with real variables and convex optimization problems

are obtained. The proposed method is valid for all unbiased estimators and it avoids

two commonly encountered problems, namely, high dimensionality and the

presence of local minima that are not globally optimal.

The two performance metrics are compared for several realistic measurement

scenarios where planar transmitter constellations are considered. Given the strong

distance dependence of the measured signal, the worst-case performance is obtained

in the most distant regions of the measurement domain. Consequently, measurement

allocations optimized for minimax optimality requires measurements over a larger

area than measurement allocations optimized for average optimality.

The optimized measurement allocations that are the result of solving the convex

optimization problems can be used directly or as a starting guess for the solution of

more detailed optimization problems.
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In conclusion, the proposed method works well for optimization of measurement

allocation for magnetic tracking systems that exploit time-division multiplexing and

it provides useful and informative designs of such experiments.
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Quadrature

Standard trapezoidal quadrature is exploited in the three spatial dimensions

ðxr; yr; zrÞ whereas the quadrature on the surface of the three-dimensional unit sphere

(corresponding to m̂r) uses a subdivision of the curved surface in triangular

elements as described below. The linearization points in five dimensions are

obtained by combining each spatial quadrature point with all of the quadrature

points on the unit sphere. Finally, the prior probability density is incorporated in the

weights qi by normalizing their sum to one.

For quadrature on the entire or a part of the unit sphere, the surface of the

considered part of the sphere is approximated by a meshM with triangular elements

and Nnodes nodes. (The positions of the nodes on the sphere are symmetric with

respect to the mr
xm

r
z- and mr

ym
r
z-planes. Thus, possible symmetries of the integrand

with respect to these planes are preserved.) A piece-wise linear basis function viðmrÞ
is associated with each node mr

i in the mesh where

viðmr
jÞ ¼

1 for i ¼ j

0 for i 6¼ j:

�
ð31Þ

The integrand f ðmrÞ is approximated by

f mrð Þ �
XNnodes

i¼1

f mr
i

� �
vi m

rð Þ: ð32Þ

Integrating this over the unit sphere in R3 and changing the order of integration and

summation gives
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Z

S3
f ðmrÞdmr �

Z

M

XNnodes

i¼1

f ðmr
iÞviðmrÞ

( )
dmr

¼
XNnodes

i¼1

f mr
i

� � Z

M

viðmrÞdmr

� �

¼
XNnodes

i¼1

f mr
i

� � X
j2Xi

R
Tj
dmr

3

( )
ð33Þ

where Tj is mesh element j and Xi is the set of indices for the mesh elements that

include node i. Note that the weights (the expression within curly brackets on the

last line of (33)) are positive, which is also the case for trapezoidal quadrature.

Thus, the weights qi exploited in the five-dimensional quadrature are positive.
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