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Systems that exhibit topologically protected edge states are interesting both from a fundamental point of
view as well as for potential applications, the latter because of the absence of backscattering and robustness
to perturbations. It is desirable to be able to control and manipulate such edge states. Here, we show that
artificial square ices can incorporate both features: an interfacial Dzyaloshinskii-Moriya interaction gives
rise to topologically nontrivial magnon bands, and the equilibrium state of the spin ice is reconfigurable
with different configurations having different magnon dispersions and topology. The topology is found to
develop as odd-symmetry bulk and edge magnon bands approach each other so that constructive band
inversion occurs in reciprocal space. Our results show that topologically protected bands are supported in
square spin ices.
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I. INTRODUCTION

Topological insulators [1–6] are generally materials that
are insulating in the bulk but have conducting dissipation-
less edge states [7]. In two dimensions, topological
insulators (TIs) include quantum Hall (QH) states [8,9].
QH edge states are metallic and chiral in that electrons on
one physical edge move only in one direction; this prohibits
backscattering and makes the states dissipationless. The
existence of topologically protected edge states is guaran-
teed if the band structure of the system has a nontrivial
topology. A nontrivial topology is characterized by a
nonzero Chern number, which is related to the Berry phase
that Bloch states jun;k⃗i, where k⃗ is a wave vector in the first
Brillouin zone and n a band index, acquire when trans-
ported around a closed loop in the Brillouin zone; the Chern
number is the total flux of the Berry phase in the Brillouin
zone. Therefore, in order for there to be a nontrivial
topology, the Berry phase accumulated around a closed
loop cannot be zero. This may happen but is not assured if
time-reversal invariance is broken.
Topologically protected edge states are of great interest

for potential applications, for example, in information
technology or communication systems. These applications
extend beyond electronic systems and includes photonic
TIs [10,11] as well as certain magnonic crystals [12,13]. In
these latter systems, the band structure of spin excitations,
or magnons, exhibit a topological order with nontrivial
Chern number and protected edge states determined by the

materials set and structure of the systems. However,
systems with potential practical applications should be
reconfigurable so that the band structure of excitations can
be modified with some external control parameter.
Artificial spin ices (ASIs) [14–16] are systems that allow

for such reconfiguration. ASIs are composed of geometri-
cally placed magnetic nanoislands coupled through dipolar
interactions. These interactions stabilize the nanoislands’
magnetization in configurations such that the magnetization
at the latticevertices satisfy an “ice rule” in low-energy states.
ASIs are geometrically frustrated by design; that is, not all
interactions at a given vertex can be simultaneously mini-
mized, leading to complex energy surfaces with many local
energy minima. Consequently, significant efforts have been
devoted to control and manipulate the magnetization state
either by thermal or applied field protocols [17] or
novel geometries [18–22]. From a dynamic perspective,
ASIs compose a superlattice that can be considered a
magnonic crystal and, therefore, exhibit a rich band structure
[23–29]. Consequently, ASIs compose natural systems to
explore reconfigurable magnonics [30], where the properties
of the spin-wave band structure can be actively controlled
[31–37] to achieve functionality, chiefly for miniaturized
microwave electronics [38–42].
A promising geometry for reconfigurable magnonics is

square ASIs, where the magnetic nanoislands are placed at
the sites of a square lattice. As a superlattice, square ASIs
are similar to arrays of dipolarly coupled nanodots [28,43]
for which analytical methods calculating band diagrams
under a macrospin approximation have been developed
[44–46]. However, an initial micromagnetic study by Gliga*ezio.iacocca@colorado.edu
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et al. [31] suggested that frustration in square ASIs modifies
magnon modes by the existence of underlying defects
known as Dirac strings [16]. These defects originate as
the ice rule is locally broken, yet conserving the overall
topological charge of the system. More recently, experi-
ments in extended square ASI lattices [34] demonstrated
that the magnetization ground state determines the features
and eigenfrequencies of the magnon modes. This conclu-
sion was supported by a tight-binding-inspired semianalyt-
ical model [33] that captures the dominant dipole-dipole,
long-range coupling between the nanoislands and, thus,
provides a means to numerically compute the square ASI’s
band structure, otherwise impractical by more accurate
models, e.g., micromagnetic simulations.
Square ASIs, though reconfigurable magnonic crystals,

have magnon band structures with trivial topologies. It is
of great interest to devise magnonic crystals that have
nontrivial topological order and are reconfigurable. One
way to realize such systems is to introduce interfacial
Dzyaloshinskii-Moriya interactions (DMIs) [47,48] to ASIs.
TheDMI generallymanifests as a chiral magnetic interaction
in three-dimensional systems with broken inversion sym-
metry and can give rise to topological edge states in
pyrochlores [49] and spin textures in uniaxial thin-film
ferromagnets such as skyrmions [50–52]. More conven-
iently, an interfacial DMI can arise when a trivial magnet is
deposited as a thin film on a strong spin-orbit scatterer, such
as Ta or Pt. This effect has been used experimentally [51]
and numerically [52–54] to nucleate and dynamically drive
skyrmions at room temperature. The interfacial DMI natu-
rally has a thickness-dependent strength [55] parametrized
by an interfacial energyD in units of J=m2. Althoughmost of
the research on the DMI has focused on topological
structures or nonreciprocal spin-wave dispersion in extended
films [55,56], the effect of the DMI for spin waves in
magnetic nanoislands has been studied only recently [57].
In the context of magnonic square ASIs, the addition of a
chiral interfacial DMI suggests the possibility of topological
magnon modes and novel features in their band structure.
The purpose of our work is to demonstrate that square

ASIs subject to an interfacial DMI admit topologically
nontrivial bands analogous to electronic TIs and topologi-
cally trivial bands toggled only by the underlying magnetic
configuration. In a magnonic system without DMI, the
magnons are elliptical revolutions of the magnetization
about its local equilibrium direction, and modes at ð�k⃗; nÞ
are degenerate. The form of the interfacial DMI breaks this
degeneracy [57] as it gives rise to an effective magnetic
field

H⃗DMI ¼
2D
Ms

½ð∇ · m⃗Þẑ −∇mz� ð1Þ

that couples differently to states at k⃗ and −k⃗ and, therefore,
gives rise to a coherent Berry phase accumulation. We show
that by reconfiguring the equilibrium state of the lattice, the

nontrivial topology can be turned off. Moreover, an
external, in-plane magnetic field offers another degree of
control to toggle topological bands and their propagation
direction.

II. SEMIANALYTICAL MODEL

To compute the band structure of a square ASI, it is
necessary to calculate the long-range, dipole-dipole-
mediated magnon dispersion as a function of the reciprocal
wave vector k⃗. For each wave vector, the dispersion relation
is obtained from small-amplitude perturbations of the
Larmor equation

∂m⃗
∂t ¼ −γμ0m⃗ × H⃗eff ; ð2Þ

where γ is the gyromagnetic ratio, μ0 is the vacuum
permeability, m⃗ is the magnetization vector normalized to
the saturation magnetization Ms, and H⃗eff is the effective
field that includes diverse physical effects. In order to obtain
a meaningful dispersion relation, a minimal model for the
effective field must include an external field, exchange
coupling, anisotropy, and DMI within a nanomagnet as
well as dipolar interactions between nanomagnets. Given the
cubic decay of the dipolar interactions, solving Eq. (2) with
such an effective field composes a daunting task requiring
massive computational resources. While such a study can be
performed [58], it is attractive to formulate a minimal model
that captures the relevant physics of the system and
minimizes the computation time. A time-efficient computa-
tional method is especially important for exploring the
existence of band inversion, which requires a sufficiently
resolved band structure. There are many possibilities to
tackle this problem such as utilizing under-resolved micro-
magnetics to reduce the computational overhead (similar to
the atomic structures explored in Refs. [12,13]), extrapolate
from simpler systems, e.g., in Ref. [59], or utilize periodic
boundary conditions to estimate the band structure, e.g.,
in Ref. [43]. However, these methods neglect important
physical effects such as anisotropy and the long-range
interactions across a periodic lattice. Instead, a tight-bind-
ing-inspired semianalytical model including the relevant
physics for square ASIs was recently shown to yield good
agreement with both micromagnetic simulations [33] and
experiments [34].
The semianalytical method is based on Eq. (2) and relies

on the conserved amplitude of the magnetization vector
jm⃗j ¼ 1 to represent small-amplitude perturbations from a
homogeneous state as complex amplitudes a. This repre-
sentation is achieved by performing a Holstein-Primakoff
transformation on the magnetization vector

a ¼ mξ þ imηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MsðMs þmζÞ

p ; ð3Þ
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where m⃗ ¼ ðmξ; mη; mζÞ such thatmζ is parallel to the local
equilibrium magnetization direction, and (mξ, mη) re-
present orthogonal, small perturbations [60]. Substitu-
ting Eq. (3) into Eq. (2), a Hamiltonian system of equa-
tions is obtained as a function of a and a� following the
procedure outlined in Ref. [60]. The resulting Hamiltonian
model can be generalized for 2N interacting complex
amplitudes and their complex conjugates a and a� so that
∂ta ¼ i∂a�Hða; a�Þ and ∂ta� ¼ −i∂aHða; a�Þ, where
Hða; a�Þ is a Hamiltonian matrix [33]. These equations
can be rewritten as an eigenvalue problem by means of
Colpa’s grand dynamical matrix [61]

ωψ ¼ Hψ ¼
�
Hð1;2Þ Hð2;2Þ

Hð1;1Þ Hð2;1Þ

�
ψ ð4Þ

from which we obtain the eigenvaluesω and eigenvectors ψ
corresponding to each augmented vector of complex
amplitudes ½aT; a†�. Because of the periodic structure of
the ASI, we can label the eigenvectors ψ by a wave vector k⃗
in the first Brillouin zone and a band index n. The
Hamiltonian matrix H is related to the effective field via
H ¼ −γδW=ð2MsÞ, where δW ¼ −

R
H⃗effðM⃗Þ · dM⃗ is the

energy functional. In Ref. [33], the Hamiltonian matrices
for an external in-plane field as well as anisotropy, dipole-
dipole, and exchange fields were derived. To minimize
finite-size errors from the long-range dipole-dipole
Hamiltonian matrix, the lattice is allowed to grow until
the relative error is no greater than 10−6. For all k⃗, the
largest lattice computed has 100 × 100 unit cells. The
exchange interactions within the nanomagnet are also
critical to correctly describe edge modes [62] that are
manifested in the magnon dispersion [32]. Because we are
interested in the low-energy sector of the square ASI
dynamics, the magnetic nanoislands are divided in three
macrospins coupled by an effective exchange strength,
which has been shown to return a faithful representation of
the lowest-energy bulk and edge modes [33,34].
Here, we extend the model to include the DMI, which

means we have to include the effective interfacial DMI field
[52] given by Eq. (1). This field favors a chiral tilt of the
perpendicular magnetization component that stabilizes
helical order in extended films [63]. Therefore, the model
must consider a small-amplitude precession about an
arbitrary direction of the unit sphere. The resulting
Hamiltonian matrices for the effective interfacial DMI field
are

Hð1;1Þ
DMI ¼ D0

0
BBB@

V1 O O O

O H1 O O

O O V1 O

O O O H1

1
CCCA; ð5aÞ

Hð1;2Þ
DMI ¼ D0

0
BBB@

V2 O O O

O H2 O O

O O V2 O

O O O H2

1
CCCA; ð5bÞ

where V1, V2, H1, and H2 are 3 × 3 complex matrices
relating the intraisland magnetization components given in
Appendix A, and the O’s are 3 × 3 zero matrices. The
effective DMI parameter in our discrete, macrospin repre-
sentation is given by

D0 ¼ γD
2Mst

; ð6Þ

where the inverse dependence on thickness reflects the
interfacial nature of this effect. However, we stress that
the field Eq. (1) is considered to be homogeneous across the
thickness; this is a good approximation for thin nanoislands
in which the magnetization at any point is uniform through
the thickness.
Because the semianalytical method relies on a second-

order perturbation of a well-defined magnetization state,
the effect of the DMI can be included only as a deviation
from such a state, i.e., low DMI strengths. The initial
equilibrium states are determined by energy minimization
using Eq. (2) with an added Gilbert damping term, which
we calculate from full-scale micromagnetic simulations as
we detail below.

III. CHERN NUMBER

The introduction of the DMI in a square ASI breaks
time-reversal invariance, which suggests that topological
modes may exist. To test for topology, we calculate the
Chern number cn for band n defined as

cn ¼
1

2πi

Z
½∂xAyðk⃗Þ − ∂yAxðk⃗Þ�d2k; ð7Þ

where Aμ ¼ hψðkÞ; ∂μψðkÞi is the Berry connection, μ ¼ x,
y, and the eigenmodes ψ belong to band n. A nonzero
Chern number indicates that the band experiences inver-
sion, which in a finite lattice leads to topological edge
modes. We stress that the total Chern number of the band
structure obtained by summing cn over the bands n is
conserved to zero. Therefore, any nonzero Chern number
must be balanced with an opposite-signed Chern number.
The numerical computation of the Chern number is

performed following the method given in Ref. [64]. This
method relies on lattice gauge theory to calculate the Chern
number in a discretized Brillouin zone, minimizing numeri-
cal artifacts that might lead to a noninteger Chern number.
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IV. EQUILIBRIUM MAGNETIZATION STATES:
MICROMAGNETIC SIMULATIONS

The semianalytical model relies on determining the
dispersion of small-amplitude modes about an equilibrium
state. To determine these states in square ASIs subject to an
interfacial DMI, we perform micromagnetic simulations
with both MUMAX3 [65] and our in-house, double-preci-
sion micromagnetic code used in, e.g., Refs. [52,66–69].
The square ASI unit cell and geometry are schematically
shown in Fig. 1(a), with lattice constant d ¼ 390 nm.
The nanoislands are considered to be identical stadia, with
lateral dimensions l ¼ 290 nm and w ¼ 130 nm, and
variable thickness. These sizes are large enough for the
nanoislands to support multiple modes. We consider two
materials: permalloy (Py) with Ms ¼ 790 A=m and
Co75Fe25 with Ms ¼ 1200 kA=m, both with exchange
stiffness A ¼ 13 pJ=m for simplicity. A heavy-metal layer
below the square ASI endows the ferromagnetic nanois-
lands with an interfacial DMI. Numerically, we solve for a
square ASI unit cell and impose periodic boundary con-
ditions to simulate an extended lattice. To correctly account
for the nanoislands’ rounded edges in the micromagnetic
finite-difference scheme, we use a rather small cell size of
0.7 nm in plane and 5 nm along the thickness [70]. Both
micromagnetic codes return identical ground states.
Two equilibrium configurations are computed: vortex

(type-I) and remanent (type-II) states schematically
depicted in Figs. 1(b) and 1(c), respectively. The simulation
is initialized by setting a homogeneous magnetization in

each nanoisland composing either of these states and
allowing the simulation to relax using an artificially high
Gilbert damping constant α ¼ 1. In the remanent state, the
equilibrium configurations are S states, and they are
insensitive to the DMI strength. In contrast, the vortex
state exhibits a richer behavior as a function of D. For
D ¼ 0, the S states are obtained as shown in Figs. 2(a)–2(c)
for the Py nanoislands of thicknesses 10, 15, and 20 nm,
where gray scale and arrows represent the ẑ and in-plane
magnetization component of the topmost layer, respec-
tively. The inclusion of the DMI favors C states for all
thicknesses, as shown for D ¼ 1 mJ=m2 in Figs. 2(d)–2(f).
Additionally, the DMI contributes to an out-of-plane tilt of
the magnetization at the nanoislands’ edges that is odd
along the length of the island. However, this tilt is small and
does not contribute significantly to the band structure.
These simulations confirm that a moderate DMI only
slightly perturbs the stable magnetization state in a square
ASI, making it possible to study the full band structure by
the semianalytical model. We note that labyrinthine, chiral
magnetization states are obtained for all thicknesses when
D ≥ 3 mJ=m2. For the Co75Fe25 nanoislands (not shown),
a transition between a homogeneous “onion” state and a C
state is observed as a function of D.

FIG. 1. (a) Schematic of the square ASI unit cell. The
composing nanoislands are identical with length l, width w,
and thickness t. The lattice constant d is taken as the center-to-
center distance between adjacent nanoislands. Interfacial DMI is
imparted through a heavy-metal layer. (b) Schematic of a vortex
(type-I) unit cell. (c) Schematic of a remanent (type-II) unit cell.

FIG. 2. Micromagnetically computed ground states for a series
of Py nanoislands of different thicknesses with (a)–(c) D ¼ 0

exhibiting S states and (d)–(f) D ¼ 1 mJ=m2 exhibiting C states.
The gray scale and arrows represent the ẑ and in-plane magneti-
zation components, respectively.
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The spectrum at the Γ point can be obtained micro-
magnetically by analyzing the equilibration after a weak
perturbation of the system. We use a spatially homo-
geneous square field pulse as perturbation, with a duration
of 50 ps and a field magnitude of 10 mT applied along the
(1,1) direction. The system is then relaxed for 10 ns using a
Gilbert damping of α ¼ 0.01. This method couples only the
uniform field to even modes but allows us to discern the
dominant modes in one run. In the remanent state, constant
eigenfrequencies are obtained as a function of D, as
expected from the negligible impact of the DMI on the
equilibrium configuration. These eigenfrequencies are in
agreement with those observed in Ref. [33] and are
topologically trivial, which we confirm by calculating
the Chern numbers of the magnon bands. In the vortex
state, theD-dependent eigenfrequencies are shown in Fig. 3
for selected thicknesses of Py [Fig. 3(a)] and Co75Fe25
nanoislands [Fig. 3(b)]. The empty and filled red circles
represent even bulk and edge modes, respectively. We note
as a trend that the frequency drops as a function of D,
consistent with the lower frequencies in the band diagram

obtained from a C state relative to an S state [33]. It is also
important to recognize that whereas we observe a single,
fundamental bulk mode, the edge mode frequencies are
split, consistent with the spin-wave nonreciprocity induced
by the DMI and evidenced by a shift in their dispersion
relation [55,57]. However, we note that the frequency
splitting is small, on the order of our numerical resolution
of 24.5 MHz.

V. BAND STRUCTURE: SEMIANALYTICAL
CALCULATIONS

Motivated by the micromagnetic simulations, we now
utilize the semianalytical model to solve for the eigenvalues
in a square ASI with variable thickness and DMI. As a first
step, we validate the semianalytical model by finding the
eigenvalues at the Γ point as a function of D in the vortex
state. Because of the stadium shape of the nanoislands, we
adjust the anisotropy factors estimated to first order by an
ellipsoid [71]. This is achieved by setting the equilibrium
magnetization estimated from micromagnetic simulations
and fitting the bulk and edge mode. For a finiteD, we fit the
eigenvalues by adjusting the in-plane tilt of the edge
magnetization vectors in the semianalytical model and
assuming that all nanoislands in the unit cell behave
identically. See Appendix B for the fitted parameters.
Finally, we extrapolate the in-plane tilt of the edge
magnetization vectors by a spline through the fitted points
at D ¼ 0, 0.1, 0.25, 0.5, 0.75, and 1 mJ=m2. The resulting
D-dependent eigenfrequencies at the Γ point are shown in
Fig. 3(a) for Py and Fig. 3(b) for Co75Fe25, where the solid
blue and dashed black curves represent the even bulk and
edge modes, respectively. Good qualitative agreement
between micromagnetic simulations and semianalytical
calculations is obtained, suggesting that the semianalytical
model captures the relevant physics required to describe the
dipole-mediated band structure including the interfacial
DMI. We note that the magnetization tilt required to fit the
eigenfrequencies is below 25° in all cases, in agreement
with the equilibrium states shown in Fig. 2. In the case of
20-nm-thick permalloy nanoislands, the calculated edge
mode eigenfrequencies significantly deviate from those
obtained micromagnetically. This is a consequence of
spatial variations across the thickness of the nanoislands
that are not taken into account semianalytically. For
D > 1 mJ=m2, the DMI strongly perturbs the equilibrium
state and dynamics at length scales much smaller than those
captured by the three macrospins considered in the semi-
analytical model ensue.
It is worth noting that the semianalytical model returns a

total of 12 bands with three even- and nine odd-symmetry
modes. These correspond to the four nanomagnets in the
unit cell discretized in three exchange-coupled macrospins.
As mentioned before, odd-symmetry modes cannot be
excited micromagnetically with a homogeneous field;

FIG. 3. Even frequencies at the Γ point as a function of D for
(a) Py nanoislands of thicknesses t ¼ 10, 15, and 20 nm and
(b) Co75Fe25 nanoislands of thicknesses t ¼ 5, 10, and 15 nm.
Good agreement is observed between the even bulk mode
obtained semianalytically (solid blue curves) and micromagneti-
cally (empty red circles). The even edge mode obtained semi-
analytically (dashed black curves) also agrees with those obtained
micromagnetically (filled red circles). However, a qualitative
deviation of the D dependence for 20-nm-thick Py nanoislands
[(a) right panel] is observed.
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therefore, the semianalytically obtained odd modes are not
shown in Fig. 3.
We now calculate the band structure in the vortex state.

For this, we compute the dispersion at k⃗ ¼ ðkx; kyÞ with kx
and ky discretized in 0.05π=d composing a surface for each
band n in reciprocal space. The bandwise Chern number cn
can be calculated by the method outlined in Sec. III. When
D ¼ 0, we find c ¼ 0 for all thicknesses, as expected from
Ref. [33]. However, for D ≠ 0, we find nonzero Chern
numbers for both the bulk and edge odd-symmetry modes.
This implies that the DMI breaks the band structure
inversion symmetry in reciprocal space.
As an example, we discuss below the first Brillouin zone

(FBZ) band diagrams for D ¼ 0 (topologically trivial) and
D ¼ 0.75 mJ=m2 (topologically nontrivial). The symmetry
breaking that we discuss above is most clearly seen for the
bulk magnon bands by plotting the bands in FBZ� defined
as a path through the Γ-X�-M-Γ directions, where the signs
represent the relative sign of the kx and ky wave-vector
components, such that X� ¼ π=ð2dÞðk̂x � k̂yÞ. For 10-nm-
thick Py nanoislands, we show the FBZ for the bulk
[Fig. 4(a)] and edge [Fig. 4(b)] odd modes. For the bulk
modes and with a DMI ofD ¼ 0.75 mJ=m2 and FBZþ, the
bands touch in (small) Dirac cones and exhibit inversion,
which, from a topological perspective, indicates construc-
tive Berry phase accumulation and a nonzero Chern
number. The band touching is observed in Fig. 4(a) along
the Γ-Xþ direction indicated by a red arrow. In contrast, the
mirror path in FBZ− shown in the Fig. 4(a) bottom-right
panel does not exhibit a Dirac cone forD ≠ 0. Additionally,
the inequivalence of the two X points in FBZþ and FBZ− is
clearly exhibited in the Fig. 4(a) bottom panels. For the
edge modes, the Dirac cones occur at a similar point along
the Γ-Xþ direction for D ¼ 0.75 mJ=m2 shown by the red
arrow in Fig. 4(b). Note that these bands do touch along the
Γ-M direction both for D ¼ 0 and D ≠ 0, but this does not
contribute to the accumulated Berry phase for D ≠ 0. As
expected, the topologically nontrivial bands have oppo-
sitely signed Chern numbers maintaining a trivial overall
topology so that the sum of the Chern numbers is zero. The
same qualitative features are observed in the FBZ for
10-nm-thick Co75Fe25 nanoislands.
Topological bands appear for DMI strengths as low as

D ¼ 0.1 mJ=m2 in our simulations. This suggests that
topology is a robust feature of the band structure, regardless
of the discretization effects of our computation. However, we
emphasize that the odd-symmetry bands lie within a range of
200 MHz, representing a challenge for possible measure-
ments at room temperature for these materials because of
both intrinsic and extrinsic linewidth broadening that arise
from damping and defects (e.g., edge inhomogeneities from
patterning), respectively. It may be possible to resolve the
bands using, e.g., meander-line resonance absorption [72],
provided the measured peaks have very good Lorentzian line

shape so that careful fitting resolves them. As we discuss in
the next section, this issue may be circumvented by applying
an external field that both separates the bands and induces
Dirac cones along specific directions.
In stark contrast to the qualitative features that we

discuss above, the band diagram for the remanent state
[see Fig. 1(c)] is topologically trivial as a function of D.
This implies that it is possible to toggle between topologi-
cal and nontopological modes in square ASIs by configur-
ing the underlying magnetization configuration. In other
words, ASIs can be utilized as a magnonic crystal with
reconfigurable topological bands.
We stress that topologically nontrivial bands arise due to

the broken degeneracy of k⃗ and −k⃗ states in the vortex
configuration mediated by an interfacial DMI that allows
for a coherent Berry phase accumulation. The accompany-
ing band inversion is a general feature of topologically
nontrivial bands and can be further tuned by both material-
specific parameters, e.g., saturation magnetization, and
geometrical parameters, e.g., nanoislands’ shape and lattice
constant d and other types of ASIs [18,19,22].

FIG. 4. Band diagram for odd modes in 10-nm-thick Py
nanoislands. The FBZ path is depicted at the top of each column.
Band diagrams for both D ¼ 0 and D ¼ 0.75 mJ=m2 are shown.
(a) Bulk odd modes exhibit a Dirac cone along the Γ-X direction
indicated by a red arrow. The symmetry between the paths FBZþ
and FBZ− is broken when D ≠ 0. (b) Edge modes exhibit band
touching in the Γ-M direction, but for the edge mode bands, these
do not accumulate Berry phase, and the band touching occurs
both for the topologically trivial and nontrivial cases. The Chern
number c for each band is specified in each panel.
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VI. EXTERNAL FIELD DEPENDENCE

An external magnetic field can tune the band frequency
both by varying its magnitude jHj and angle θH as
previously shown for topologically trivial states [33].
Here, we explore the effect of an external, in-plane field
on topologically nontrivial bands.
The broken symmetry induced by the DMI suggests that

the direction of the applied field can lead to significant
changes in the band structure, including loss of topology.
We explore the field magnitude dependence of the band
structure at k⃗ ¼ π=dð0.25; 0.25Þ, the wave vector at which
Dirac cones are observed for bulk modes in both Py and
Co75Fe25 nanoislands of 10 nm in thickness. For Py, the
resulting field dependences are shown in Fig. 5(a) when
the field is along the (1,0) direction (θH ¼ 0, top panel) or
the (1,1) direction (θH ¼ π=4, bottom panel). The bulk
bands (blue curves) separate with field and mostly blue-
shift. However, the odd-symmetry edge exhibits a more
complex behavior with field magnitude and angle. Notably,
bands touch for a field of 18 mT along the θH ¼ π=4
direction indicated by a red arrow. Computing the full
band structures at these conditions (not shown) indicates
that the bands touch in a Dirac cone and the odd-symmetry
edge modes become topologically protected. A similar field
dependence is observed for Co75Fe25 shown in Fig. 5(b). In
this case, the field magnitude required to induce a Dirac
cone in the odd-symmetry edge modes is 28 mT, consistent
with the higher saturation magnetization of Co75Fe25.
To investigate the onset of Dirac cones at a finite field in

more detail, we show in Fig. 6(a) the band structure at
jHj ¼ 18 mT for Py nanoislands and varying in-plane
angle. In the absence of the DMI (top panel), the bands
do not touch at any angle. In particular, the band gap
between the odd edge modes is approximately 0.5 GHz.

In contrast, for D ¼ 0.5 mJ=m2, we observe that Dirac
cones appear at π=4 and 3π=4, whereas the bands touching
at 0 and π do not accumulate Berry phase. Because the edge
modes now span a frequency range of approximately
1 GHz as a function of the angle, this method will allow
one to experimentally measure Dirac cones in square ASIs.
Similar qualitative results are observed for Co75Fe25 shown
in Fig. 6(b), where the band gap is 1 GHz with D ¼ 0 and
frequency span of the odd edge modes is 5 GHz.

VII. CONCLUSIONS

In summary, we calculate the spin-wave band structure
for square ASIs taking into account an interfacial DMI
imparted, e.g., by an adjacent heavy-metal layer. The chiral
nature of the DMI influences the eigenmodes supported by
the square ASI, leading to band inversion through the
development of Dirac cones. Our findings constitute a
demonstration that magnon nonreciprocity within a mag-
netic nanoisland can be manifested at longer wavelengths
through dipole coupling, leading to topologically protected
edge modes in square ASIs. The magnon bands arise from
long-range magnetostatic interactions between modes in
individual islands. Only magnon bands that have odd
spatial symmetry at the Brillouin zone center (k ¼ 0)
develop topologically nontrivial modes, consistent with
the fact that these bands can more efficiently couple with
neighboring spins. It is also observed that topological bands
establish a preferred propagation direction that corresponds
to the nonreciprocity imparted by the DMI.
The topologically protected magnon bands that we

mention above suggest that square ASIs can withstand

FIG. 5. Field dependence of the band diagram at k⃗ ¼
π=dð0.25; 0.25Þ for (a) Py and (b) Co75Fe25. The field is directed
along the (1,0) direction in the top panels and along the (1,1)
direction in the bottom panels. The red arrows indicate the
appearance of a field-dependent Dirac cone at 18 mT for Py and
28 mT for Co75Fe25.

FIG. 6. Angle dependence of the band diagram at k⃗ ¼
π=dð0.25; 0.25Þ for (a) Py at jHj ¼ 18 mT and (b) Co75Fe25
at jHj ¼ 28 mT. Bands do not touch when D ¼ 0 (top panels),
while Dirac cones are observed in the odd-symmetry edge modes
at θH ¼ π=4 and 3π=4 (bottom panels).
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both thermal fluctuations and magnon scattering events.
This is especially important for magnonic applications
where spin waves are required to travel long distances in
order to achieve logic and data transfer functionality within
an all-magnetic circuitry. Furthermore, these features can
be reconfigured, and the nontrivial band topology—and
concomitantly topologically protected edge states—can be
turned off by changing the underlying magnetization
configuration of the square ice, i.e., by different field
protocols [34] to relax the nanoislands’ magnetization.
For instance, one can envision logic circuits based on the
preferred propagation direction of topologically protected
waves toggled by the reconfiguration of a handful of
nanoelements that act as a tunable gate. It is also possible
to envision modes propagating at the physical edges of
the square ASI lattice exhibiting a much lower decay to
magnetic damping based on the nonzero Chern number.
However, a finite-sized, discrete lattice can strongly affect
the dispersion of surface waves, and a detailed study is
required to assess the existence of true (physical) edge
modes.
It is noteworthy that topology ensues as the bands

approach each other in frequency, making it a challenging
measurement due to the spectral broadening arising
because of thermal fluctuations at finite temperatures,
and spectral mixing. An alternative is to increase the band
separation by utilizing an in-plane magnetic field and
perform magnitude- and angle-dependent measurements
to find evidence of Dirac cones at finite wave vectors.
A plausible method to detect the resulting features at finite
wave vectors is to use a meander line patterned on top of the
square ASI as an antenna with 10-MHz resolution and
carefully deconvoluting spectral mixing to discern between
the two broad spectral features. By measuring the bands in
square ASIs as a function of the spin-orbit scatterer material
and the thickness of the magnetic material, it will be
possible to experimentally determine the onset of topo-
logically nontrivial bands.
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APPENDIX A: MATRIX COMPONENTS OF
THE DMI HAMILTONIAN

The Hamiltonian matrices are written in terms of the
complex amplitudes a, which are related to the normalized

magnetization vector through their spherical components,
i.e., the polar and azimuthal angles θ ¼ π=2 and φ,
respectively (see Refs. [33,60] for details). By performing
the cross product m⃗i × m⃗j, where i and j are two neighbor-
ing macrospins in a nanoisland, and keeping terms to
second order in a, we obtain the 3 × 3 matrices

V1 ¼

0
B@

0 R1;2
v 0

R2;1
v 0 R2;3

v

0 R3;2
v 0

1
CA; ðA1aÞ

V2 ¼

0
B@

S1;2v þ S2;1v C1;2
v 0

C2;1
v

P
Sv C2;3

v

0 C3;2
v S2;3v þ S3;2v

1
CA; ðA1bÞ

H1 ¼

0
B@

0 R1;2
h 0

R2;1
h 0 R2;3

h

0 R3;2
h 0

1
CA; ðA1cÞ

H2 ¼

0
B@

S1;2h þ S2;1h C1;2
h 0

C2;1
h

P
Sh C2;3

h

0 C3;2
h S2;3h þ S3;2h

1
CA; ðA1dÞ

where
P

Sv ¼ S1;2v þS2;1v þS2;3v þS3;2v ,
P

Sh ¼ S1;2h þS2;1h þ
S2;3h þS3;2h , and

Ri;j
v ¼ sin θi sinφi cos θj − sin θj sinφj cos θi

þ iðj cosφjj cos θi − j cosφij cos θjÞ; ðA2aÞ

Si;jv ¼ 2ðcos θj sinφj sin θi − cos θi sinφi sin θjÞ; ðA2bÞ

Ci;j
v ¼ sin θj sinφj cos θi − sin θi sinφi cos θj

þ iðj cosφij cos θj þ j cosφjj cos θiÞ; ðA2cÞ

Ri;j
h ¼ sin θi cosφi cos θj − sin θj cosφj cos θi

þ iðj sinφjj cos θi − j sinφij cos θjÞ; ðA2dÞ

Si;jh ¼ 2ðcos θj cosφj sin θi − cos θi cosφi sin θjÞ; ðA2eÞ

Ci;j
h ¼ sin θj cosφj cos θi − sin θi cosφi cos θj

þ iðj sinφij cos θj þ j sinφjj cos θiÞ: ðA2fÞ

APPENDIX B: FITTED PARAMETERS FOR
THE SEMIANALYTICAL MODEL

To fit micromagnetically to the semianalytically calcu-
lated eigenfrequencies, we perform a two-step fitting for
the anisotropy factors and the magnetization tilt angles.
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The fitted anisotropy factors for Py and Co75Fe25 for each
thickness are listed in Table I and compared to the
anisotropy factors from an ellipsoid [71]. The nomenclature
N, L, M is used for the out-of-plane, easy, and hard-axis
anisotropy factors, respectively.

The angles are fitted for each nanoisland to obtain
quantitative agreement between the micromagnetic and
semianalytic even bulk and edge modes. The fitted angles
are listed in Table II for Py and Table III for Co75Fe25. To
account for both S and C states, the angles are fitted for
both the north (Np) and south (Sp) macrospins relative to
the direction of the magnetization in each nanoisland. The
fitted angles in all cases are similar to those obtained by
averaging the magnetization angles of the micromagnetic
ground states. For example, in the case of Py nanoislands of
15 nm, micromagnetic simulations return north and south
tilt angles of 13° and −13° at D ¼ 0.5 mJ=m2 comparable
to the fitted north and south tilt angles of 15° and −15°.

[1] Joel E. Moore and Leon Balents, Topological invariants of
time-reversal-invariant band structures, Phys. Rev. B 75,
121306 (2007).

[2] David Hsieh, Dong Qian, Lewis Wray, YuQi Xia, Yew San
Hor, R. J. Cava, and M. Zahid Hasan, A topological Dirac
insulator in a quantum spin Hall phase, Nature (London)
452, 970 (2008).

[3] David Hsieh, Y. Xia, Dong Qian, L. Wray, J. H. Dil, F.
Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P.
Ong et al., A tunable topological insulator in the spin helical
Dirac transport regime, Nature (London) 460, 1101 (2009).

[4] Y. Xia, Dong Qian, David Hsieh, L. Wray, A. Pal, Hsin Lin,
Arun Bansil, D. H. Y. S. Grauer, Y. S. Hor, R. J. Cava et al.,
Observation of a large-gap topological-insulator class with a
single Dirac cone on the surface, Nat. Phys. 5, 398 (2009).

[5] David Hsieh, Y. Xia, L. Wray, Dong Qian, A. Pal, J. H. Dil,
J. Osterwalder, F. Meier, G. Bihlmayer, C. L. Kane et al.,
Observation of unconventional quantum spin textures in
topological insulators, Science 323, 919 (2009).

[6] M. Zahid Hasan and Charles L. Kane, Colloquium: Topo-
logical insulators, Rev. Mod. Phys. 82, 3045 (2010).

[7] Pedram Roushan, Jungpil Seo, Colin V. Parker, Y. S. Hor,
David Hsieh, Dong Qian, Anthony Richardella, M. Zahid
Hasan, R. J. Cava, and Ali Yazdani, Topological surface
states protected from backscattering by chiral spin texture,
Nature (London) 460, 1106 (2009).

[8] D. J. Thouless, Mahito Kohmoto, M. P. Nightingale, and M.
denNijs, Quantized Hall Conductance in a Two-Dimensional
Periodic Potential, Phys. Rev. Lett. 49, 405 (1982).

[9] Qian Niu, D. J. Thouless, and Yong-Shi Wu, Quantized Hall
conductance as a topological invariant, Phys. Rev. B 31,
3372 (1985).

[10] Alexander B. Khanikaev, S. Hossein Mousavi, Wang-Kong
Tse, Mehdi Kargarian, Allan H. MacDonald, and Gennady
Shvets, Photonic topological insulators, Nat. Mater. 12, 233
(2013).

[11] Mikael C. Rechtsman, Julia M. Zeuner, Yonatan Plotnik,
Yaakov Lumer, Daniel Podolsky, Felix Dreisow, Stefan
Nolte, Mordechai Segev, and Alexander Szameit, Photonic
Floquet topological insulators, Nature (London) 496, 196
(2013).

TABLE I. Fitted anisotropy factors used in the semianalytical
calculations and the first-order estimates from an ellipsoid.

Thickness Py Co75Fe25 Ellipsoid [71]

5 nm N ¼ 0.957 N ¼ 0.9573
L ¼ 0.007 L ¼ 0.0139
M ¼ 0.036 M ¼ 0.0287

10 nm N ¼ 0.925 N ¼ 0.930 N ¼ 0.9146
L ¼ 0.020 L ¼ 0.014 L ¼ 0.0279
M ¼ 0.065 M ¼ 0.056 M ¼ 0.0575

15 nm N ¼ 0.890 N ¼ 0.860 N ¼ 0.8720
L ¼ 0.020 L ¼ 0.037 L ¼ 0.0418
M ¼ 0.090 M ¼ 0.103 M ¼ 0.0862

20 nm N ¼ 0.780 N ¼ 0.8293
L ¼ 0.058 L ¼ 0.0557
M ¼ 0.162 M ¼ 0.1150

TABLE III. Fitted north (Np) and south (Sp) tilt angles for
Co75Fe25.

D 5 nm 10 nm 15 nm

0 mJ=m2 Np ¼ 0° Np ¼ 0° Np ¼ 0°
Sp ¼ 0° Sp ¼ 0° Sp ¼ 0°

0.10 mJ=m2 Np ¼ 13° Np ¼ 10° Np ¼ 4°
Sp ¼ −13° Sp ¼ −8° Sp ¼ −4°

0.25 mJ=m2 Np ¼ 15° Np ¼ 10° Np ¼ 6°
Sp ¼ −15° Sp ¼ −10° Sp ¼ −6°

0.50 mJ=m2 Np ¼ 20° Np ¼ 10° Np ¼ 7°
Sp ¼ −20° Sp ¼ −10° Sp ¼ −7°

0.75 mJ=m2 Np ¼ 23° Np ¼ 10° Np ¼ 10°
Sp ¼ −23° Sp ¼ −12° Sp ¼ −10°

1.00 mJ=m2 Np ¼ 25° Np ¼ 17° Np ¼ 13°
Sp ¼ −25° Sp ¼ −17° Sp ¼ −13°

TABLE II. Fitted north (Np) and south (Sp) tilt angles for Py.

D 10 nm 15 nm 20 nm

0 mJ=m2 Np ¼ −10° Np ¼ −15° Np ¼ −15°
Sp ¼ −10° Sp ¼ −15° Sp ¼ −15°

0.10 mJ=m2 Np ¼ −5° Np ¼ 0° Np ¼ −1°
Sp ¼ −10° Sp ¼ −10° Sp ¼ 15°

0.25 mJ=m2 Np ¼ 12° Np ¼ 10° Np ¼ 5°
Sp ¼ −12° Sp ¼ −10° Sp ¼ −15°

0.50 mJ=m2 Np ¼ 13° Np ¼ 15° Np ¼ 10°
Sp ¼ −13° Sp ¼ −15° Sp ¼ −10°

0.75 mJ=m2 Np ¼ 22° Np ¼ 20° Np ¼ 15°
Sp ¼ −22° Sp ¼ −20° Sp ¼ −15°

1.00 mJ=m2 Np ¼ 25° Np ¼ 25° Np ¼ 20°
Sp ¼ −25° Sp ¼ −25° Sp ¼ −20°

TOPOLOGICALLY NONTRIVIAL MAGNON BANDS IN … PHYS. REV. APPLIED 8, 034015 (2017)

034015-9

https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.75.121306
https://doi.org/10.1038/nature06843
https://doi.org/10.1038/nature06843
https://doi.org/10.1038/nature08234
https://doi.org/10.1038/nphys1274
https://doi.org/10.1126/science.1167733
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1038/nature08308
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1103/PhysRevB.31.3372
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066


[12] Ryuichi Shindou, Ryo Matsumoto, Shuichi Murakami, and
Jun-ichiro Ohe, Topological chiral magnonic edge mode in a
magnonic crystal, Phys. Rev. B 87, 174427 (2013).

[13] Ryuichi Shindou, Jun-ichiro Ohe, Ryo Matsumoto, Shuichi
Murakami, and Eiji Saitoh, Chiral spin-wave edge modes in
dipolar magnetic thin films, Phys. Rev. B 87, 174402
(2013).

[14] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville,
B. J. Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H.
Crespi, and P. Schiffer, Artificial spin ice in a geometrical
frustrated lattice of nanoscale ferromagnetic islands, Nature
(London) 439, 303 (2006).

[15] Cristiano Nisoli, Roderich Moessner, and Peter Schiffer,
Colloquium: Artificial spin ice: Designing and imaging
magnetic frustration, Rev. Mod. Phys. 85, 1473 (2013).

[16] L. J. Heyderman and R. L. Stamps, Artificial ferroic sys-
tems: Novel functionality from structure, interactions and
dynamics, J. Phys. Condens. Matter 25, 363201 (2013).

[17] A. Farhan, P. M. Derlet, A. Kleibert, A. Balan, R. V.
Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting,
and L. J. Heyderman, Direct Observation of Thermal Re-
laxation in Artificial Spin Ice, Phys. Rev. Lett. 111, 057204
(2013).

[18] Ian Gilbert, Gia-Wei Chern, Sheng Zhange, Liam O’Brien,
Bryce Foe, Cristiano Nisoli, and Peter Schiffer, Emergent
ice rule and magnetic charge screening from vertex frus-
tration in artificial spin ice, Nat. Phys. 10, 670 (2014).

[19] Ian Gilbert, Yuyang Lao, Isaac Carrasquillo, Liam O’Brian,
Justing D. Watts, Michael Manno, Chris Leighton, Andreas
Scholl, Cristiano Nisoli, and Peter Schiffer, Emergent
reduced dimensionality by vertex frustration in artificial
spin ice, Nat. Phys. 12, 162 (2015).

[20] Yong-Lei Wang, Zhi-Li Xiao, Alexey Snezhko, Jing Xu,
Leonidas E. Ocoloa, Ralu Divan, John E. Peason, George
W. Crabtree, and Wai-Kwong Kwok, Rewritable artificial
magnetic charge ice, Science 352, 962 (2016).

[21] F. Ma, C. Reichhardt, Weiliang Gan, C. J. Olson Reichhardt,
and W. S. Lew, Emergent geometric frustration of artificial
magnetic Skyrmion crystals, Phys. Rev. B 94, 144405
(2016).

[22] Yann Perrin, Benjamin Canals, and Nicolas Rougemaille,
Extensive degeneracy, Coulomb phase and magnetic mo-
nopoles in artificial square ice, Nature (London), 540, 410
(2016).

[23] S. O. Demokritov and A. N. Slavin, Magnonics: From
Fundamentals to Applications (Springer, New York, 2013).

[24] S. A. Nikitov, Ph. Tailhades, and C. S. Tsai, Spin waves in
periodic magnetic structures-magnonic crystals, J. Magn.
Magn. Mater. 236, 320 (2001).

[25] S. Neusser and D. Grundler, Magnonics: Spin waves on the
nanoscale, Adv. Mater. 21, 2927 (2009).

[26] V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Mag-
nonics, J. Phys. D 43, 264001 (2010).

[27] B. Lenk, H. Ulrichs, F. Garbs, and M. Münzenberg, The
building blocks of magnonics, Phys. Rep. 507, 107 (2011).

[28] M. Krawczyk and D. Grundler, Review and prospects of
magnonic crystals and devices with reprogrammable band
structure, J. Phys. Condens. Matter 26, 123202 (2014).

[29] A. V. Chumak, V. I. Vasyuchka, A. A. Serga, and B.
Hillebrands, Magnon spintronics, Nat. Phys. 11, 453
(2015).

[30] Dirk Grundler, Reconfigurable magnonics heats up, Nat.
Phys. 11, 438 (2015).

[31] Sebastian Gliga, Attila Kákay, Riccardo Hertel, and Olle G.
Heinonen, Spectral Analysis of Topological Defects in an
Artificial Spin-Ice Lattice, Phys. Rev. Lett. 110, 117205
(2013).

[32] Sebastian Gliga, Attila Kákay, Laura J. Heyderman,
Riccardo Hertel, and Olle G. Heinonen, Broken vertex
symmetry and finite zero-point entropy in the artificial
square ice ground state, Phys. Rev. B 92, 060413 (2015).

[33] Ezio Iacocca, Sebastian Gliga, Robert L. Stamps, and Olle
Heinonen, Reconfigurable wave band structure of an arti-
ficial square ice, Phys. Rev. B 93, 134420 (2016).

[34] M. B. Jungfleisch, W. Zhang, E. Iacocca, J. Sklenar, J. Ding,
W. Jiang, S. Zhang, J. E. Pearson, V. Novosad, J. B.
Ketterson, O. Heinonen, and A. Hoffmann, Dynamic
response of an artificial square spin ice, Phys. Rev. B 93,
100401 (2016).

[35] V. S. Bhat, F. Heimbach, I. Stasinopoulos, and D. Grundler,
Magnetization dynamics of topological defects and the spin
solid in a kagome artificial spin ice, Phys. Rev. B 93,
140401 (2016).

[36] Xue Zhou, Geng-Li Chua, Navab Singh, and Adekunle O.
Adeyeye, Large area artificial spin ice and anti-spin ice
Ni80Fe20 structures: Static and dynamic behavior, Adv.
Funct. Mater. 26, 1437 (2016).

[37] Qi Wang, Andrii V. Chumak, Lichuan Jin, Huaiwu Zhang,
Burkard Hillebrands, and Zhiyong Zhong, Voltage-
controlled nanoscale reconfigurable magnonic crystal, Phys.
Rev. B 95, 134433 (2017).

[38] Alexander Khitun, Mingqiang Bao, and Kang L. Wang,
Magnonic logic circuits, J. Phys. D 43, 264005 (2010).

[39] A. D. Karenowska, J. F. Gregg, V. S. Tiberkevich, A. N.
Slavin, A. V. Chumak, A. A. Serga, and B. Hillebrands,
Oscillatory Energy Exchange between Waves Coupled by a
Dynamic Artificial Crystal, Phys. Rev. Lett. 108, 015505
(2012).

[40] Björn Obry, Philipp Pirro, Thomas Brächer, Andrii V.
Chumak, Julia Osten, Florin Ciubotaru, Alexander A. Serga,
Jürgen Fassbender, and Burkard Hillebrands, A micro-
structured ion-implanted magnonic crystal, Appl. Phys.
Lett. 102, 202403 (2013).

[41] S. Klingler, P. Pirro, T. Brächer, B. Leven, B. Hillebrands,
and A. V. Chumak, Design of a spin-wave majority gate
employing mode selection, Appl. Phys. Lett. 105, 152410
(2014).

[42] Marc Vogel, Andrii V. Chumak, Erik H. Waller, Thomas
Langner, Vitaliy I. Vasyuchka, Burkard Hillebrands, and
Georg von Freymann, Optically reconfigurable magnetic
materials, Nat. Phys. 11, 487 (2015).

[43] S. Tacchi, F. Montoncello, M. Madami, G. Gubbiotti, G.
Carlotti, L. Giovannini, R. Zivieri, F. Nizzoli, S. Jain, A. O.
Adeyeye, and N. Singh, Band Diagram of Spin Waves in a
Two-Dimensional Magnonic Crystal, Phys. Rev. Lett. 107,
127204 (2011).

[44] P. V. Bondarenko, A. Yu. Galkin, B. A. Ivanov, and C. E.
Zaspel, Collective modes for an array of magnetic dots with

EZIO IACOCCA and OLLE HEINONEN PHYS. REV. APPLIED 8, 034015 (2017)

034015-10

https://doi.org/10.1103/PhysRevB.87.174427
https://doi.org/10.1103/PhysRevB.87.174402
https://doi.org/10.1103/PhysRevB.87.174402
https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1088/0953-8984/25/36/363201
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1103/PhysRevLett.111.057204
https://doi.org/10.1038/nphys3037
https://doi.org/10.1038/nphys3520
https://doi.org/10.1126/science.aad8037
https://doi.org/10.1103/PhysRevB.94.144405
https://doi.org/10.1103/PhysRevB.94.144405
https://doi.org/10.1038/nature20155
https://doi.org/10.1038/nature20155
https://doi.org/10.1016/S0304-8853(01)00470-X
https://doi.org/10.1016/S0304-8853(01)00470-X
https://doi.org/10.1002/adma.200900809
https://doi.org/10.1088/0022-3727/43/26/264001
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1088/0953-8984/26/12/123202
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3347
https://doi.org/10.1038/nphys3349
https://doi.org/10.1038/nphys3349
https://doi.org/10.1103/PhysRevLett.110.117205
https://doi.org/10.1103/PhysRevLett.110.117205
https://doi.org/10.1103/PhysRevB.92.060413
https://doi.org/10.1103/PhysRevB.93.134420
https://doi.org/10.1103/PhysRevB.93.100401
https://doi.org/10.1103/PhysRevB.93.100401
https://doi.org/10.1103/PhysRevB.93.140401
https://doi.org/10.1103/PhysRevB.93.140401
https://doi.org/10.1002/adfm.201505165
https://doi.org/10.1002/adfm.201505165
https://doi.org/10.1103/PhysRevB.95.134433
https://doi.org/10.1103/PhysRevB.95.134433
https://doi.org/10.1088/0022-3727/43/26/264005
https://doi.org/10.1103/PhysRevLett.108.015505
https://doi.org/10.1103/PhysRevLett.108.015505
https://doi.org/10.1063/1.4807721
https://doi.org/10.1063/1.4807721
https://doi.org/10.1063/1.4898042
https://doi.org/10.1063/1.4898042
https://doi.org/10.1038/nphys3325
https://doi.org/10.1103/PhysRevLett.107.127204
https://doi.org/10.1103/PhysRevLett.107.127204


perpendicular magnetization, Phys. Rev. B 81, 224415
(2010).

[45] Roman Verba, Gennadiy Melkov, Vasil Tiberkevich, and
Andrei Slavin, Collective spin-wave excitations in a two-
dimensional array of coupled magnetic nanodots, Phys. Rev.
B 85, 014427 (2012).

[46] Ivan Lisenkov, Vasyl Tyberkevych, Sergey Nikitov, and
Andrei Slavin, Theoretical formalism for collective spin-
wave edge excitations in arrays of dipolarly interacting
magnetic nanodots, Phys. Rev. B 93, 214441 (2016).

[47] I. Dzyaloshinskii, A thermodynamic theory of weak ferro-
magnetism of antiferromagnetics, J. Phys. Chem. Solids 4,
241 (1958).

[48] Tôru Moriya, Anisotropic superexchange interaction, and
weak ferromagnetism, Phys. Rev. 120, 91 (1960).

[49] Lifa Zhang, Jie Ren, Jian-Sheng Wang, and Baowen Li,
Topological magnon insulator in insulating ferromagnet,
Phys. Rev. B 87, 144101 (2013).

[50] U. Rössler, A. Bogdanov, and C. Pfleiderer, Spontaneous
Skyrmion ground states in magnetic metals, Nature
(London) 442, 797 (2006).

[51] Wanjun Jiang, PrameyUpadhyaya,WeiZhang,GuoqiangYu,
M. Benjamin Jungfleisch, Frank Y. Fradin, John E. Pearson,
Yaroslav Tserkovnyak, Kang L. Wang, Olle Heinonen,
Suzanne G. E. te Velthuis, and Axel Hoffmann, Blowing
magnetic Skyrmion bubbles, Science 349, 283 (2015).

[52] Olle Heinonen, Wanjun Jiang, Hamoud Somaily, Suzanne
G. E. te Velthuis, and Axel Hoffmann, Generation of
magnetic Skyrmion bubbles by inhomogeneous spin Hall
currents, Phys. Rev. B 93, 094407 (2016).

[53] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert,
Nucleation, stability and current-induced motion of isolated
magnetic Skyrmions in nanostructures, Nat. Nanotechnol. 8,
839 (2013).

[54] Y. Zhou, E. Iacocca, A. Awad, R. K. Dumas, H. B. Zhang,
H. B. Braun, and J. Åkerman, Dynamically stabilized
magnetic Skyrmions, Nat. Commun. 6, 8193 (2015).

[55] Hans T. Nembach, Justin M. Shaw, Matthias Weller, Emilie
Jué, and Thomas J. Silva, Linear relation between Heisen-
berg exchange and interfacial Dzyaloshinskii-Moriya inter-
action in metal films, Nat. Phys. 11, 825 (2015).

[56] Felipe Garcia-Sanchez, Pablo Borys, Arne Vansteenkiste,
Joo-Von Kim, and Robert L. Stamps, Nonreciprocal spin-
wave channeling along textures driven by the Dzyaloshinskii-
Moriya interaction, Phys. Rev. B 89, 224408 (2014).

[57] Benjamin W. Zingsem, Michael Farle, Robert L. Stamps,
and Robert E. Camley, The unusual nature of confined
modes in a chiral system, arXiv:1609.03417.

[58] E. K. Semenova, F. Montoncello, S. Tacchi, G. Dürr, E.
Sirotkin, E. Ahmad, M. Madami, G. Gubbiotti, S. Neusser,
D. Grundler, F. Y. Ogrin, R. J. Hicken, V. V. Kruglyak, D. V.
Berkov, N. L. Gorn, and L. Giovannini, Magnetodynamical
response of large-area close-packed arrays of circular dots
fabricated by nanosphere lithography, Phys. Rev. B 87,
174432 (2013).

[59] M. Dvornik, P. V. Bondarenko, B. A. Ivanov, and V. V.
Kruglyak, Collective magnonic modes of pairs of closely

spaced magnetic nano-elements, J. Appl. Phys. 109,
07B912 (2011).

[60] A. Slavin and V. Tiberkevich, Nonlinear auto-oscillator
theory of microwave generation by spin-polarized current,
IEEE Trans. Magn. 45, 1875 (2009).

[61] J. H. P. Colpa, Diagonalization of the quadratic boson
Hamiltonian, Physica A (Amsterdam) 93A, 327 (1978).

[62] G. Carlotti, G. Gubbiotti, M. Madami, S. Tacchi, F.
Hartmann, M. Emmerling, M. Kamp, and L. Worschech,
From micro- to nanomagnetic dots: Evolution of the
eigenmode spectrum on reducing the lateral size, J. Phys.
D 47, 265001 (2014).

[63] Masaya Uchida, Yoshinori Onose, Yoshio Matsui, and
Yoshinori Tokura, Real-space observation of helical spin
order, Science 311, 359 (2006).

[64] Takahiro Fukui, Yasuhiro Hatsugai, and Hiroshi Suzuki,
Chern numbers in discretized Brillouin zone: Efficient
method of computing (spin) Hall conductances, J. Phys.
Soc. Jpn. 74, 1674 (2005).

[65] Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik,
Mathias Helsen, Felipe Garcia-Sanchez, and Bartel Van
Waeyenberge, The design and verification of MUMAX3, AIP
Adv. 4, 107133 (2014).

[66] O. G. Heinonen, D. K. Schreiber, and A. K. Petford-Long,
Micromagnetic modeling of spin-wave dynamics in ex-
change-biased permalloy disks, Phys. Rev. B 76, 144407
(2007).

[67] D. K. Schreiber, O. G. Heinonen, and A. K. Petford-Long,
Micromagnetic modeling of the magnetization dynamics in
a circularly exchange-biased and exchange-coupled ferro-
magnetic multilayer, Phys. Rev. B 80, 014411 (2009).

[68] P. K. Muduli, O. G. Heinonen, and Johan Åkerman, Bias
dependence of perpendicular spin torque and of free- and
fixed-layer eigenmodes in MgO-based nanopillars, Phys.
Rev. B 83, 184410 (2011).

[69] Randy K. Dumas, E. Iacocca, S. Bonetti, S. R. Sani,
S. M. Mohseni, A. Eklund, J. Persson, O. Heinonen, and
Johan Åkerman, Spin-Wave-Mode Coexistence on the
Nanoscale: A Consequence of the Oersted-Field-Induced
Asymmetric Energy Landscape, Phys. Rev. Lett. 110,
257202 (2013).

[70] We perform simulations with different in-plane cell size to
show that for cells less than about 1.25 nm in plane, the
simulations converge and do not exhibit errors because of
the “staircase” approximation of the rounded edges. We also
perform simulations with a fixed in-plane cell size while
varying the perpendicular dimension and find identical
results for 5 nm. The cell size of 0.7 nm is chosen on
the basis of numerical performance so that the mesh has a
number of cells proportional to a power of 2.

[71] J. A. Osborn, Demagnetizing factors of the general ellip-
soid, Phys. Rev. 67, 351 (1945).

[72] Ching-Ching Tsai, J. Choi, Sunglae Cho, S. J. Lee, Bimal
K. Sarma, C. Thompson, O. Chernyashevskyy, Ivan
Nevirkovets, and J. B. Ketterson, Microwave absorption
measurements using a broad-band meanderline approach,
Rev. Sci. Instrum. 80, 023904 (2009).

TOPOLOGICALLY NONTRIVIAL MAGNON BANDS IN … PHYS. REV. APPLIED 8, 034015 (2017)

034015-11

https://doi.org/10.1103/PhysRevB.81.224415
https://doi.org/10.1103/PhysRevB.81.224415
https://doi.org/10.1103/PhysRevB.85.014427
https://doi.org/10.1103/PhysRevB.85.014427
https://doi.org/10.1103/PhysRevB.93.214441
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevB.87.144101
https://doi.org/10.1038/nature05056
https://doi.org/10.1038/nature05056
https://doi.org/10.1126/science.aaa1442
https://doi.org/10.1103/PhysRevB.93.094407
https://doi.org/10.1038/nnano.2013.210
https://doi.org/10.1038/nnano.2013.210
https://doi.org/10.1038/ncomms9193
https://doi.org/10.1038/nphys3418
https://doi.org/10.1103/PhysRevB.89.224408
http://arXiv.org/abs/1609.03417
https://doi.org/10.1103/PhysRevB.87.174432
https://doi.org/10.1103/PhysRevB.87.174432
https://doi.org/10.1063/1.3562509
https://doi.org/10.1063/1.3562509
https://doi.org/10.1109/TMAG.2008.2009935
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1088/0022-3727/47/26/265001
https://doi.org/10.1088/0022-3727/47/26/265001
https://doi.org/10.1126/science.1120639
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1103/PhysRevB.76.144407
https://doi.org/10.1103/PhysRevB.76.144407
https://doi.org/10.1103/PhysRevB.80.014411
https://doi.org/10.1103/PhysRevB.83.184410
https://doi.org/10.1103/PhysRevB.83.184410
https://doi.org/10.1103/PhysRevLett.110.257202
https://doi.org/10.1103/PhysRevLett.110.257202
https://doi.org/10.1103/PhysRev.67.351
https://doi.org/10.1063/1.3070471

