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Abstract

We present several methods for profit maximization when households are
selected from a mailing list for a direct mail campaign. The response elicited
from the campaign can vary over households, as is the case with fund raising
or mail order selling. The decisions taken by the household are (a) whether
to respond and, in the case of response, (b) the quantity of response, e.g. the
sum donated or the monetary amount of the order. We jointly model both
aspects of the response and derive a number of profit maximizing selection
methods.

We empirically illustrate the methods using a data set from a charitable
foundation. It appears that modeling both aspects of the response yields
considerably higher profits relative to selection methods that are based on
solely modeling the response probability.
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1. Introduction

An important topic in direct marketing is response modeling. It involves prediction of
some measure of customer response. For direct mail, three kinds of responses can be
distinguished, depending on the offer submitted in the mailing. The first kind concerns
mailings with fixed revenues (given a positive reply), like subscriber mailings of a
magazine, membership mailings, and single-shot mailings offering just one product,
for example a book. A second kind concerns mailings where the number of units
ordered can vary, e.g. the number of compact discs ordered by direct mail selling or
the subscription time (a quarter of a year, half a year, a full year) when a magazine
is offered through direct mail. Third, there are mailings with a response that can take
on all positive values. This may involve total revenues in purchases from a catalog
retailer, or the monetary amount donated to a charitable organization raising funds
by mail.

The main purpose of response modeling is to rank the potential targets, available on
a mailing list, from most to least promising, in order to make a selection. Typically,
a test mailing is sent to a relatively small sample of the mailing list. Then a response
model is built linking observed response behavior to households characteristics. This
model is used to predict the response for the remaining households on the mailing
list. By eliminating the least promising targets of the mailing list, the direct marketing
company can increase their profits. The mailing list is a crucial component in this
process since it has to contain sufficient information about the targets like past
purchase behavior and geographic, demographic, and lifestyle variables.

In the recent literature a number of papers have been published that consider tar-
get selection; see e.g. Banslaben (1992), Bult (1993), Bult and Wansbeek (1995),
DeSarbo and Ramaswamy (1994), Magidson (1988). Most of these studies deal with
the case of fixed revenues to a positive reply, and hence concentrate on binary choice
modeling methods like CHAID, probit, and discriminant analysis; see Bult and Wans-
beek (1995) for an overview of target selection techniques. Although this literature
recognizes that most direct mail campaigns do not generate simple binary response
but rather household specific response, it is hard to find publications that take this
aspect into account.

Simon (1987), for example, suggests taking the average amount of purchase from a
random sample of the customers on the mailing list over a couple of years, and to
use this as the expected value of a potential customer. Then the response to a positive
reply is considered fixed as yet, and the response can be modeled again by a binary
choice model. Rao and Steckel (1995) suggest using an ordinary least squares (OLS)
model to determine the expected revenues, and obtaining the total revenue just as
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the expected revenues times the probability of response. However, their empirical
example is just a binary choice model.

Recently, Bult and Wittink (1996) proposed a method to handle household specific
response. Based on their past behavior, households are classified a priori into seg-
ments. For each segment a response model is estimated, which is used for the selection
of households. The disadvantage of this approach, however, is that it is in general
difficult to obtain a satisfactory a priori segmentation.

The purpose of this paper is to present a unified framework for modeling household
specific response in order to optimally select households for a mailing campaign. Our
framework specifies the relevant decisions taken by the households. These decisions
are (a) whether to respond or not, and, in the case of response, (b) the quantity of
response. As is argued by Courtheoux (1987), higher profits can be obtained when
both decisions are modeled jointly. We specify a model that takes both decisions into
account and that leads to a method which optimizes expected profit. For reasons of
comparison we also consider simplified versions of this method that concentrate on
either of the decision dimensions. An empirical application shows considerably higher
profits when both decisions are modeled explicitly relative to modeling response
probability only.

The paper is structured as follows. In section 2 we present a simple response model that
structures both the probability of response and its quantity. This allows us to formulate
a profit maximizing selection rule that takes both dimensions into account. Section
3 is devoted to this. Some simplifying approximations to this rule are presented
in section 4. Section 5 adds details on practical implementation. To show how the
various approaches behave in practice, we describe in section 6 the data underlying
the empirical illustration. The results are presented in section 7. Section 8 concludes.

2. The model

Consider a direct marketing firm that has to make the decision whether to send a
household a mailing or not. In case a mailing is sent to a given household, the profit
to the firm, 5, is given by

5 = AR − c, (1)

where R is the random variable given by

R =
{

1 if the household responds
0 if the household does not respond,
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A is the random variable that denotes the quantity, and c is the cost of a mailing. We
assume that the response and quantity are driven by the following model. We denote
the inclination to respond by the latent variable R∗ that satisfies a linear model,

R∗ = x ′β + v, (2)

where x is a vector of explanatory variables and v ∼ N(0, 1), independently from
x; x is assumed to be a random variable with unknown distribution. Whether there is
a response or not is indicated by the observed dummy variable R that relates to R∗

in the following way: R = 1 if R∗ ≥ 0 and R = 0 otherwise. Hence the response
probability of a household is given by

P(R = 1 | x) = 8(x ′β),

with 8(·) is the standard normal integral. If R = 1 the quantity of response also
satisfies a linear model,

A = x ′γ + u, (3)

with in particular the assumption

E(u | R = 1, x) = 0. (4)

For convenience of notation we assume the same x in both relations but this is
innocuous since elements of γ and β can a priori be set at zero. The disturbance
terms in both relations, v and u, may correlate but this will play no role in the sequel.
This way of modeling probability and corresponding quantity is called a two-part
model (e.g. Duan et al. 1983).

On the basis of a test mailing we derive estimates of the model parameters. We
assume that the sample used for the estimation is large enough that we can neglect
the difference between estimators and the true values, hence we in particular assume
momentarily that γ and β are known. We define

p ≡ 8(x ′β)

a ≡ x ′γ,

which are random variables with a joint density function. We denote the marginal
density (with respect to p) of a conditional on R = 0 and R = 1 by f0(a) and
f1(a), respectively, and the corresponding distribution function by F0(a) and F1(a),
respectively.
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3. Optimal selection

We now turn to the selection problem. We assume the presence of a mailing list
containing information on x’s, hence on the implied p’s and a’s. We wish to determine
the subset of the (p, a) space such that selection of list members from this space
maximizes expected profit. We follow the strategy of conditioning on p and determine
the threshold a∗ (= a∗(p)) above which a mailing is sent. We determine a∗ by
maximizing the expected profit given p.

So we are interested in

E ≡ E(5 | p, a ≥ a∗)P(a ≥ a∗ | p)

= E(AR − c | p, a ≥ a∗)P(a ≥ a∗ | p)

= E(AR − c | R = 1, p, a ≥ a∗)P(R = 1 | p, a0 ≥ a∗)P(a ≥ a∗ | p)

+ E(AR − c | R = 0, p, a ≥ a∗)P(R = 0 | p, a ≥ a∗)P(a ≥ a∗ | p)

= E(A − c | R = 1, p, a ≥ a∗)P(a ≥ a∗ | R = 1, p)P(R = 1 | p)

+ E(−c | R = 0, p, a ≥ a∗)P(a ≥ a∗ | R = 0, p)P(R = 0 | p)

= E(A − c | R = 1, p, a ≥ a∗)P(a ≥ a∗ | R = 1, p)p

− cP(a ≥ a∗ | R = 0, p)(1− p)

= E(A | R = 1, p, a ≥ a∗)P(a ≥ a∗ | R = 1, p)p

− c {P(a ≥ a∗ | R = 1, p)p+ P(a ≥ a∗ | R = 0, p)(1− p)} . (5)

This should be maximized with respect to a∗.

At this point we introduce a simplifying approximation that greatly improves the
analytical tractability of the maximization just defined. In (5) there are conditional
expectations and probabilities where the condition involves both p and R = 1 or
R = 0. Both types of conditioning overlap to a certain extend. Intuitively, the optimal
profit to be obtained may not be affected too much if we omit the conditioning with
respect to p. This yields

E ≈ E(A | R = 1, a ≥ a∗)P(a ≥ a∗ | R = 1)p

− c {P(a ≥ a∗ | R = 1)p + P(a ≥ a∗ | R = 0)(1− p)}
= E(A | R = 1, a ≥ a∗)P(a ≥ a∗ | R = 1)p

− c {(1− F1(a
∗))p + (1− F0(a

∗))(1− p)}
= E(A | R = 1, a ≥ a∗)P(a ≥ a∗ | R = 1)p

− c {1− F1(a
∗)p − F0(a

∗)(1− p)}
= E(a | R = 1, a ≥ a∗)P(a ≥ a∗ | R = 1)p

− c {1− F1(a
∗)p − F0(a

∗)(1− p)}
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=
{∫ ∞

a∗
a f1(a)da

}
p − c {1− F1(a

∗)p − F0(a
∗)(1− p)}

where the third strict equality is based on (4). The first-order condition with respect
to a∗ is

∂E

∂a∗
= −a∗ f1(a

∗)p + c { f1(a
∗)p + f0(a

∗)(1− p)} = 0

or

a∗ p = c

{
1+

(
f0(a∗)

f1(a∗)
− 1

)
(1− p)

}
. (6)

This is an implicit equation in a∗, which can be solved numerically since the densities
f0(·) and f1(·) are known functions in the sense discussed above. The result is a curve
in the (p, a) space separating the profitable from the non-profitable list members. For
simplicity of notation we omit the asterisk superscript to a when further discussing
this curve below. The mailing region, denoting the households to whom a mailing
should be sent, in the (p, a) space, is given by

M ≡
{
(p, a) | a ≥ c

p

(
1+

(
f0(a)

f1(a)
− 1

)
(1− p)

)}
, (7)

which follows directly from (6).

4. Approximations

In order to make (6) operational we distinguish three, increasingly precise but complex
approximations to the solution of (6). The first one, further on referred to as I, is to
neglect the difference between the two densities. Hence

a = c

p
.

This is simply an orthogonal hyperbola in the (p, a) space. It coincides with the
approach in which the selection rule, a ≥ a∗, is not explicitly incorporated in the
expected profit. That is, the mailing region is simply defined by the (p, a) space for
which E(5 | p, a) = ap − c ≥ 0. The second approximation (II) does more justice
to the difference between the two densities. We make the (evidently crude) working
hypothesis that both densities are normal with the same variance σ 2 but with different
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means, µ0 and µ1 in obvious notation. Let µ̄ ≡ (µ0 +µ1)/2 and δ ≡ σ−2(µ1 −µ0).
Then

f0(a)

f1(a)
− 1 = exp

{
−1

2

(
a − µ0

σ

)2

+ 1

2

(
a − µ1

σ

)2
}
− 1

≈ 1

2

{(
a − µ1

σ

)2

−
(

a − µ0

σ

)2
}

= −1

2

µ1 − µ0

σ

2a − (µ1 + µ0)

σ
= −δ(a − µ̄),

so

ap = c {1− δ(a − µ̄)(1− p)}

or

a = c
1+ µ̄δ(1− p)

p + cδ(1− p)
.

Again, this is an orthogonal hyperbola; for δ = 0, which holds when µ0 = µ1

and when σ 2 → ∞, this reduces to the result of the first approximation. The third
approximation (III) is obtained by employing a more flexible specification. We will
use a nonparametric technique to approximate the two densities.

It is insightful to look at these curves and corresponding mailing regions in somewhat
more detail. The three curves come together in (1, c), denoting that with a response
probability of one the expected quantity should be at least the cost. Obviously, this
holds for the three approximations. The effect of the approximations on the mailing
region depends on the ratio f0(a)/ f1(a). This ratio equals one if approximation I
holds, and if a = µ̄ in approximation II. Hence, the first two curves intersect in
(c/µ̄, µ̄). As is easily seen from (6), this is also a point on the third curve if f0(µ̄) =
f1(µ̄). This is the case e.g. when the two densities are isomorphic symmetric, as in the
second approximation, but will in general only hold approximately. If f0(a)/ f1(a) >

1, then the mailing region becomesM =
{
(p, a) | a > c

pλ
}

, with λ > 1. Hence,

the mailing region of approximation II or III is smaller than that of approximation
I. Consequently, less households should be selected. For approximation II this holds
when a < µ̄. When f0(a)/ f1(a) < 1, the opposite holds. Thus, the mailing region of
approximation II or III expands with respect to approximation I, which implies that
more households should be selected. For approximation II this holds when a > µ̄.
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5. Implementation

The three approximations defined in the previous section define three methods to
select households from the mailing list. In order to make the methods operational we
need estimates of γ and β using the results of a test mailing on a subset of the mailing
list. The test mailing produces respondents and nonrespondents, and for respondents
a response quantity. We follow the simplest approach, and estimate γ by OLS on (3)
using the data on the respondents, and probit on (2) using the results for respondents
and nonrespondents. Given these estimates, we impute, for all list members, â as x ′γ̂
and p̂ as8(x ′β̂).

In order to implement approximation III we further need nonparametric estimates of
f0(a) and f1(a). We use a simple approach and employ the Gaussian kernel, see e.g.
Silverman (1986). Let φ(·) denote the standard normal density, then

f̂0(a) = 1

n0h

n0∑
i=1

φ

(
â0i − a

h

)
f̂1(a) = 1

n1h

n1∑
i=1

φ

(
â1i − a

h

)
,

where the first subscript to â is 0 for the n0 nonrespondents in the test mailing and
1 for the n1 respondents; n ≡ n1 + n0. For the smoothing parameter h we choose
h = 1.06ωn−1/5, where ω is the standard deviation of â (Silverman 1986, p. 45).
Since we estimate two functions we have two smoothing parameters. In order to have
only one smoothing parameter, we use the weighted average of these two.

We have now implemented three methods for selection, which are straightforward
to use. We consider each list member on its turn to check whether its value ( p̂, â)
falls in the mailing region. Of course, the mailing region of the three methods differs.
We return to this issue when discussing the empirical example. Before we turn to
this example, we want to describe four other methods that we will employ to put the
results of the three methods introduced so far in perspective.

The first of these is based on substituting the average response quantity from the
respondents in the test mailing, denoted by ā, for â for all list members. That is,
we neglect the heterogeneity in the response. The selection rule is then based on the
simplest hyperbola, i.e., a list member is selected solely according to its value of p̂
and takes place if p̂ ≥ c/ā. This method is interesting since it comes closest to current
practice: select if the ratio of cost to (average) yield does not exceed the probability
of response. The response probability is modeled but the response quantity not.

The next method has the opposite point of departure and is based on modeling the
response amount but not the response probability. The response fraction p̄ from the
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test mailing is assigned to all list members. A list member is selected â ≥ c/ p̄. In
other words, we confront â with the first approximating curve, the simple orthogonal
hyperbola. Two variations of this method are obtained by confronting â also with the
other two, more sophisticated approximating curves.

Table 7.1 summarizes the seven methods thus obtained. The first column labels
methods, the second column has p if the response probability is modeled and has p̄
if the response fraction from the test mailing is used. The third column has analogous
entries as to a. The fourth column indicates which of the three approximating curves
is used. The last two columns of the table will be discussed below.

6. Data

We illustrate and compare the different methods with an application based on data
from a Dutch charitable foundation. This foundation relies heavily on direct mailing.
Every year it sends mailings to almost 1.2 million households in the Netherlands.

The data sample consists of 40 000 observations. All households on the list have
donated at least once to the foundation since entry on the mailing list. The dependent
variable in (3) is the amount of donation in 1991, and in (2) the response/nonresponse
information. The explanatory variables in both models are the amount of money
donated in 1990, ditto in 1989, the interaction between these two, the date of entry
on the mailing list, family size, own opinion on charitable behavior in general (four
categories: donates never, donates sometimes, donates regularly, and donates always).
These variables were selected from a database with 58 possible explanatory variables
after a preliminary analysis.

The overall response rate p̄ is 33.9%, which is rather high but not really surprising
since charitable foundations have in general high response rates (Statistical Fact Book
1994-1995), and the mailing list only contains households that had donated to the
foundation before. The average amount donated ā was NLG 17.04, and the cost of a
mailing c was NLG 3.50.

7. Empirical results

In order to obtain a robust insight into the performance of the various methods we
use the bootstrap method (e.g. Efron 1982, and Efron and Tibshirani 1993) instead
of a single estimation and validation sample. To generate a (bootstrap) estimation
sample we draw with replacement 1 000 observations from the data set of 40 000
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Figure 7.1: The mailing regions of the approximations.

observations. This sample can be interpreted as the test mailing. We then draw 39 000
observation, again with replacement, to generate a (bootstrap) validation sample. The
estimation sample is used to estimate γ and β (we will not report their estimates
since they are not interesting per se for our purpose), and hence ā and p̄ for all
observations, and finally f0(a) and f1(a). Then, for the various methods, we employ
the selection rule to compute on the validation sample the actual profits that would
have been obtained.

Figure 7.1 depicts the resulting selection rules. It shows the three curves, based on the
three approximations, separating the (p, a) combinations that should or should not be
selected. Thus the mailing region for the three approximations is the (p, a) space to
the north-east of the curves. Selection according to the curve labeled I characterizes
method 5 as given in table 1. Analogously, the curves labeled II and III define
methods 6 and 7, respectively. The other, simpler methods can also be characterized
in this figure. Methods 2–4 are based on fixing p at its average value, p̄. Hence, the
intersection points of these curves with the vertical line at p = p̄ determine values of
a beyond which selection should take place. This characterizes methods 2–4. Method
1, based on fixing the quantity, is characterized by the intersection of the horizontal
line at a = ā with curve I and determines values of p beyond which selection should
take place.

Table 7.1 contains the bottom line results. The last column shows the number of
households selected when the various methods are applied. The preceding column
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Figure 7.2: Profits and percentage excluded from the mailing list for the various
approximations.

gives the profit obtained by this selection by considering the amounts actually donated
by the selected households. Both columns contain the average over the 500 bootstrap
replications. We consider the current practice in direct marketing as the benchmark,
i.e. method 1. To make the results more transparent, we present them in figure 7.2
graphically, using the percentage of households excluded from the mailing list instead
of the number selected households. A great gain results from modeling response
quantity (methods 2–4), even if only the quantity but not the probability is modeled.
A relatively minor but not negligible further gain results from modeling both (methods
5–7). Within the array of these methods the added value of increased sophistication
seems to be marginal. However, if the probability as well as the quantity are modeled,
the incremental cost of implementing method 6 is relatively small.

A further analysis of the performance of the seven methods relative to each other is
given in table 7.2. Figure 7.2 may be too suggestive as to a unique ordering of the
profits to be obtained by the methods. Since our analysis is based on 500 bootstrap
samples we can simply count the number of cases, out of these 500, in which one
method yields a higher profit than another method. The table shows that modeling
only the response probability generally gives highly suboptimal profits, and that
methods 5, 6 and 7 are more or less equivalent although an increase in sophistication
in approximation will on average pay off.
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Table 7.1: Performance of methods

method appr. profit #selected
1 p ā I 89163 38068
2 p̄ a I 96672 31225
3 p̄ a II 97780 28699
4 p̄ a III 98452 27915
5 p a I 99433 27016
6 p a II 99924 25215
7 p a III 100123 25275

8. Conclusion

We have introduced an approach to joint modeling of response probability and quan-
tity that leads to selection methods that can be applied in practice in a straightforward
way. The outcomes of the empirical illustration suggest that adding quantity mod-
eling to probability modeling to current practice can be highly rewarding. Even the
simplest approach to joint modeling can add significantly to profitability.

There are various limitations to the paper that should be addressed in future work.
The results of the empirical illustration are highly evocative, especially the qualitative
impression given by figure 7.2. The figure suggests that modeling only response
probabilities, the focus of nearly all work in target selection, misses a dominant
feature in striving for optimality; the gain to be had when quantities are taken into
account is large. This may be an idiosyncratic result, and we do not claim generality.

Table 7.2: Relative performance of methods

1 2 3 4 5 6
2 97
3 98 70
4 98 78 71
5 100 82 73 63
6 100 81 75 71 63
7 100 85 81 76 62 59

Entry (i, j) is the percentage of cases (in 500 bootstrap
samples) where method i outperforms method j .
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The example concerns charitable donations, and the picture may be qualitatively
different when the proposed methods are applied to the other leading case where
response is household specific, money amounts involved in mail order buying.

Another topic for further research is the sophistication in modeling and estimating
behavior. Our paper is based on the simple structure (2) and (3), which is moreover
estimated by the simplest possible methods. Several more advanced estimation meth-
ods could be used as well (e.g., Melenberg and Van Soest 1996). Model (3) has no
provision against negative values of A, and a possible correlation between u and v
does not play a role although they are likely to correlate; incorporating such a feature
could further improve selection. This suggests tobit type model, for example a type-2
tobit model (e.g. Amemiya 1985, and Blundell and Meghir 1987). However, Duan
et al. (1983), Hay, Leu and Rohrer (1987), and Manning, Duan and Rogers (1987)
show in extensive Monte Carlo studies that the two-part model works very well even
if a type-2 tobit model is the true specification.

As a final issue, our approach is limited in the sense that the underlying model is static
and does not take behavior over time into account. This issue has two aspects. In the
first place, the behavioral model should be improved into a panel data model where
a central role is played by the individual effect; household response vis-á-vis direct
mailing will have a strong, persistent component largely driven by unobservable
variables. The other aspect concerns the optimality rule to be applied by the direct
mailing organization, which is essentially more complicated than in the one-shot,
static case considered by us. We should note, though, that most work on response
modeling focuses on static case.
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