Motorové lože malého sportovního letounu

Engine mounts for light sport aircraft

DIPLOMOVÁ PRÁCE

2017

Josef Horký

Studijní program: Letectví a kosmonautika
Studijní obor: Letadlová a kosmická technika
Vedoucí práce: Ing. Tomáš Sommer
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

<table>
<thead>
<tr>
<th>Příjmení:</th>
<th>Horký</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jméno:</td>
<td>Josef</td>
</tr>
<tr>
<td>Osobní číslo:</td>
<td>410862</td>
</tr>
<tr>
<td>Fakulta/ústav:</td>
<td>Fakulta strojní</td>
</tr>
<tr>
<td>Zadávající katedra/ústav:</td>
<td>Ústav letadlové techniky</td>
</tr>
<tr>
<td>Studijní program:</td>
<td>Letectví a kosmonautika</td>
</tr>
<tr>
<td>Studijní obor:</td>
<td>Letadlová a kosmická technika</td>
</tr>
</tbody>
</table>

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:
Motorové lože malého sportovního letounu

Název diplomové práce anglicky:
Engine mount for light sport aircraft

Pokyny pro vypracování:
- Rešeršte možných úprav vybraného pohonného agregátu
- Konstrukční návrh zástavby pohonného agregátu do trupu letounu se zaměřením na motorové lože
- Stanovení zatížení motorového lože
- Pevnostní kontrola motorového lože a jeho uložení v trupu
- Hmotový rozbor a stanovení polohy těžiště motorového lože, motoru a jeho příslušenství

Seznam doporučené literatury:
Dle pokynů vedoucího

Jméno a pracoviště vedoucího diplomové práce:
Ing. Tomáš Sommer, ústav letadlové techniky FS

Jméno a pracoviště druhého vedoucího nebo konzultanta(ky) diplomové práce:

Datum zadání diplomové práce: 28.04.2017
Termín odevzdání diplomové práce: 07.08.2017

Podpis vedoucího práce
Podpis vedoucího ústavu/katedry
Podpis dekana(ky)

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samoamatně, bez cizí pomoci a s výjimkou poasmu byl jednou konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání: 28.4.2017
Podpis studenta

CVUT-CZ-ZDP-2015.1 © ČVUT v Praze, Design: ČVUT v Praze, VfC
Prohlášení

Předkládám tímto k posouzení a obhajobě diplomovou práci, zpracovanou na závěr studia
na Fakultě strojní ČVUT v Praze.

Nemám závažný důvod proti užívání tohoto školního díla ve smyslu § 60 Zákona
č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně
některých zákonů (autorský zákon).

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité
informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských
závěrečných prací.

V Praze dne 7. srpna 2017

……………………………………………
podpis
Poděkování

Obsah

1. Úvod ... 1

1.1 Základní informace o letounu UL-39 Albi .. 1

1.2 Konstrukční popis motoru ROTAX 1503 4-TECH ... 4

1.2.1 Sání motoru ... 6

1.2.2 Výfuková soustava .. 6

1.2.3 Chladící soustava .. 7

1.2.4 Mazací soustava .. 8

1.2.5 Palivový systém .. 8

1.2.6 Elektrický systém .. 9

2. Návrh zástavby pohonné jednotky do draku letounu .. 10

2.1 Umístění motoru v draku letounu ... 10

2.2 Konstrukční návrh motorového lože .. 10

2.2.1 Nosníkové lože .. 11

2.2.2 Motorové lože prutové (příhradové) ... 12

2.2.3 Uložení motoru na kompozitních podpěrách ... 13

2.3 Konstrukční úpravy motoru a jeho systémů ... 15

2.3.1 Sání motoru .. 15

2.3.2 Výfuková soustava .. 16

2.3.3 Chladící soustava ... 17

2.3.4 Mazací soustava .. 19

2.3.5 Motorové komponenty ... 19

3. Pevnostní kontrola motorového lože .. 22

3.1 Požadavky stavebních předpisů ... 22

3.1.1 Případy zatížení podle předpisů UL – 2 a CS – VLA .. 23

3.2 Stanovení zatížení motorového lože .. 24

3.2.1 Souřadný systém letounu ... 24

3.2.2 Zatížení motorového lože .. 24

3.2.3 Numerický výpočet zatížení ... 25

3.3 Výpočet reakcí motorového lože ... 28

3.3.1 Souřadný systém motoru ... 28

3.3.2 Analytický výpočet .. 29

3.3.2.1 Rovnice rovnováhy ... 29

3.3.2.2 Výpočet – I. příbližení ... 30

3.3.2.3 Výpočet – deformační metoda .. 32

3.3.2.4 Zkouška tuhosti silentbloků ... 36

3.3.3 Výpočet metodou konečných prvků ... 41

3.3.4 Tabulka reakcí závěsů motoru ... 42

3.4 Pevnostní kontrola motorového lože ... 43

3.4.1 Příprava výpočtu motorového lože .. 43

3.4.2 Návrh skladby kompozitního materiálu podpěr .. 44

3.4.3 Výpočet a vyhodnocení výsledků analýzy MKP .. 49

3.5 Pevnostní kontrola šroubů .. 53

3.6 Pevnostní kontrola lepeného spoje ... 58
4. Hmotový rozbor .. 62
 4.1 Motor a jeho příslušenství .. 62
 4.2 Motorové lože .. 63
5. Závěr ... 65
6. Seznam použité literatury ... 66
7. Přílohy .. 68
 7.1 Změřené tuhostní charakteristiky silentbloků .. 68
 7.2 Zdrojový kód analytického výpočtu reakcí (Matlab R2012b) 72
 7.3 Vlastnosti použitých materiálů (kompozitní podpěry) a lepidla 75
 7.4 Pevnostní kontrola šroubů .. 76
 7.5 Pevnostní kontrola lepeného spoje .. 79
Seznam obrázků

Obr. 1 Schéma propulzního systému ... 2
Obr. 2 Třípohledový výkres letounu .. 3
Obr. 3 Výkonové charakteristiky motoru v režimu standart a sport (predikce) 5
Obr. 4 Model motoru Rotax 1503 ... 5
Obr. 5 Schéma sací soustavy ... 6
Obr. 6 Schéma výfukové soustavy .. 7
Obr. 7 Chlazení výfuku a intercooleru ... 7
Obr. 8 Schéma chladičové soustavy .. 8
Obr. 9 Umístění pohoné jednotky v draku letounu ... 10
Obr. 10 Nosníkové lože ... 11
Obr. 11 Prutové lože .. 12
Obr. 12 Uložení na kompozitních podpěrách .. 13
Obr. 13 Závitová vložka (M8x1,25) .. 14
Obr. 14 Uložení silentbloku na podpěře ... 14
Obr. 15 Vzduchový filtr KN RU-3103 HBK ... 15
Obr. 16 Intercooler ... 15
Obr. 17 Soustava sání ... 16
Obr. 18 Výfuková soustava .. 17
Obr. 19 Chladič motocyklu Yamaha R1 (2009-2011) ... 18
Obr. 20 Spojení chladiče s vodním čerpadlem ... 18
Obr. 21 Plnící hrdlo - originál .. 19
Obr. 22 Navržené plnící hrdlo .. 19
Obr. 23 Kompresor ET 70-145 ... 20
Obr. 24 Hliníkové sací potrubí ... 20
Obr. 25 Ojnice ... 20
Obr. 26 Vačková hřídel .. 21
Obr. 27 Setrvačník Zdroj .. 21
Obr. 28 Ozub. kolo vačkové hřídele ... 21
Obr. 29 Sací a výfukový ventil .. 21
Obr. 30 Obálka provozních nádobků (min. hmotnost) .. 22
Obr. 31 Schéma souřadného systému letadla včetně kladných smyslů momentů 24
Obr. 32 Rozklad setrvačných sil F na složkyFx a Fz v souřadním s. letadla 25
Obr. 33 Souřadný systém motoru ... 28
Obr. 34 Zatížení od tihy a kroučitého momentu motoru ... 29
Obr. 35 Princip určení ramen sil .. 30
Obr. 36 Zvolené souřadné systémy O, X1, Y1, Z1 a CG, X2, Y2, Z2 32
Obr. 37 Souřadný systém motoru - nezatíženého (A, B, C), zatíženého (A', B', C') vnější sílou a momentem .. 34
Obr. 38 Model silentbloku B (přední) .. 36
Obr. 39 Model silentbloku A (C - boční) ... 36
Obr. 40 Závěs A (C) umístěný v přípravku .. 36
Obr. 41 Způsob měření tuhosti silentbloku ... 37
Obr. 42 Schéma modelu motoru pro výpočet reakcí MKP ... 41
Obr. 43 Síťový model .. 44
Obr. 44 Skladby materiálu podpěry A ... 45
Obr. 45 Podpěra B - skladba materiálu ... 47
Obr. 46 Směry materiálu v laminátu .. 49
Obr. 47 Součinitel poruchy kompozitu (zatížení č. 4, podpěra A) 50
Obr. 48 Součinitel poruchy kompozitu (zatížení č. 8, podpěra B) 51
Obr. 49 Součinitel poruchy kompozitu (zatížení č. 3, podpěra C) 51
Obr. 50 Schéma zatížení silentbloku (rovina XY) .. 53
Obr. 51 Schéma zatížení silentbloku (roviny YZ a XZ) ... 53
Obr. 52 Schéma zatížení lepeného spoje .. 58
Obr. 53 Normálové reakce spoje .. 59
Obr. 54 Polohy těžiště (modře-lože, zeleně-motor, červeně-motor+lože+příslušenství) 64
Seznam tabulek

Tab. 1 Základní parametry motoru Rotax 1503 ... 4
Tab. 2 Prediktované hodnoty výkonu .. 5
Tab. 3 Havarijní násobky dle předpisu UL-2 .. 23
Tab. 4 Početní zatížení – minimální hmotnost letounu .. 26
Tab. 5 Početní zatížení - maximální hmotnost letounu .. 27
Tab. 6 Boční a havarijní zatížení .. 27
Tab. 7 Velikosti jednotlivých úhlů a spojnic ... 31
Tab. 8 Přehled tuhostí silentbloků .. 38
Tab. 9 Výsledky - deformační metoda .. 40
Tab. 10 Reakce v závěsech od G a Mk řešené analytický a MKP 42
Tab. 11 Reakce závěsů motoru od vybraného zatížení .. 42
Tab. 12 Podpěra A - skladba č. 1 ... 45
Tab. 13 Podpěra A - skladba č. 2 ... 45
Tab. 14 Podpěra A - skladba č. 3 ... 46
Tab. 15 Podpěra C - skladba č. 1 ... 46
Tab. 16 Podpěra C - skladba č. 2 ... 46
Tab. 17 Podpěra C - skladba č. 3 ... 47
Tab. 18 Podpěra B - skladba č. 1 ... 47
Tab. 19 Podpěra B - skladba č. 2 ... 48
Tab. 20 Podpěra B - skladba č. 3 ... 48
Tab. 21 Celkové součinitele poruchy kompozitu ... 52
Tab. 22 Hmotnosti komponentů motoru zatěžující lože .. 62
Tab. 23 Hmotnosti komponentů příslušenství nezatěžující lože 63
Tab. 24 Poloha těžiště motoru (blok+kompresor, čerpadlo, olej. chladič) 63
Tab. 25 Hmotnosti komponentů motorového lože .. 63
Tab. 26 Těžiště motorového lože .. 63
Tab. 27 Celková hmotnost pohonného agregátu .. 63
Tab. 28 Poloha těžiště pohonného agregátu .. 64
Tab. 29 Materiály skladby kompozitních podpěr .. 75
Tab. 30 Vlastnosti lepidla ... 75

Seznam příloh

Změřené tuhostní charakteristiky silentbloků
Zdrojový kód analytického výpočtu reakcí (Matlab R2012b)
Vlastnosti použitých materiálů (kompozitní podpěry) a lepidla
Pevnostní kontrola šroubů
Pevnostní kontrola lepeného spoje
Výkresová dokumentace
Seznam použitých symbolů

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Jednotka</th>
<th>Oznámení</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>{}</td>
<td>úhel náběhu</td>
</tr>
<tr>
<td>d</td>
<td>[mm]</td>
<td>průměr</td>
</tr>
<tr>
<td>E</td>
<td>[Nmm$^{-2}$]</td>
<td>modul pružnosti v tahu</td>
</tr>
<tr>
<td>f</td>
<td>[-]</td>
<td>součinitel bezpečnosti</td>
</tr>
<tr>
<td>F</td>
<td>[N]</td>
<td>obecná síla</td>
</tr>
<tr>
<td>F_T</td>
<td>[N]</td>
<td>posouvací síla</td>
</tr>
<tr>
<td>F_{FI}</td>
<td>[-]</td>
<td>součinitel porušení kompozitu</td>
</tr>
<tr>
<td>G</td>
<td>[N]</td>
<td>tihová síla</td>
</tr>
<tr>
<td>g</td>
<td>[m.s$^{-2}$]</td>
<td>tihové zrychlení</td>
</tr>
<tr>
<td>j</td>
<td>[-]</td>
<td>jistota</td>
</tr>
<tr>
<td>J</td>
<td>[mm4]</td>
<td>moment setrvačnosti průřezu šroubu</td>
</tr>
<tr>
<td>K</td>
<td>[N.mm$^{-1}$]</td>
<td>tuhost</td>
</tr>
<tr>
<td>m</td>
<td>[kg]</td>
<td>hmotnost</td>
</tr>
<tr>
<td>m_{eng}</td>
<td>[kg]</td>
<td>hmotnost motoru</td>
</tr>
<tr>
<td>M</td>
<td>[N.mm]</td>
<td>moment síly</td>
</tr>
<tr>
<td>M_k</td>
<td>[N.m]</td>
<td>kroutící moment</td>
</tr>
<tr>
<td>M_{kk}</td>
<td>[N.m]</td>
<td>utahovací moment šroubu</td>
</tr>
<tr>
<td>M_{TH}</td>
<td>[N.m]</td>
<td>třeci moment pod hlavou šroubu</td>
</tr>
<tr>
<td>M_z</td>
<td>[N.m]</td>
<td>kroutící moment v dříku šroubu</td>
</tr>
<tr>
<td>μ</td>
<td>[-]</td>
<td>Poissonovo číslo</td>
</tr>
<tr>
<td>n</td>
<td>[-]</td>
<td>násobek tihového zrychlení</td>
</tr>
<tr>
<td>n_b</td>
<td>[-]</td>
<td>provozní násobek v bočném směru</td>
</tr>
<tr>
<td>n_H</td>
<td>[-]</td>
<td>havarijní násobek</td>
</tr>
<tr>
<td>P</td>
<td>[W]</td>
<td>výkon motoru</td>
</tr>
<tr>
<td>Q_0</td>
<td>[N]</td>
<td>montážní předpětí šroubu</td>
</tr>
<tr>
<td>ρ</td>
<td>[kg.m$^{-3}$]</td>
<td>hustota materiálu</td>
</tr>
<tr>
<td>S_3</td>
<td>[mm2]</td>
<td>plocha řezu šroubu</td>
</tr>
<tr>
<td>S_l</td>
<td>[mm2]</td>
<td>plocha lepeného poje</td>
</tr>
<tr>
<td>S</td>
<td>[Nmm$^{-2}$]</td>
<td>podélná mez pevnosti ve smyku kompozitu</td>
</tr>
<tr>
<td>σ_N</td>
<td>[Nmm$^{-2}$]</td>
<td>normálové napětí</td>
</tr>
<tr>
<td>σ_{1, σ_2}</td>
<td>[Nmm$^{-2}$]</td>
<td>normálové napětí v kompozitu (směr 1, 2)</td>
</tr>
<tr>
<td>σ_{red}</td>
<td>[Nmm$^{-2}$]</td>
<td>redukované napětí</td>
</tr>
<tr>
<td>σ_{pt}</td>
<td>[Nmm$^{-2}$]</td>
<td>napětí na mezí pevnosti materiálu</td>
</tr>
<tr>
<td>τ</td>
<td>[Nmm$^{-2}$]</td>
<td>smykové napětí</td>
</tr>
<tr>
<td>u</td>
<td>[mm]</td>
<td>deformace</td>
</tr>
<tr>
<td>x_T, y_T, z_T</td>
<td>[mm]</td>
<td>souřadnice těžiště</td>
</tr>
<tr>
<td>X, Y, Z</td>
<td>[-]</td>
<td>osy souřadného systému letadla</td>
</tr>
<tr>
<td>X_1, Y_1, Z_1</td>
<td>[-]</td>
<td>osy souřadného systému spojeného ze zemí (nehybné)</td>
</tr>
<tr>
<td>X_2, Y_2, Z_2</td>
<td>[-]</td>
<td>osy souřadného systému motoru</td>
</tr>
<tr>
<td>X_T, Y_T</td>
<td>[Nmm$^{-2}$]</td>
<td>mez pevnosti v tahu kompozitu (směr 1,2)</td>
</tr>
<tr>
<td>X_C, Y_C</td>
<td>[Nmm$^{-2}$]</td>
<td>mez pevnosti v tlaku kompozitu (směr 1,2)</td>
</tr>
</tbody>
</table>
Seznam použitých zkratek

BMW Bayerische Motoren Werke
CS-VLA Certifikační specifikace ultralehkých letadel
EFI Electronic fuel injection systém (elektronické vstřikování paliva)
EMS Systém řízení motoru
HP Horsepower (koňská síla, 1HP = 745,7W)
NACA National Advisory Commitee for Aeronautics
Rotax BRP-Rotax GmbH & Co KG (rakouský výrobce motorů)
SLZ Sportovní létající zařízení
SOHC Single Over Head Camshaft (rozhod s jednou vačkovou hřídelí)
SOP Svislá ocasní plocha
UL Ultralehké letadlo
UL-2 Certifikační specifikace ultralehkých letadel
VOP Vodorovná ocasní plocha

Seznam použitých programů

Microsoft Word
Microsoft Excel
MATLAB R2012b
NX 8.5
Abstrakt

Abstract

The subject of the thesis is proposal for installation of the Rotax 1503 4-tech engine into the aircraft UL-39 Albi. The project is mainly focused on engine mounts, which is designed in accordance with regulations UL-2 and CS-VLA. Further, modifications of selected engine systems are proposed to meet the operational requirements of ultra-light flying. On the basis of regulations is defined load of chosen mounts. Then a load strength analysis is performed. Finally, the resulting mass of drive unit including the mount is calculated and the position of their center of gravity is determined.

Klíčová slova
Letoun, motor, motorové lože, motorové soustavy, stavební předpis, zatížení, reakce, pevnostní kontrola, hmotový rozbor, těžiště

Key words
Aircraft, engine, engine mounts, engine systems, certification specifications, load, reaction force, strength analysis, mass analysis, center of gravity
1. Úvod

Letoun UL-39 Albi, vyvíjený na Ústavu letadlové techniky ČVUT, je jedním zástupcem ve své kategorii poháněný dmychadlovým propulzním systémem. Pohon ventilátoru zajišťuje v současné době motor ze sportovního motocyklu BMW S1000RR. Tento motor byl ve své době zvolen s ohledem na příznivý poměr výkonu a hmotnosti. Výkon motoru (výrobce uvádí 142 kW) je ale dosažen při poměrně vysokých otáčkách (13 000 ot/min). Takto vysoké otáčky je třeba redukovat pro optimální provoz dmychadla.

1.1 Základní informace o letounu UL-39 Albi

Letoun UL-39 Albi je jednomotorový, dvoumístný, celokompozitový dolnoplošník kategorie ultralight, určený pro sportovní létní, či výcvik pilotů. Koncepce letounu vychází z kategorie aerodynamicky řízených sportovních létajících zařízení (SLZ) stavebního předpisu UL-2 a zároveň vyhovuje požadavkům předpisu CS-VLA.

Samosnose lichoběžníkové krídlo s hlavním průběžným nosníkem a dvojicí pomocných nosníků je vybaveno Fowlerovou vztakovou klapkou a koncovými vřeteny. Kořenový profil s tloušťkou 13 % (profil MS 0313) je vůči základní rovině trupu natočen o úhel 2°. Krídlo má vzepětí 4° a je geometricky krouceno 3° tak, že koncový profil s tloušťkou 10 % (MS 0310) je natočen o úhel -1° (vzhledem k základní rovině trupu).

Přímý hlavní nosník leží v 37,5 % hloubky profilu. Pomocí dvojice podélných čepů je uchycen k centropále letounu. Spolu s pomocným šikmým nosníkem tvoří podvozkovou šachtu. V místě jejich styku je umístěn závěs hlavního podvozku. Pomočný nosník je uchycen k motorové přepážce podélným čepem.

Vztaková klapka má relativní hloubku 30 %. Nastavuje se do tří poloh: 0° (let na hladině), 15° (vzlet) a 35° (přístání). Křidélko, s relativní hloubkou 37 %, má krajní dolní polohu 19° a horní 27°. Je osově aerodynamicky odlehčeno a hmotově vyváženo.

Součástí krídla je dvojice integrálních nádrží, která vyplňuje prostor vymezený hlavním nosníkem, dvěma žeby a přední pomocnou přepážkou.
Ocasní plochy jsou klasického uspořádání, dělené na pevnou část a kormidlo. Na VOP i SOP je použit symetrický profil NACA 0012. Relativní hloubka směrového a výškového kormidla je 40%.

Pohonná jednotka letounu sestává z dmychadlového propulzního systému. Ten je tvořen pístovým spalovacím motorem, vstupními kanály, předstatoru, nízkotlakým axiálním ventilátoru, statorem a výstupním kanálem s tryskou. Celý systém je schematicky znázorněn na následujícím obrázku. [2]

Proud vzduchu vstupuje do propulzního systému přes vstupní ústrojí na bocích trupu. Součástí ústrojí jsou řezače mezní vrstvy, které separují vrstvy vzduchu s nízkou kinetickou energií. Dále je proud veden dvojicí bočních kanálů (kalhot) k předstatoru nízkotlakého ventilátoru. Ten vytváří vhodné proudové pole pro rotor, který je poháněn pístovým spalovacím motorem. Ventilátor je koncipován tak, aby výstupní proud vzduchu měl

Obr. 1 Schéma propulzního systému;
Zdroj: Helmich, Sommer: Konstrukční úpravy motoru pro pohon ventilátoru

Samotná hřídel je složena ze tří částí – kovová hřídel motoru, kompozitní transmisní hřídel a hřídel rotoru. Transmisní tenkostěnná hřídel je slepěna s přírubami (unašeči) obou hřídelí. Hřídel rotoru je uložena ve valivém ložisku ve statoru. Toto ložisko přenáší axiální sílu (tah) a značnou část radiálních sil od ventilátoru přes statorové lopatky do trupu letounu. Motorová hřídel je spojena se samotným motorem pomocí drážkování (soukovo tvar) přenášející pouze radiální síly. Toto řešení umožňuje malou nesouosost transmisní soustavy. [2]

Obr. 2 Třípohledový výkres letounu
1.2 Konstrukční popis motoru ROTAX 1503 4-TECH

Rotax 1503 4-TECH je zážehový, tříválcový, čtyřtaktní, řadový motor o objemu 1493,8 cm³. Motor je určený primárně pro pohon vodních skútrů, z čehož pramení určitá konstrukční řešení, s nimiž se v letectví nesetkáváme. Na druhé straně tato pohonná jednotka vykazuje velmi dobrý poměr hmotnosti a výkonu při nižším počtu otáček. Z toho důvodu není nutné upravovat otáčky na výstupní hřídeli reduktorem. Výstupní hřídel je navíc v ose symetrie motoru, což je výhodné z hlediska nároků na zástavbu do trupu letounu. Tyto výhodné vlastnosti motoru předurčují jeho možnou aplikaci v letectví.

Motor je přeplňovaný radiálním kompresorem, který je mechanicky spojen s klikovou hřídelí. Stlačený vzduch je ochlazován v chladiči (intercooleru) tak, aby se zvýšila jeho hustota a tím se do spalovacího prostoru válce nasálo větší množství vzduchu. V sacích kanálech je vzduch smíšen s palivem prostřednictvím elektronicky řízených trysek a následně je ve válci stlačen v kompresním poměru 8,4:1.

Ventilový rozvod motoru je typu SOHC. Tedy jediná vačková hřídel umístěna v hlavě válců ovládá přes vahadla všech 12 ventilů. Dva ventily pro sání a dva pro výfuk na jediném válci zlepšují plnění motoru vzduchem a zároveň odvod spalin ze spalovací komory. [3] Základní parametry motoru jsou shrnuty v následující tabulce.

<table>
<thead>
<tr>
<th>Technické údaje motoru</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objem [cm³]</td>
<td>1493,8</td>
</tr>
<tr>
<td>Výkon při otáčkách [kw]</td>
<td>193,9 (260 HP)/8000</td>
</tr>
<tr>
<td>Točivý moment při otáčkách [Nm]</td>
<td>242 (7500)</td>
</tr>
<tr>
<td>Počet válců</td>
<td>3</td>
</tr>
<tr>
<td>Uspořádání válců</td>
<td>řadové</td>
</tr>
<tr>
<td>Rozvod</td>
<td>SOHC</td>
</tr>
<tr>
<td>Počet ventilů</td>
<td>12</td>
</tr>
<tr>
<td>Dvoudobý/čtyřdobý</td>
<td>4</td>
</tr>
<tr>
<td>Vrtání [mm]</td>
<td>100</td>
</tr>
<tr>
<td>Zdvih [mm]</td>
<td>63,4</td>
</tr>
<tr>
<td>Sání vzduchu</td>
<td>přeplňováno kompresorem+intercooler</td>
</tr>
<tr>
<td>Příprava směsi</td>
<td>vstřikovací trysky</td>
</tr>
<tr>
<td>Kompresní poměr</td>
<td>8,4:1</td>
</tr>
<tr>
<td>Max. otáčky-static./dynamic.</td>
<td>8000/8300</td>
</tr>
<tr>
<td>Chlazení</td>
<td>kapalinové (uzavřené)</td>
</tr>
<tr>
<td>Typ mazání</td>
<td>suchá kliková skříň</td>
</tr>
<tr>
<td>Elektrická soustava</td>
<td>12V, 360W</td>
</tr>
<tr>
<td>Hmotnost [kg] (včetně příslušenství)</td>
<td>89</td>
</tr>
</tbody>
</table>

Zdroj: Bombardier Recreational Products Inc. 2012 4-TECH SHOP MANUAL
Ve výpočtech v této práci budou využity hodnoty výkonu a krouticího momentu změřené na motorové brzdě. Průběhy těchto parametrů jsou převzaty ze zprávy TZP/ULT/23/15 [4].

Znaměřených parametrů jsou převzaty hodnoty predikovaných výkonů motoru v režimu sport se vzduchovým mezhladičem (viz Tab. 2). V této konfiguraci bude motor pravděpodobně provozován.

<table>
<thead>
<tr>
<th>Výkon motoru [W]</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzletový (8000 ot/min)</td>
<td>181600</td>
</tr>
<tr>
<td>Max. trvalý (6000 ot/min)</td>
<td>117800</td>
</tr>
</tbody>
</table>
1.2.1 Sání motoru

Radiální kompresor pracuje už při volnoběžném režimu. Jeho otáčky jsou 5,4x větší než otáčky klikové hřídele, se kterou je mechanicky spojen. Tlaková diference vzduchu před a za kompresorem je 65 kPa (9,5 psi). [3]

1.2.2 Výfuková soustava

1.2.3 Chladičí soustava

Chladicí kapalina rovněž ochlazuje prostřednictvím samostatného tepelného výměníku motorový olej.

Systém je monitorován pomocí teplotního čidla, které je umístěno na hlavě válců. [5]
1.2.4 Mazací soustava

Mazání motoru zajišťuje soustava s tzv. suchou klikovou skříní. Z čehož vyplývá, že olej je shromažďován v olejové vaně, odkud je přes filtr tlakovým čerpadlem vháněn do soustavy. Tlakové čerpadlo je zubového typu poháněné vyvažovací hřídelí. Olej je nejprve ochlazen ve výměníku a poté je přes filtr přiváděn pod písty, k ložiskům klikového ústrojí, k rozvodům a ke kompresoru. Zpět do olejové vany je odsáván sacím čerpadlem, umístěným na přední straně motoru u plnicího hrdla.

Tlak oleje v soustavě je usměrňován tlakovým regulátorem pružinového typu. Hodnota tlaku je monitorována pomocí tlakového čidla. Pohybuje se v rozmezí od 228 – 500 kPa v závislosti na otáčkách a teplotě motoru. Celá soustava pojme 4,5 l oleje. [3]

1.2.5 Palivový systém

Celá soustava je monitorována pomocí senzorů a elektricky řízena prostřednictvím systému EFI (Electronic fuel injection system). [3]
1.2.6 Elektrický systém

Systém zapalování
Parametry zapalovacího okruhu jako např. časování zážehu, doba zážehu a pořadí zapalování jsou kontrolovány systémem řízení motoru (EMS) tak, aby vyhověly provozním požadavkům. Systém EMS je schopen detekovat řadu abnormit, např. zkrat jak v primárním vinutí cívky, tak i v přidružených obvodech. Pokud systém vyšle signál k primárnímu vinutí cívky, pak se na cívce sekundárního vinutí indukuje vysoké napětí, jehož důsledkem je přeskočení jiskry na zapalovací svíčce. Systém omezuje otáčky motoru na hodnotu 8300 ot/min prostřednictvím redukce dodávky paliva a časování zážehu. [3]

Dobíjecí soustava
Účelem soustavy je během provozu udržovat baterii v plně nabitém stavu a poskytovat elektrickou energii závislým systémům pro jejich správný chod. Základem celé soustavy je magneto, které transformuje magnetické pole na střídavý elektrický proud o výkonu 380 W. Pomocí usměrňovače a přepěťového regulátoru se střídavý proud transformuje na stejnosměrný o maximálním napětí, aby nešlo k poškození elektrických komponentů. Během startu pomáhá dynamu baterie roztocit motor a zásobit elektřinou všechny připojené systémy. Baterie rovněž podporuje magneto v režimu nízkých otáček motoru a současně vysoké proudové zátěži. [3]
2. Návrh zástavby pohoné jednotky do draku letounu

2.1 Umístění motoru v draku letounu

Motor je uložen ve střední části trupu za motorovou přepážkou, aby bylo vyhověno několika požadavkům. Základní požadavek je umístění v blízkosti významných hmot, a tedy co nejblíže těžišti letounu. Dále pak byla zohledněna potřeba vhodného přístupu v rámci pravidelných kontrol draku a určitá kompaktnost celého propulzního systému. Poloha motoru je určena osou klikového hřídele, která musí být shodná s osou transmisní hřídele ventilátoru.

Instalace motoru bude realizována přes odnímatelnou přední motorovou přepážku. V provozu bude zajištěn přístup k motoru montážními otvory pod řezači mezní vrstvy. [2]

Obr. 9 Umístění pohoné jednotky v draku letounu

2.2 Konstrukční návrh motorového lože

Prostřednictvím motorového lože se pohoná jednotka spojuje s drakem. Na jeho konstrukci jsou kladeny základní požadavky:

- Minimální hmotnost při maximální pevnosti a tuhosti
- Pružné spojení motoru a draku
- Snadný přístup a výměna motoru včetně jeho příslušenství
- Možnost nastavení osy motoru v daných směrech
- Vhodná distribuce zatížení do okolní konstrukce
- Zamezení přenosu tepelných deformací motoru do okolní konstrukce draku

2.2.1 Nosíkové lože
Nosíkové lože se nejčastěji využívá u řadových pístových motorů. Lože se obvykle skládá ze dvou nosníků, na které je přes čtveřici čepů uchycen motor [6].

Nevýhodou tohoto uložení by byla jeho vyšší hmotnost a větší zastavěný prostor. Dále by okolní konstrukce v místě závěsů byla vystavena větším lokálním zatížením.

V této variantě byly pod tělesa silentbloků vloženy distanční podložky, které vymezují prostor mezi nimi a vodorovným rámem tak, aby nekolidovala zadní část rámu s výstupní hřídelí (viz Obr. 10). Další možnou variantou je podélné natočení rámu, aby na něj přímo dosedaly boční silentbloky. Toto řešení je hmotnostně výhodnější, ale vyžaduje potočení bočních silentbloků o příslušný úhel a překlenutí výstupní hřídele.

Obr. 10 Nosíkové lože
2.2.2 Motorové lože prutové (příhradové)

Při návrhu se vycházelo z pravidla o uložení motoru v prutovém loži. Tedy uchycení nejméně jednoho bodu motoru ve třech bodech a jednoho bodu motoru uchyceném do dvou bodů motorové přepážky. Takto navržené lože by mělo dostatečně třimětloukté vyvážené nevyvážené hmoty a akceleraci motoru. [1]

Výhodou této koncepce je její relativně nižší hmotnost. Naopak prostorová dispozice motoru a ploché podstavy silentbloků neumožňují použití většího množství táhel a tím i výraznější distribuci zatížení, vyšší tuhost a bezpečnost při poruše konstrukce.

Obr. 11 Prutové lože
2.2.3 Uložení motoru na kompozitních podpěrách

Tato varianta uložení motoru je tvořena třemi podpěrami, na jejichž rovné (kontaktní) plochy přímo dosedají silentbloky. Tyto podpěry jsou vyrobeny z kompozitního materiálu, který předurčuje výhodné mechanické vlastnosti. Mezi ně patří rozhodující nízká hmotnost a poměrně dobrá tuhost závěsu. Zároveň se jedná o výhodné řešení z hlediska prostorové zástavby a zatížení okolní konstrukce. Naopak nevýhodou této koncepce je minimální možnost stavitelnosti. Tělesa (základny) silentbloků jsou vybavena otvory pro šroubové spojení s podpěrami. Tyto otvory mají větší průměr než je průměr šroubu. Tedy umožňují určité horizontální nastavení. Vertikální stavění je pak v omezené míře možné docíлит pomocí distančních podložek pod základny silentbloků. Aby bylo možné realizovat šroubové spojení, jsou dosedací plochy podpěr vybaveny duralovými vložkami (inserty) se závity (Obr. 13).

Závěsy jsou olemovány tak, aby mohly být přilepeny k okolní konstrukci (přední závěs k motorové přepážce a boční závěsy k sacím kanálům). Tento spoj bude značně namáhán na odlup, který je možné omezit následným přelaminováním. Okolní konstrukci (zejména sací kanály) bude pravděpodobně nutné vyztužit, aby byla schopna přenést dané zatížení.

Po zvážení všech aspektů byla tato varianta uložení motoru zvolena jako nejvhodnější a bude tedy dále rozpracována. Materiály a skladba kompozitu budou definovány a optimalizovány v rámci pevnostní analýzy podpěr (kap. 3.4.2).

Obr. 12 Uložení na kompozitních podpěrách
Obr. 13 Závitová vložka (M8)

Obr. 14 Uložení silentbloku na podpěře
2.3 Konstrukční úpravy motoru a jeho systémů

Motor Rotax 1503 a jeho systémy jsou primárně navrženy pro aplikaci ve vodních skútrech. Tedy některá konstrukční řešení nejsou příliš vhodná pro leteckou aplikaci a vyžadují úpravy. V následující části budou navrženy modifikace některých soustav (vyjma palivové a elektrické) v souladu se stavebními předpisy UL-2 a CS-VLA. Především bude brán zřetel na zjednodušování soustav a tedy snižování hmotnosti při zachování dané úrovně spolehlivosti.

2.3.1 Sání motoru

V navržené soustavě sání není využit vstupní tlumič a přívodní hadice, které jsou značně náročné na zastavěný prostor. Vzduch je nasáván přes filtr umístěný přímo na kompresoru. Filtr zamezuje nasátí nečistot do soustavy. Stlačený vzduch je veden hadicemi do intercooleru, kde se ochladí nikoliv o chladicí vodu, ale o okolní vzduch (viz Obr. 17). Dále je veden zpět přes škrtsící klapku do airboxu, ze kterého je vyjmut původní filtr.

Umístění mezichladiče je zvoleno ve spodní části motorového prostoru poblíž přepážky, ke které může být upevněn. Zároveň je zde dostatek prostoru pro vedení poměrně objemných hadic, aniž by došlo k jejich deformaci. Hadice mohou být vyrobeny jako gumové (problematická malosériová výroba) případně kompozitní.

2.3.2 Výfuková soustava

Navržený výfukový systém (viz Obr. 18) zcela nahrazuje ten původní. Je tvořen jednoduchou soustavou tří trubek spojených v jedinou s větším průměrem, jež co nejrychleji odvádí spaliny mimo drak letounu. Soustava bude značně tepelně namáhána, neboť se neuvádí s vodním chlazením. Z toho důvodu bude pravděpodobně potřebná izolace v blízkosti potrubí tak, aby se snížilo tepelné ovlivnění okolní konstrukce a ohřev chladiče vzduchu intercooleru.

Součástí výfukového potrubí je tlumič, který snižuje hlukovou zátěž. Může být rovněž využit jako výměník tepla pro vytažení kabiny letounu.

Výfuková soustava nebyla žádným způsobem optimalizována pro použitý motor Rotax 1503. Cílem návrhu systému bylo odhadnout jeho hmotnost a zastavěný prostor.
2.3.3 Chladičí soustava

Aplikace otevřeného okruhu chladičí soustavy (chlazení intercooleru a výfuku) již z principu není uvažována. Navržené změny uzavřeného okruhu chlazení se dotkly zejména chladiče a přívodních hadic. Původní chladič (voda – chladič kapalina) byl nahrazen vzduchovým a zároveň došlo k uspořádání hadic v závislosti na umístění výměníku ve výstupním kanálu. V systému je použit hliníkový chladič z motocyklu Yamaha R1 (2009-2011), který je vybaven plnicím hrdlem s tlakovým uzávěrem (otevírací tlak – 1,1 kPa). Úzavěr je tvořen přetlakovým a podtlakovým ventilem, jehož účelem je redukce tlaku v systému. Při ohřátí chladičí kapaliny vzniká v soustavě přetlak, který zvyšuje bod varu kapaliny. Tím se zvyšuje účinnost motoru a zároveň se umožňuje jeho provoz ve výšších nadmořských výškách. Při ohřevu se z chladičí kapaliny uvolňují výpary, které se mohou přes ven protlačit z systému. Po ochlazení kapaliny je přes podtlakový ventil nasán vzduch, který vyrovná tlak systému s okolím. Tím se zamezí deformace stěn chladiče. [9]

Průměry výstupů vodního čerpadla a chladiče nejsou shodné. Z tohoto důvodu jsou v soustavě použity redukční prvky, které umožní spojení obou členů hadicemi o konstantním průměru. Výsledný průměr hadice je určen rozměrem výstupů chladiče (menší průměr) tak, aby se redukovala hmotnost. Tento typ hadic je volně dostupný na trhu.

Obr. 19 Chladič motocyklu Yamaha R1 (2009-2011)

Obr. 20 Spojení chladiče s vodním čerpadlem
2.3.4 Mazací soustava

Systém mazání motoru plně vyhovuje požadavkům stavebních předpisů, a tedy není nutné provádět významné modifikace. Navržené úpravy se dotklý pouze plnicího hrdla olejové soustavy. To původní bylo zcela nahrazeno novým, neboť kolidovalo s přední motorovou přepážkou (viz obr. 21)

Nařízené plnicí hrdlo je upraveno tak, aby umožnilo snadné doplnění oleje přes montážní otvor pod řezačem mezní vrstvy.

2.3.5 Motorové komponenty

Kompresor
Přeplňování přispívá významnou měrou k celkovému výkonu motoru. Kompresor ET 70-145 zvyšuje plnící tlak o 18-20 psi (124-138 kPa) oproti sériovému 9,5 psi (65 kPa) díky většímu průměru radiálního kola. [10]

Airbox
Možnou úpravou sacího okruhu je použití hliníkových sacích potrubí od společnosti Wilson Manifolds (viz Obr. 24). Oproti originálnímu plastovému potrubí tento typ podle výrobce zlepšuje průtok vzduchu a tím i výkon motoru. Měl by vykazovat vyšší spolehlivost a stabilitu při vyšším přetlaku. [11]

Ojnice
Společnost Carrillo nabízí odlehčené ojnice, které by měly zvýšit výkon a spolehlivost motoru. Jedná se o výkovky z vysokopevnostní slitiny navržené pro výkon motoru přesahující 500 HP. Jejich předností je nižší hmotnost (celkem 3x168 = 504 g) a vyšší pevnost oproti originálnímu dílu. To se projeví na rychlejším roztočení motoru a delším setrvání ve vyšších otáčkách. [11]
Vačková hřídel
Upravená vačková hřídel, vyrobená z oceli AISI 8620, vykazuje nižší hmotnost a vyšší pevnost oproti sériové. Umožňuje nárůst max. otáček až o 250-300 a zvýšení špičkového výkonu o 20 HP. [10]

Obr. 26 Vačková hřídel; Zdroj: PWC Performance Store [11]

Odlehčený setrvačník a ozubené kolo vačkové hřídele
Odlehčené rotační komponenty se díky nižšímu momentu setrvačnosti snadněji roztáčí, což napomáhá k rychlejšímu vytáčení motoru.
Upravený setrvačník od firmy Rotax je lehčí oproti originálu o 460 g, kolo vačkové hřídele pak o 59 g. [11]

Obr. 27 Setrvačník

Obr. 28 Ozub. kolo vačkové hřídele

Upravené ventily saní a výfuku
Upravené ventily vykazují vyšší pevnost a nižší hmotnost oproti originálním. Sací ventil má hmotnost 42 g a výfukový 40 g. Upravená geometrie hlav ventilu zlepšuje průtok směsi/spalin. Sací ventily jsou vyrobeny z nerezové oceli, odolávající korozi, výfukové pak z inconelu, odolávající vysokým teplotám. Stopky ventilu jsou chromované. [11]

Obr. 29 Sací a výfukový ventil;
3. Pevnostní kontrola motorového lože

3.1 Požadavky stavebních předpisů

Provozní zatížení

Početní zatížení

Početní (mezni) zatížení je provozní zatížení vynásobené příslušným součinitelem bezpečnosti. V konstrukci, zatížené po dobu nejméně 3 sekund na početní zatížení, nesmí dojít k poruše (časový limit neplatí pro dynamicky namáhané konstrukce). Při pevnostní kontrole bude motorové lože zatíženo právě početním zatížením, neboť bude ověřováno, zda nedojde k porušení kompozitní konstrukce.

Součinitel bezpečnosti nebojí bezpečnostní násobek je v případě kompozitních konstrukcí tvořen základním násobkem (1,5) a rozšiřujícím součinitelem (1,5). Tento součinitel

Obr. 30 Obálka provozních násobků (min. hmotnost); Autor: Brabec, Jiří. ULT FS ČVUT
zohledňuje nejistotu ve výrobě nebo v kontrole kompozitních konstrukcí. [13] Výsledný součinitel je pak roven:

\[f = 1,5 \cdot 1,5 = 2,25 \]

(1)

3.1.1 Případy zatížení podle předpisů UL – 2 a CS – VLA

a) Zatížení motorového lože

1. Provozním krouticím momentem při vzletovém výkonu motoru v kombinaci se 75% provozním zatížením v bodě 1 obálky obratů \((n = 4)\).

2. Provozním krouticím momentem při max. trvalém výkonu motoru v kombinaci s provozním zatížením v bodě obálky 1. Obdobným způsobem bude počítáno zatížení i v ostatních bodech obálky.

Velikost provozního krouticího momentu se vypočte vynásobením středního (průměrného) krouticího momentu při vzletovém nebo maximálním trvalém výkon motoru příslušným koeficientem. Pro čtyřdobé tříválcové motory je koeficient roven 3. [12]

b) Zatížení v bočním směru

Bočná síla se vypočte podle vztahu

\[F_r = n_b \cdot m_{\text{eng}} \cdot g \]

(2)

kde \(n_b\) \((-\) je obratový (provozní) násobek zatížení v bočním směru, \(m_{\text{eng}}\) [kg] je hmotnost motoru včetně příslušenství a \(g\) \([m \cdot s^{-2}]\) je tihové zrychlení.

Podle předpisu UL – 2 je \(n_b\) roven jedné třetině provozního násobku v bodě 1 obálky obratů. Podle předpisu CS – VLA je \(n_b\) roven hodnotě 1,33.

c) Zatížení při nouzovém přistání

Je-li pohonná jednotka umístěna za kabinou posádky, pak musí být její uložení navrženo na dopředušní havarijní (početní) násobek o velikosti 15 (CS-VLA) případně 9 (UL-2).

Dále pak předpisy stanovují zrychlení při nouzovém přistání, na která musí být motorové lože navrženo. Velikosti početního zrychlení jsou vzaty z předpisu UL-2, který stanovuje vyšší hodnoty než předpis CS-VLA.

Tab. 3 Havarijní násobky dle předpisu UL-2

<table>
<thead>
<tr>
<th>Směr zrychlení</th>
<th>Velikost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nahoru</td>
<td>4,5g</td>
</tr>
<tr>
<td>Do stran</td>
<td>3,0g</td>
</tr>
<tr>
<td>Dolů</td>
<td>4,5g</td>
</tr>
</tbody>
</table>
3.2 Stanovení zatížení motorového lože

3.2.1 Souřadný systém letounu
Zavedení souřadného systému letadla je výhodné pro následující stanovení zatížení a výpočet reakcí motorového lože. Souřadná osa X je rovnoběžná s podelnou osou trupu. Počátek souřadnic je zvolen v těžišti motoru.

3.2.2 Zatížení motorového lože
V následujících výpočtech motorového lože bude uvažováno zatížení vlivem:

a) Setrvačné síly
b) Krouticího momentu motoru

Tah dmychadla se vlivem konstrukčního uspořádání transmisní hřídele na motorové lože nepřenáší. Rovněž nebudou do výpočtu zaneseny gyroskopické momenty ventilátoru a vibrace generované pohonou jednotkou, neboť jejich přínos k celkovému zatížení je zanedbatelný. [14]

a) Setrvačné síly
Setrvačné síly působící na motor se odvíjejí od velikosti letového násobku. Největší hodnoty tak dosahují při maximálních provozních, nebo při havarijních násobcích, která jsou stanovena předpisem. Velikost setrvačné síly se stanoví podle následujícího vztahu:

\[F = n \cdot m_{\text{eng}} \cdot g \]

kde \(n [-] \) je provozní násobek

Hmotnost motoru a některých dílů příslušenství vychází z hmotnostní analýzy, která je uvedena ve zprávě TPZ/ULT/35/2014 [15]. Dále pak byly stanoveny hmotnosti dodatečných dílů fyzickým zvážením nebo výpočtem v programu NX 8.5. Celková hmotnost motoru včetně příslušenství tak činí 98,6 kg. Hmotnosti jednotlivých dílů a poloha těžiště jsou uvedeny v části Hmotový rozbor (kap 4.).
Setrvačná síla je dále rozložena na jednotlivé složky ve směru souřadných os X a Z podle vztahů:

\[F_x = F \cdot \sin \alpha \]
\[F_z = F \cdot \cos \alpha \]

kde \(\alpha \ [\degree] \) je úhel mezi podélnou osou trupu a směrem nabíhajícího proudu vzduchu (viz Obr. 32)

Obr. 32 Rozklad setrvačné síly \(F \) na složky \(F_x \) a \(F_z \) v souřadném s. letadla

b) Krouticí moment motoru

Kroučitý moment na výstupní hřídeli je zachycen v uložení motoru. Jeho velikost je dána následujícím vztahem.

\[M_k = \frac{P}{2 \cdot \pi \cdot \frac{n_{mot}}{60}} \]

kde \(P \ [W] \) je výkon a \(n_{mot} \ [\text{ot/min}] \) otáčky motoru

3.2.3 Numerický výpočet zatížení

Podle uvedených vztahů budou vypočteny velikosti provozních a havarijních zatížení odpovídající jednotlivým předpisovým případům.

Ad 3.1.1 a) 1.

Vzletový výkon je uvažovaný výkon motoru při max. otáčkách (8000 ot/min). Predikovaná hodnota tohoto výkonu motoru v režimu sport se vzduchovým mezichladičem je 181600 W (viz Tab. 2).

\[M_k = 3 \cdot \frac{P_{\text{max,vzlet}}}{2 \cdot \pi \cdot \frac{n}{60}} = 3 \cdot \frac{181600}{2 \cdot \pi \cdot \frac{8000}{60}} = 650,307 \text{ Nm} \]

\[F = -0,75 \cdot n \cdot m_{eng} \cdot g = -0,75 \cdot 4 \cdot 98,6 \cdot 9,81 = -2901,798 \text{ N} \]
Ad 3.1.1 a) 2.
Max. trvalý výkon je uvažovaný výkon motoru při 75% max. otáček (8000 ot/min), tedy při 6000 ot/min. Predikovaná hodnota tohoto výkonu je 117 800 W. [4]

\[
M_k = 3 \cdot \frac{P_{\text{max,trval}}}{2 \cdot \pi \cdot \frac{n}{60}} = 3 \cdot \frac{117800}{2 \cdot \pi \cdot \frac{6000}{60}} = 562,454 \text{ Nm}
\] (8)

\[
F = -n \cdot m_{\text{eng}} \cdot g = -4 \cdot 98,6 \cdot 9,81 = -3869,064 \text{ N}
\] (9)

Obdobně budou stanovena provozní zatížení v ostatních bodech obálky odpovídající minimální a maximální vzletové hmotnosti letounu.

Ad 3.1.1 b) Boční zatížení
UL-2: \[F_Y = n_b \cdot m_{\text{eng}} \cdot g = \frac{1}{3} \cdot 4 \cdot 98,6 \cdot 9,81 = 1289,688 \text{ N} \]
CS-VLA: \[F_Y = n_b \cdot m_{\text{eng}} \cdot g = 1,33 \cdot 98,6 \cdot 9,81 = 1288,646 \text{ N} \] (10)

Ad 3.1.1 c) Zatížení při nouzovém přistání
Výpočet zatížení v dopředném směru:
UL-2: \[F_X = n_H \cdot m_{\text{eng}} \cdot g = 9 \cdot 98,6 \cdot 9,81 = 8705,394 \text{ N} \]
CS-VLA: \[F_X = n_H \cdot m_{\text{eng}} \cdot g = 15 \cdot 98,6 \cdot 9,81 = 14508,997 \text{ N} \] (11)

Vypočtená provozní zatížení byla následně vynásobena součinitelem bezpečnosti. Tím se stanovila početní zatížení motorového loži, která spolu s havarijním zatížením byla přepočítána do souřadného systému letadla a uvedena v následujících tabulkách.
Dále pak byla vybrána a očíslována zatížení, která budou podkladem pro výpočet reakcí a pevnostní kontrolu uložení motoru.

<table>
<thead>
<tr>
<th>Zatížení</th>
<th>n [-]</th>
<th>(\alpha) [']</th>
<th>F [N]</th>
<th>Fz [N]</th>
<th>Fx [N]</th>
<th>FY [N]</th>
<th>(M_k) [Nm]</th>
<th>Číslo [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bod obálky</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4,0</td>
<td>10,3</td>
<td>-6529,0</td>
<td>-6424,6</td>
<td>-1163,2</td>
<td>1463,2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4,0</td>
<td>-0,2</td>
<td>-8705,4</td>
<td>-8566,1</td>
<td>-1550,9</td>
<td>1265,5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,0</td>
<td>-3,4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1265,5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1,5</td>
<td>-4,6</td>
<td>3264,5</td>
<td>3254,1</td>
<td>-260,5</td>
<td>1265,5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-2,0</td>
<td>-10,0</td>
<td>4352,7</td>
<td>4286,3</td>
<td>-757,2</td>
<td>1265,5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1,0</td>
<td>-10,0</td>
<td>2176,3</td>
<td>2143,2</td>
<td>-378,6</td>
<td>1265,5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1,0</td>
<td>0</td>
<td>-2176,3</td>
<td>-2176,3</td>
<td>-1,4</td>
<td>1265,5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1,0</td>
<td>-2,6</td>
<td>-2176,3</td>
<td>-2174,2</td>
<td>97,6</td>
<td>1265,5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5,4</td>
<td>5</td>
<td>-11816,4</td>
<td>-11771,0</td>
<td>-1034,4</td>
<td>1265,5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4,1</td>
<td>-0,1</td>
<td>-8865,3</td>
<td>-8865,3</td>
<td>15,8</td>
<td>1265,5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-2,1</td>
<td>-5,0</td>
<td>4512,6</td>
<td>4495,2</td>
<td>-396,2</td>
<td>1265,5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>-3,4</td>
<td>-8,7</td>
<td>7463,7</td>
<td>7378,3</td>
<td>-1125,6</td>
<td>1265,5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>Bod obály</td>
<td>1</td>
<td>4,0</td>
<td>16,6</td>
<td>6529,0</td>
<td>6257,7</td>
<td>-1862,6</td>
<td>1463,2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4,0</td>
<td>16,6</td>
<td>-8705,4</td>
<td>-8343,7</td>
<td>-2483,4</td>
<td>1265,5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4,0</td>
<td>1,3</td>
<td>-8705,4</td>
<td>-8703,1</td>
<td>-201,4</td>
<td>1265,5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0,0</td>
<td>-3,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>-1,5</td>
<td>-5,1</td>
<td>3264,5</td>
<td>3251,4</td>
<td>-292,1</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-2,0</td>
<td>-13,1</td>
<td>4352,7</td>
<td>4239,5</td>
<td>-986,2</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-1,0</td>
<td>-13,1</td>
<td>2176,3</td>
<td>2119,8</td>
<td>-493,1</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1,0</td>
<td>1,6</td>
<td>-2176,3</td>
<td>-2175,5</td>
<td>-61,3</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1,0</td>
<td>-2,2</td>
<td>-2176,3</td>
<td>-2174,7</td>
<td>83,5</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4,5</td>
<td>6,8</td>
<td>-9829,9</td>
<td>-9759,8</td>
<td>-1171,4</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>3,4</td>
<td>0,7</td>
<td>-7486,9</td>
<td>-7486,4</td>
<td>-87,3</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>-1,4</td>
<td>-5,1</td>
<td>3134,2</td>
<td>3122,0</td>
<td>-276,6</td>
<td>1265,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-2,5</td>
<td>-9,1</td>
<td>5477,2</td>
<td>5408,8</td>
<td>-862,9</td>
<td>1265,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Boční zatížení</td>
<td>UL-2</td>
<td>1,333</td>
<td></td>
<td></td>
<td></td>
<td>2901,8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CS-VLA</td>
<td>1,333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2894,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Havarijní zatížení</td>
<td>UL-2</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>8705,4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CS-VLA</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14509,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL-2</td>
<td>4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2901,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL-2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2901,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL-2</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2901,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL-2</td>
<td>-4,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2901,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 Výpočet reakcí motorového lože

3.3.1 Souřadný systém motoru

Souřadný systém motoru (CG, X₂, Y₂, Z₂) je znázorněn na následujícím obrázku. Počátek souřadnic je zvolen v těžišti motoru (CG), které bylo vypočteno na základě měření úhlů mezi referenčními body při zavěšování motoru v definovaných bodech. [2]

Motor je podepřen ve třech závěsech (bodech) označených dle obrázku A, B a C. Spojnice jednotlivých bodů závěsů s počátkem souřadnic jsou značeny Ra, Rb a Rc.

Zvolený souřadný systém motoru pro výpočet reakcí tvoří osa X₂, která je rovnoběžná s osou krouticího momentu na výstupní hřídeli a zároveň je rovnoběžná s osou X souřadného systému letounu. Osu Y₂ určuje spojnice vedená z bodu A do bodu C a osa Z₂ je kolmá na rovinu X₂Y₂ (pravotočivý souřadný systém).

Obr. 33 Souřadný systém motoru
3.3.2 Analytický výpočet

V rámci analytického výpočtu byl model motoru zjednodušen a nahrazen absolutně tuhými prvky (spojnicemi) Ra, Rb a Rc. Tyto prvky osově přenášejí zatížení od tíhy a krouticího momentu motoru do jednotlivých závěsů, kde vzniká odpovídající reakce v příslušném směru.

3.3.2.1 Rovnice rovnováhy

Sилová rovnováha v jednotlivých směrech:

\[
\begin{align*}
X_2 : \sum_{i=1}^{3} F_{Xi} &= 0 \rightarrow F_{XA} + F_{XB} + F_{XC} = 0 \\
Y_2 : \sum_{i=1}^{3} F_{Yi} &= 0 \rightarrow F_{YA} + F_{YB} + F_{YC} = 0 \\
Z_2 : \sum_{i=1}^{3} F_{Zi} &= 0 \rightarrow F_{ZA} + F_{ZB} + F_{ZC} = G
\end{align*}
\]

Momentová rovnováha kolem bodu A

\[
\begin{align*}
M_{XA} : \sum_{i=1}^{3} (F_{zi} \cdot r_{yi} - F_{yi} \cdot r_{zi}) - G \cdot r_{yg} - M_k &= 0 \\
M_{YA} : \sum_{i=1}^{3} (F_{xi} \cdot r_{zi} - F_{zi} \cdot r_{xi}) + G \cdot r_{xs} &= 0 \\
M_{ZA} : \sum_{i=1}^{3} (F_{xi} \cdot r_{yi} - F_{yi} \cdot r_{xi}) &= 0
\end{align*}
\]

kde \(r\) vyjadřuje ramena sil, tj. nejkratší vzdálenosti jednotlivých bodů od nositelek sil. Jejich určení vychází z Obr. 35

Soustavu tvoří šest rovnic rovnováhy s devěti neznámými. Z toho vyplývá, že konstrukce je třikrát staticky neurčitá. K jejímu řešení byly zvoleny dva přístupy.
3.3.2.2 Výpočet – I. přibližení

Jednou z možností je zjednodušení soustavy na tři rovnice o třech neznámých. Tento přístup plyne z úvahy dominantních reakcí ve směru osy Z₂ (vlivem tíhy motoru a krouticího momentu) oproti zbylým směrům (X₂, Y₂). Výhodou tohoto přístupu je značně jednoduchý a rychlý výpočet, který dává uspokojivé výsledky ve směru osy Z₂.

Po prvotní úvaze \(F_X = F_Y = 0 \) je zjednodušená soustava tvořena rovnicemi:
\[
Z_2: \sum_{i=1}^{3} F_{Zi} = 0 \rightarrow F_{Z_A} + F_{Z_B} + F_{Z_C} - G = 0 \tag{18}
\]
\[
M_{X_A}: \sum_{i=1}^{3} (F_{Zi} \cdot r_{Yi}) - G \cdot r_{YG} - M_K = 0 \tag{19}
\]
\[
M_{Y_A}: \sum_{i=1}^{3} (-F_{Zi} \cdot r_{Xi}) + G \cdot r_{XG} = 0 \tag{20}
\]

Po aplikaci reakcí v jednotlivých bodech:
\[
M_{X_A}: F_{ZC} \cdot r_{YC} + F_{ZB} \cdot r_{YB} - G \cdot r_{YG} - M_K = 0 \tag{21}
\]
\[
M_{Y_A}: -F_{ZC} \cdot r_{XC} - F_{ZB} \cdot r_{XB} + G \cdot r_{XG} = 0 \tag{22}
\]

Na následujícím obrázku je znázorněn princip určení ramen sil \(r \), který je následně využit při jejich výpočtu.

Obr. 35 Princip určení ramen sil
Velikosti jednotlivých úhlů a spojnic Ra, Rb a Rc byly odměřeny z modelu motoru v programu NX 8.5 a zaznamenány do následující tabulky.

<table>
<thead>
<tr>
<th>Bod</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>R [mm]</td>
<td>301</td>
<td>296</td>
<td>314</td>
</tr>
<tr>
<td>α [°]</td>
<td>16,981</td>
<td>-</td>
<td>17,564</td>
</tr>
<tr>
<td>β [°]</td>
<td>46,012</td>
<td>8,858</td>
<td>44,935</td>
</tr>
<tr>
<td>γ [°]</td>
<td>-</td>
<td>7,241</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
r_{\gamma_c} = R_c \cdot \cos \alpha_c \cdot \sin \beta_c + R_A \cdot \cos \alpha_a \cdot \sin \beta_a =
\]

\[
= 296 \cdot \cos 17,564 \cdot \sin 44,935 + 301 \cdot \cos 16,981 \cdot \sin 46,012 = 407 \text{ mm}
\]

\[
r_{\gamma_b} = R_b \cdot \cos \gamma_b \cdot \sin \beta_b + R_A \cdot \cos \alpha_A \cdot \sin \beta_A =
\]

\[
= 314 \cdot \cos 7,241 \cdot \sin 8,858 + 301 \cdot \cos 16,981 \cdot \sin 46,012 = 255 \text{ mm}
\]

\[
r_{\gamma_g} = R_A \cdot \cos \alpha_A \cdot \sin \beta_A = 301 \cdot \cos 16,981 \cdot \sin 46,012 = 207 \text{ mm}
\]

\[
r_{x_c} = 0 \text{ mm}
\]

\[
r_{x_b} = R_b \cdot \cos \gamma_b \cdot \cos \beta_b + R_A \cdot \cos \alpha_A \cdot \cos \beta_A =
\]

\[
= 314 \cdot \cos 7,241 \cdot \cos 8,858 + 301 \cdot \cos 16,981 \cdot \cos 46,012 = 508 \text{ mm}
\]

\[
r_{x_g} = R_A \cdot \cos \alpha_A \cdot \cos \beta_A = 301 \cdot \cos 16,981 \cdot \cos 46,012 = 200 \text{ mm}
\]

Velikost provozního krouticího momentu při max. trvalém výkonu motoru je dle rovnice (8) rovna:

\[
M_k = 562,454 \text{ Nm}
\]

Velikost tíhy motoru při násobku \(n = 1 \):

\[
G = m_{eng} \cdot g = 98,6 \cdot 9,81 = 967,266 \text{ N}
\]

(23)

Následným dosazení hodnot do rovnic (18), (21) a (22) získáme soustavu o třech neznámých:

\[
F_{Z_A} + F_{Z_B} + F_{Z_C} = 967,266
\]

\[
255 \cdot F_{Z_B} + 407 \cdot F_{Z_C} = 762,678
\]

\[
508 \cdot F_{Z_B} + 0 \cdot F_{Z_C} = 193,453
\]

Výpočet soustavy rovnic byl proveden v programu Matlab R2012b. Jeho řešení je:

\[
F_{Z_A} = -1049 \text{ N}; F_{Z_B} = 381 \text{ N}; F_{Z_C} = 1635 \text{ N}
\]
3.3.2.3 Výpočet – deformační metoda
Tato metoda vychází z popisu pohybu tělesa (motoru) pomocí kinematických veličin. Tyto charakteristiky vyjadřují rovněž pohyb jednotlivých bodů tělesa, jehož poloha v prostoru je jednoznačně určena šesti nezávislými parametry. V tomto výpočtu bude poloha tělesa popsána souřadnicemi těžiště motoru \((X_{CG}, Y_{CG}, Z_{CG})\) a úhly natočení tělesa kolem jednotlivých os \((\varphi_X, \varphi_Y, \varphi_Z)\).

Pohyb tělesa bude popisován v základním nehybném prostoru definovaným souřadným systémem \((O, X_1, Y_1, Z_1)\) a v prostoru pevně spojeném s motorem – systém \((CG, X_2, Y_2, Z_2)\). Nutnou podmínkou výpočtu touto metodou je znalost tuhostí pružných členu v systému – silentbloků, na nichž je motor usazen.

Obr. 36 Zvolené souřadné systémy \(O, X_1, Y_1, Z_1\) a \(CG, X_2, Y_2, Z_2\)
Pohyb motoru v prostoru (pohyb souřadného systému CG, X₂, Y₂, Z₂ v souřadném systému O, X₁, Y₁, Z₁) popisuje rozšířená transformační matice \(T_{12} \). Tuto matici je možné vyjádřit součinem základních matic.

\[
T_{12} = T_X(X_{1CG}) \cdot T_Y(Y_{1CG}) \cdot T_Z(Z_{1CG}) \cdot S_X(\varphi_X) \cdot S_Y(\varphi_Y) \cdot S_Z(\varphi_Z)
\] (24)

\(T_X(X_{1CG}) \) popisuje posuvný pohyb těžiště motoru podél osy \(X_1 \)

\[
T_X(X_{1CG}) =
\begin{bmatrix}
1 & 0 & 0 & X_{1CG} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (25)

\(T_Y(Y_{1CG}) \) popisuje posuvný pohyb těžiště motoru podél osy \(Y_1 \)

\[
T_Y(Y_{1CG}) =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & Y_{1CG} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (26)

\(T_Z(Z_{1CG}) \) popisuje posuvný pohyb těžiště motoru podél osy \(Z_1 \)

\[
T_Z(Z_{1CG}) =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & Z_{1CG} \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (27)

\(S_X(\varphi_X) \) popisuje rotaci souřadného systému CG, X₂, Y₂, Z₂ kolem osy \(X_1 \), vyjádřenou Cardanovým úhlem \(\varphi_X \)

\[
S_X(\varphi_X) =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \varphi_X & -\sin \varphi_X & 0 \\
0 & \sin \varphi_X & \cos \varphi_X & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (28)

\(S_Y(\varphi_Y) \) popisuje rotaci souřadného systému CG, X₂, Y₂, Z₂ kolem osy \(Y_1 \), vyjádřenou Cardanovým úhlem \(\varphi_Y \)

\[
S_Y(\varphi_Y) =
\begin{bmatrix}
\cos \varphi_Y & 0 & \sin \varphi_Y & 0 \\
0 & 1 & 0 & 0 \\
-\sin \varphi_Y & 0 & \cos \varphi_Y & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\] (29)

\(S_Z(\varphi_Z) \) popisuje rotaci souřadného systému CG, X₂, Y₂, Z₂ kolem osy \(Z_1 \), vyjádřenou Cardanovým úhlem \(\varphi_Z \)

\[
S_Z(\varphi_Z) =
\begin{bmatrix}
\cos \varphi_Z & -\sin \varphi_Z & 0 \\
\sin \varphi_Z & \cos \varphi_Z & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\] (30)
Celkové natočení souřadného systému CG, X₂, Y₂, Z₂ vzhledem k systému O, X₁, Y₁, Z₁ popisuje matice směrových kosinů S₁₂

Matice směrových kosinů, vyjádřena Cardanovými úhly, se vypočte jako součin matic základních rotačních pohybů:

\[
(c = \cos, s = \sin)
\]

\[
S_{12} = S_X(\varphi_X) \cdot S_Y(\varphi_Y) \cdot S_Z(\varphi_Z) =
\]

\[
= \begin{bmatrix}
c\varphi_Y c\varphi_Z & -c\varphi_Y s\varphi_Z & s\varphi_Y \\
c\varphi_X s\varphi_Z + s\varphi_X s\varphi_Y c\varphi_Z & c\varphi_X c\varphi_Z - s\varphi_X s\varphi_Y s\varphi_Z & -s\varphi_X c\varphi_Y \\
s\varphi_X s\varphi_Z - c\varphi_X s\varphi_Y c\varphi_Z & s\varphi_X c\varphi_Z + c\varphi_X s\varphi_Y s\varphi_Z & c\varphi_X c\varphi_Y
\end{bmatrix}
\] (31)

Transformační matice obecného prostorového pohybu motoru je dána vztahem:

\[
T_{12} = \begin{bmatrix}
S_{12} & X_{1\text{CG}} \\
0 & Y_{1\text{CG}} \\
0 & Z_{1\text{CG}}
\end{bmatrix}
\] (32)

Na následujícím obrázku je znázorněn průvodič bodu A v zatíženém a nezatíženém stavu. Obdobně lze nahlížet na body B, C a CG. Tyto průvodiče jsou popsány dále.

Obr. 37 Souřadný systém motoru - nezatíženého (A, B, C), zatíženého (A', B', C') vnější silou a momentem
Vektor \mathbf{r}_{1A} je průvodič bodu A závěsu motoru, který není zatižen vnějšími silami a momenty (viz Obr. 37). Vyjádření \mathbf{r}_{1A} v základním souřadném systému:

$$\mathbf{r}_{1A} = [X_{1A} \ Y_{1A} \ Z_{1A}]^T$$

Obdobné vyjádření vektorů $\mathbf{r}_{1B}, \mathbf{r}_{1C}$ a \mathbf{r}_{1CG}

$$\mathbf{r}_{1B} = [X_{1B} \ Y_{1B} \ Z_{1B}]^T$$
$$\mathbf{r}_{1C} = [X_{1C} \ Y_{1C} \ Z_{1C}]^T$$
$$\mathbf{r}_{1CG} = [X_{1CG} \ Y_{1CG} \ Z_{1CG}]^T$$

Vektory Ra, Rb a Rc mají konstantní velikost, neboť se motor uvažuje za dokonale tuhé těleso. Směr vektoru se rovněž nemění, neboť se při zatížení natáčí spolu se souřadným systémem motoru.

Vyjádření vektoru Ra, Rb a Rc v souřadném systému motoru:

$$\mathbf{R}_{a} = [X_{2A} \ Y_{2A} \ Z_{2A}]^T$$
$$\mathbf{R}_{b} = [X_{2B} \ Y_{2B} \ Z_{2B}]^T$$
$$\mathbf{R}_{c} = [X_{2C} \ Y_{2C} \ Z_{2C}]^T$$

Vektory $\mathbf{r}_{1A}', \mathbf{r}_{1B}', \mathbf{r}_{1C}'$ a \mathbf{r}_{1CG}' představují průvodiče jednotlivých bodů závěsu a těžiště motoru zatíženého příslušným krouticím momentem a vnější silou.

Pro tyto průvodiče platí vztahy:

$$\mathbf{r}_{1A}' = T_{12} \cdot \mathbf{R}_{a}$$
$$\mathbf{r}_{1B}' = T_{12} \cdot \mathbf{R}_{b}$$
$$\mathbf{r}_{1C}' = T_{12} \cdot \mathbf{R}_{c}$$
$$\mathbf{r}_{1CG}' = T_{12} \cdot [0 \ 0 \ 0 \ 1]^T$$

Rozdíl vektoru $\mathbf{r}_{1A}' - \mathbf{r}_{1A}$ je poté roven posunutí bodu A podél osy X_1, Y_1 a Z_1 (obdobně pro body B, C a CG).

$$\mathbf{r}_{1A}' - \mathbf{r}_{1A} = [\Delta X_{1A} \ \Delta Y_{1A} \ \Delta Z_{1A}]^T$$
$$\mathbf{r}_{1B}' - \mathbf{r}_{1B} = [\Delta X_{1B} \ \Delta Y_{1B} \ \Delta Z_{1B}]^T$$
$$\mathbf{r}_{1C}' - \mathbf{r}_{1C} = [\Delta X_{1C} \ \Delta Y_{1C} \ \Delta Z_{1C}]^T$$
$$\mathbf{r}_{1CG}' - \mathbf{r}_{1CG} = [\Delta X_{1CG} \ \Delta Y_{1CG} \ \Delta Z_{1CG}]^T$$

Po výpočtu posunutí jednotlivých bodů závěsu v souřadném systému O, X_1, Y_1, Z_1 je pro další postup třeba znát tuhosti jednotlivých silentbloků. Proto jim bude věnována následující část.
3.3.2.4 Zkouška tuhosti silentbloků

Znalost tuhostí jednotlivých silentbloků ve směrech určených osami souřadného systému CG, X₂, Y₂, Z₂ je nezbytná pro pokračující výpočty reakcí v závěsech motoru. Závěsy motoru jsou tvořeny základnou, na které je navulkanizovaná polyuretanová pryž. Základna, vyrobená ze slitiny hliníku 6061 T6, se uvažuje za dokonale tuhé těleso. Silentblok výrazným způsobem omezuje přenos vibrací a rázů mezi motorem a ložem. Tuhost silentbloku ovlivňuje jeho vlastní frekvenci. Ta by měla být v provozních otáčkách motoru vyšší než vlastní frekvence motorového lože.

Výrobce nezveřejňuje informaci o tuhostech silentbloků, a proto je nutné je naměřit.

Principem zkoušky je deformace pryže (u) silou (F) o známé velikosti. Z hodnoty deformace a sily je pak podle rovnice (33) možné stanovit tuhost pryže (K) v daném směru.

\[F = K \cdot u \tag{33} \]

Přední silentblok je symetrický, a proto je jeho deformace měřena pouze ve směru osy Z₂ a X₂. Boční silentblok byl nejprve vyhodnocen ve třech osách souřadného systému s vodorovně uloženou základnou (viz obr. 39). Poté byl upnut do přípravku, který natočil souřadný systém o úhel \(\varphi_X = 30^\circ \) a zajistil tak vodorovnou stykovou plochu silentbloku (viz obr. 40).
Postup měření

Silentblok (a), pevně uchycen k základně, je přes snímač síly (b) zatěžován plynule rostoucí silou generovanou hydraulickým válcem. Vlivem zatížení vzniká deformace, která je přes strunu přenášena na polohoměr (c). Hodnoty síly a deformace jsou vzorkovány a ukládány do programu catmanEASY.

![Obr. 41 Způsob měření tuhosti silentbloku](image)

Informace o senzorech

<table>
<thead>
<tr>
<th>Snímač síly</th>
<th>Polohoměr - lineární potenciometr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snímání síly</td>
<td>Výrobce</td>
</tr>
<tr>
<td>Výrobce</td>
<td>HBH</td>
</tr>
<tr>
<td>Tolerance</td>
<td>±5%</td>
</tr>
</tbody>
</table>

| **Výrobce** | VISHAY | **Typ** | 534 |
| **Linearita** | ±0,25% |

![Graf 1 Tuhost silentbloku B ve směru osy Z₂](graf.png)

Souhrnný přehled tuhostí silentbloků v jednotlivých směrech zobrazuje následující tabulka.

<table>
<thead>
<tr>
<th>Osa</th>
<th>Přední silentblok (B)</th>
<th>Boční silentblok (A, C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tuhosti K [N/mm]</td>
<td>φₓ = 30°</td>
</tr>
<tr>
<td>X₂</td>
<td>60</td>
<td>81</td>
</tr>
<tr>
<td>Y₂</td>
<td>60</td>
<td>88</td>
</tr>
<tr>
<td>Z₂</td>
<td>336</td>
<td>662</td>
</tr>
</tbody>
</table>

Z výsledků měření je patrná dominantní tuhost silentbloku ve směru osy Z₂, tedy ve směru největšího zatížení.
Při znalosti tuhostí silentbloků, je možné reakce v závěsech motoru vyjádřit následujícími vztahy:

\[
\begin{align*}
\vec{F}_A &= -K_A \cdot (\vec{r}_{1A}' - \vec{r}_{1A}) = -K_A \cdot (T_{12} \cdot \vec{r}_{2A} - \vec{r}_{1A}) \tag{34} \\
\vec{F}_B &= -K_B \cdot (\vec{r}_{1B}' - \vec{r}_{1B}) = -K_B \cdot (T_{12} \cdot \vec{r}_{2B} - \vec{r}_{1B}) \tag{35} \\
\vec{F}_C &= -K_C \cdot (\vec{r}_{1C}' - \vec{r}_{1C}) = -K_C \cdot (T_{12} \cdot \vec{r}_{2C} - \vec{r}_{1C}) \tag{36}
\end{align*}
\]

kde \(K_A, K_B, K_C \) jsou tuhostní diagonální matice, vyjadřující tuhosti silentbloků v jednotlivých směrech

\[
K = \begin{bmatrix}
K_X & 0 & 0 \\
0 & K_Y & 0 \\
0 & 0 & K_Z
\end{bmatrix}
\tag{37}
\]

Reakce motoru v jednotlivých závěsech se získají řešením soustavy tvořenou šesti rovnicemi rovnováhy. Rovnice jsou vztažené k počátku základního souřadného systému \((O, X_1, Y_1, Z_1)\).

\[
\vec{F}_A + \vec{F}_B + \vec{F}_C - [0 \ 0 \ 0]^T = 0 \tag{38}
\]

\[
\vec{r}_{1A}' \times \vec{F}_A + \vec{r}_{1B}' \times \vec{F}_B + \vec{r}_{1C}' \times \vec{F}_C - \vec{r}_{1CC}' \times \vec{G} - [M_K \ 0 \ 0 \ 0]^T = 0 \tag{39}
\]

Dosazením výrazů (34-36) do rovnic (38 a 39) získáme následující soustavu:

\[
\begin{align*}
K_A \cdot (T_{12} \cdot \vec{r}_{2A} - \vec{r}_{1A}) + K_B \cdot (T_{12} \cdot \vec{r}_{2B} - \vec{r}_{1B}) + K_C \cdot (T_{12} \cdot \vec{r}_{2C} - \vec{r}_{1C}) - T_{12} \cdot [0 \ 0 \ 0]^T &= 0 \\
(T_{12} \cdot \vec{R}a) \times (K_A \cdot (T_{12} \cdot \vec{r}_{2A} - \vec{r}_{1A})) + (T_{12} \cdot \vec{R}b) \times (K_B \cdot (T_{12} \cdot \vec{r}_{2B} - \vec{r}_{1B})) + \\
+ (T_{12} \cdot \vec{R}c) \times (K_C \cdot (T_{12} \cdot \vec{r}_{2C} - \vec{r}_{1C})) - (T_{12} \cdot [0 \ 0 \ 0 \ 1]^T) \times ([0 \ 0 \ 0 \ 1]^T) - [M_K \ 0 \ 0 \ 0]^T &= 0
\end{align*}
\]

Newtonova metoda

Neznámými v soustavě nelineárních rovnic jsou souřadnice polohy těžiště a úhly natočení souřadných os zatíženého motoru v základním souřadném systému. Vzhledem k vazbě neznámých na geometrické funkce byla zvolena, k numerickému řešení, Newtonova metoda, též nazývaná metoda tečen.

Tato metoda nalézá řešení \(f(X_n) = 0 \) za předpokladu znalosti přibližného řešení \(X_n = [x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6]^T \) a derivace \(\frac{\partial f(x)}{\partial x} \), tedy směrnice tečny ke křivce.

Princip metody:

Hodnota \(X_n \) představuje přibližný odhad řešení. Ke křivce \(f(X) \) je v bodě \(f(X_n) \) sestrojena tečna. V průsečíku tečny a osy X vzniká nový přibližný odhad řešení \((X_{n+1}) \). Následně se celý postup opakuje, dokud hodnota \(f(X_n) \) neleží dostatečně blízko nuly. [16]
Iterační postup lze popsat následujícím vztahem:

\[X_{n+1} = X_n - J(X_n)^{-1} \cdot f(X_n) \] \hspace{1cm} (40)

Kde \(J(X_n) \) je Jacobiho matice, tvořena parciálními derivacemi:

\[
J(X_n) = \begin{bmatrix}
\frac{\partial f_1}{\partial X_1} & \cdots & \frac{\partial f_1}{\partial X_k} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_k}{\partial X_1} & \cdots & \frac{\partial f_k}{\partial X_k}
\end{bmatrix}
\hspace{1cm} (41)
\]

Soustava nelineárních rovnic byla řešena za pomoci Newtonovy metody v programu Matlab R2012b. Zdrojový kód algoritmu je součástí přílohy (kap. 7.2).

Do rovnic byla dosazena hodnota tíhy a krouticího momentu shodná s výpočtem – I. přiblížení, tedy \(G = 967,266 \) N a \(M_k = 562,454 \) Nm. Řešením soustavy rovnic je:

<table>
<thead>
<tr>
<th>Reakce</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_x)[N]</td>
<td>8,4</td>
<td>0,7</td>
<td>-9,1</td>
</tr>
<tr>
<td>(F_y)[N]</td>
<td>3,5</td>
<td>-7,0</td>
<td>3,5</td>
</tr>
<tr>
<td>(F_z)[N]</td>
<td>-1022,1</td>
<td>387,0</td>
<td>1602,3</td>
</tr>
</tbody>
</table>

Při porovnání reakcí ve směru osy \(Z_2 \) s hodnotami vypočtenými v I. přiblížení (kap. 3.3.2.2) je patrná jejich odchylka (do 3 %), způsobená příslušným zjednodušením.
3.3.3 Výpočet metodou konečných prvků

MKP model motoru

Model motoru byl vytvořen v programu NX 8.5, který obsahuje početní nástavbu NX NASTRAN. Tato programová nástavba provádí samotný výpočet metodou konečných prvků.

Motor, uvažovaný za dokonale tuhé těleso, byl nahrazen spojnicemi těžiště s jednotlivými závěsy a osou kroužícího momentu. Tyto spojnice byly modelovány pomocí jednorozměrných prvků RBAR, které se vyznačují nulovou hmotností a absolutní tuhostí. Nedefinují se u nich tedy žádné materiálové ani průřezové charakteristiky. Přenášejí zatížení pouze v osovém směru.

Silentbloky byly nahrazeny soustavou tří pružin, spojených v bodě závěsu, se směrem souřadných os. Tyto pružiny byly modelovány pomocí prvků CELAS2, u nichž se definovala tuhost v příslušném směru. Hodnoty tuhostí byly vzaty z výsledků zkoušky. Jednotlivé konce pružin byly kloubové uloženy. Byly jim tedy ponechány pouze tři stupně volnosti (rotace), což více odpovídá reálnému stavu.

Obr. 42 Schéma modelu motoru pro výpočet reakcí MKP
Zatížení motoru pro výpočet MKP
Motor byl zatížen samotnou tíhou a provozním krouticím momentem o shodné velikosti s analytickým řešením. Vypočtené hodnoty spolu s výsledky analytického řešení zobrazuje následující tabulka.

<table>
<thead>
<tr>
<th>Výpočet</th>
<th>Analytický</th>
<th>MKP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Závěs</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Fx [N]</td>
<td>8,4</td>
<td>0,7</td>
</tr>
<tr>
<td>Fy [N]</td>
<td>3,5</td>
<td>-7,0</td>
</tr>
<tr>
<td>Fz [N]</td>
<td>-1022,1</td>
<td>387,0</td>
</tr>
</tbody>
</table>

Z výsledků uvedených v tabulce vyplývá, že oba dva způsoby výpočtu reakcí motorového lože jsou shodné. V následujících výpočtech reakcí od zatížení bude proto aplikován analytický přístup, pro jeho jednoduchost a rychlé řešení.

3.3.4 Tabulka reakcí závěsů motoru

Na základě vybraného zatížení motoru (viz Tab. 4-6) byly pomocí analytického přístupu vypočteny reakce v jeho uložení. Tyto reakce budou následně využity při návrhu a pevnostní kontrole jednotlivých kompozitních podpěr pohonné jednotky. Hodnoty reakcí zobrazuje následující tabulka.

<table>
<thead>
<tr>
<th>Zatížení</th>
<th>Reakce v závěsu A</th>
<th>Reakce v závěsu B</th>
<th>Reakce v závěsu C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>480</td>
<td>4</td>
<td>1275</td>
</tr>
<tr>
<td>2</td>
<td>629</td>
<td>1</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>424</td>
<td>3</td>
<td>1018</td>
</tr>
<tr>
<td>4</td>
<td>465</td>
<td>4</td>
<td>5507</td>
</tr>
<tr>
<td>5</td>
<td>755</td>
<td>1</td>
<td>-1301</td>
</tr>
<tr>
<td>6</td>
<td>996</td>
<td>-4</td>
<td>-87</td>
</tr>
<tr>
<td>7</td>
<td>-217</td>
<td>-956</td>
<td>-416</td>
</tr>
<tr>
<td>8</td>
<td>-5717</td>
<td>65</td>
<td>-647</td>
</tr>
<tr>
<td>9</td>
<td>217</td>
<td>957</td>
<td>416</td>
</tr>
</tbody>
</table>
3.4 Pevnostní kontrola motorového lože

3.4.1 Příprava výpočtu motorového lože
Motorové lože je tvořeno podpěrami z kompozitního materiálu, jehož pevnostní kontrola analytickým způsobem je značně náročná. Z toho důvodu bylo přistoupeno k numerickému řešení metodou konečných prvků pomocí nástavby programu NX 8.5 – NX PATRAN a NX NASTRAN. Kde NX PATRAN je pre- a post-procesorem programu NX NASTRAN. Do programu NX PATRAN byly jednotlivě nahrány sestavy z modelů podpěr a silentbloků, které byly vytvořeny v NX 8.5. Podpěry ve formě ploch a silentbloky ve formě 3D těles.

1. Kompozitní podpěry
Modely podpěr byly doplněny o kruhové plochy definující závitové vložky (inserty) a otvory pro šroubové spojení se silentbloky. Sít' byla vytvořena pomocí trojúhelníkových elementů o velikosti 7 mm. Zároveň byl brán zřetel na celistvost a návaznost sítě na jednotlivých plochách. Po kontrole sítě bylo přistoupeno k definování vlastností použitých materiálů – uhlíková tkanina, skleněná tkanina, překližka a hliníková slitina 6061. Vlastnosti těchto materiálů jsou uvedeny v příloze (kap. 7.3). Dále pomocí modulu Laminate byla stanovena skladba kompozitu a kritérium, podle kterého bude vyhodnocováno porušení materiálu.

2. Silentbloky
Jednotlivé modely silentbloků byly rozděleny na dvě části – pryžovou (deformovanou) část a tuhou základnu. Na pryžové a tuhé části byly aplikovány oddělené 3D sítě s trojúhelníkovými elementy tak, aby jim bylo možné přiřadit různé materiály. Základna silentbloku je vyrobená z hliníkové slitiny 6061. Pryž bylo nutné definovat. Její izotropní materiálové vlastnosti vycházejí ze zkoušky tuhosti silentbloků. Při znalosti tuhosti a geometrie lze pomocí Hookova zákona stanovit modul pružnosti:

\[\sigma = E \cdot \varepsilon \] \hspace{1cm} (42)
\[E = \frac{F \cdot l_0}{A \cdot \Delta l} \] \hspace{1cm} (43)

kde F je zatěžující síla, \(l_0 \) je počáteční délka (výška pryže), A je střední plocha a \(\Delta l \) je změna délky

Boční silentblok: \(E = \frac{F \cdot l_0}{A \cdot \Delta l} = \frac{662,4 \cdot 28}{2550 \cdot 1} = 7,27 \ Nmm^{-2} \)

Přední silentblok: \(E = \frac{F \cdot l_0}{A \cdot \Delta l} = \frac{335,9 \cdot 39}{2462 \cdot 1} = 5,32 \ Nmm^{-2} \)

Dále pak byla převzata z materiálové databáze programu NX 8.5 hustota pryže a její Poissonovo číslo.

\[\rho = 1,2 \cdot 10^{-6} \ kgmm^{-3}; \mu = 0,4 \]

Po přiřazení materiálů silentbloku, byly jeho sítě „slepeny“ v modulu Mesh mating condition (MMC) tak, aby vytvořily jeden celek.
3. Šroubové spojení

Modely šroubů upevňující silentbloky k podpěrám pomocí závitových vložek byly nahrazeny elementy BEAM a RBE2. Elementy BEAM představují nosník definovaného průřezu (v tomto případě kruhového), přenášející kombinované zatížení tahem (tlakem), ohybem a krutem. Těmto elementům se přiřazují materiálové a průřezové charakteristiky (velikost průměru).

RBE2 jsou absolutně tuhé prvky, pevně spojené s uzly elementů, přenášející pouze osové síly. Nedefinují se u nich žádné parametry.

3.4.2 Návrh skladby kompozitního materiálu podpěr

Při návrhu jednotlivých skladeb (množství tkanin a jejich orientace) byla určující velikost a směr působícího zatížení.

1. Podpěra A

Na obrázku znázorňujícím jednotlivé skladby je souřadnou osou X určena orientace vláken 0°. Osy zobrazeného souřadného systému jsou rovnoběžné se souřadnými osami motoru.
Skladba č. 1 podpěry A (modré plochy) je tvořena šesti vrstvami uhlíkové tkaniny (viz Tab. 12). Vrstvy jsou v pořadí, v jakém jsou vkládány do negativní formy.

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina sklo 100g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>překližka</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>

Červená plocha znázorňuje oblast se skladbou č. 2. Tato skladba je složena ze šesti vrstev uhlíkové tkaniny, dvou vrstev skleněné tkaniny a překližky.

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>překližka</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>
Bílé kruhové plochy znázorňují oblasti se skladbou č. 3. Ta je shodná se skladbou č. 2. Pouze je zde místo překlížky závitová vložka. Ta je k překlížce přilepena a přelaminována tak, aby nedošlo k jejímu vytržení.

Tab. 14 Podpěra A - skladba č. 3

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina sklo 100g/m2</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>závitová vložka</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>tkanina sklo 100g/m2</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>

2. Podpěra C

Podpěra C je oproti podpěře A vystavena většímu zatížení ve směru osy Z. Z toho důvodu byla navržená skladba doplněna o jednu vrstvu uhlíkové tkaniny s orientací 45°. Základní skladba č. 1 je tak tvořena sedmi vrstvami uvedených v tabulce. Umístění jednotlivých skladeb kompozitu je shodné s podpěrou A.

Tab. 15 Podpěra C - skladba č. 1

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>

Přidaná vrstva rovněž rozšířila skladbu 2 a 3.

Tab. 16 Podpěra C - skladba č. 2

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>tkanina sklo 100g/m2</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>překlížka</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>tkanina sklo 100g/m2</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>
3. Podpěra B

Následující obrázek znázorňuje aplikaci jednotlivých skladeb. Na modrých plochách je použita skladba č. 1 se sedmi vrstvami uhlíkové tkaniny. Souřadná osa X definiuje orientaci vláken 0°.

![Obr. 45 Podpěra B - skladba materiálu](image)

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>tkanina sklo 100g/m2</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>závitová vložka</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>tkanina sklo 100g/m2</td>
<td>0,1</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>tkanina uhlík 200g/m2</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>
Skladba č. 2 (červená plocha) je vyztužena překližkou a doplněna o jednu vrstvu uhlikové (orientace 45°) a dvě vrstvy skelné tkaniny (orientace 0°).

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>překližka</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>

Skladba v místě závitových vložek je shodná se skladbou č. 2. Pouze zde není použita překližka.

<table>
<thead>
<tr>
<th>vrstva</th>
<th>materiál</th>
<th>tloušťka [mm]</th>
<th>orientace [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>závitová vložka</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>tkanina sklo 100g/m²</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>tkanina uhlík 200g/m²</td>
<td>0,2</td>
<td>0</td>
</tr>
</tbody>
</table>
3.4.3 Výpočet a vyhodnocení výsledků analýzy MKP

Výsledkem výpočtu je součinitel poruchy kompozitu (Failure index), který podle definovaných kritérií analyzuje porušení elementů. V případě, že dojde k poruše, součinitel poruchy překročí hodnotu jedna.

Výsledky také zahrnují osová a kolmá napětí vláken a Smyková napětí laminátu.

Hoffmanovo kritérium porušení

Hoffmanovo kritérium bylo zvoleno pro výpočet součinitele poruchy materiálu. Jedná se o interaktivní kritérium. Tedy zahrnuje vazbu mezi normálovými složkami napětí a mezi normálovými a smykovými složkami napětí. [17]

Vyjádření Hoffmanova kritéria porušení pro rovinnou napjatost v rovině vrstvy laminátu:

\[
FI = \frac{\sigma_1^2}{X_TX_C} - \frac{\sigma_1\sigma_2}{X_TX_C} + \frac{\sigma_2^2}{Y_TX_C} - \frac{(X_T - X_C)}{X_TX_C} \sigma_1^2 - \frac{(Y_T - Y_C)}{Y_TX_C} \sigma_2^2 + \left(\frac{\tau_{12}}{S}\right)^2 < 1,0 \tag{44}
\]

\[X_T, Y_T [\text{Nmm}^{-2}]\] – meze pevnosti v tahu ve směru podélném, příčném na vrstvu
\[X_C, Y_C [\text{Nmm}^{-2}]\] – meze pevnosti v tlaku ve směru podélném, příčném na vrstvu
\[S [\text{Nmm}^{-2}]\] – podélná mez pevnosti ve smyku
\[\sigma_1, \sigma_2 [\text{Nmm}^{-2}]\] – normálové napětí v kompozitu (směr 1, 2)
\[\tau_{12} [\text{Nmm}^{-2}]\] – smykové napětí v kompozitu (rovina 12)

Index 1 značí podélný směr vláken v laminátu, index 2 kolmý směr v rovině vláken (viz Obr. 46)

![Obr. 46 Směry materiálu v laminátu](Zdroj: Krystek J., Pevnostní kritéria pro kompozitní materiály)
Vyhodnocení jednotlivých případů zatížení
V následující části budou vyhodnoceny jednotlivé případy zatížení pomocí post-procesoru NX PATRAN. Cílem je stanovit součinitele poruch kompozitní konstrukce na základě Hoffmanova kritéria.
Hodnoty celkových součinitelů poruchy kompozitu od stanovených zatížení jsou uvedeny v Tab. 21. Součinitelé poruchy od vybraných zatížení budou graficky znázorněny.

Zatížení č. 4 – podpěra A
Toto zatížení nastává při záporném poryvovém násobku a cestovní rychlosti (bod obálky č. 12), který vyvolává na podpěře A zápornou reakční sílu v ose Z. Ta se navíc sčítá s reakční silou od kroutícího momentu motoru.
Nejvyšší součinitel poruchy má hodnotu 0,758 a to v místě zaoblení dosedací plochy na přechodu mezi skladbou č. 1 a 2.

Zatížení č. 8 – podpěra B
Tento případ je druh havarijního zatížení (dle předpisu CS-VLA) ve směru osy X. Na toto zatížení byly jednotlivé skladby podpěry B optimalizovány. Ostatní zatížení na této podpěře nevyvolávají tak vysoký součinitel poruchy (viz Tab. 21).
Vysoká koncentrace napětí je v místě zaoblení hrany dosedací plochy a v zaoblení u vetknutého lemování. Nejvyšší součinitel poruchy o velikosti 0,869 má vrstva č. 4 (skelná tkanina).
Obr. 48 Součinitel poruchy kompozitu (zatížení č. 8, podpěra B)

Zatížení č. 3 – podpěra C

Zatížení od kladného poryvu při cestovní rychlosti (bod obálky č. 9) spolu se zatížením od krouticího momentu generuje dominantní tlakovou sílu ve směru osy Z. Nejvyšší součinitel poruchy o velikosti 0,823 má spodní vrstva č. 11 v místě zaoblení dosedací plochy.

Obr. 49 Součinitel poruchy kompozitu (zatížení č. 3, podpěra C)
Hodnoty součinitelů poruchy kompozitu od jednotlivých zatížení shrnuje následující tabulka. Z těchto hodnot je patrné, že v žádném případě zatížení nedošlo k poškození kompozitu. Materiálová skladba je podle těchto výpočtů dostatečná.

Tab. 21 Celkové součinitele poruchy kompozitu

<table>
<thead>
<tr>
<th>Zatížení</th>
<th>Součinitel poruchy kompozitu (FI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Podpěra A</td>
</tr>
<tr>
<td>1</td>
<td>0,089</td>
</tr>
<tr>
<td>2</td>
<td>0,059</td>
</tr>
<tr>
<td>3</td>
<td>0,085</td>
</tr>
<tr>
<td>4</td>
<td>0,758</td>
</tr>
<tr>
<td>5</td>
<td>0,125</td>
</tr>
<tr>
<td>6</td>
<td>0,109</td>
</tr>
<tr>
<td>7</td>
<td>0,048</td>
</tr>
<tr>
<td>8</td>
<td>0,897</td>
</tr>
<tr>
<td>9</td>
<td>0,125</td>
</tr>
</tbody>
</table>
3.5 Pevnostní kontrola šrubů

Podkladem zatížení silentbloku jsou vypočtené reakce motorového lože (v místě šroubového spoje pryže s motorem). Na následujících obrázcích je schematicky znázorněno ve třech rovinách zatížení a geometrické parametry silentbloku na podpěře C.

Obr. 50 Schéma zatížení silentbloku (rovina XY)

Obr. 51 Schéma zatížení silentbloku (roviny YZ a XZ)

Posouvající síly F_x a F_y, namáhající šrouby smykem, doplňuje moment M_z, který působí v rovině spoje. Velikost síly od tohoto momentu v místě šroubového spoje se vypočte podle vztahu:

$$F_{Mz} = F_x \cdot \frac{y_{tz}}{x}$$

(45)

Výsledná posouvající síla zatěžující jeden šroub je rovna:

53
Smykové napětí šroubu se vypočte podle vztahu:

$$\tau_s = \frac{F_T}{S_3}$$ \hspace{2cm} (48)

kde \(S_3 \) je plocha řezu šroubu (malý průměr)

Normálové napětí šroubů je generováno silou \(F_z \) a dvojicí momentů \(M_x \) a \(M_y \). Tyto momenty působí v rovinách kolmých na plochu spoje. Natáčejí rovinu silentbloku vůči rovině podpěry kolem os \(X_t \) a \(Y_t \) procházejících jeho těžištěm.

Vztahy pro výpočet ohybového momentu \(M_x \) (rovina YZ) a \(M_y \) (rovina XZ):

$$M_x = F_z \cdot y_{t2} - F_y \cdot z_t$$ \hspace{2cm} (49)

$$M_y = F_x \cdot z_t$$ \hspace{2cm} (50)

Normálové napětí od ohybových momentů je rovno:

$$\sigma_{Mx} = \frac{M_x}{J_x} \cdot y_{t1} = \frac{M_x}{\sum n_i \cdot S_3 \cdot y_{t1}^2} \cdot y_{t1}$$ \hspace{2cm} (51)

$$\sigma_{My} = \frac{M_y}{J_y} \cdot x_t = \frac{M_y}{\sum n_i \cdot S_3 \cdot x_t^2} \cdot x_t$$ \hspace{2cm} (52)

kde \(J_x \) a \(J_y \) jsou momenty setrvačnosti průřezu šroubů k těžištním osám \(X_T \) a \(Z_T \), \(n_i \) je počet šroubů v i-té řadě.

Výsledné normálové napětí je tvořeno součtem napětí od normálové síly \(F_z \) a od ohybových momentů \(M_x \) a \(M_y \)

$$\sigma_N = \sigma_{Fz} + \sigma_{Mx} + \sigma_{My} = \frac{F_z}{n \cdot S_3} + \frac{M_x}{J_x} \cdot y_{t1} + \frac{M_y}{J_y} \cdot x_t$$ \hspace{2cm} (53)

kde \(n \) je celkový počet šroubů

Šrouby silentbloků jsou nejvíce namáhány (vyjma havarijních případů) při provozním zatížení č. 6. Proto zde bude uveden jejich výpočet. Pevnostní kontrola šroubů od ostatních zatížení je uvedena v příloze (kap. 7.4).

Na silentblok podpěry C působí síly (zatížení č. 6):

\[
F_x = -408 \, N; \quad F_y = 2 \, N; \quad F_z = -2398 \, N
\]

Geometrie bočního silentbloku A:

\[
x = 90 \, mm; \quad x_t = 45 \, mm; \quad y_{t1} = 16 \, mm; \quad y_{t2} = -24 \, mm; \quad z_t = 43,5 \, mm
\]
Výpočet posouvajících sil ve šroubech silentbloku:

\[S1: F_{T1} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_y}{2} - F_{Mz}\right)^2} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_y}{2} - \frac{F_x \cdot y_{t2}}{x}\right)^2} = \]
\[= \sqrt{\left(-\frac{408}{2}\right)^2 + \left(-\frac{2}{2} - \frac{-24}{90}\right)^2} = 230,8 \text{ N} \]

\[S2: F_{T2} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_y}{2} + F_{Mz}\right)^2} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_y}{2} + \frac{F_x \cdot y_{t2}}{x}\right)^2} = \]
\[= \sqrt{\left(-\frac{408}{2}\right)^2 + \left(-\frac{2}{2} + \frac{-24}{90}\right)^2} = 231,6 \text{ N} \]

Výpočet plochy průřezu šroubu (M8x1,25 - \(d_3 = 6,466 \text{ mm} \)):

\[S_3 = \frac{\pi \cdot d_3^2}{4} = \frac{3,14 \cdot 6,466^2}{4} = 32,8 \text{ mm}^2 \]

Smykové napětí šroubu je rovno:

\[\tau_{s1} = \frac{F_{T1}}{S_3} = \frac{230,8}{32,8} = 7,0 \text{ Nmm}^{-2} \]

\[\tau_{s2} = \frac{F_{T2}}{S_3} = \frac{231,6}{32,8} = 7,1 \text{ Nmm}^{-2} \]

Stanovení normálových napětí od ohybových momentů:

\[\sigma_{Mx} = \frac{M_x}{\sum n_i \cdot S_3 \cdot y_{t1}^2} \cdot y_{t1} = \frac{F_x \cdot y_{t2} - F_y \cdot z_t}{\sum n_i \cdot S_3 \cdot y_{t1}^2} \cdot y_{t1} = \]
\[= \frac{-2398 \cdot (-24) - 2 \cdot 43,5}{2 \cdot 32,8 \cdot 16^2} \cdot 16 = 54,7 \text{ Nmm}^{-2} \]

\[S1: \sigma_{My} = -\frac{M_y}{J_y} \cdot x_t = -\frac{F_x \cdot z_t}{\sum n_i \cdot S_3 \cdot x_t^2} \cdot x_t = -\frac{-408 \cdot 43,5}{32,8 \cdot 45^2 + 32,8 \cdot 45^2} \cdot 45 = 6,0 \text{ Nmm}^{-2} \]

\[S2: \sigma_{My} = -\frac{M_y}{J_y} \cdot x_t = -\frac{F_x \cdot z_t}{\sum n_i \cdot S_3 \cdot x_t^2} \cdot x_t = -\frac{-408 \cdot 43,5}{32,8 \cdot 45^2 + 32,8 \cdot (-45)^2} \cdot (-45) = -6,0 \text{ Nmm}^{-2} \]

Napětí od normálové sily \(F_z \):

\[\sigma_{Fz} = \frac{F_z}{n \cdot S_3} = \frac{-2398}{2 \cdot 32,8} = -36,5 \text{ Nmm}^{-2} \]

Výpočet výsledného normálového napětí šroubů:

\[S1: \sigma_N = \sigma_{Fz} + \sigma_{Mx} + \sigma_{My} = -36,5 + 54,7 + 6 = 24,2 \text{ Nmm}^{-2} \]

\[S2: \sigma_N = \sigma_{Fz} + \sigma_{Mx} + \sigma_{My} = -36,5 + 54,7 - 6 = 12,2 \text{ Nmm}^{-2} \]
Výpočet maximálního utahovacího momentu šroubu

Navržené šroubové spojení je předepjaté. Tedy při instalaci je spoj utažen na montážní předpětí (Q_0, vnitřní osová síla). Spoj je tak namáhán aniž by na něj působily vnější provozní síly. Tímto předpětím se zajistí silová vazba mezi stykovými plochami spojovaných součástí a zamezí se tak jejích vzájemnému pohybu během provozu.

Při znalosti vnějšího zatížení, geometrických a materiálových charakteristik šroubů lze určit montážní předpětí z pevnostní podmínky:

$$Q_0 \leq \left(\frac{\sigma_{pt}}{f} - \sigma_N \right) \cdot S_3 \quad (54)$$

kde σ_{pt} je mez pevnosti materiálu šroubu (pro pevnostní třídu 8.8 je $\sigma_{pt} = 800 \, Nmm^{-2}$), f je součinitel bezpečnosti (pro šroubové spoje je $f = 2$), σ_N je nejvyšší provozní tahové napětí

Předpětí spoje je docíleno působením utahovacího momentu na klíči (M_{KK}). Část tohoto momentu překonává třecí moment pod hlavou (M_{TH}) a vlivem části M_Z prospíhá dřík šroubu do závitové vložky. [18]

$$M_{KK} = M_Z + M_{TH} \quad (55)$$

Krutící moment v dříku šroubu se stanoví podle vzorce:

$$M_Z = Q_0 \cdot \frac{d_2}{2} \cdot \tan(\gamma + \varphi') \quad (56)$$

kde d_2 je průměr šroubu, γ je úhel stoupání šroubovice a φ' je třecí úhel závitu

$$\tan \gamma = \frac{P}{\pi d_2} ; \tan \varphi' = 0,15 \quad (57)$$

kde P je stoupání závitu

Třecí moment pod hlavou šroubu je dán vztahem:

$$M_{TH} = Q_0 \cdot f_H \cdot \rho_H \quad (58)$$

Kde f_H je součinitel tření pod hlavou ($f_H = 0,15$) a ρ_H je třecí poloměr

$$\rho_H = \frac{e + \delta}{4} \quad (59)$$

Kde e je úhlopříčka šestihranu hlavy a δ se vypočte vztahem:

$$\delta \equiv d + (1 \div 2) \quad (60)$$
Pro nejvíce zatížený šroub silentbloku platí:

\[\sigma_N = 24,2 \, \text{Nmm}^{-2}; \quad S_3 = 32,8 \, \text{mm}^2; \quad \delta = 10 \, \text{mm}; \quad \rho_H = 6 \, \text{mm}; \quad P = 1,25; \quad d_2 = 7,188 \, \text{mm} \]

Montážní předpětí je rovno:

\[
Q_0 = \left(\frac{\sigma_{pt}}{f} - \sigma_N \right) \cdot S_3 = \left(\frac{800}{2} - 24,2 \right) \cdot 32,8 = 12326,2 \approx 12,3 \, \text{kN}
\]

Třetí moment pod hlavou šroubu je roven:

\[M_{TH} = Q_0 \cdot f_H \cdot \rho_H = 12300 \cdot 0,15 \cdot 6 = 11070 \, \text{Nmm} \]

Výpočet krouticího momentu v dříku šroubu:

\[
M_Z = Q_0 \cdot \frac{d_2}{2} \cdot \tan(\gamma + \varphi') = Q_0 \cdot \frac{d_2}{2} \left(\frac{P}{\pi d_2} + \tan \varphi' \right) =
\]

\[= 12300 \cdot \frac{7,188}{2} \cdot \left(\frac{1,25}{3,14 \cdot 7,188} + 0,15 \right) = 9080 \, \text{Nmm} \]

Utahovací moment šroubu je roven:

\[M_{KK} = M_Z + M_{TH} = 11070 + 9080 = 20150 \, \text{Nmm} \approx 20 \, \text{Nm} \]

Kontrola šroubu na kombinované zatížení tah-smyk

Nejvíce namáhaný šroub je zatížen napětím:

Tahovým: \[\sigma_n = \frac{Q_0}{S_3} + \sigma_N = \frac{12300}{32,8} + 24,2 = 399,2 \, \text{Nmm}^{-2} \]

Smykovým: \[\tau_s = 7,0 \, \text{Nmm}^{-2} \]

Kombinované namáhání lze vyjádřit pomocí redukovaného napětí, pro které platí:

\[\sigma_{red} = \sqrt{\sigma_n^2 + 3 \cdot \tau_s^2} = \sqrt{399,2^2 + 3 \cdot 7,0^2} = 399,4 \, \text{Nmm}^{-2} \]

Pro šroubové spoje je součinitel bezpečnosti dle předpisu roven: \(f = 2 \)

\[J = \frac{\sigma_{dov}}{\sigma_{red}} = \frac{800}{399,4} = 2,003 \geq 2 \]

57
3.6 Pevnostní kontrola lepeného spoje

Pevnost lepeného spoje kompozitů ovlivňuje několik aspektů. Posuzuje se orientace vláken krajní vrstvy, která je v kontaktu s lepidlem. Ta by měla být 0°. V opačném případě se snižuje adhezní únosnost smykového spoje a zvyšuje se riziko delaminace. Dále je žádoucí, aby spojované materiály měly obdobnou tuhost. Vyšší tuhostní rozdíly opět snižují pevnost spojení.

Tekuté formy se mnohdy vytvrzují za pokojové teploty. Nedosahují takových pevností zejména v odlupování a je zde riziko dostatečně neprolepeného spoje. Z těchto důvodů byla zvolena fóliová forma lepidla, jmenovitě LOCTITE EA 9392 AERO. Vlastnosti tohoto lepidla jsou uvedeny v příloze (kap. 7.3).

Pevnostní kontrola lepeného spoje spočívá ve stanovení smykového napětí a síly v odlupování. Tyto hodnoty jsou následně porovnány s dovolenými hodnotami, které udává výrobce. Podkladem pro výpočet je analytický analytický stanovění jednotlivých podpěr (kap. 3.3.4).

Zatěžující síly působí vzhledem k rovině lepeného spoje na rameni. Spoj je tak namáhán posouvajícími silami (Fx a Fz), normálovou silou (Fy) a ohybovými momenty (Mx, My, Mz). Situace je znázorněna na následujícím schématu.
Posouvací síly se uvažují rovnoměrně rozdělené po ploše spoje. Tyto síly doplňuje moment M_y působící v rovině spoje. Ten namáhá spoj posouvací síly úměrnou vzdálenosti od osy otáčení, která se předpokládá v rovině symetrie spoje.

Posouvací síla od momentu M_y

$$F_{My} = \frac{F_x}{x} \cdot z$$ \hspace{1cm} (61)

Posouvací síla od momentu M_y jednu polovinu spoje přitěžuje a druhou odlehčuje. Z toho důvodu je výpočet celkové posouvací síly rozdělen do dvou částí:

$$F_{T1} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_z}{2} - F_{My}\right)^2}$$

$$F_{T2} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_z}{2} + F_{My}\right)^2}$$ \hspace{1cm} (62)

Při znalosti posouvací síly a plochy spoje S_l [mm2] lze stanovit smykové napětí:

$$\tau_s = \frac{F_T}{S_l}$$ \hspace{1cm} (63)

Normálovou sílu F_y doplňují momenty M_x a M_z, které působí kolmo k rovině spoje.

$$F_{My} = \frac{F_x}{x} \cdot \frac{y}{z}$$ \hspace{1cm} (64)

$$F_{My} = \frac{F_x}{x} \cdot \frac{y}{x}$$ \hspace{1cm} (65)

Spoj je zjednodušeně nahrazen čtyřmi reakcemi, působící kolmo k rovině vetknutí. Výpočtem těchto reakcí se stanoví odlupující síly na jednotlivých hranách lemování. Tyto reakce jsou schematicky znázorněny na následujícím obrázku.
Jednotlivé reakce se stanoví podle následujících vztahů:

\[A = F_y - F_{Mx} \]
\[B = F_{Mx} \]
\[C = \frac{F_y}{2} - F_{Mz} \]
\[D = \frac{F_y}{2} + F_{Mz} \]

Lepený spoj je nejvíce namáhán při dopředním havarijním zatížení (CS-VLA), proto je zde uveden jeho výpočet. Pevnostní kontrola spoje od zbylých zatížení je uvedena v příloze (kap. 7.5).

Na podpěru A při havarijním zatížení působí síly:

\[F_x = 5717 \, N; \, F_y = -65 \, N; \, F_z = 647N \]

Ramena sil a velikost plochy spoje byla odměřena v programu NX 8.5.

\[x = 190 \, mm; \, y = 109 \, mm; \, z = 220 \, mm; \, S = 21830 \, mm^2 \]

\[a) \text{ Pevnost spoje ve smyku} \]

Velikost posouvající síly od momentu \(M_y \) je rovna:

\[F_{My} = F_x \cdot \frac{z}{x} = \frac{5717 \cdot 220}{190} = 6620N \]

Celková posouvající síla je rovna:

\[F_{T1} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_z}{2} - F_{My}\right)^2} = \sqrt{\left(\frac{5717}{2}\right)^2 + \left(-\frac{647}{2} - 6620\right)^2} = 7508,8 \, N \]

\[F_{T2} = \sqrt{\left(\frac{F_x}{2}\right)^2 + \left(-\frac{F_z}{2} + F_{My}\right)^2} = \sqrt{\left(\frac{5717}{2}\right)^2 + \left(-\frac{647}{2} + 6620\right)^2} = 6914,7 \, N \]

Smykové napětí spoje:

\[\tau_{s1} = \frac{F_{T1}}{S_l} = \frac{7508,8}{10915} = 0,69 \, Nmm^{-2} \]

\[\tau_{s2} = \frac{F_{T2}}{S_l} = \frac{6914,7}{10915} = 0,63 \, Nmm^{-2} \]

Výrobce uvádí u vybraného lepidla pevnost ve smyku za zvýšené teploty (82°C):

\[\tau_{dov} = 27,6 \, Nmm^{-2} \]
Jistota spoje při tomto zatížení se stanoví jako: \[j = \frac{\text{dovolené zatížení}}{\text{početní zatížení}} \geq 1 \]

\[j_1 = \frac{\tau_{\text{dov}}}{\tau_{s1}} = \frac{27,6}{0,69} = 40,0 \geq 1 \]

\[j_1 = \frac{\tau_{\text{dov}}}{\tau_{s1}} = \frac{27,6}{0,63} = 43,8 \geq 1 \]

Z výsledku jistoty je patrné, že spoj je ve smyku předimenzovaný, díky velké kontaktní ploše. V případě provozního zatížení musí být jistota spoje \(j \geq 1,875 \).

b) Pevnost spoje v odlupování

Výpočet síl od momentů působících kolmo na plochu spoje:

\[F_{Mx} = F_z \cdot \frac{y}{z} = 647 \cdot \frac{109}{220} = 321 \text{ Nmm} \]

\[F_{Mz} = F_x \cdot \frac{y}{x} = 5717 \cdot \frac{109}{190} = 3280 \text{ Nmm} \]

Stanovení reakcí na hranách lemování:

\[A = F_y - F_{Mx} = -65 - 321 = -386 \text{ N} \]

\[B = F_{Mx} = 321 \text{ N} \]

\[C = \frac{F_y}{2} - F_{Mz} = \frac{-65}{2} - 3280 = -3312 \text{ N} \]

\[D = \frac{F_y}{2} + F_{Mz} = \frac{65}{2} + 3280 = 3247 \text{ N} \]

Kladné reakce jsou od sil namáhající spoj tahem (odlupem). Výrobce uvádí únosnost lepidla v odlupování jako sílu potřebnou pro odloupnutí 25 mm širokého pásku (bell peel). U zvoleného lepidla je tato hodnota rovna 240 N/25 mm. To odpovídá 9,6 N/mm.

4. Hmotový rozbor

V této části budou uvedeny hmotnosti motorového lože, motoru a jeho komponentů. Dále bude stanovena poloha jejich těžiště.

4.1 Motor a jeho příslušenství

Tab. 22 Hmotnosti komponentů motoru zatěžující lože

<table>
<thead>
<tr>
<th>Díl</th>
<th>Hmotnost [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>motor-blok (bez víka rozvodů)</td>
<td>67,7</td>
</tr>
<tr>
<td>víko rozvodů</td>
<td>1,3</td>
</tr>
<tr>
<td>víčka olej. vany</td>
<td>0,4</td>
</tr>
<tr>
<td>víčko olej. filtru</td>
<td>0,2</td>
</tr>
<tr>
<td>svíčky+průchodky</td>
<td>0,3</td>
</tr>
<tr>
<td>výfukové potrubí s tlumičem</td>
<td>3,0</td>
</tr>
<tr>
<td>sací kanály (airbox)</td>
<td>2,7</td>
</tr>
<tr>
<td>klapka sání</td>
<td>0,9</td>
</tr>
<tr>
<td>spouštěč</td>
<td>2,5</td>
</tr>
<tr>
<td>filtr sání</td>
<td>0,4</td>
</tr>
<tr>
<td>kompresor</td>
<td>2,9</td>
</tr>
<tr>
<td>vodní pumpa</td>
<td>1,0</td>
</tr>
<tr>
<td>chladič oleje + hadice</td>
<td>1,0</td>
</tr>
<tr>
<td>hadice-voda (mimo olej. chlad.)</td>
<td>0,9 (1,2)</td>
</tr>
<tr>
<td>hadice-vzduch</td>
<td>0,7 (1,4)</td>
</tr>
<tr>
<td>řídící jednotka</td>
<td>0,5</td>
</tr>
<tr>
<td>výstupní hřídel</td>
<td>1,8 (3,5)</td>
</tr>
<tr>
<td>silentbloky (přední+boční)</td>
<td>0,9</td>
</tr>
<tr>
<td>olej</td>
<td>4,0</td>
</tr>
<tr>
<td>chladicí kapalina</td>
<td>5,5</td>
</tr>
<tr>
<td>Celková hmotnost</td>
<td>98,6</td>
</tr>
</tbody>
</table>

pozn.: Hmotnosti vybraných položek (hadice-voda/vzduch, výstupní hřídel), byly započítány pouze zčásti, neboť zcela nezatěžují konstrukci motorového lože. Hodnoty uvedené v závorce jsou jejich celkové hmotnosti.
Komponenty příslušenství pohoněného agregátu, které v návrhu nezatěžují lože, jsou uvedeny v následující tabulce.

Tab. 23 Hmotnosti komponentů příslušenství nezatěžující lože

<table>
<thead>
<tr>
<th>Díl</th>
<th>Hmotnost [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>mezichladič</td>
<td>2,6</td>
</tr>
<tr>
<td>vodní chladič</td>
<td>1,7</td>
</tr>
<tr>
<td>expanzní nádoba</td>
<td>0,2</td>
</tr>
</tbody>
</table>

Tab. 24 Poloha těžiště motoru (blok+kompresor, čerpadlo, olej. chladič)

<table>
<thead>
<tr>
<th></th>
<th>x₁ [mm]</th>
<th>y₁ [mm]</th>
<th>z₁ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4760</td>
<td>3</td>
<td>1694</td>
</tr>
</tbody>
</table>

4.2 Motorové lože

Hmotnosti kompozitních podpěr spolu s použitými šrouby a podložkami byly spočteny v programu NX 8.5.

Tab. 25 Hmotnosti komponentů motorového lože

<table>
<thead>
<tr>
<th>Komponenta</th>
<th>Hmotnost [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Podpěra A + 2x insert</td>
<td>0,20</td>
</tr>
<tr>
<td>Podpěra B + 2x insert</td>
<td>0,41</td>
</tr>
<tr>
<td>Podpěra C + 2x insert</td>
<td>0,22</td>
</tr>
<tr>
<td>Šroub (6x)</td>
<td>0,15</td>
</tr>
<tr>
<td>Podložka (6x)</td>
<td>0,04</td>
</tr>
<tr>
<td>Celková hmotnost</td>
<td>1,02</td>
</tr>
</tbody>
</table>

Rovněž bylo stanoveno těžiště motorového lože.

Tab. 26 Těžiště motorového lože

<table>
<thead>
<tr>
<th></th>
<th>x₁ [mm]</th>
<th>y₁ [mm]</th>
<th>z₁ [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4699</td>
<td>-18</td>
<td>1532</td>
</tr>
</tbody>
</table>

Celková hmotnost pohoněného agregátu a motorového lože je shrnuta v následující tabulce.

Tab. 27 Celková hmotnost pohoněného agregátu

<table>
<thead>
<tr>
<th>Hmotnost motoru s příslušenstvím [kg]</th>
<th>105,73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hmotnost motorového lože [kg]</td>
<td>1,02</td>
</tr>
<tr>
<td>Celková hmotnost [kg]</td>
<td>106,75</td>
</tr>
</tbody>
</table>

Po zástavbě pohoněného agregátu (včetně příslušenství a motorového lože) do draku letounu byla spočítána poloha hmotného středu pomocí programu NX 8.5. Hodnotu uvádí následující tabulka.
<table>
<thead>
<tr>
<th>(x_T) [mm]</th>
<th>(y_T) [mm]</th>
<th>(z_T) [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4851</td>
<td>2</td>
<td>1654</td>
</tr>
</tbody>
</table>

Zástavbou navržených komponentů došlo k posunu těžiště směrem vzad a dolu. Zároveň byla jeho poloha udržena v rovině symetrie letounu. Jednotlivé polohy hmotného středu znázorňuje Obr. 54.

Obr. 54 Polohy těžiště (modře-lože, zeleně-motor, červeně-motor+lože+příslušenství)
5. Závěr

Problematické je u lepeného spoje zatížení silou v odlupování, která překračuje dovolenou hodnotu. Z toho důvodu bude pravděpodobně nutné spoj dodatečně přelaminovat tak, aby se zvýšila jeho únosnost.

Na závěr byla stanovena výsledná hmotnost pohonného agregátu včetně lože a určena poloha jejich těžiště.
6. Seznam použité literatury

7. Přílohy

7.1 Změřené tuhostní charakteristiky silentbloků

7.1.1 Přední silentblok (závěs B)

a. Tuhost ve směru osy Z

\[y = 0,3359x \]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\hline
\text{Deformace [mm]} & 0 & 0,5 & 1 & 1,5 & 2 & 2,5 & 3 \\
\hline
\text{Síla [kN]} & 0 & 0,2 & 0,4 & 0,6 & 0,8 & 1 & 1,2 \\
\hline
\end{array}
\]

b. Tuhost ve směru os X a Y (symetrický silentblok)

\[y = 0,0595x \]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\hline
\text{Deformace [mm]} & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\
\hline
\text{Síla [kN]} & 0 & 0,1 & 0,2 & 0,3 & 0,4 & 0,5 & 0,6 & 0,7 & 0,8 \\
\hline
\end{array}
\]
7.1.2 Boční silentblok (závěs A a C)

7.1.2.1 Potočená základna o úhel $\varphi_x = 30^\circ$

a. Tuhost ve směru osy Z

\[y = 0,2561x \]

\[\begin{array}{l}
\text{Síla [kN]} \\
\text{Deformace [mm]}
\end{array} \]

b. Tuhost ve směru osy X

\[y = 0,081x \]

\[\begin{array}{l}
\text{Síla [kN]} \\
\text{Deformace [mm]}
\end{array} \]
7.1.2.2 Vodorovná základna

a. Tuhost ve směru osy Z

\[y = 0.2561x \]

\[y = 0.0875x \]
b. Tuhost ve směru osy X

\[y = 0.1009x \]

\[\text{Síla (kN)} \]
\[\text{Deformace (mm)} \]

c. Tuhost ve směru osy Y

\[y = 0.0841x \]

\[\text{Síla (kN)} \]
\[\text{Deformace (mm)} \]
7.2 Zdrojový kód analytického výpočtu reakcí (Matlab R2012b)

clear

G = [-; -; -; 0]; % Zadání zatěžující sily [kN] (podle souřad. systému)
Mk = [-; -; -; 0]; % Zadání krouticího momentu [Nm] (kladná hodnota)

KA = [101; 84; 256; 1];
KC = KA;
KB = [60; 60; 336; 1];
r2A = [-204.425; -211.777; -64.672; 1];
r2B = [308.010; 47.851; -49.534; 1];
r2C = [-204.776; 204.313; -64.672; 1];
r2CG = [-253.812; 2.859; -93.669];
r1A = [295.575; 288.223; 435.328; 1];
r1B = [808.010; 547.851; 450.466; 1];
r1C = [295.224; 704.313; 435.328; 1];

syms x1 x2 x3 x4 x5 x6
X = [x1; x2; x3; x4; x5; x6];

cpx = cos(x1);
cpy = cos(x2);
cpz = cos(x3);
spx = sin(x1);
spy = sin(x2);
spz = sin(x3);

r1CG = [x4; x5; x6];

Spx = [1 0 0; 0 cpx -spx; 0 spx cpy];
Spy = [cpy 0 spy; 0 1 0; -spy 0 cpy];
Spz = [cpz -spz 0; spz cpz 0; 0 0 1];

S = Spx*Spy*Spz;
T12 = [S r1CG; [0 0 0 1]];
A = eye (3,3);
T34 = [S r2CG; [0 0 0 1]];

r1Am = T12*r2A;
r1Bm = T12*r2B;
r1Cm = T12*r2C;

Mkp = T34*Mk;

FA = -KA.*(r1Am-r1A);
FB = -KB.*(r1Bm-r1B);
FC = -KC.*(r1Cm-r1C);

Mkm = T12*Mk;

f1 = FA(1:3) + FB(1:3) + FC(1:3) + G(1:3);
f2 = cross(r2A (1:3),FA(1:3))+cross(r2B (1:3),FB (1:3))+cross(r2C (1:3),FC (1:3))- Mkp(1:3);
\[
F = [f_1; f_2];
J = \text{jacobian}(F, X);
\\text{X0} = [0; 0; 0; 500; 500; 500]; \quad \% \text{odhad řešení}
\]

\[
\begin{align*}
J_0 &= \text{subs}(J, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_0(1), X_0(2), X_0(3), X_0(4), X_0(5), X_0(6)\}); \\
F_0 &= \text{subs}(F, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_0(1), X_0(2), X_0(3), X_0(4), X_0(5), X_0(6)\}); \\
D_0 &= J_0 \ (\ - F_0; \\
X_1 &= X_0 + D_0;
\end{align*}
\]

\[
\begin{align*}
J_1 &= \text{subs}(J, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_1(1), X_1(2), X_1(3), X_1(4), X_1(5), X_1(6)\}); \\
F_1 &= \text{subs}(F, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_1(1), X_1(2), X_1(3), X_1(4), X_1(5), X_1(6)\}); \\
D_1 &= J_1 \ (\ - F_1; \\
X_2 &= X_1 + D_1;
\end{align*}
\]

\[
\begin{align*}
J_2 &= \text{subs}(J, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_2(1), X_2(2), X_2(3), X_2(4), X_2(5), X_2(6)\}); \\
F_2 &= \text{subs}(F, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_2(1), X_2(2), X_2(3), X_2(4), X_2(5), X_2(6)\}); \\
D_2 &= J_2 \ (\ - F_2; \\
X_3 &= X_2 + D_2;
\end{align*}
\]

\[
\begin{align*}
J_3 &= \text{subs}(J, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_3(1), X_3(2), X_3(3), X_3(4), X_3(5), X_3(6)\}); \\
F_3 &= \text{subs}(F, \{x_1, x_2, x_3, x_4, x_5, x_6\}, \{X_3(1), X_3(2), X_3(3), X_3(4), X_3(5), X_3(6)\}); \\
D_3 &= J_3 \ (\ - F_3; \\
X_4 &= X_3 + D_3;
\end{align*}
\]

\[
X = \text{subs}(X_4, \{X_3(1), X_3(2), X_3(3), X_3(4), X_3(5), X_3(6)\}, \{x_1, x_2, x_3, x_4, x_5, x_6\});
\]

\[
\begin{align*}
x_1 &= X(1,1); \\
x_2 &= X(2,1); \\
x_3 &= X(3,1); \\
x_4 &= X(4,1); \\
x_5 &= X(5,1); \\
x_6 &= X(6,1);
\end{align*}
\]

\[
\begin{align*}
cpx &= \cos(x_1); \\
cpy &= \cos(x_2); \\
cpz &= \cos(x_3); \\
spx &= \sin(x_1); \\
spy &= \sin(x_2); \\
spz &= \sin(x_3);
\end{align*}
\]

\[
\begin{align*}
r_{1CG} &= [x_4; x_5; x_6]; \\
Spx &= [1 0 0; 0 cpx -spx; 0 spx cpx]; \\
Spy &= [cpy 0 spy; 0 1 0; -spy 0 cpy]; \\
Spz &= [cpz -spz 0; spz cpz 0; 0 0 1]; \\
S &= Spx*Spy*Spz; \\
T_{12} &= [S \ r_{1CG}; [0 \ 0 \ 0 \ 1]]; \\
r_{1Am} &= T_{12}*r_{2A}; \\
r_{1Bm} &= T_{12}*r_{2B}; \\
r_{1Cm} &= T_{12}*r_{2C};
\end{align*}
\]

\[
\begin{align*}
d_{r1A} &= (r_{1Am}-r_{1A})*1000; \\
d_{r1B} &= (r_{1Bm}-r_{1B})*1000; \\
d_{r1C} &= (r_{1Cm}-r_{1C})*1000;
\end{align*}
\]
disp ('\delta X(A) [mm]'), disp (dr1A (1,1));
disp ('\delta Y(A) [mm]'), disp (dr1A (2,1));
disp ('\delta Z(A) [mm]'), disp (dr1A (3,1));
disp ('\delta X(B) [mm]'), disp (dr1B (1,1));
disp ('\delta Y(B) [mm]'), disp (dr1B (2,1));
disp ('\delta Z(B) [mm]'), disp (dr1B (3,1));
disp ('\delta X(C) [mm]'), disp (dr1C (1,1));
disp ('\delta Y(C) [mm]'), disp (dr1C (2,1));
disp ('\delta Z(C) [mm]'), disp (dr1C (3,1));

FA = (-KA.*(r1Am-r1A))*1000;
FB = (-KB.*(r1Bm-r1B))*1000;
FC = (-KC.*(r1Cm-r1C)*1000);

disp ('FX(A) [N]'), disp (FA (1,1));
disp ('FY(A) [N]'), disp (FA (2,1));
disp ('FZ(A) [N]'), disp (FA (3,1));
disp ('FX(B) [N]'), disp (FB (1,1));
disp ('FY(B) [N]'), disp (FB (2,1));
disp ('FZ(B) [N]'), disp (FB (3,1));
disp ('FX(C) [N]'), disp (FC (1,1));
disp ('FY(C) [N]'), disp (FC (2,1));
disp ('FZ(C) [N]'), disp (FC (3,1));
7.3 Vlastnosti použitých materiálů (kompozitní podpěry) a lepidla

Tab. 29 Materiály skladby kompozitních podpěr

<table>
<thead>
<tr>
<th>Materiál</th>
<th>Uhlík-tkanina</th>
<th>Sklo-tkanina</th>
<th>Překližka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hustota [kg/m³]</td>
<td>1550</td>
<td>1800</td>
<td>350</td>
</tr>
<tr>
<td>E [N/mm²]</td>
<td>61562</td>
<td>24569</td>
<td>11600</td>
</tr>
<tr>
<td>E₂ [N/mm²]</td>
<td>61562</td>
<td>21194</td>
<td>9400</td>
</tr>
<tr>
<td>E₃ [N/mm²]</td>
<td>7312</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>μ [-]</td>
<td>0,062</td>
<td>0,164</td>
<td>0,3</td>
</tr>
<tr>
<td>μ 23 [-]</td>
<td>0,062</td>
<td>0,139</td>
<td>-</td>
</tr>
<tr>
<td>μ 13 [-]</td>
<td>0,03</td>
<td>0,15</td>
<td>-</td>
</tr>
<tr>
<td>G [N/mm³]</td>
<td>4207</td>
<td>15364</td>
<td>1000</td>
</tr>
<tr>
<td>G₁₃ [N/mm³]</td>
<td>4207</td>
<td>15364</td>
<td>600</td>
</tr>
<tr>
<td>G₂₃ [N/mm³]</td>
<td>2100</td>
<td>3300</td>
<td>-</td>
</tr>
<tr>
<td>Pevnost v tahu (ST) [N/mm²]</td>
<td>656</td>
<td>509</td>
<td>75</td>
</tr>
<tr>
<td>Pevnost v tahu (ST₂) [N/mm²]</td>
<td>656</td>
<td>418</td>
<td>75</td>
</tr>
<tr>
<td>Pevnost v tahu (ST₃) [N/mm²]</td>
<td>46</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Pevnost v tlaku (SC) [N/mm²]</td>
<td>500</td>
<td>336</td>
<td>55</td>
</tr>
<tr>
<td>Pevnost v tlaku (SC₂) [N/mm²]</td>
<td>500</td>
<td>336</td>
<td>55</td>
</tr>
<tr>
<td>Pevnost v tlaku (SC₃) [N/mm²]</td>
<td>90</td>
<td>120</td>
<td>-</td>
</tr>
<tr>
<td>Pevnost ve smyku (SS) [N/mm³]</td>
<td>57</td>
<td>57</td>
<td>18</td>
</tr>
</tbody>
</table>

Tab. 30 Vlastnosti lepidla

<table>
<thead>
<tr>
<th>Lepidlo</th>
<th>LOCTITE EA 9628 AERO (Hysol EA 9628)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teplota vytvrzování [°C]</td>
<td>121</td>
</tr>
<tr>
<td>Doba vytvrzování [min]</td>
<td>90</td>
</tr>
<tr>
<td>Provozní teplota [°C]</td>
<td>121</td>
</tr>
<tr>
<td>Sila v odlupování [N/25mm]</td>
<td>240</td>
</tr>
<tr>
<td>Pevnost ve smyku (82°C) [N/mm²]</td>
<td>27,6</td>
</tr>
<tr>
<td>Tg [°C]</td>
<td>120</td>
</tr>
<tr>
<td>Pevnost v tahu [N/mm²]</td>
<td>51,7</td>
</tr>
<tr>
<td>Modul pružnosti v tahu [N/mm²]</td>
<td>2377</td>
</tr>
<tr>
<td>Poměrné prodloužení [%]</td>
<td>7,5</td>
</tr>
<tr>
<td>Pevnost v tlaku [N/mm²]</td>
<td>79,3</td>
</tr>
</tbody>
</table>
7.4 Pevnostní kontrola šroubů

<table>
<thead>
<tr>
<th>silentblok</th>
<th>xt [mm]</th>
<th>x [mm]</th>
<th>yt1 [mm]</th>
<th>yt2 [mm]</th>
<th>zt [mm]</th>
<th>Jx [mm4]</th>
<th>Jy [mm4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>45</td>
<td>90</td>
<td>-16</td>
<td>24</td>
<td>43,5</td>
<td>16812,5</td>
<td>132989,2</td>
</tr>
<tr>
<td>C</td>
<td>45</td>
<td>90</td>
<td>16</td>
<td>-24</td>
<td>43,5</td>
<td>16812,5</td>
<td>132989,2</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>-45</td>
<td>45</td>
<td>80</td>
<td>132989,2</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Silentblok podpěry A

<table>
<thead>
<tr>
<th>Zatížení</th>
<th>Fx [N]</th>
<th>Fy [N]</th>
<th>Fz [N]</th>
<th>Mx [Nmm]</th>
<th>My [Nmm]</th>
<th>Mz [Nmm]</th>
<th>Ft (S1) [N]</th>
<th>Ft (S2) [N]</th>
<th>τ (S1) [MPa]</th>
<th>τ (S2) [MPa]</th>
<th>σ_{MY} (S1) [MPa]</th>
<th>σ_{MY} (S2) [MPa]</th>
<th>σ_{FZ} [MPa]</th>
<th>σ_{N} (S1) [MPa]</th>
<th>σ_{N} (S2) [MPa]</th>
<th>σ_{RED} (S1) [MPa]</th>
<th>σ_{RED} (S2) [MPa]</th>
<th>Jistota (S1) [-]</th>
<th>Jistota (S2) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-213</td>
<td>-2</td>
<td>567</td>
<td>13695,0</td>
<td>-9265,5</td>
<td>-5112</td>
<td>120,2</td>
<td>121,2</td>
<td>3,7</td>
<td>3,7</td>
<td>-13,0</td>
<td>-13,0</td>
<td>8,6</td>
<td>-1,3</td>
<td>-7,5</td>
<td>373,8</td>
<td>367,5</td>
<td>2,14</td>
<td>2,18</td>
</tr>
<tr>
<td>2</td>
<td>-279</td>
<td>0</td>
<td>23</td>
<td>552,0</td>
<td>-12136,5</td>
<td>-6696</td>
<td>158,1</td>
<td>158,1</td>
<td>4,8</td>
<td>4,8</td>
<td>-0,5</td>
<td>-0,5</td>
<td>4,1</td>
<td>-4,1</td>
<td>0,4</td>
<td>3,9</td>
<td>-4,3</td>
<td>2,11</td>
<td>2,16</td>
</tr>
<tr>
<td>3</td>
<td>-189</td>
<td>-1</td>
<td>-453</td>
<td>-10828,5</td>
<td>-8221,5</td>
<td>-4536</td>
<td>106,9</td>
<td>107,3</td>
<td>3,3</td>
<td>3,3</td>
<td>10,3</td>
<td>10,3</td>
<td>2,8</td>
<td>-2,8</td>
<td>-6,9</td>
<td>6,2</td>
<td>0,6</td>
<td>2,10</td>
<td>2,13</td>
</tr>
<tr>
<td>4</td>
<td>-207</td>
<td>-2</td>
<td>2448</td>
<td>58839,0</td>
<td>-9004,5</td>
<td>-4968</td>
<td>116,8</td>
<td>117,8</td>
<td>3,6</td>
<td>3,6</td>
<td>-56,0</td>
<td>-56,0</td>
<td>3,0</td>
<td>-3,0</td>
<td>37,3</td>
<td>-15,7</td>
<td>-21,8</td>
<td>2,23</td>
<td>2,26</td>
</tr>
<tr>
<td>5</td>
<td>-336</td>
<td>0</td>
<td>578</td>
<td>13896,7</td>
<td>-14596,7</td>
<td>-8053</td>
<td>190,0</td>
<td>190,3</td>
<td>5,8</td>
<td>5,8</td>
<td>-13,2</td>
<td>-13,2</td>
<td>4,9</td>
<td>-4,9</td>
<td>8,8</td>
<td>0,5</td>
<td>-9,4</td>
<td>2,13</td>
<td>2,19</td>
</tr>
<tr>
<td>6</td>
<td>-443</td>
<td>2</td>
<td>39</td>
<td>850,7</td>
<td>-19256,0</td>
<td>-10624</td>
<td>251,3</td>
<td>250,4</td>
<td>7,7</td>
<td>7,7</td>
<td>-0,8</td>
<td>-0,8</td>
<td>6,5</td>
<td>-6,5</td>
<td>0,6</td>
<td>6,3</td>
<td>-6,7</td>
<td>2,10</td>
<td>2,17</td>
</tr>
<tr>
<td>7</td>
<td>96</td>
<td>425</td>
<td>185</td>
<td>-14045,3</td>
<td>4195,3</td>
<td>2315</td>
<td>192,9</td>
<td>243,0</td>
<td>5,9</td>
<td>5,9</td>
<td>13,4</td>
<td>13,4</td>
<td>-1,4</td>
<td>1,4</td>
<td>2,8</td>
<td>14,8</td>
<td>17,6</td>
<td>2,05</td>
<td>2,04</td>
</tr>
</tbody>
</table>

Provozní zatížení

<table>
<thead>
<tr>
<th>Zatížení</th>
<th>Fx [N]</th>
<th>Fy [N]</th>
<th>Fz [N]</th>
<th>Mx [Nmm]</th>
<th>My [Nmm]</th>
<th>Mz [Nmm]</th>
<th>Ft (S1) [N]</th>
<th>Ft (S2) [N]</th>
<th>τ (S1) [MPa]</th>
<th>τ (S2) [MPa]</th>
<th>σ_{MY} (S1) [MPa]</th>
<th>σ_{MY} (S2) [MPa]</th>
<th>σ_{FZ} [MPa]</th>
<th>σ_{N} (S1) [MPa]</th>
<th>σ_{N} (S2) [MPa]</th>
<th>σ_{RED} (S1) [MPa]</th>
<th>σ_{RED} (S2) [MPa]</th>
<th>Jistota (S1) [-]</th>
<th>Jistota (S2) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (15g)</td>
<td>5717</td>
<td>-65</td>
<td>647</td>
<td>18355,5</td>
<td>248689,5</td>
<td>137208</td>
<td>3255,1</td>
<td>3224,5</td>
<td>99,1</td>
<td>98,2</td>
<td>-17,5</td>
<td>-17,5</td>
<td>84,1</td>
<td>84,1</td>
<td>9,9</td>
<td>9,9</td>
<td>-91,8</td>
<td>76,5</td>
<td>331,2</td>
</tr>
<tr>
<td>Y (-3g)</td>
<td>-217</td>
<td>-957</td>
<td>416</td>
<td>31645,5</td>
<td>-9439,5</td>
<td>-5208</td>
<td>434,4</td>
<td>547,2</td>
<td>13,2</td>
<td>16,7</td>
<td>-30,1</td>
<td>-30,1</td>
<td>3,2</td>
<td>-3,2</td>
<td>-6,3</td>
<td>-3,3</td>
<td>-39,6</td>
<td>342,5</td>
<td>336,6</td>
</tr>
<tr>
<td>Y (3g)</td>
<td>217</td>
<td>956</td>
<td>416</td>
<td>-31602,0</td>
<td>9439,5</td>
<td>5208</td>
<td>433,9</td>
<td>546,7</td>
<td>13,2</td>
<td>16,7</td>
<td>30,1</td>
<td>30,1</td>
<td>3,2</td>
<td>3,2</td>
<td>6,3</td>
<td>33,2</td>
<td>39,6</td>
<td>408,9</td>
<td>415,6</td>
</tr>
<tr>
<td>Z (-4,5g)</td>
<td>1</td>
<td>0</td>
<td>-1484</td>
<td>-35616,0</td>
<td>43,5</td>
<td>24</td>
<td>0,6</td>
<td>0,6</td>
<td>0,0</td>
<td>0,0</td>
<td>33,9</td>
<td>33,9</td>
<td>0,0</td>
<td>0,0</td>
<td>-22,6</td>
<td>11,3</td>
<td>-11,3</td>
<td>363,7</td>
<td>363,7</td>
</tr>
<tr>
<td>Z (4,5g)</td>
<td>-1</td>
<td>0</td>
<td>1484</td>
<td>35616,0</td>
<td>-43,5</td>
<td>-24</td>
<td>0,6</td>
<td>0,6</td>
<td>0,0</td>
<td>0,0</td>
<td>-33,9</td>
<td>-33,9</td>
<td>0,0</td>
<td>0,0</td>
<td>22,6</td>
<td>-11,3</td>
<td>-11,3</td>
<td>363,7</td>
<td>363,7</td>
</tr>
</tbody>
</table>
Silentblok podpěry C

| Zatížení | Fx [N] | Fy [N] | Fz [Nmm] | Mx [Nmm] | My [Nmm] | Mz [Nmm] | Ft (S1) [N] | Ft (S2) [N] | T (S1) [MPa] | T (S2) [MPa] | σMX [MPa] | σMY (S1) [MPa] | σMY (S2) [MPa] | σFZ [MPa] | σFz (S1) [MPa] | σFz (S2) [MPa] | σSed (S1) [MPa] | σSed (S2) [MPa] | Jistota (S1)[\(\sigma\)] | Jistota (S2)[\(\sigma\)] |
|----------|--------|--------|----------|----------|--------|--------|-----------|-----------|-------------|-------------|--------|----------------|----------------|--------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1 | -185 | -2 | -2343 | 56319,0 | -8047,5| -4440,0| 105,3 | 104,4 | 3,2 | 3,2 | 53,6 | -2,7 | -2,7 | -35,7 | 20,6 | 15,2 | 395,7 | 390,2 | 2,02 | 2,05 |
| 2 | -252 | 0 | -2392 | 57408,0 | -10962,0| -6048,0| 142,8 | 142,8 | 4,3 | 4,3 | 54,6 | 3,7 | -3,7 | -36,4 | 21,9 | 14,5 | 397,0 | 389,6 | 2,02 | 2,05 |
| 3 | -166 | -1 | -2746 | 65947,5 | -7221,0| -3984,0| 94,3 | 93,8 | 2,9 | 2,9 | 62,8 | 2,4 | -2,4 | -41,8 | 23,4 | 18,5 | 398,4 | 393,5 | 2,01 | 2,03 |
| 4 | -178 | -2 | -536 | 12951,0 | -7743,0| -4272,0| 101,3 | 100,4 | 3,1 | 3,1 | 12,3 | 2,6 | -2,6 | -8,2 | 6,8 | 1,5 | 381,8 | 376,6 | 2,10 | 2,12 |
| 5 | -302 | 0 | -2347 | 56350,0 | -13146,7| -7253,3| 171,4 | 171,2 | 5,2 | 5,2 | 53,6 | 4,4 | -4,4 | -35,7 | 22,3 | 13,4 | 397,4 | 388,5 | 2,01 | 2,06 |
| 6 | -408 | 2 | -2398 | 57469,3 | -17748,0| -9792,0| 230,8 | 231,6 | 7,0 | 7,1 | 54,7 | 6,0 | -6,0 | -36,5 | 24,2 | 12,2 | 399,4 | 387,4 | 2,00 | 2,07 |
| 7 | -86 | 425 | -184 | -14056,0| -3731,3| -2058,7| 194,4 | 239,2 | 5,9 | 7,3 | -13,4 | 1,3 | -1,3 | -2,8 | -14,9 | -17,4 | 360,2 | 357,8 | 2,22 | 2,24 |

Provozní zatížení

Havarijní zatížení

\(\sigma\) - napětí, MPa; \(\sigma_{Sed}\) - sílaれば, [MPa]
Silentblok podpěry B

<table>
<thead>
<tr>
<th>Zatížení</th>
<th>Fx [N]</th>
<th>Fy [N]</th>
<th>Fz [N]</th>
<th>Mx [Nmm]</th>
<th>My [Nmm]</th>
<th>Mz [Nmm]</th>
<th>Ft (S1) [N]</th>
<th>Ft (S2) [N]</th>
<th>τ (S1) [MPa]</th>
<th>τ (S2) [MPa]</th>
<th>σ_{MX} (S1) [MPa]</th>
<th>σ_{MY} (S1) [MPa]</th>
<th>σ_{Mz} (S1) [MPa]</th>
<th>σ_{N} (S1) [MPa]</th>
<th>σ_{RED} (S1) [MPa]</th>
<th>Jistota (S1) [-]</th>
<th>Jistota (S2) [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provozní zatížení</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-119</td>
<td>3</td>
<td>-1079</td>
<td>-240,0</td>
<td>-9520,0</td>
<td>0,0</td>
<td>59,5</td>
<td>59,5</td>
<td>1,8</td>
<td>1,8</td>
<td>0,1</td>
<td>-0,1</td>
<td>0,0</td>
<td>-16,4</td>
<td>-16,3</td>
<td>-16,5</td>
<td>358,7</td>
</tr>
<tr>
<td>2</td>
<td>-158</td>
<td>0</td>
<td>-1438</td>
<td>0,0</td>
<td>-12640,0</td>
<td>0,0</td>
<td>79,0</td>
<td>79,0</td>
<td>2,4</td>
<td>2,4</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>-21,9</td>
<td>-21,9</td>
<td>-21,9</td>
<td>353,1</td>
</tr>
<tr>
<td>3</td>
<td>-106</td>
<td>2</td>
<td>-2034</td>
<td>-160,0</td>
<td>-8480,0</td>
<td>0,0</td>
<td>53,0</td>
<td>53,0</td>
<td>1,6</td>
<td>1,6</td>
<td>0,1</td>
<td>-0,1</td>
<td>0,0</td>
<td>-31,0</td>
<td>-30,9</td>
<td>-31,0</td>
<td>344,1</td>
</tr>
<tr>
<td>4</td>
<td>-115</td>
<td>4</td>
<td>1368</td>
<td>-320,0</td>
<td>-9200,0</td>
<td>0,0</td>
<td>57,5</td>
<td>57,5</td>
<td>1,8</td>
<td>1,8</td>
<td>0,1</td>
<td>-0,1</td>
<td>0,0</td>
<td>20,8</td>
<td>20,9</td>
<td>20,7</td>
<td>396,0</td>
</tr>
<tr>
<td>5</td>
<td>-190</td>
<td>0</td>
<td>-1012</td>
<td>-35,6</td>
<td>-15217,8</td>
<td>0,0</td>
<td>95,1</td>
<td>95,1</td>
<td>2,9</td>
<td>2,9</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>-15,4</td>
<td>-15,4</td>
<td>-15,4</td>
<td>359,6</td>
</tr>
<tr>
<td>6</td>
<td>-253</td>
<td>-4</td>
<td>-1349</td>
<td>284,4</td>
<td>-20266,7</td>
<td>0,0</td>
<td>126,7</td>
<td>126,7</td>
<td>3,9</td>
<td>3,9</td>
<td>-0,1</td>
<td>0,1</td>
<td>0,0</td>
<td>-20,5</td>
<td>-20,6</td>
<td>-20,4</td>
<td>354,4</td>
</tr>
<tr>
<td>7</td>
<td>-11</td>
<td>440</td>
<td>0</td>
<td>-35200,0</td>
<td>-853,3</td>
<td>0,0</td>
<td>220,1</td>
<td>220,1</td>
<td>6,7</td>
<td>6,7</td>
<td>11,9</td>
<td>-11,9</td>
<td>0,0</td>
<td>11,9</td>
<td>-11,9</td>
<td>11,9</td>
<td>387,1</td>
</tr>
<tr>
<td>Havarijní zatížení</td>
<td></td>
</tr>
<tr>
<td>X (15g)</td>
<td>3321</td>
<td>129</td>
<td>-1733</td>
<td>-10320,0</td>
<td>265680,0</td>
<td>0,0</td>
<td>1661,8</td>
<td>1661,8</td>
<td>50,6</td>
<td>50,6</td>
<td>3,5</td>
<td>-3,5</td>
<td>0,0</td>
<td>-26,4</td>
<td>-22,9</td>
<td>-29,9</td>
<td>362,9</td>
</tr>
<tr>
<td>Y (-3g)</td>
<td>24</td>
<td>990</td>
<td>79200,0</td>
<td>1920,0</td>
<td>0,0</td>
<td>495,1</td>
<td>495,1</td>
<td>15,1</td>
<td>15,1</td>
<td>-26,8</td>
<td>26,8</td>
<td>0,0</td>
<td>62,8</td>
<td>-28,6</td>
<td>26,8</td>
<td>349,2</td>
<td>402,7</td>
</tr>
<tr>
<td>Z (4,5g)</td>
<td>24</td>
<td>990</td>
<td>-1</td>
<td>-79200,0</td>
<td>1920,0</td>
<td>1,0</td>
<td>495,2</td>
<td>495,1</td>
<td>15,1</td>
<td>15,1</td>
<td>26,8</td>
<td>-26,8</td>
<td>0,0</td>
<td>26,8</td>
<td>26,8</td>
<td>402,6</td>
<td>349,2</td>
</tr>
<tr>
<td>Z (4,5g)</td>
<td>0</td>
<td>-1</td>
<td>-1737</td>
<td>80,0</td>
<td>0,0</td>
<td>2,0</td>
<td>0,5</td>
<td>0,5</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>26,4</td>
<td>26,5</td>
<td>26,4</td>
<td>401,5</td>
</tr>
</tbody>
</table>
Pevnostní kontrola lepeného spoje

<table>
<thead>
<tr>
<th>Podpěra</th>
<th>x [mm]</th>
<th>y [mm]</th>
<th>z [mm]</th>
<th>S [mm²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>190</td>
<td>109</td>
<td>220</td>
<td>21830</td>
</tr>
<tr>
<td>B</td>
<td>80</td>
<td>400</td>
<td>235</td>
<td>42060</td>
</tr>
<tr>
<td>C</td>
<td>180</td>
<td>130</td>
<td>230</td>
<td>21650</td>
</tr>
</tbody>
</table>

Podpěra A

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-213</td>
<td>-2</td>
<td>567</td>
<td>280,9</td>
<td>-247</td>
<td>-122,2</td>
<td>-282,9</td>
<td>280,9</td>
<td>121,2</td>
<td>-123,2</td>
<td>112,7</td>
<td>540,7</td>
<td>0,01</td>
<td>0,05</td>
<td>2673,0</td>
<td>557,1</td>
</tr>
<tr>
<td>2</td>
<td>-279</td>
<td>0</td>
<td>23</td>
<td>11,4</td>
<td>-323</td>
<td>-160,1</td>
<td>-11,4</td>
<td>11,4</td>
<td>160,1</td>
<td>-160,1</td>
<td>341,4</td>
<td>362,5</td>
<td>0,03</td>
<td>0,03</td>
<td>882,5</td>
<td>831,1</td>
</tr>
<tr>
<td>3</td>
<td>-189</td>
<td>-1</td>
<td>-453</td>
<td>-224,4</td>
<td>-219</td>
<td>-108,4</td>
<td>223,4</td>
<td>-224,4</td>
<td>107,9</td>
<td>-108,9</td>
<td>455,3</td>
<td>94,8</td>
<td>0,04</td>
<td>0,01</td>
<td>661,7</td>
<td>3177,5</td>
</tr>
<tr>
<td>4</td>
<td>-207</td>
<td>-2</td>
<td>2448</td>
<td>1212,9</td>
<td>-240</td>
<td>-118,8</td>
<td>-1214,9</td>
<td>1212,9</td>
<td>117,8</td>
<td>-119,8</td>
<td>989,7</td>
<td>1467,3</td>
<td>0,09</td>
<td>0,13</td>
<td>304,4</td>
<td>205,3</td>
</tr>
<tr>
<td>5</td>
<td>-336</td>
<td>0</td>
<td>578</td>
<td>286,5</td>
<td>-389</td>
<td>-192,5</td>
<td>-286,9</td>
<td>286,5</td>
<td>192,3</td>
<td>-192,7</td>
<td>195,0</td>
<td>698,1</td>
<td>0,02</td>
<td>0,06</td>
<td>1544,7</td>
<td>431,5</td>
</tr>
<tr>
<td>6</td>
<td>-443</td>
<td>2</td>
<td>39</td>
<td>19,2</td>
<td>-513</td>
<td>-254,0</td>
<td>-17,4</td>
<td>19,2</td>
<td>254,8</td>
<td>-253,1</td>
<td>540,6</td>
<td>576,1</td>
<td>0,05</td>
<td>0,05</td>
<td>557,2</td>
<td>522,9</td>
</tr>
<tr>
<td>7</td>
<td>96</td>
<td>425</td>
<td>185</td>
<td>91,6</td>
<td>112</td>
<td>55,5</td>
<td>333,3</td>
<td>91,6</td>
<td>157,1</td>
<td>267,8</td>
<td>209,7</td>
<td>51,9</td>
<td>0,02</td>
<td>0,00</td>
<td>1436,3</td>
<td>5802,9</td>
</tr>
</tbody>
</table>

Provozní zatížení

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X (15g)</td>
<td>5717</td>
<td>-65</td>
<td>647</td>
<td>320,6</td>
<td>6620</td>
<td>3279,8</td>
<td>-385,6</td>
<td>320,6</td>
<td>-3312,3</td>
<td>3247,3</td>
<td>7508,6</td>
<td>6914,7</td>
<td>0,69</td>
<td>0,63</td>
<td>40,1</td>
<td>43,6</td>
</tr>
<tr>
<td>Y (-3g)</td>
<td>-217</td>
<td>-957</td>
<td>-416</td>
<td>-206,1</td>
<td>-251</td>
<td>-124,5</td>
<td>-750,9</td>
<td>-206,1</td>
<td>-350,0</td>
<td>-603,0</td>
<td>471,9</td>
<td>116,8</td>
<td>0,04</td>
<td>0,01</td>
<td>638,4</td>
<td>2579,1</td>
</tr>
<tr>
<td>Y (3g)</td>
<td>217</td>
<td>956</td>
<td>416</td>
<td>206,1</td>
<td>251</td>
<td>124,5</td>
<td>749,9</td>
<td>206,1</td>
<td>353,5</td>
<td>602,5</td>
<td>471,9</td>
<td>116,8</td>
<td>0,04</td>
<td>0,01</td>
<td>638,4</td>
<td>2579,1</td>
</tr>
<tr>
<td>Z (-4,5g)</td>
<td>1</td>
<td>0</td>
<td>-1484</td>
<td>-735,3</td>
<td>1</td>
<td>0,6</td>
<td>735,3</td>
<td>-735,3</td>
<td>-0,6</td>
<td>0,6</td>
<td>740,8</td>
<td>743,2</td>
<td>0,07</td>
<td>0,07</td>
<td>406,6</td>
<td>405,4</td>
</tr>
<tr>
<td>Z (4,5g)</td>
<td>-1</td>
<td>0</td>
<td>1484</td>
<td>735,3</td>
<td>-1</td>
<td>-0,6</td>
<td>-735,3</td>
<td>735,3</td>
<td>0,6</td>
<td>-0,6</td>
<td>740,8</td>
<td>743,2</td>
<td>0,07</td>
<td>0,07</td>
<td>406,6</td>
<td>405,4</td>
</tr>
</tbody>
</table>
Podpěra B

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provozní zatížení</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-119</td>
<td>3</td>
<td>-1079</td>
<td>2</td>
<td>0,6</td>
<td>-367,3</td>
<td>367,3</td>
<td>-58,9</td>
<td>-60,1</td>
<td>541,0</td>
<td>544,5</td>
<td>0,03</td>
<td>0,03</td>
<td>1072,8</td>
<td>1065,9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-158</td>
<td>0</td>
<td>-1438</td>
<td>0</td>
<td>0,0</td>
<td>-489,5</td>
<td>489,5</td>
<td>-79,0</td>
<td>-79,0</td>
<td>723,3</td>
<td>723,3</td>
<td>0,03</td>
<td>0,03</td>
<td>802,4</td>
<td>802,4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-106</td>
<td>2</td>
<td>-2034</td>
<td>1</td>
<td>0,4</td>
<td>-692,4</td>
<td>692,4</td>
<td>-52,6</td>
<td>-53,4</td>
<td>1017,2</td>
<td>1019,6</td>
<td>0,05</td>
<td>0,05</td>
<td>570,6</td>
<td>569,3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-115</td>
<td>4</td>
<td>1368</td>
<td>2</td>
<td>0,8</td>
<td>465,7</td>
<td>350,7</td>
<td>-56,7</td>
<td>-58,3</td>
<td>688,8</td>
<td>684,1</td>
<td>0,03</td>
<td>0,03</td>
<td>842,7</td>
<td>848,5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-190</td>
<td>0</td>
<td>-1012</td>
<td>0</td>
<td>0,1</td>
<td>-344,7</td>
<td>344,7</td>
<td>-95,0</td>
<td>-95,2</td>
<td>514,8</td>
<td>515,3</td>
<td>0,02</td>
<td>0,02</td>
<td>1127,4</td>
<td>1126,3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-253</td>
<td>-4</td>
<td>-1349</td>
<td>-2</td>
<td>-0,7</td>
<td>-459,3</td>
<td>-712,7</td>
<td>459,3</td>
<td>-127,4</td>
<td>688,5</td>
<td>684,4</td>
<td>0,03</td>
<td>0,03</td>
<td>843,0</td>
<td>848,1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-11</td>
<td>440</td>
<td>0</td>
<td>259</td>
<td>88,0</td>
<td>-0,2</td>
<td>-10,8</td>
<td>0,2</td>
<td>82,7</td>
<td>-93,3</td>
<td>258,3</td>
<td>0,01</td>
<td>0,01</td>
<td>2246,8</td>
<td>2243,0</td>
<td></td>
</tr>
<tr>
<td>X (15g)</td>
<td>3321</td>
<td>129</td>
<td>-1733</td>
<td>76</td>
<td>25,8</td>
<td>-590,0</td>
<td>2731,0</td>
<td>590,0</td>
<td>1686,3</td>
<td>1839,2</td>
<td>1909,2</td>
<td>0,09</td>
<td>0,09</td>
<td>315,6</td>
<td>304,0</td>
<td></td>
</tr>
<tr>
<td>Y (-3g)</td>
<td>24</td>
<td>-990</td>
<td>1</td>
<td>-582</td>
<td>-198,0</td>
<td>0,3</td>
<td>24,3</td>
<td>-0,3</td>
<td>-186,0</td>
<td>210,0</td>
<td>581,2</td>
<td>0,03</td>
<td>0,03</td>
<td>998,6</td>
<td>996,9</td>
<td></td>
</tr>
<tr>
<td>Y (3g)</td>
<td>24</td>
<td>990</td>
<td>-1</td>
<td>582</td>
<td>198,0</td>
<td>-0,3</td>
<td>23,7</td>
<td>0,3</td>
<td>210,0</td>
<td>-186,0</td>
<td>581,2</td>
<td>0,03</td>
<td>0,03</td>
<td>998,6</td>
<td>996,9</td>
<td></td>
</tr>
<tr>
<td>Z (-4,5g)</td>
<td>0</td>
<td>-1</td>
<td>-1737</td>
<td>-1</td>
<td>-0,2</td>
<td>-591,3</td>
<td>-591,3</td>
<td>591,3</td>
<td>-0,2</td>
<td>0,2</td>
<td>869,1</td>
<td>0,04</td>
<td>0,04</td>
<td>667,9</td>
<td>668,8</td>
<td></td>
</tr>
<tr>
<td>Z (4,5g)</td>
<td>0</td>
<td>1</td>
<td>1737</td>
<td>1</td>
<td>0,2</td>
<td>591,3</td>
<td>591,3</td>
<td>591,3</td>
<td>0,2</td>
<td>-0,2</td>
<td>869,1</td>
<td>0,04</td>
<td>0,04</td>
<td>667,9</td>
<td>668,8</td>
<td></td>
</tr>
</tbody>
</table>
Podpora C

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Provozní zatížení</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-185</td>
<td>-2</td>
<td>-2343</td>
<td>-1324,3</td>
<td>-133,6</td>
<td>-1326,3</td>
<td>1324,3</td>
<td>-134,6</td>
<td>1326,3</td>
<td>1410,9</td>
<td>939,7</td>
<td>0,13</td>
<td>0,09</td>
<td>211,8</td>
<td>318,0</td>
</tr>
<tr>
<td>2</td>
<td>-252</td>
<td>0</td>
<td>-2392</td>
<td>-1352,0</td>
<td>-182,0</td>
<td>-182,0</td>
<td>1352,0</td>
<td>-182,0</td>
<td>182,0</td>
<td>2085,3</td>
<td>2725,7</td>
<td>0,19</td>
<td>0,25</td>
<td>143,3</td>
<td>109,6</td>
</tr>
<tr>
<td>3</td>
<td>-166</td>
<td>-1</td>
<td>-2746</td>
<td>-1552,1</td>
<td>-1553,1</td>
<td>-120,4</td>
<td>1552,1</td>
<td>-194,6</td>
<td>194,6</td>
<td>2539,3</td>
<td>2962,8</td>
<td>0,23</td>
<td>0,27</td>
<td>117,7</td>
<td>100,8</td>
</tr>
<tr>
<td>4</td>
<td>-178</td>
<td>-2</td>
<td>-536</td>
<td>-303,0</td>
<td>-128,6</td>
<td>-129,6</td>
<td>303,0</td>
<td>127,6</td>
<td>356,2</td>
<td>783,9</td>
<td>0,03</td>
<td>0,07</td>
<td>838,7</td>
<td>381,1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-302</td>
<td>0</td>
<td>-2347</td>
<td>-1326,6</td>
<td>-218,3</td>
<td>-218,5</td>
<td>1326,6</td>
<td>-218,5</td>
<td>218,0</td>
<td>1984,1</td>
<td>2749,9</td>
<td>0,18</td>
<td>0,25</td>
<td>150,6</td>
<td>108,6</td>
</tr>
<tr>
<td>6</td>
<td>-408</td>
<td>2</td>
<td>-2398</td>
<td>-1355,3</td>
<td>-294,7</td>
<td>-293,8</td>
<td>1355,3</td>
<td>-293,8</td>
<td>295,6</td>
<td>1920,3</td>
<td>2947,5</td>
<td>0,18</td>
<td>0,27</td>
<td>155,6</td>
<td>101,4</td>
</tr>
<tr>
<td>7</td>
<td>-86</td>
<td>425</td>
<td>-184</td>
<td>-104,3</td>
<td>-62,0</td>
<td>320,6</td>
<td>104,3</td>
<td>150,5</td>
<td>274,4</td>
<td>113,8</td>
<td>306,3</td>
<td>0,01</td>
<td>0,03</td>
<td>2624,6</td>
<td>975,4</td>
</tr>
<tr>
<td>Havarijní zatížení</td>
<td></td>
</tr>
<tr>
<td>X (15g)</td>
<td>5472</td>
<td>-65</td>
<td>1086</td>
<td>613,8</td>
<td>6992</td>
<td>3952,0</td>
<td>548,8</td>
<td>-613,8</td>
<td>3919,5</td>
<td>3984,5</td>
<td>8051,3</td>
<td>9756,9</td>
<td>0,74</td>
<td>0,90</td>
<td>37,1</td>
</tr>
<tr>
<td>Y (-3g)</td>
<td>193</td>
<td>-956</td>
<td>-415</td>
<td>-234,6</td>
<td>247</td>
<td>139,4</td>
<td>-1190,6</td>
<td>234,6</td>
<td>-338,6</td>
<td>-617,4</td>
<td>689,2</td>
<td>256,1</td>
<td>0,06</td>
<td>0,02</td>
<td>433,5</td>
</tr>
<tr>
<td>Y (3g)</td>
<td>-193</td>
<td>956</td>
<td>-415</td>
<td>-234,6</td>
<td>-247</td>
<td>-139,4</td>
<td>721,4</td>
<td>234,6</td>
<td>338,6</td>
<td>617,4</td>
<td>256,1</td>
<td>689,2</td>
<td>0,02</td>
<td>0,06</td>
<td>1166,5</td>
</tr>
<tr>
<td>Z (-4,5g)</td>
<td>-1</td>
<td>0</td>
<td>-1132</td>
<td>-639,8</td>
<td>-1</td>
<td>-0,7</td>
<td>-639,8</td>
<td>-639,8</td>
<td>-0,7</td>
<td>0,7</td>
<td>1130,7</td>
<td>1133,3</td>
<td>0,10</td>
<td>0,10</td>
<td>264,2</td>
</tr>
<tr>
<td>Z (4,5g)</td>
<td>1</td>
<td>0</td>
<td>1132</td>
<td>639,8</td>
<td>1</td>
<td>0,7</td>
<td>639,8</td>
<td>-639,8</td>
<td>0,7</td>
<td>-0,7</td>
<td>1130,7</td>
<td>1133,3</td>
<td>0,10</td>
<td>0,10</td>
<td>264,2</td>
</tr>
</tbody>
</table>