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Abstract

Power curve measurements provide a conventional and effective means of assessing the

performance of a wind turbine, both commercially and technically. Increasingly high wind

penetration in power systems and offshore accessibility issues make it even more important

to monitor the condition and performance of wind turbines based on timely and accurate wind

speed and power measurements. Power curve data from Supervisory Control and Data

Acquisition (SCADA) system records, however, often contain significant measurement

deviations, which are commonly produced as a consequence of wind turbine operational

transitions rather than stemming from physical degradation of the plant. Using such raw data

for wind turbine condition monitoring purposes is thus likely to lead to high false alarm rates,

which would make the actual fault detection unreliable and would potentially add

unnecessarily to the costs of maintenance. To this end, this paper proposes a probabilistic

method for excluding outliers, developed around a Copula-based joint probability model.

This approach has the capability of capturing the complex nonlinear multivariate relationship

between parameters, based on their univariate marginal distributions, through the use of a

Copula; data points that deviate significantly from the consolidated power curve can then be

removed depending on this derived joint probability distribution. After filtering the data in

this manner, it is shown how the resulting power curves are better defined and less subject to

uncertainty, whilst broadly retaining the dominant statistical characteristics. These improved



power curves make subsequent condition monitoring more effective in the reliable detection

of faults.

Index term: wind turbine, power curve, outlier rejection, SCADA, Copula Model.

1. Introduction

Wind energy has an essential role in meeting electrical power demand in an environmentally

sustainable manner. The considerable UK offshore wind resource and the need for the UK to

reduce carbon emissions from electricity generation is driving policy to install 33GW of new

wind generation capacity offshore by 2020 [1]. Costs and operational difficulties involved in

offshore maintenance, resulting from poor plant accessibility, lead to a substantially lower

turbine availability offshore than onshore where availability can be as high as 98% [2].

Consequently, preventative, condition based wind turbine maintenance is expected to be

more economically efficient than responsive and/or scheduled maintenance.

Significant efforts have been made to develop condition monitoring of wind turbines. The

applied techniques and algorithms can be classified into two general categories, i.e. physical

model based methods and data driven algorithms. The development of a physical model for a

specific turbine component requires detailed physics which is not always readily achievable

[3]. In contrast, data driven methods can facilitate the required analysis with the aid of

artificial intelligence techniques. A physical model based application to wind turbine gearbox

fault detection using the Physics of Failure methodology is presented in reference [3].

Reference [4] implements the condition monitoring of gearbox based on signals from both

the SCADA system and a conventional vibration based Condition Monitoring System (CMS).

Wavelet transforms, which are capable of providing good frequency resolution at low

frequencies and time resolution at high frequencies, have been applied to measurements from

the generator for condition monitoring purpose [5]. References [6, 7] employ the commonly



used Artificial Neural Networks (ANN) to construct the normal behaviour modelling based

on the SCADA data, which is then used to detect the anomalies in the corresponding turbine

subcomponent.

A fundamental but important metric for monitoring wind turbine performance is the power

curve which relates turbine power output to the wind speed experienced by the turbine rotor.

Data suitable for power curve determination are generally available from the SCADA

systems installed with most modern wind turbines. The SCADA system logs general turbine

operational and meteorological data in a 10-minute averaged form for each individual wind

turbine and any meteorological masts within the wind farm, before communicating them to a

remote central computer [8]. SCADA system errors, such as those from errors in the

communications system [9], or measurement sensor errors can result in data loss and hence

null entries in SCADA records. Other spurious measurements that can deviate significantly

from the power curve supplied by the original equipment manufacturer (OEM) may be

caused by the 10-minute averaging period used in power curve determination, including a

mixture of normal turbine operation and a period of non-production when the turbine has

been stopped by the control system for one reason of another. Turbine start/stop decisions do

not necessarily coincide with the bounds of the ten minute averaging periods. These

measurements (referred to as outliers in the rest of this paper) are facets of the data collection

and are not an indication of faults or anomalous turbine operation. Such misleading data

should therefore be removed before further analyses are undertaken. Both references [10] and

[11] claim the necessity of elimination of the power curve outliers, where Kusiak et al.

acknowledge that outliers do exist in power curve measurements and they will affect the

accuracy of the associated analysis, and they employ an analysis of residuals together with

control charts to filter potential outliers. Identification of blade and yaw system faults based

on the monitoring of power curves are documented in reference [12]; however the authors



removed the outliers by visual inspection, which is neither accurate nor efficient. The authors

of reference [11] mention the difficulties in checking the data validity and deciding between

normal and anomalous turbine operation. The main target of the work presented here is to

reject potential outliers whilst broadly retaining the statistical characteristics of the power

curve, in particular the mean values of the measurements. Despite its simplicity such an

approach to condition monitoring is relatively unexplored.

IEC standard 61400-12-1 [13] specifies the use of the ‘method of bins’ to form the power

curve. SCADA data are grouped and averaged in 0.5 m/s wind speed bins, with uncertainties

(due to both data measurements and sensors) being illustrated by error bars for each bin. The

method provides a simple and straightforward way to determine and present a wind turbine

power curve, but its accuracy and reliability depends largely on data quantity and their

intrinsic spread: a bin with a smaller number of data points will give, all other factors being

equal, a greater uncertainty. The nonparametric k-nearest neighbour (kNN) algorithm is

utilized in reference [14] to construct a reference power curve for an individual turbine based

on exemplar training data, and in [10], the same algorithm has been extended in order to

construct a reference power curve for a whole wind farm. In this extended use, Principal

Component Analysis, [15], is used in combination with the kNN algorithm to reduce the

dimension of the input data by selecting only the most informative wind speed components.

The drawback of kNN is not only the computational burden involved, which becomes

significant for large training data sets, as implied in [10], but also the fact that the original

data is transformed by the k-averaging process, which replaces the original data with the

averaged value from the k nearest points. Reference [16] treats the relationship between wind

speed and power output across the wind farm as stochastic and develops a probability

distribution of wind farm power generation in terms of wind speed and wind direction, based

on conditional kernel density estimation [17]. The resulting distribution could be used by



power system operators to model expected power production. Reference [18] also presents a

wind farm power predictive distribution based on ensemble probabilistic forecasting. The

forecasting method converts meteorological variables into power by using a fitted power

curve model, requiring greater accuracy in the power curve measurements.

One effective way of representing the relationship between these two power curve variables,

and the corresponding uncertainty, is to investigate their joint probability distribution. The

joint probability density of power curve measurements represents a highly non-linear

bivariate relationship and is difficult to represent using the common parametric multivariate

probability distributions. Copulas provide a means of relating variables with a complex

dependency structure. They have been extensively used to solve economic and financial

problems [19], where the underlying data show significantly nonlinear features. This paper

uses a Gaussian Mixture Copula Model (GMCM), [20], to construct a 2-dimensional joint

probability distribution for wind speed and wind turbine power output that can be used to

represent a power curve. The model proposed in this paper builds on the ones presented in

references [12] and [21]: Gill et al. present a non-parametric approach that serves only to

quantify the ability of the Copula to approximate the functional form of the power curve;

Stephen et al. propose the use of parametric marginal distributions to be used with Copulas

both to approximate the functional form of the power curve as well as to identify particular

operating regimes within it as multimodal behaviour. Where the GMCM contributes further

is in the unification of both strands of the preceding research: the quantification of anomalous

behaviour through low likelihood and the development of parametric models capturing the

various modes within the power curve that do not necessarily follow linear Gaussian

multivariate distribution assumptions. Reference [22] claims that the kNN is more complex

and requires more memory for computation than the GMM model. And the GMCM, which is



based on the Gaussian Mixture Model (GMM) and involves the same parameters as used in

GMM, can be assumed to have almost the same computational complexity as the GMM.

The Copulas used as the foundation for the development of power curve model, including the

Frank Copula and the GMCM, are introduced in the next section. Particular attention is paid

to comparisons of fitness of different Copula models in Section 3, and outlier rejection in

Section 4.

2. Expressing Dependency through Copula Statistics

The term Copula was first employed by Sklar to bring together the complex nonlinear

dependency structure of a multivariate data set with its one-dimensional marginal

distributions [23]. For a set of n marginal probability densities, the n-dimensional joint PDF

can be expressed as:

f(x , x ,Ÿ , x ) = c(u , u ,Ÿ u ) × f (x ) × f (x ) × Ÿ f (x ) (1)

where f denotes the ith marginal PDF and the corresponding marginal CDF, F , is

represented by u . And c represents the Copula density function that unifies them.

2.1 The Frank Copula

The choice of Copula is governed by the tail dependence implied by the data. In the bivariate

case, tail dependence is expressed in terms of the relationship between the extreme values of

the two marginal distributions. If one variable has exceeded a particular threshold and the

other has also exceeded this threshold with proportional likelihood, then the distribution is

tail dependent [24]. Tail dependence can be visualised as a tightening of the scatter of

observations around the extremes of the distribution, while low tail dependence will be

exhibited as a greater degree of scatter. As has been shown in reference [12], the distribution

pattern and the characteristics of the tail dependency of the Frank Copula Model are



consistent with those of the power curve variables, for which reason this particular Copula is

selected here. The Frank Copula density function, c (u , u , ジ), is given by

c (u , u , ジ) =
( )

[ ( )( )]
(2)

where セ = 1 " e [25]. As shown in Figure 1, the larger the value of ジ, the stronger the

dependence is between the variables related by the Frank Copula [25] throughout their

bivariate distribution. The parameter ジ can be obtained by optimizing the model’s fit for a

given bivariate dataset based on some criteria such as maximum likelihood.

Figure 1: Bivariate distribution with Gaussian marginals demonstrating the effect of ジ value

on variable dependency
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capabilities; where the Copula mixture adds benefit is in identifying the modes without

requiring a large number of components to represent their dependency structure.

The GMM probability density function ナ, comprises a weighted sum of M Gaussian density

components, given by

ナ(x , x ,Ÿ , x ; わ) = ! サ N x , x ,Ÿ , x ; θ (3)

where サ are the weights for different components and all the elements of サ sum to unity.

Parameter M indicates the modality number and will be determined in Section 3.2. θ =

ダ ; Σ with ダ representing the mean vector and Σ being the covariance matrix for the j h

component [26]. And the parameter set, わ, combines the weight assignment and the statistics

in θ for each Gaussian component. Multivariate Gaussian distributions can only express

linear dependency, and while the mixture model framework may afford a piecewise

approximation of non-linearity, it is therefore clear that mixture components with a more

complex dependency structure would allow a superior fit.

A Gaussian Mixture Copula Model (GMCM), [20], derived from a GMM with no implied

covariance is capable of characterising multidimensional nonlinear statistics for multimodal

data. The GMCM density function, derived from the GMM expression of Equation (3), is

defined as:

c (u , u ,Ÿ , u ; わ) =
( ), ( ),Ÿ, ( );

\ ( ( ))
(4)

where ナ and オ denote the marginal density of GMM and the corresponding inverse

distribution along each dimension. The parameter set わ is optimised by maximising the log-

likelihood function of the GMCM Copula function as shown in Equation (4).



Equation (1) is used to calculate the joint probability distribution based on the fitted Copula

density function: Equation (2) for the Frank Copula model; and Equation (4) for GMCM,

with the marginal PDF for each variable in Equation (1) is achieved through kernel density

estimation.

3. Power curve density modelling with Copulas

In the specific application to wind turbine power curve analysis, the Copula model links the

marginal distribution of wind speed and turbine power output to their two-dimensional joint

probability density function.

The basic steps for Copula based outlier removal are as follows:

1) Pre-processing of power curve measurements

This includes the removal of null entries followed by air density correction of the raw

data as will be presented in Section 3.1.

2) Model order determination

The modality number is derived using the self-organising map in Section 3.2 to

facilitate the fitting of the GMCM.

3) GMCM fitting

In [20] a GMCM parameter optimisation process is proposed that is based on

Expectation Maximization (EM) [27] followed by application of a gradient descent

optimisation [28]. The reason for this is the non-convex form of the log-likelihood

function for the GMCM density function. The solution obtained from the

Maximisation step of EM is not guaranteed to find the global optimum, thus

necessitating the use of the Gradient Descent algorithm with randomly assigned initial



conditions within an iterative loop for global optimum investigation. This

methodology for GMCM parameter estimation is retained in this paper.

4) Outlier rejection

Based on the achieved density distribution, the outliers of power curve measurements

are filtered using a probability contour that will be determined in Section 4.

The robustness of GMCM is shown by comparing goodness of fit between GMCM, the Frank

Copula, and GMM, using the Bayesian Information Criterion (BIC). Two examples are

shown in Section 4 to validate the effectiveness of this outlier elimination method.

3.1 Typical power curve and data pre-processing

Measurements retrieved from the SCADA system consist of 10-minute averaged values of

wind speed, turbine power output, ambient temperature and atmospheric pressure. The latter

two measurements determine the air density, ヅ , to which the turbine power output P is

proportional:

P = ヅツR v C (5)

where R represents the radius of turbine rotor; v is the wind speed experienced by the rotor

and C indicates the power coefficient. In order to correct the operational data to standard air

density conditions (15 degree Celsius and 101.325 kPa ), the acquired power curve

measurements are modified following the procedure described in IEC standard 61400-12-1,

[13]. Null entries, for wind speed, power or both, can arise in the data record due to a

breakdown in data capture, either in the sensors or the communication system of the SCADA

system. These should be removed prior to probability density function fitting. All the power

curve measurements used in this paper have been corrected for air density and empty entries

have been eliminated as described.



Figure 2: Scatter plot of power curve measurements

Figure 3: Power curve with error bars showing data uncertainty

Figure 4: Power curve with error bars showing data dispersion
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Figure 2 shows power curve measurements for a two-month period (depicting 7257 pairs of

data) of fault free operation from a pitch regulated variable speed wind turbine (hereafter

referred to as ‘turbine 1’) with a nominal rating of 2MW. The corresponding power curve,

produced by binning as outlined in section 1, is shown in Figure 3, where the error bars

plotted have been calculated from
*

, with representing the standard deviation of power

output values in the bin and being the number of points. The term
*

results from the

Central Limit Theorem’s measure of uncertainty: error bars calculated in this way give an

indication of the confidence in the expected value of the power curve at that point based on

the number of observations in the bin. The relatively large error bars at the high wind speed

(values over 20 m/s) bins are not important here because it is known that the maximum

power generated is well controlled and determined by the turbine control system, [29], as

shown in Figure 2. These are due to the insufficient numbers of points in these particular bins

reflecting the occasional nature of the very high wind speeds. For the purposes of this paper it

is the spread of data that is of more importance in the Copula fitting and thus the power curve

has been re-plotted in Figure 4 to show errors bars with a value of the unmodified . Note

that the largest values of occur around and just below the rated wind speed of 13.5 m/s for

reasons that will be discussed in Section 4.

3.2 Model order selection

The optimal data modality is required when using mixture models such as GMCM. While

many power curves have three distinct modes, the methodology proposed in this paper is an

inherently data driven one: operational, faults or meteorological factors may result in a curve

that has a different number of modes, for examples due to anemometer failure [11] or de-

rating of the turbine (without a corresponding flag in the SCADA records). The self-

organising map (SOM), originally conceived by Teuvo Kohonen, [30], is employed here



because of its ability to cluster the data in an unsupervised-learning manner. The main

function of SOM is to construct a nonlinear projection of high-dimensional data onto a low-

dimensional (usually 2D) space, in which the clustering of data and its topology are clearly

shown and easily interpreted [30].

Figure 5: SOFM neighbour weight distances

The data set shown in figure 2 is used to determine the number of modes present in the data

which will in turn inform the choice of modality for the optimal model. Three distinct data

regions can be observed in this figure: near cut-in, below which the turbine does not operate

(3.5 m/s in this example); above rated (13.5 m/s); and the region in between. A 10×8 two-

dimensional SOM is used to visualise the data clustering. The learning result is presented in

the form of neighbour weight distances as illustrated in Figure 5, where the blue hexagons

represent the neurons and neighbouring neurons are connected by red lines. The background

colour indicates the distances between the neurons, with darker colours representing larger

distances and lighter colours representing smaller distances. Three segments can be observed

based on the colour coding scheme introduced: two distinct triangles at bottom left and top

right; and a relatively weak segment located approximately along the diagonal. They are

separated from each other by dark colour bands. The model order for this power curve data is

three, corresponding to the number of distinct regions into which the space is divided, which
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matches the original assumption of three parts to the power curve, although of course the plot

of weight distances does not directly reproduce the original data.

3.3 Fitness analysis

GMCM is capable of clustering data automatically once the data modality has been

identified, as described in the previous section. The same SCADA data as used in Section 3.2

are used here to assess the model’s fitness. The Bayesian Information Criterion (BIC), [31], is

used here for model selection, with lower values of BIC indicating better models. It is based

on the log-likelihood function, ( Θ | , , Ÿ , ), sums the log of the probabilities of all data

points and provides a convenient and easily calculated metric for goodness of fit, [32]. Over-

fitting is avoided by introducing a penalty term, ( ), which takes account of the model

complexity. BIC is defined as:

= "2 ( Θ | , , Ÿ , ) + ( ) (6)

where (Θ | , , Ÿ , ) = ! log( ( ( ), ( ),Ÿ , ( ))) (7)

represents the sample size in both Equations (6) and (7), and has the value of 7257 in this

case. And is the number of parameters. For the Frank Copula = 1 whilst for the GMM

and GMCM, it can be calculated using Equation (8), [33].

= (1 + +
( )

) (8)

where denotes the modality number, which is 3, as determined in Section 3.2 and

indicates the data dimension, which is 2 in this paper. This results in a value of 18.

The different models (GMCM and Frank Copula) can be compared by calculating BIC for

identical input data samples. Figures 6(a), 6(b) and 6(c) illustrate the probability density

fitting for the GMCM models, Frank Copula and the GMM model respectively. The GMM is



included here due to its capability of dealing with multimodal data, as summarised in Section

2.2. The BIC values of these three models are listed in Table 1, from which it can be seen that

the GMCM model outperforms the other models. The GMCM also has the advantage of

dealing with multivariate distributions, which would readily accommodate more variables for

further applications, whereas the Frank (or Archimedean) Copula could only be used for

bivariate data characterisation. In conclusion, the Gaussian Mixture Copula Model is thus

chosen for outlier rejection.
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(a) GMCM fit
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(b) Frank Copula fit
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Figure 6: Fitness comparison of three presented models

4. Outlier rejection using GMCM

Power curve deviations (scatter) can result from SCADA system measurement or data

transcription errors, anomalous values from measurement intervals that include periods when

the turbine is not operating, and finally from anomalies in turbine operation due to some fault

or other that is of interest for condition monitoring purposes. Null entries caused by SCADA

system issues are eliminated as described in Section 3.1; intermittent operation within the 10

minute measurement time interval will lead to anomalous values that have a random

character. This leaves systematic deviations that reflect actual problems in turbine operation

or at least in instrumentation.

It is the purpose of the analysis presented here to identify statistical trends associated with

these deviations from ideal turbine behaviour. Unambiguously distinguishing between these

different situations is not readily achieved without domain expert knowledge. In the absence

of this, Copula fitting methods developed can be used to eliminate outliers. Since the joint

probability distribution provides a straightforward means of data characterisation, a

probability density-based deviation exclusion method should also be effective in the

elimination of possible outliers whilst retaining the broad statistical characteristics of the

power curve.

For a modern pitch regulated variable speed wind turbine, good power control is available

above the rated wind speed. It is shown in Figure 4 that the greatest scatter, as indicated by

the error bars of size σ , occurs at around rated power where the turbine is continually

changing between below rated operation where speed is varied to maximise aerodynamic

efficiency, and above rated power where electronic control limits current and power from the



generator [34]. The lower variance at the extremes means that the tail dependency is not

likely to be a major source of error.

A probability contour level at three standard deviations for data in the 0.5 m/s wind speed

bin closest to rated wind speed is judged to be appropriate. Points lying outside this contour

are regarded as outliers and are eliminated. The effectiveness of this proposed method is

demonstrated on two additional turbines (denoted as turbines 2 and 3), both being pitch

regulated.

Figure 7: GMCM fit of power curve measurements for turbine 2

Figure 8: Data exclusion for turbine 2 using density contour
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Figure 9: Data exclusion for turbine 3 using density contour

Figure 10: Power curve for turbine 3 after cleaning

Figure 7 illustrates the GMCM fitting of power curve measurement for turbine 2. Figure 8

shows the same power curves after outliers have been identified using the fitted Copulas and

the density contour (defined as 3σ ) illustrated by the red line, with green points indicating

power curve measurements that are to be excluded. It can be seen from the below rated

region of Figure 8 that the turbine control strategy for tracking the maximum shows

unsatisfactory performance in that the power curve measurements do not tightly align with
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average power somewhere between rated power and zero, depending on how much time the

turbine was not operational. It is clearly correct that these data be excluded as they do not

reflect the relationship between power and wind speed, but rather the anomalous effect of

averaging. Cleaning the power curve through the elimination of outliers makes the operation

of turbine 3 clearer, as shown in Figures 9 and 10. Two distinct power levels can be discerned

in Figure 10, where the lower level at 2000kW output (even in high winds) results from the

turbine being derated. This occurs when the turbine operators are instructed to reduce wind

farm output by the network operators, usually due to excess wind.

The power curve cleaning has been demonstrated to be effective in both examples.

Subsequent condition monitoring based on these improved power curves will thus result in

more reliable detection of faults.

5. Conclusions

Power curves are an established metric for wind turbine performance and have previously

been demonstrated to be useful measures of plant condition when constructed from

operational monitoring data. To date, the elimination of power curve outliers remains

relatively unexplored. This paper has proposed the use of a model capable of modelling the

complex stochastic dependency structure inherent in the power curve to allow probabilistic

filtering of measurement data as a pre-processing stage to a condition model. Providing an

appropriate model order has been identified, a GMCM can capture the complex nonlinear

dependency structure between wind speed and power output measurements and can be used

to estimate the power curve to a level of accuracy that cannot be matched by parametric

multivariate distributions, with limited computational complexity. The probability density-

based approach set out in this paper for outlier rejection has been demonstrated to effectively

remove the significant outliers whilst retaining the main statistical characteristics of the



power curve measurements. Pre-processing of the power curve will improve the effectiveness

of techniques based on power curve anomalies that are increasingly popular for condition

monitoring and fault identification in wind turbines. Future work will involve online wind

turbine performance assessment based on power curve measurements screened using the

presented method, where the GMCM could be applied to the updated power curve

measurements on a regular basis, say each month, to take account of any evolution in the

power curve. The GMCM could also be adapted to take account of additional variables, such

as the wind direction.
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Bayesian Information Criterion value

GMCM 110597

Frank 112415

GMM 114993

Table 1: BIC values of three models indicating goodness of fit


