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Deterministic numerical solutions of the Boltzmann equation using

the fast spectral method

Lei Wu, Craig White, Thomas J. Scanlon, Jason M. Reese and Yonghao Zhang

James Weir Fluids Lab, Department of Mechanical and Aerospace Engineering, University of Strathclyde,
Glasgow G1 1XJ, UK

Abstract

The Boltzmann equation describes the dynamics of rarefied gas flows, but the multidimen-
sional nature of its collision operator poses a real challenge for its numerical solution. In this
paper, the fast spectral method [36], originally developed by Mouhot and Pareschi for the
numerical approximation of the collision operator, is extended to deal with other collision ker-
nels, such as those corresponding to the soft, Lennard-Jones, and rigid attracting potentials.
The accuracy of the fast spectral method is checked by comparing our numerical solutions
of the space-homogeneous Boltzmann equation with the exact Bobylev-Krook-Wu solutions
for a gas of Maxwell molecules. It is found that the accuracy is improved by replacing
the trapezoidal rule with Gauss-Legendre quadrature in the calculation of the kernel mode,
and the conservation of momentum and energy are ensured by the Lagrangian multiplier
method without loss of spectral accuracy. The relax-to-equilibrium processes of different
collision kernels with the same value of shear viscosity are then compared; the numerical
results indicate that different forms of the collision kernels can be used as long as the shear
viscosity (not only the value, but also its temperature dependence) is recovered. An iteration
scheme is employed to obtain stationary solutions of the space-inhomogeneous Boltzmann
equation, where the numerical errors decay exponentially. Four classical benchmarking prob-
lems are investigated: the normal shock wave, and the planar Fourier/Couette/force-driven
Poiseuille flows. For normal shock waves, our numerical results are compared with a finite
difference solution of the Boltzmann equation for hard sphere molecules, experimental data,
and molecular dynamics simulation of argon using the realistic Lennard-Jones potential.
For planar Fourier/Couette/force-driven Poiseuille flows, our results are compared with the
direct simulation Monte Carlo method. Excellent agreements are observed in all test cases,
demonstrating the merit of the fast spectral method as a computationally efficient method
for rarefied gas dynamics.

Keywords: Boltzmann equation, Lennard-Jones potential, Sutherland’s formula of shear
viscosity, Fourier spectral method, rarefied gas dynamics
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1. Introduction

The fundamental task in the study of gas dynamics is to obtain the evolution of macro-
scopic quantities such as density, bulk velocity, temperature, pressure tensor, and heat flux.
Only when the Knudsen number (the ratio of the molecular mean free path to a characteris-
tic flow length, or characteristic flow frequency to mean collision frequency) is small, can the
evolution of macroscopic quantities be governed by partial differential equations such as the
Navier-Stokes-Fourier equations, Burnett equations, or the Grad-13 moment equations [1].
As the Knudsen number becomes appreciable, it is necessary to adopt microscopic descrip-
tions. Since the gas consists of a large number of molecules, the Newtonian description is
computationally unrealistic. So we turn to the Boltzmann equation under the assumptions
of molecular chaos and binary collisions. This uses the one-particle distribution function to
describe the system state, and macroscopic quantities are derived from the velocity moments
of the distribution function. In Boltzmann’s description, all molecules move in straight lines
with fixed velocities until they encounter elastic collisions with other molecules. The col-
lision is modelled by a nonlinear collision operator, where the intermolecular potential is
incorporated into the collision kernel. The structure of the collision operator is rather com-
plicated: it is a fivefold integral with three dimensions in velocity space and two dimensions
in a unit sphere.

The multidimensional structure of the collision operator poses a real challenge to the
numerical solution of the Boltzmann equation. From a historical point of view, realistic
numerical computations of the Boltzmann equation are based on probabilistic methods.
Well-known examples are the direct simulation Monte Carlo (DSMC) methods developed
by Bird and Nanbu [2, 3]. Despite their stochastic nature, DSMC solutions converge to
those of the Boltzmann equation for a monatomic gas in the limit of vanishing discretization
and stochastic errors [4]. The main advantages of the DSMC method are: (i) the simu-
lated particles in DSMC represent a large number of real molecules so that the number of
operations is greatly reduced; (ii) it does not need artificial boundaries in velocity space;
(iii) particles concentrate in regions where the distribution function is not small so that
computer memory is not wasted; (iv) it is very efficient for high-speed rarefied gas flows.
However, DSMC becomes time-consuming if the flow is in the continuum-fluid regime, espe-
cially when the Mach number is small. Note that recently developed information preserving
DSMC method [5, 6], hybrid continuum/particle approaches [7, 8, 9, 10], and the variance
reduced DSMC method [11, 12] have partly eased these difficulties.

Contrasting with the particle methods, there are numerical methods that solve the Boltz-
mann equation deterministically, including the discrete velocity model (DVM), the finite-
difference method, and the Fourier spectral method. A brief introduction to these methods
is given below.

In 1989, Goldstein, Sturtevant, and Broadwell developed the first version of DVM [13].
They used a fixed set of discrete velocities to approximate the continuous velocity space, and
constructed a discrete collision mechanics on the velocity nodes in order to preserve the main
physical properties of the collision operator. However, a large amount of computational re-
sources are wasted since the post-collision velocities must lie on the velocity nodes. Bobylev,
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Palczewski, and Schneider considered the direct approximation of the collision operator and
demonstrated that the computational cost is of the order O(N7), while the formal accuracy
is less than first order in velocity, where N is the number of grid points in each velocity di-
rection [14]. The high computational cost drove researchers to consider mixed deterministic
and stochastic methods [15, 16, 17, 18]. Recently, Morris, Varghese, and Goldstein used an
interpolation scheme to map the post-collision velocities back onto the velocity nodes and
found that the performance of DVM is comparable to (or even faster than) DSMC in normal
shock wave simulations [19, 20]. Also note that Mouhot, Pareschi, and Rey constructed a

DVM for hard sphere molecules with computational cost O(N
3
N3 log N), N ¿ N [21].

The kinetic theory group in Kyoto has developed a family of finite difference methods for
the Boltzmann equation. In 1989, Sone, Ohwada, and Aoki proposed an accurate numerical
kernel method for computing the linearized collision operator for hard sphere molecules [22].
Four years later, Ohwada extended the finite-difference method to calculate the full nonlinear
collision operator for hard sphere molecules [23, 24]. This method seems to be restricted
to one-dimensional problems such as normal shock flow and Fourier heat flow between two
parallel plates where the velocity distribution function has a cylindrical symmetry, i.e., it is
a function of the longitudinal and transversal velocities. In this way, the number of velocity
nodes and the computational cost are dramatically reduced. In 2001, the finite difference
method was applied by Kosuge, Aoki, and Takata to the Boltzmann equation for a binary
gas mixture of hard sphere molecules [25].

In 1996, inspired by the pioneering work of Bobylev using Fourier transform techniques in
the analysis of the Boltzmann equation for Maxwell molecules [26], Pareschi and Perthame
proposed a spectral method to approximate the collision operator for a class of collision ker-
nels, where the computational cost is of the order O(N6) [27]. One year later, Bobylev and
Rjasanow developed a numerical method to solve the collision operator for Maxwell molecules
with computational cost of the order O(N4) [28]. This is in general the fastest algorithm to
date. However, its formal accuracy is only of the order O(N−1/2). For one-dimensional prob-
lems such as Fourier heat flow and normal shock flow, Watchararuangwita, Grigoriev, and
Meleshko observed that cylindrical symmetry allows a reduction of the computational cost to
the order O(N2 log N) by employing the fast Fourier transform (FFT) in the longitudinal ve-
locity direction and Hankel transform in the transverse direction [29]. In 1999, based on the
Carleman representation, Bobylev and Rjasanow were able to solve the collision operator for
hard sphere molecules with a computational cost O(N6 log N) and formal accuracy O(N−2),
using generalized Radon and X-ray transforms [30]. A faster numerical method with a com-
putational cost O(N6) and formal accuracy O(N−2) has also been proposed for the variable
hard sphere (VHS) model by Ibragimov and Rjasanow [31]. Based on these Fourier spectral
methods, Gamba and Tharkabhushanam developed a spectral-Lagrangian method both for
elastic and inelastic collision operators and investigated space-inhomogeneous problems, i.e.,
one-dimensional Fourier heat flow and shock flow [32, 33].

In 2000, Pareschi and Russo developed an algorithm to solve the collision operator for the
VHS model with a computational cost of O(N6) [34]. The approximation of the collision op-
erator is spectrally accurate for smooth velocity distribution functions, where the decay rate
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of the error is faster than any polynomial, i.e., faster than O(N−r) for any r > 0. The method
has been successfully applied to space-inhomogeneous problems in two-dimensional veloc-
ity space [35]. Six years later, by means of the Carleman-like representation, Mouhot and
Pareschi developed a faster spectral algorithm with a computational cost O(M2N3 log N)
and spectral accuracy, where M is the number of grid points in the discretizations of polar
and azimuthal angles [36]. In practical calculations, M ¿ N , say, M = 4 ∼ 6 [36, 37]. The
fast spectral method has been applied to space-inhomogeneous problems in two-dimensional
velocity space as well as quantum collision operators [37, 38, 39, 40]. Surprisingly, so far
we have not seen any attempt to apply the fast spectral method to physically meaningful
space-inhomogeneous problems in three-dimensional velocity space.

In terms of accuracy and computational cost, the fast spectral method seems to be the
best one among all the Fourier spectral methods [36]. Compared to the VHS model where
the collision kernel is isotropic (independent of the deflection angle), this algorithm works
only for hard sphere molecules. However, by introducing special forms of anisotropic collision
kernels, the fast spectral method can be extended to many intermolecular interaction models.
This paper is devoted to the improvement of the fast spectral method in the following three
ways:

1. Novel anisotropic collision kernels are designed, extending the applicability of the
fast spectral method to all inverse power-law potentials except the Coulomb poten-
tial. Also, special collision kernels are designed for molecules interacting through the
Lennard-Jones (LJ) potential and rigid attracting potential, by observing that cross-
sections for these potentials can be approximated well by superpositions of several
single-term cross-sections. Nevertheless, the numerical simulations are as fast as that
for a single-term collision kernel.

2. In the calculation of the kernel mode, the integration in a unit sphere is approximated
by the Gauss-Legendre quadrature, instead of the trapezoidal rule. Better accuracy is
achieved for the same number of discrete polar and azimuthal angles.

3. Since the fast spectral method conserves mass and approximates momentum and en-
ergy with spectral accuracy, we use the method of Lagrangian multipliers to correct
the momentum and energy. While it ensures conservation, the Lagrangian multiplier
method does not affect the accuracy of the fast spectral method.

Our modified fast spectral method is then applied to space-inhomogeneous problems such
as the normal shock wave and planar Fourier/Couette/force-driven Poiseuille flows. Its
accuracy is checked by comparing numerical results with analytical solutions, experimental
data, and other numerical results obtained from the finite-difference method, molecular
dynamics (MD), and DSMC.

The rest of the paper is organized as follows. In Section 2, the problems are stated
and the Boltzmann equation is introduced. We show how to recover the shear viscosity
when special forms of the anisotropic collision kernels (especially the collision kernels for
the realistic LJ potential and rigid attracting potential) are used. We normalize the Boltz-
mann equation and give the boundary conditions for the normal shock flow and planar
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Figure 1: Sketch of (a) Fourier, (b) Couette, and (c) force-driven Poiseuille flows between parallel plates.

Fourier/Couette/force-driven Poiseuille flows. In Section 3, detailed calculation of the spec-
tral approximation of the collision operator is presented, and the accuracy of the fast spectral
method is checked by comparing the numerical results with analytical solutions for Maxwell
molecules. The relax-to-equilibrium process of different collision kernels with the same value
of shear viscosity is then compared in Section 4. An iteration scheme is used to find steady
solutions of the space-inhomogeneous problems in Section 5. Various comparisons with the
finite-difference method, experiment, MD, and DSMC are made for normal shock flows and
planar Fourier/Couette/force-driven Poiseuille flows. Finally, in Section 6, we conclude with
a summary of the proposed numerical method and future perspectives.

2. Formulation of problems

2.1. Fourier/Couette/force-driven Poiseuille flows and shock waves

Consider a rarefied monatomic gas between two parallel infinite plates located at x2 = `/2
and x2 = −`/2, where x = (x1, x2, x3) is the rectangular space coordinate system. In Couette
flow, the upper and lower plates move with velocity Vw and −Vw in the direction parallel
to the plates (the x1 direction), while in Fourier and Poiseuille flows the plate velocities are
zero (see Fig. 1). No pressure gradient exists in the x1 and x3 directions. No external force
is exerted in the Couette and Fourier flows, but in the Poiseuille flow the gas is subject to a
uniform external force in the x1 direction (the acceleration is denoted by a1). In the Couette
and Poiseuille flows, the wall temperatures are kept at T0, while in the Fourier flow the
temperature of the upper wall is higher than that of the lower wall T0. Maxwell’s diffusive
boundary condition is employed to account for the wall effects. When the average molecular
number density n0 and the intermolecular potential are known, the stationary state will be
uniquely determined. We then analyze the density, velocity, temperature, shear stress, and
heat flux profiles of the steady Fourier/Couette/force-driven Poiseuille flows.

We also consider a planar shock wave perpendicular to the flow in the x2 direction. The
flow is uniform at the upstream (x2 = −∞) and downstream (x2 = ∞) ends. The upstream
molecule number density, temperature, and Mach number are denoted by n0, T0, and Ma,
respectively, while those of the downstream end can be determined through the Rankine-
Hugoniot relations. We are interested in the structure of the normal shock wave when the
stationary state is reached.
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2.2. Boltzmann equation

The state of a dilute monatomic gas is described by the distribution function f(t, x, v),
where t is the time and v = (v1, v2, v3) is the molecular velocity. The distribution function
is defined in such a way that the quantity f(t, x, v)dxdv is the particle number in the phase-
space volume dxdv. All macroscopic quantities can then be calculated via the velocity mo-
ments of the distribution function: the molecular number density is n(t, x) =

∫
R3 f(t, x, v)dv,

the bulk velocity is V (t, x) =
∫
R3 vf(t, x, v)dv/n(t, x), the temperature is T (t, x) = m

∫
R3 |v−

V |2f(t, x, v)dv/3kBn(t, x), the pressure tensor is Pij(t, x) = m
∫
R3(vi−Vi)(vj−Vj)f(t, x, v)dv,

and the heat flux is qi(t, x) = m
∫
R3 |v− V |2(vi− Vi)f(t, x, v)dv/2, where m is the mass of a

molecular, kB is the Boltzmann constant, and the subscripts i, j denote the spatial directions.
For molecules undergoing binary elastic collisions, the evolution of the distribution func-

tion in the planar Fourier/Couette/force-driven Poiseuille flows and normal shock waves is
governed by the following celebrated Boltzmann equation:

∂f

∂t
+ v2

∂f

∂x2

+ a1
∂f

∂v1

= Q(f, f∗), (1)

where Q(f, f∗) is the quadratic collision operator consisting of the gain term Q+ and the
loss term Q−. The collision operator is local in (t, x). For simplicity the time and space
position will be omitted in writing the collision operator

Q(f, f∗) =

∫

R3

∫

S2
B(cos θ, |v − v∗|)f(v′∗)f(v′)dΩdv∗

︸ ︷︷ ︸
Q+

− ν(v)f(v)︸ ︷︷ ︸
Q−

, (2)

where

ν(v) =

∫

R3

∫

S2
B(cos θ, |v − v∗|)f(v∗)dΩdv∗, (3)

is the collision frequency. Here v, v∗ are the pre-collision particle velocities, while v′, v′∗ are
the corresponding post-collision velocities. Conservation of momentum and energy yield the
following relations

v′ =
v + v∗

2
+
|v − v∗|

2
Ω = v +

|u|Ω− u

2
,

v′∗ =
v + v∗

2
− |v − v∗|

2
Ω = v∗ − |u|Ω− u

2
, (4)

where u = v − v∗ is the relative pre-collision velocity and Ω is a vector in the unit sphere
S2 along the relative post-collision velocity v′ − v′∗. The deflection angle θ between the pre-
and post-collision relative velocities satisfies cos θ = Ω · u/|u|, 0 ≤ θ ≤ π.

The collision kernel (probability) B(cos θ, |v − v∗|) is always non-negative, and depends
on the modulus of the relative velocity and the deflection angle. For hard sphere molecules,
the deflection angle is determined through b = d cos(θ/2), where b is the aiming distance
and d is the molecular diameter. Hence the differential cross-section σ = b|db|/sin θ|dθ| is
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d2/4 and the collision kernel B = |u|σ is |u|d2/4. For a general spherically symmetrical
intermolecular potential φ(r), the deflection angle is (see [1], p.170; [2], p.37)

θ(b, |u|) = π − 2

∫ W1

0

[
1−W 2 − 4φ(r)

m|u|2
]−1/2

dW, (5)

where W = b/r and W1 is the positive root of the term in the brackets. Specifically, in
the case of the (η − 1)-th inverse power-law potential1, the collision kernel is a power-law
function of the relative velocity:

B =
b|db|

sin θ|dθ| |u| ≡ cα(θ)|u|α, α =
η − 5

η − 1
. (6)

At the grazing collision limit θ → 0, cα(θ) ∼ θ(α−5)/2, indicating that the total cross-
section

∫
σdΩ is infinite. Although the global existence and rapid relax-to-equilibrium of the

classical solutions has been proven [41], a finite cutoff is introduced in numerical simulations
using particle methods such as DSMC and MD. One way to eliminate the infinity is to cut
off the function cα(θ), i.e., set cα(θ) = 0 when θ is smaller than a fixed value of angle, or
equivalently, when b is larger than a fixed value of distance. This is justified by the fact that
grazing collisions only lead to small changes of the system state. Another prevalent way to
simplify the collision kernel is to replace cα(θ) with the constant Cα, yielding the well-known
VHS model [2]:

B = Cα|u|α, (7)

where the constant Cα is empirically determined by equating the shear viscosity coefficient
of the Boltzmann equation when the collision kernel is given by Eq. (6) with that when the
collision kernel is by Eq. (7). According to the Chapman-Enskog expansion [1], the shear
viscosity is given by2

µ =
5
√

πmkBT

8D
, D =

(
m

4kBT

)4 ∫ ∞

0

u7σµ exp

(
− mu2

4kBT

)
du, (8)

where σµ = 2π
∫ π

0
σ sin3 θdθ is the viscosity cross-section, we therefore have

Cα =
3

4

(
2κ

m

)2/(η−1)

A2(η), (9)

with the numerical factor A2(η) =
∫∞

0
sin2 θW0dW0 and W0 = b(m|u|2/2κ)1/(η−1) [2]. Note

that in the VHS model, the shear viscosity is

µ ∝ T ω, ω =
η + 3

2(η − 1)
. (10)

1The potential is φ(r) = κ/(η − 1)rη−1, which is called hard and soft potentials when η > 5 and η < 5,
respectively; Maxwell molecules have the potential with η = 5 and the Coulomb potential has η = 2.

2Only the first-order term of the Sonine-polynomials is used to calculate the shear viscosity [1], as the
rest of the terms are negligible. For example, they make zero contribution to the shear viscosity for Maxwell
molecules, and only make a 2% contribution for hard sphere molecules.
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In the VHS model, the differential cross-section σ = Cα|u|α−1 is independent of the
deflection angle. This model is widely used in DSMC, and the isotropic cross-section makes
DSMC easy and effective to implement when α ≥ 0. For other numerical methods to solve
the collision operator efficiently, it may be easier to include the θ-dependent collision kernel
and the total cross-section does not have to be finite. For example, Mouhot and Pareschi [36]
suggested the following anisotropic collision kernel:

B = C ′
α sinα−1

(
θ

2

)
|u|α, (11)

where C ′
α is a constant. This special θ-dependent collision kernel not only enables the devel-

opment of the fast spectral algorithm for computing the collision operator deterministically,
but also mimics the growth trend of the collision kernel when decreasing the deflection an-
gle. Similarly, the constant C ′

α is determined by equating the shear viscosity coefficient of
the Boltzmann equation when the collision kernel is given by Eq. (6) with that when the
collision kernel is given by Eq. (11), yielding

C ′
α =

(α + 3)(α + 5)

24
Cα. (12)

Note that for hard sphere molecules (α = 1), the VHS collision kernel and the collision
kernel (11) are exactly the same.

We find that the collision kernel (11) can be extended to the following general form:

B = C
′′
α,γ sinα+γ−1

(
θ

2

)
cos−γ

(
θ

2

)
|u|α,

C
′′
α,γ =

Γ[(7 + α)/2]

6Γ[(3 + α + γ)/2]Γ(2− γ/2)
Cα, (13)

where Γ is the gamma function. The additional parameter γ introduces plenty of flexibility
to not only extend the applicability of the fast spectral method to all inverse power-law
potentials except the Coulomb potential, but also to recover the correct ratio between coef-
ficients of shear viscosity and diffusion.

2.3. Lennard-Jones potential

The power-law interamolecular potential is a phenomenological model. In reality, the
potential between monatomic gas molecules is better described by the LJ potential. Here
we consider argon, where the LJ potential is

φ(r) = 4ε

[(
dLJ

r

)12

−
(

dLJ

r

)6
]

, (14)

with a potential depth ε = 119.18kB, dLJ = 3.42×10−10m, and r being the distance between
two molecules. For other molecules, the values of ε and dLJ may be different. However, the
following analysis applies to all LJ potentials of the form in Eq. (14).
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Figure 2: D/d2
LJ vs kBT/ε for the LJ potential, see Eq. (8). The solid line is a nonlinear least squares fit

(with 95% confidence bounds) of D/d2
LJ as a function of kBT/ε by the sum of three power-law functions:

D/d2
LJ = b1(kBT/ε)−0.4 + b2(kBT/ε)−0.45 + b3(kBT/ε)−0.5, with b1 = 407.4, b2 = −811.9, and b3 = 414.4.

When the potential is known, D can be calculated numerically. The results (dots) are
shown in Fig. 2. Unlike the power-law potential, the shear viscosity is not a single power-
law function of the temperature over the whole temperature range [1]. Only when the
temperature does not vary too much could D be a single power-law function of T . For
instance, when kBT/ε is large (or small), the repulsive (or attractive) part of the force is
dominant, and D ∝ T−1/6 (or D ∝ T−1/3). Also, when 2 < kBT/ε < 3, we have D ∝ T−0.31,
see Fig. 2. In these regions, the VHS model can be successfully implemented in DSMC,
producing satisfactory results. However, a single power-law fit is not adequate over a wider
temperature range. To tackle this problem, the generalized VHS model of Hassan and
Hash [42], the variable sphere model of Matsumoto [43], and the generalized soft sphere
model of Fan [44], have been proposed and tested in DSMC.

Here we employ the concept of the generalized VHS model to construct the collision
kernel that is suitable for the fast spectral method to solve the collision operator. First,
we fit D by a sum of three power-law functions (see the expression in Fig. 2). Second, we
assume the differential cross-section takes the form of σLJ =

∑3
j=1 Cj sinαj−1 (θ/2) |u|αj−1

and get DLJ according to Eq. (8). Third, let DLJ be equal to the fit function for D and get
the value of αj and Cj. After simple algebraic operations, we obtain the following collision
kernel for the LJ potential:

B =
d2

LJ

32π

3∑
j=1

(m/4ε)(αj−1)/2bj

Γ(
3+αj

2
)

sinαj−1

(
θ

2

)
|u|αj , (15)

where α1 = 0.2, α2 = 0.1, α3 = 0, and the values of bj are shown in Fig. 2.
For argon with ε = 119.18kB, the fit in Fig. 2 covers the temperature range from 120K to
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3000K, while the VHS model with µ ∝ T 0.81 (dotted line) works only when 240K< T <360K.
For wider temperature range, more terms with different values of αj (−1 < αj ≤ 1) and
Cj may be needed in the numerical fit of D. We note that, no matter how many terms are
added, the computation time of the corresponding collision operator will not increase. The
reason for this will be discussed in Section 3. In the following, if the LJ potential is not
specified, the shear viscosity of argon is proportional to T 0.81, that is, the collision kernel is
given by Eq. (11) or Eq. (13) with α = 0.38.

2.4. Sutherland’s molecular model

For a gas whose molecules are rigid attracting spheres, its shear viscosity is given by the
Sutherland formula:

µ =
5
√

πmkBT

16σT,∞

T

T + Ts

, (16)

where Ts is a reference temperature and σT,∞ is the total cross-section in the limiting case
of infinite relative velocity |u|. This formula reproduces the experimental data for many real
gases over a considerable range of temperature [1, 2].

The Sutherland formula for shear viscosity can be recovered if we use the following
superposition of the modified collision kernels

B = C
′′
1,γ1

sinγ1

(
θ

2

)
cos−γ1

(
θ

2

)
|u|+ C

′′
−1,γ2

sinγ2−2

(
θ

2

)
cos−γ2

(
θ

2

)
|u|−1, (17)

with
8πC

′′
1,γ1

Γ
(
2− γ1

2

)
Γ

(
2 +

γ1

2

)
= 2σT,∞,

8πC
′′
−1,γ1

Γ
(
2− γ2

2

)
Γ

(
1 +

γ2

2

)
= 2σT,∞Ts

4kB

m
,

(18)

where special values of γ1 and γ2, i.e., 2 > γ1 = γ2 > 0, can make the fast spectral method
as fast as that for the single-term collision kernel (11) or (13). Detailed discussions will be
given in Section 3.

2.5. Normalization

For practical calculations, it is convenient and useful to use dimensionless variables. The
following dimensionless variables are introduced for the planar Fourier/Couette/force-driven
Poiseuille flows:

f̃ =
v3

m

n0

f, x̃ =
x

`
, (ṽ, Ṽ , Ṽw) =

(v, V, Vw)

vm

,

t̃ =
vm

`
t, ã1 =

`

v2
m

a1, ñ =
n

n0

, T̃ =
T

T0

,

P̃ij =
Pij

n0kBT0

, q̃ =
q

n0kBT0vm

, (19)

where n0 is the average molecular number density, and vm =
√

2kBT0/m is the most probable
molecular speed. In the simulation of shock waves, the normalization is exactly the same,
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except the ` is then related to the mean free path in the upstream end, instead of the distance
between two parallel plates.

The Boltzmann equation with the collision kernel (13) becomes

∂f̃

∂t̃
+ṽ2

∂f̃

∂x̃2

+ã1
∂f̃

∂ṽ1

=
1

Kn′

∫ ∫
sinα+γ−1

(
θ

2

)
cos−γ

(
θ

2

)
|ũ|α[f̃(ṽ′∗)f̃(ṽ′)−f̃(ṽ∗)f̃(ṽ)]dΩdṽ∗,

(20)
where

Kn′ =
64
√

2
α

5
Γ

(
α + γ + 3

2

)
Γ

(
2− γ

2

)
Kn, (21)

with

Kn =
µ(T = T0)

n0`

√
π

2mkBT0

(22)

being the unconfined Knudsen number, where [µ(T = T0)/n0]
√

π/2mkBT0 is the unconfined
mean free path at the reference temperature T0 and molecular number density n0. Note that
the unconfined mean free-path is 15π/2(7 − 2ω)(5 − 2ω) times larger than the equilibrium
mean free path defined in Eq. (4.52) in Ref. [2].

For the LJ potential, when the collision kernel takes the form of Eq. (15), the term
sinα+γ−1(θ/2) cos−γ(θ/2)|ũ|α/Kn′ in Eq. (20) should be replaced by

5
∑3

j=1 bj(kBT0/2ε)
(αj−1)/2 sinαj−1(θ/2)|ũ|αj/Γ(

αj+3

2
)

64
√

2Kn
∑3

j=1 aj(kBT0/ε)(αj−1)/2
. (23)

A similar expression can be given for the rigid attracting potential.
Considering the above normalization scheme, the normalized macroscopic quantities are

related to the normalized distribution function as follows:

ñ =

∫
f̃dṽ, Ṽ =

1

ñ

∫
ṽf̃dṽ, T̃ =

2

3ñ

∫
|ṽ − Ṽ |2f̃dṽ,

P̃ij = 2

∫
(ṽi − Ṽi)(ṽj − Ṽj)f̃dṽ, q̃i =

∫
|ṽ − Ṽ |2(ṽi − Ṽi)f̃dṽ. (24)

2.6. Boundary conditions

In the planar Couette and Poiseuille flows, the symmetry of the problems with respect
to the x̃2 axis allows us to consider only half of the spatial region −1/2 ≤ x̃2 ≤ 0. At the
lower plate, according to Maxwell’s diffusive boundary condition, the distribution function
for the reflected particles is given by:

f̃ =
ñ

π3/2
exp[−(ṽ1 + Ṽw)2 − ṽ2

2 − ṽ2
3], for ṽ2 ≤ 0,

ñ =2
√

π

∫

ev2<0

ṽ2f̃(x̃2 = −0.5, ṽ)dṽ, (25)

11



  

while in the middle between the two plates, we have f̃(ṽ1, ṽ2, ṽ3) = f̃(−ṽ1,−ṽ2, ṽ3) for

Couette flow and f̃(ṽ1, ṽ2, ṽ3) = f̃(ṽ1,−ṽ2, ṽ3) for Poiseuille flow.
For planar Fourier flow, however, we do not have this kind of symmetry. The boundary

condition at the lower plate is the same as Eq. (25) with Ṽw = 0, while that at the upper
plate is

f̃ =
ñ

(πTr)
3/2

exp

(
− ṽ2

1 + ṽ2
2 + ṽ2

3

Tr

)
, for ṽ2 < 0,

ñ =2

√
π

Tr

∫

ev2>0

ṽ2f̃(x̃2 = 0.5, ṽ)dṽ, (26)

where Tr is the temperature ratio of the upper and lower plates.
For shock waves, the distribution function at the upstream end is

f̃ =
1

π3/2
exp

[
−ṽ2

1 − (ṽ2 −
√

5

6
Ma)2 − ṽ2

3

]
, (27)

and that at the downstream end is

f̃ =
nd

(πTd)3/2
exp

[
− ṽ2

1 + (ṽ2 − Vd)
2 + ṽ2

3

Td

]
, (28)

where, according to the Rankine-Hugoniot relations, we have the following molecular number
density, bulk velocity, and temperature at the downstream end:

nd =
4Ma2

Ma2 + 3
,

Vd =

√
5

96

Ma2 + 3

Ma
,

Td =
(5Ma2 − 1)(Ma2 + 3)

16Ma2
. (29)

3. Deterministic numerical method

3.1. Fast spectral method for the collision operator

The numerical approximation of the Boltzmann collision operator by the fast spectral
method is now introduced and discussed. For its main properties we refer to the original
papers [36, 37]. Some detailed calculations are presented below because different sources in
the literature give different results for the kernel mode [36, 37, 40]. For simplicity, the tildes
on normalized quantities will be omitted hereafter. We first consider the simple case where
the collision kernel is given by Eq. (13).

We rewrite the collision operator using the Carleman-like representation. With the basic
identity 2

∫
R3 δ(2y ·u+ |y|2)f(y)dy = |u| ∫S2 f(|u|Ω−u)dΩ, where δ is Dirac’s delta function,

12



  

the collision operator on the right hand side of Eq. (20) can be rewritten as

Q(f, f∗) =
1

Kn′

∫

R3

∫

S2
Θ|u|[f(v′∗)f(v′)− f(v∗)f(v)]dΩdv∗

=
1

Kn′

∫

R3

∫

S2
Θ|u|

[
f

(
v∗ − |u|Ω− u

2

)
f

(
v +

|u|Ω− u

2

)
− f(v∗)f(v)

]
dΩdv∗

=
2

Kn′

∫

R3

∫

R3

Θδ(2y · u + |y|2)
[
f

(
v∗ − y

2

)
f

(
v +

y

2

)
− f(v∗)f(v)

]
dydv∗

=
4

Kn′

∫

R3

∫

R3

Θδ(y · u + |y|2)[f(v∗ − y)f(v + y)− f(v∗)f(v)]dydv∗

=
4

Kn′

∫

R3

∫

R3

Θδ(y · z)[f(v + z)f(v + y)− f(v + y + z)f(v)]dydz,

where Θ = sinα+γ−1 (θ/2) cos−γ (θ/2) |u|α−1.
Notice that in the above calculations we have used the transformations y = (|u|Ω−u)/2

and z = v∗ − v − y = −u− y. Therefore, the deflection angle θ satisfies

cos θ =
Ω · u
|u| =

−(y − z) · (y + z)

|y + z|2
y⊥z
=
|z|2 − |y|2
|y|2 + |z|2 ,

which results in sin (θ/2) = |y|/
√
|y|2 + |z|2 and cos (θ/2) = |z|/

√
|y|2 + |z|2. Hence Θ =

|y|α+γ−1|z|−γ and the collision operator is simplified to

Q(f, f∗) =
4

Kn′

∫

R3

∫

R3

δ(y · z)|y|α+γ−1|z|−γ[f(v + z)f(v + y)− f(v + y + z)f(v)]dydz. (30)

In the fast spectral method, the distribution function is periodized on the velocity domain
DL = [−L,L]3. Here we adopt uniform grid points in velocity space: vk(jk) = 2jkL/Nk with
k = 1, 2, 3, where jk ∈ [−Nk/2,−Nk/2 + 1, · · · , Nk/2− 1] and Nk is the number of velocity
grid points in the k-th velocity direction. Suppose BS, a sphere of radius S centered at the
origin, is the support of the distribution function. Usually the minimum L = (3 +

√
2)S/2

is chosen to avoid the aliasing error caused by the periodicity of the velocity distribution
function [34]. The distribution function is then approximated by a truncated Fourier series,

f(v) =

(N1,N2,N3)/2−1∑

j=−(N1,N2,N3)/2

f̂j exp(iξj · v), (31)

f̂j =
1

(2L)3

∫

DL

f(v) exp(−iξj · v)dv, (32)

where j = (j1, j2, j3), i is the imaginary unit, and ξj = jπ/L are the frequency compo-
nents. Meanwhile, the collision operator (30) is truncated to Q(f, f∗) = 4

∫
BR

∫
BR

δ(y ·
z)|y|α+γ−1|z|−γ[f(v + z)f(v + y) − f(v + y + z)f(v)]dydz/Kn′, where R ≥ √

2S [36, 37].
Numerical analysis reveals that, however, R cannot be larger than L.
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e
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y'

e'

m

θ1

θ2

Figure 3: Demonstration of the integral with respect to e′ used in the calculation of the kernel mode (34).
When the vector e is fixed, e′ is in the x′y′ plane perpendicular to e. That is, it degenerates to a two-
dimensional vector with θ2 varying from 0 to 2π. Because of symmetry, we only consider the region 0 ≤
θ2 ≤ π.

Expanding also the truncated collision operator in the truncated Fourier series, we find
that the j-th mode of the truncated collision operator is related to the Fourier coefficient f̂
of the distribution function:

Q̂j =

(N1,N2,N3)/2−1∑
l+m=j

l,m=−(N1,N2,N3)/2

f̂lf̂m[β(l,m)− β(m,m)], (33)

where l = (l1, l2, l3), m = (m1,m2,m3), and the kernel mode β(l,m) is

β(l, m) =
4

Kn′

∫

BR

∫

BR

δ(y · z)|y|α+γ−1|z|−γ exp(iξl · y + iξm · z)dydz

=
1

Kn′

∫ ∫
δ(e · e′)

[∫ R

−R

|ρ|α+γ exp(iρξl · e)dρ

] [∫ R

−R

|ρ′|1−γ exp(iρ′ξm · e′)dρ′
]

de′de

=
1

Kn′

∫

S2
φα+γ(ξl · e)

[∫

S2
δ(e · e′)φ1−γ(ξm · e′)de′

]
de,

(34)
with e, e′ being the vectors in the unit sphere S2, and

φδ(s) = 2

∫ R

0

ρδ cos (ρs) dρ. (35)

Equation (34) can be simplified further. We construct a new Cartesian coordinate system,
where the z′ axis is parallel to the vector e, the y′ axis is just the projection of vector m into
the plane e⊥ perpendicular to the z′ axis, and the x′ axis is in the plane e⊥ and perpendicular
to the y′ axis, see Fig. 3. Suppose the polar and azimuthal angles of e′ in the new coordinate
system are θ and π/2 − θ2, respectively, and the angle between the vector m and y′-axis
is θ1. Then, we have δ(e · e′) = δ(cos θ) such that

∫ π

0
g(θ)δ(cos θ)dθ = g(π/2) for arbitrary

14



  

function g(θ), ξm · e′ = |ξm| cos θ1 cos θ2, and

β(l,m) =
1

Kn′

∫

S2

φα+γ(ξl · e)
[∫ 2π

0

∫ π

0

sin θδ(cos θ)φ1−γ(|ξm| cos θ1 cos θ2)dθdθ2

]
de

=
1

Kn′

∫

S2

φα+γ(ξl · e)
[∫ 2π

0

φ1−γ(|ξm| cos θ1 cos θ2)dθ2

]
de

=
2

Kn′

∫

S2

φα+γ(ξl · e) · ψγ(|ξm| cos θ1)de, (36)

where

ψγ(s) =

∫ π

0

φ1−γ(s cos θ2)dθ2 = 2π

∫ R

0

ρ1−γJ0(ρs)dρ, (37)

with J0 being the zeroth-order Bessel functions.
Note that ξl(= lπ/L) and ξm(= mπ/L) in the integration (36) appear in two functions.

If they appear also in two different functions in the final form of β(l, m), Eq. (33) can be
calculated effectively by the FFT-based convolution. The separation of l and m can be
realized by calculating (36) approximately using the numerical quadrature method. Two
different methods will be employed and compared:

• in the first method, β(l,m) is calculated numerically in spherical coordinates by the
trapezoidal rule. Suppose the polar and azimuthal angles of the unit vector e are θ
and ϕ, respectively. We divide each region 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ π (for symmetry)
into M sections, i.e., θp = pπ/M and ϕq = qπ/M with p, q = 1, 2, · · · ,M . Then the
kernel mode (36) is approximated by

β(l,m) ' 4π2

Kn′M2

M−1,M∑
p,q=1

φα+γ(ξl · eθp,ϕq) · ψγ

{√
|ξm|2 − [ξm · eθp,ϕq ]

2
}
· sin θp, (38)

where eθp,ϕq = (sin θp cos ϕq, sin θp sin ϕq, cos θp).

• in the second method, β(l, m) is approximated by a Gauss-Legendre quadrature of
order M :

β(l, m) ' 4

Kn′

M∑
p,q=1

ωpωqφα+γ(ξl · eθp,ϕq) · ψγ

{√
|ξm|2 − [ξm · eθp,ϕq ]

2
}
· sin θp, (39)

where θp (ϕq) and ωp (ωq) are the p (q)-th point and weight in the Gauss-Legendre
quadrature with θ, ϕ ∈ [0, π].

For the LJ potential, when the normalized collision kernel is given by Eq. (23), γ is zero.
Meanwhile, one needs to replace the term φα+γ(ξl · eθp,ϕq)/Kn′ in Eq. (38) or Eq. (39) by

5
∑3

j=1 bj(kBT0/2ε)
(αj−1)/2φαj

(ξl · eθp,ϕq)/Γ(
αj+3

2
)

64
√

2Kn
∑3

j=1 aj(kBT0/ε)(αj−1)/2
. (40)
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Figure 4: Profiles of φα+γ when γ = 0 and ψγ according to Eqs. (35) and (37) when R = 4. Because of
symmetry, the region s < 0 is not plotted. For argon with a shear viscosity µ proportional to T 0.81, α = 0.38,
while for the soft potential, we use α = −0.4 and the shear viscosity is proportional to T 1.2.

The analytical form of φα+γ(s) can be obtained when α + γ is an integer. For instance,
when γ = 0, for Maxwell molecules (α = 0) and hard sphere molecules, we have

φ0(s) =
2 sin(Rs)

s
,

φ1(s) =
2R sin(Rs)

s
− 4 sin2(Rs/2)

s2
,

(41)

while in the other cases, φα+γ(s) and ψγ(s) can be calculated by Gauss-Legendre quadrature
numerically. Note that in the VHS model, −3 < α ≤ 1. From Eq. (35) it follows that δ is
restricted to the region (−1, +∞). Therefore, α + γ > −1 and 1− γ > −1. In the original
collision kernel proposed by Mouhot and Pareschi [36], γ = 0, so that α is restricted to
the region (−1, 1]. This means that the original collision kernel cannot deal with general
forms of soft potentials. In our modified collision kernel (13), if we let γ → 2, α can cover
the whole region (−3, 1], thus extending the applicability of the fast spectral method to all
inverse power-law potentials except the Coulomb potential. Fig. 4 shows typical decaying-
oscillating profiles of the two functions φα+γ and ψγ, where we see the quasi-period of the
oscillation is about 2π/R.

3.2. Detailed implementation

The detailed procedure to approximate the collision operator is now outlined. In the
following, we assume Eq. (36) is approximated by the trapezoidal rule. First, the kernel
modes should be pre-computed and stored. The storage of φα+γ(ξl, θp, ϕq) and ψγ(ξm, θp, ϕq)
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requires 2M(M − 1)N1N2N3 units of compute memory. We also need N1N2N3 units of
storage for

φloss =

M−1,M∑
p,q=1

φα+γ(ξm, θp, ϕq)ψγ(ξm, θp, ϕq) sin θp, (42)

which will be used to calculate the loss part of the collision operator. For space-homogeneous
problems, such storage is relatively large when compared to the storage of the distribution
function. However, when it comes to space-inhomogeneous problems, the storage will be
relatively small because different locations could use the same kernel modes. Second, we get
f̂ by applying the inverse FFT to f , see Step 1 in algorithm 1 in the Appendix. Third, with
Eq. (38), Eq. (33) becomes

Q̂j ≈ 4π2

Kn′M2

M−1,M∑
p,q=1

(N1,N2,N3)/2−1∑
l+m=j

l,m=−(N1,N2,N3)/2

[f̂lφα+γ(ξl, θp, ϕq)] · [f̂mψγ(ξm, θp, ϕq)]

︸ ︷︷ ︸
gain

− 4π2

Kn′M2

(N1,N2,N3)/2−1∑
l+m=j

l,m=−(N1,N2,N3)/2

f̂l · [f̂mφloss]

︸ ︷︷ ︸
loss

. (43)

The loss term can be effectively calculated by FFT-based convolution, using the zero-padding
technique [45]. For the gain term, one has to do an FFT-based convolution for each pair of
(p, q). The implementation is listed in Steps 2, 3, and 4 in algorithm 1. Finally, the collision

operator Q is calculated by applying FFT to Q̂ (Step 5).
Note that in algorithm 1, the zero-padding technique is employed to eliminate the aliasing

error in the FFT-based convolution. This process is accurate for arbitrary values of t1 and t2
when the padding size in each direction is larger than one half of the velocity grid number.
Considering the fact that the spectrum f̂ is non-zero only in the central region of the
frequency domain, we can expedite the calculation by ignoring the zero-padding. This leads
to the simpler and faster algorithm 2. Numerical simulations on Test 1 below show that both
algorithms produce identical results, but algorithm 2 is about 4 times faster than algorithm
1.

Now we see that the computational cost of the fast spectral method is O(M2N3 log N),
where N is the same order as N1, N2 and N3. Note that l and m are not separable in classical
spectral methods, and the computational cost of Eq. (33) is O(N6) [31, 32, 34]. A rough
estimate of the speed-up can be given. In algorithm 2, one needs to do 2M(M−1)+2 times
FFT (the array size is N1×N2×N3), while in classical spectral methods the computational
cost is the same with one direct convolution of one complex and one real array of size
N1 × N2 × N3. For comparison, we take M = 7 and run our Matlab (version 2012a)
programs on a PC with an Intel Xeon 3.3 GHz CPU. For N = 32 (or 64), algorithm 2 is
about 18 (or 62) times faster than the classical spectral methods. Further speed-up can be

17



  

achieved by reducing the value of M (say, to 5) and considering possible symmetry in the
distribution function.

Note that for the LJ potential, the storage of the kernel modes and computational cost
of the collision operator is exactly the same as that for the single-term collision kernel (11)
or (13). For the collision kernel (17), if we let γ1 = γ2, the storage and computational cost
will also be the same as the single-term collision kernel. For the existence of φ1+γ1 , ψ1−γ1 ,
φ−1+γ2 , and ψ1−γ2 , one should choose −2 < γ1 < 2 and 0 < γ2 < 2. Therefore, we choose
0 < γ1 = γ2 < 2. Note, if γ1 6= γ2, the storage and computational cost will be twice that of
the single-term collision kernel.

3.3. Conservation

One of the drawbacks of the fast spectral method, as with any spectral method for the
approximation of the collision operator, is that it does not exactly conserve momentum
and energy. To ensure the conservation of momentum and energy, we employ the method
of Lagrangian multipliers [32, 33]. The procedure is simple and straightforward: after
Q is obtained, we construct Qnew by minimizing the function

∑
j(Qj − Qnew

j )2 under the

constraints
∑

j Qnew
j =

∑
j vjQ

new
j =

∑
j |vj|2Qnew

j = 0, yielding

Qnew
j = Qj − (λn + λv · vj + λe|vj|2), (44)

where the five Lagrangian multipliers satisfy

∑
j

Qj =
∑

j

(λn + λv · vj + λe|vj|2),
∑

j

vjQj =
∑

j

vj(λn + λv · vj + λe|vj|2),
∑

j

|vj|2Qj =
∑

j

|vj|2(λn + λv · vj + λe|vj|2). (45)

Since the errors for the momentum and energy in the fast spectral method are spectrally
small [36], the Lagrangian multipliers are very small. This is indeed confirmed in our nu-
merical simulations. We also find that the Lagrangian multiplier method does not affect the
accuracy of the fast spectral method, while it ensures conservation of mass, momentum, and
energy.

3.4. Accuracy of the fast spectral method

To check the accuracy of the fast spectral method, the relax-to-equilibrium process of
spatially-homogeneous Maxwell molecules (α, γ = 0) is considered. The Boltzmann equation
in this case becomes

∂f

∂t
=

1

Kn′

∫

R3

∫

S2
sin−1

(
θ

2

)
[f(v′∗)f(v′)− f(v∗)f(v)]dΩdv∗, (46)

where, without loss of generality, we choose Kn′ = 32π/5.
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Test 1. The space-homogeneous Boltzmann equation (46) possesses the exact Bobylev-
Krook-Wu (BKW) solution [46]:

f(v, t) =
1

2(2πK)3/2
exp

(
−|v|

2

2K

)(
5K − 3

K
+

1−K

K2
|v|2

)
, (47)

where the “effective temperature” is K = 1− 0.4 exp (−t/6), t ≥ 0. According to the exact
solution, the evolution of the fourth- and sixth-order moments is given by

M4 =

∫
fv4

1dv = 6K − 3K2,

M6 =

∫
fv6

1dv = 45K2 − 30K3. (48)

Table 1: Relative error
∑

j |Qnu
j −Qan

j |/ ∑
j |Qan

j | in the approximation of the Boltzmann collision operator.
T (G) stands for the trapezoidal rule (Gauss-Legendre quadrature) used in the approximation of Eq. (36).
Parameters are L = 8 and R = 6.

N M = 5 6 7 8 12 16
T 4.58E-1 4.73E-1 4.55E-1 4.52E-1 4.78E-1 4.83E-1

16 G 2.10E-1 3.35E-1 2.48E-1 2.77E-1 2.74E-1 2.69E-1
T 7.94E-2 5.20E-2 4.73E-2 3.93E-2 2.92E-2 2.59E-2

24 G 4.61E-2 2.09E-2 9.16E-3 2.10E-2 1.72E-2 1.37E-2
T 5.54E-2 3.51E-2 2.57E-2 1.93E-2 8.39E-3 4.75E-3

32 G 4.26E-2 6.18E-3 6.49E-4 2.11E-4 1.86E-4 1.57E-4
T 4.26E-2 3.88E-2 2.77E-2 2.08E-2 8.99E-3 5.01E-3

48 G 4.31E-2 6.17E-3 6.09E-4 4.56E-5 4.94E-6 3.85E-6
T 5.90E-2 3.87E-2 2.77E-2 2.08E-2 8.99E-3 5.02E-3

64 G 4.30E-2 6.16E-3 6.10E-4 4.70E-5 3.87E-6 4.31E-6

The integration of Eq. (46) with respect to t will introduce some numerical error. In
order to check how accurately the fast spectral method approximates the collision operator,
we compare Qnu, the numerical approximation of Q, to the analytical solution Qan, which
is calculated by Qan = [f(t = ∆t)− f(t = 0)]/∆t with the time step ∆t=1.0E-5 far smaller
than the characteristic relaxation time. The following two factors affect the accuracy: the
value of N , which decides the accuracy of the spectrum f̂ of the distribution function, and
the value of M , which determines how accurately we approximate the integral in Eq. (36).
The latter is qualitatively analyzed as follows. For simplicity, let us ignore ξm and ϕγ in
Eq. (36). Notice that φα+γ is a decaying-oscillating function with the quasi-period 2π/R (see
Eq. (41) and Fig. 4). Then, for a fixed value of ξl, the integral kernel in Eq. (36) oscillates
R|ξl|/π times as θ varies from 0 to π. In the worst cases (ξl → Nπ/2L), it oscillates O(N)
times. This implies that M should be O(N). In practical calculations, however, M can be
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far less than N because, if the distribution function has a support S, its spectrum has a
support proportional to 1/S ∼ 1/R. Within this support, the integral kernel in Eq. (36)
oscillates only a few times, and hence a small value of M can lead to accurate results.

We vary values of N and M to see their influence on the numerical accuracy; the results
are tabulated in Table 1. When N = 16, the relative error is large because the resolution of
the distribution function is not high enough so that a large error exists in the spectrum f̂ .
As N increases to 24, the error is reduced by one order of magnitude. When the trapezoidal
rule is used, the error mainly comes from the approximation of Eq. (36), which decays at
O(M−2) when N is fixed. When M is fixed (M ≤ 16), the numerical accuracy does not
improve when N ≥ 32. If we increase the value of M by a factor of 2 when the value of
N is increased by a factor of 2, we come to the conclusion that the spectral accuracy of
the fast spectral method is roughly maintained. When Eq. (36) is approximated by the
Gauss-Legendre quadrature, the spectral accuracy is clear for N ≤ 32 and M ≥ 6. For
N > 32, if M is increased linearly as the increase of N , spectral accuracy is maintained.
For example, if we choose the minimum error between 6 ≤ M ≤ 12 for each N , the order of
accuracy is 8.1 when N increases from 16 to 24; 13.5 when N increases from 24 to 32; and
8.9 when N increases from 32 to 48. General speaking, the approximation of Eq. (36) by
Gauss-Legendre quadrature is better than that by the trapezoidal rule.
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Figure 5: The relative error
∑

j |Qnu
j −Qan

j |/ ∑
j |Qan

j | as a function of R. Parameters are L = 8, N = 48,
and M = 7. Gauss-Legendre quadrature is used in the approximation of the kernel mode.

We now fix values of N and M to check the influence of R on the accuracy. Clearly,
Fig. 5 indicates that R cannot be smaller than 2

√
2L/(3 +

√
2), which is roughly

√
2 times

the support of the distribution function; otherwise, some collisions will be ignored in the
truncated collision operator. Also, R cannot be larger than the size of the velocity domain,
otherwise the aliasing error may destroy accuracy.

Next, we demonstrate the accuracy of the fast spectral method as a function of time,
where Eq. (46) is solved by the Euler forward method with a time step of 0.001 (the time
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Figure 6: (a) Evolution of the distribution function f(v1, 0, 0) of space-homogeneous Maxwell molecules,
where the initial condition is given by Eq. (47). From bottom to top (near v1 = 0), the time corresponding
to each line is 0, 0.5, 1, 1.5, 2, 3, 4, and 5. (b) and (c) Evolution of the fourth- and sixth-order moments,
respectively. The solid lines represent the numerical results, while the dots are analytical predictions. The
following parameters are used in the numerical simulation: L = 8, R = 6, N = 64, and M = 5 with Eq. (38).
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Figure 7: (a) Error (
∑

j |fnu − f |2/ ∑
j |f |2)1/2 in the distribution function, (b) error in the fourth-order

moment |Mnu
4 −M4|/M4, (c) error in the sixth-order moment |Mnu

6 −M6|/M6, and (d) error in the energy
|(Pnu

xx +Pnu
yy +Pnu

zz )/6−1| vs time. The solid and dashed lines are the results using Eq. (39) with N = 24 and
N = 32, respectively, while the dotted lines are the results using Eq. (38) with N = 32. Other parameters
are L = 8, R = 6, and M = 7.
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step is far smaller than the characteristic relaxation time). Fig. 6 depicts the evolution of
the distribution function, and the fourth- and sixth-order moments. Excellent agreement
is found between the numerical and BKW solutions, even when Eq. (36) is approximated
by the trapezoidal rule with M = 5. Fig. 7 shows the numerical errors in the distribution
function, the fourth- and sixth-order moments, and energy as functions of time. It can
be seen that when Eq. (36) is approximated by Gauss-Legendre quadrature, the numerical
error with N = 32 is one order of magnitude smaller than that with N = 24. Also, the
accuracy of the results with N = 24 is even better than that with N = 32 when Eq. (36) is
approximated by the trapezoidal rule. These results agree with what we found in Table 1.
Furthermore, we find that the use of the Lagrangian method does not affect the numerical
accuracy. This could be explained as follows: from Fig. 7(a) and (d) we see that the error
in energy is far smaller than the error in the distribution function. Therefore, the correction
in Eq. (44) has negligible influence on the distribution function but ensures conservation.
Comparing the kernel mode (38) with those in Refs. [36, 37, 40], the term sin θp is missed
in Refs. [36, 37] and an additional term sin θ2 is added in Eq. (37) in Ref. [40]. We have
carried out numerical simulations using these kernel modes and found that none of them
can accurately capture the evolution of the distribution function.

Test 2. For general forms of the initial distribution function, we cannot get the exact
distribution functions. However, we know the exact evolution of its velocity moments. For
example, when the initial distribution function takes the form

f(v, t = 0) =
1

2(2π)3/2
exp

(
−|v − V1|2

2

)
+

1

2(2π)3/2
exp

(
−|v − V2|2

2

)
, (49)

with V1 = (−2, 2, 0) and V2 = (2, 0, 0), the exact evolution of the pressure tensor is [32, 46]

Pxx =
14

3
exp

(
− t

2

)
+

16

3
, Pyy = −4

3
exp

(
− t

2

)
+

16

3
,

Pzz = −10

3
exp

(
− t

2

)
+

16

3
, Pxy = −4 exp

(
− t

2

)
, (50)

and the exact evolution of the third-order moments is

rx =

∫
fv1|v|2dv = −4 exp

(
− t

2

)
,

ry =

∫
fv2|v|2dv = −4

3
exp

(
− t

2

)
+

43

3
. (51)

Figure 8 compares the evolution of the second- and third-order moments. It demonstrates
that our numerical simulation produces accurate results when compared to the analytical
ones given by Eqs. (50) and (51). From Fig. 9, the relative errors in Pxx, Pyy, and ry

are about 10−4, while the errors are about 10−5 when Eq. (36) is approximated by Gauss-
Legendre quadrature. It is worthwhile to note that the spectral-Lagrangian method [32]
cannot recover the third-order moments even when N = 40. Is this because the spectral-
Lagrangian method is not spectrally accurate? We think that this is due to the integration
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where the initial distribution function is given by Eq. (49). The following parameters are used in the
numerical simulation: L = 12, R = 10, N = 32, and M = 5 with Eq. (38).
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Figure 9: (a) Relative error |Pnu
xx −Pxx|/Pxx, (b) relative error |Pnu

yy −Pyy|/Pyy, (c) relative error |rnu
y −ry|/ry,

and (d) error in the energy |(Pnu
xx + Pnu

yy + Pnu
zz )/16− 1| vs time. The solid and dashed lines are the results

using Eq. (39) when N = 24 and N = 32, respectively, while the dotted lines are the results using Eq. (38)
when N = 32. Other parameters are L = 12, R = 10, and M = 7.
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region given in Eq. (2.29) of Ref. [32] (which is related to the parameter R in the fast spectral
method) being too large, so a significant aliasing error is introduced (see Fig. 5). Indeed,
we find in our simulations that rx and ry deviate from the analytical solutions when R is
outside the velocity domain.

Test 3. Notice that the initial distribution functions used in the two test cases above
are smooth, and the spectral accuracy of the Fourier spectral method has been proven [36].
Now we consider the case where the initial distribution function is not smooth; it has a
abrupt jump at v1 = 0:

f(v, t = 0) =
1

3(2π)3/2





4 exp
(
− |v|2

2

)
, v1 ≥ 0,

exp
(
−v2

1

8
− v2

2+v2
3

2

)
, v1 < 0.

(52)

It can be shown analytically that the evolution of the second- and fourth-order moments
is given by

Pxx =
4

3
exp

(
− t

2

)
+

8

3
, Pyy = −2

3
exp

(
− t

2

)
+

8

3
,

M ′
4 =

∫
f |v|4dv =

22

3
exp

(
− t

3

)
+

80

3
. (53)

Figure 10 demonstrates that the fast spectral method can accurately capture the evolu-
tion of the second- and fourth-order moments, even when the initial distribution function
has a large jump at v1 = 0. Also, no Gibbs oscillation has been observed in the central
region of the distribution function where the abrupt jump exists; only in the tails do we find
small Gibbs oscillations. This is because the convolution can smear out the discontinuity.

4. Comparison between different collision kernels

It is commonly thought that the solution of the Boltzmann equation is determined by
the shear viscosity, rather than the details of the θ-dependence of the collision kernel. For
instance, the VHS and variable soft sphere models are used in DSMC and it is believed that
as long as they recover the shear viscosity of a real gas, they produce the same results [2].
This is true to some extent; one example is the exact BKW solution for Maxwell molecules:
different θ-dependence of the collision kernels with the same value of shear viscosity have
the same BKW solution. However, this assumption has never been accurately checked for
other potentials. Since the fast spectral method can generate accurate numerical results, it is
interesting to check this assumption. We take the hard sphere (α = 1), argon (α = 0.38), and
soft-potential (α = −0.4) molecules as examples. To be specific, we consider the Boltzmann
equation (20) with Kn =

√
π in Eq. (21). The distribution function is given by Eq. (47)

with t = 0. We vary the value of γ and compare the relative error of the collision operator
Q. From Fig. 11, we see that the value of γ has almost no influence on the solution of the
collision operator, as the relative errors are at the order of the numerical accuracy (when
compared to Maxwell molecules) and seem to be random.

Next we compare the relax-to-equilibrium processes between hard sphere, argon, Maxwell,
and soft-potential molecules with γ = 0. The initial distribution function is given by Eq. (47)
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Figure 10: (a) Evolution of the distribution function when the initial distribution function at v1 = +0 is
four times larger than at v1 = −0. From top to bottom (at v1 > 0), the times corresponding to each line
are t = 0, 0.5, 1, 1.5, 2, 3, 5, and 9, respectively. (b-d) Evolution of the second- and fourth-order moments.
Relative error (e) |Pnu

xx − Pxx|/Pxx and (f) |M ′nu
4 − M

′
4|/M

′
4 when N = 42. The dots are the numerical

results when N = 42, the solid lines in (a), (e), and (f) are the numerical results with N1 = 256, N2, N3 = 42,
while the solid lines in (b-d) are analytical results. Other parameters are L = 11, R = 2

√
2L/(3 +

√
2), and

M = 5 with Eq. (38).
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∑

j |Qnu
j − Qref

j |/ ∑
j |Qref

j | in the approximation of the Boltzmann collision
operator vs γ, where Qref is the collision term with γ = 0 for hard sphere, argon, and soft-potential
molecules, while for Maxwell molecules, Qref is calculated according to the exact BKW solution. Other
parameters are L = 8, R = 6, N = 48, and M = 16.

with t = 0. We choose Kn = 21−ω
√

π, meaning different collision kernels have the same
value of shear viscosity at T = 2. The evolution of the distribution functions are shown in
Fig. 12. It is seen that for hard-potential molecules (α > 0), in the central velocity region
[−1, 1]3, the relax-to-equilibrium process is slower than that for Maxwell molecules, and the
larger the α, the slower the decay. In the outer velocity region, however, the decay is faster
(although not clearly shown, this can be inferred according to the conservation of mass).
For soft-potential molecules (α < 0), however, the decay is faster than that for Maxwell
molecules in the central velocity region. This may be qualitatively explained in terms of
the collision frequency ν(v). From Fig. 13 we see that the collision frequency of hard sphere
molecules is smaller (or larger) than that of Maxwell molecules when |v| < 4 (or |v| > 4).
Therefore, in the central (outer) velocity region, there are less (more) effective collisions
between hard sphere molecules than between Maxwell molecules, and hence the decay is
slower (faster). Overall, from Fig. 14 we see that, as compared to Maxwell molecules, the
competition between the slower and faster decay results in the slower (faster) decay of the
fourth- and sixth-order moments for hard-potential (soft-potential) molecules.

The different decay rates between different inverse power-law potential models with the
same value of shear viscosity (see Fig. 14) poses a question in the simulation of the LJ
potential: since the shear viscosity can be recovered by different combinations of αj, we
can ask whether different values of αj in Eq. (15) lead to different results? To answer this
question, we compare the relax-to-equilibrium processes between argon with µ ∝ T 0.81 and
the LJ potential with the collision kernel (15). The initial distribution function is given by

26



  

0

0.01

0.02

0.03

0.04 (a)

0

0.01

0.02

0.03

0.04 (b)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

0.01

0.02

0.03

0.04

0.05

v1

(c)

Figure 12: Evolution of the distribution function f(v1, 0, 0) for space-homogeneous (a) hard sphere, (b)
argon, and (c) soft-potential molecules, where the initial condition is given by Eq. (47). In each figure, from
bottom to top (near v1 = 0), the time corresponding to each line is (0, 1, 2, 3, 4, 5, 6, 7, 8) × 0.25. The lines
are the numerical solutions, and the dashed lines are the analytical solution for Maxwell molecules.

Eq. (47) with t = 0. For argon, we choose Kn = 20.19
√

π, while for the LJ potential we
choose Kn = 1.0758

√
π and kBT0/ε = 1.1, so that the two models have the same value of

shear viscosity and for the LJ potential the shear viscosity can be approximated by T 0.81

at T/T0 = 2. The relative errors in the fourth- and sixth-order moments between the two
models are depicted in Fig. 15, where we see that the differences are very small. This
example, together with the example shown in Fig. 11, indicate that one can use different
θ-dependence of the collision kernels as long as the shear viscosity (not only its value, but
also its temperature dependence) is recovered.
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Figure 14: Time evolution of the fourth- and sixth-order moments for various types of collision kernels.
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5. Numerical solutions for space-inhomogeneous problems

5.1. Iteration scheme for spatially-inhomogeneous cases

To get stationary solutions of the Boltzmann equation for space-inhomogeneous prob-
lems, the time-dependent term is omitted from the Boltzmann equation, yielding v2∂f/∂x2+
a1∂f/∂v1 = Q(f, f∗). We then employ the iteration method to solve this equation: given the
value of f at the k-th step, its value at the next iteration step is calculated by the following
equation

νfk+1 + v2
∂fk+1

∂x2

= νfk − a1
∂fk

∂v1

+ Q(fk, fk
∗ ), (54)

where the spatial derivative ∂fk+1/∂x2 is approximated by the second-order upwind scheme,
and the acceleration term a1∂f/∂v1 is calculated according to the Fourier transform deriva-
tive theorem, as the velocity distribution function in this direction is smooth. The parameter
ν is a positive constant having the meaning of mean collision frequency, which is introduced
to eliminate the singularity in the calculation of Eq. (54) when v2 ' 0.

The choice of the value of ν is ad-hoc for space-inhomogeneous problems since different
locations have different mean collision frequency, and too large (small) a value of ν results
in slow convergence (numerical instability). A better way is to replace the mean collision
frequency by the local collision frequency in the k-th iteration step, and change fk(v) in the
loss term Q− to fk+1(v), yielding

ν(fk)fk+1 + v2
∂fk+1

∂x2

= −a1
∂fk

∂v1

+ Q+(fk, fk
∗ ). (55)

Note that a similar scheme has been used in the study of the structure of shock waves [23, 25].
Also note that in the continuum regime Kn → 0 and ν → ∞, the convergence rate to the
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stationary solutions is very slow. In this case, it may be better to solve the time-dependent
Boltzmann equation by the asymptotic preserving scheme using relevant larger time step;
see the recent review paper [48].

The iteration process is terminated when the maximum L1 norm of the macroscopic
quantities (such as n, V, T, P , and q) at two consecutive iteration steps is less than a fixed
small value, say, 10−7. Since there is only a small difference in macroscopic quantities for
different values of M , a trick can be used to reduce the computational cost: we first choose
a relatively small value of M ; when the numerical solution is not far away from the true one
we then switch to larger values of M . In the following calculations, it is found that the use
of M = 5 generates satisfactory results. We therefore choose Eq. (38) to approximate the
kernel mode (36), since for M = 5 it has almost the same accuracy as that of Gauss-Legendre
quadrature but with about 25% increase in computational efficiency.

5.2. Accurate calculation of the collision frequency

A problem that remains is how to determine the local collision frequency ν. In algorithm
2 we proposed a method. In numerical simulations, however, we find that this method does
not give accurate results over the whole velocity range [−L,L]3, but only in the region with
|v| ≤ R/

√
2, i.e., the results are accurate within the support of the distribution function. If

one is not interested in the distribution function when |v| > S, the value of ν can be fixed
for |v| > S at, say, the value of ν at |v| ' S. On the other hand, one can get an accurate
collision frequency through enlarging the velocity domain by a factor of two. Details are
given in algorithm 3.

Figure 13 depicts the normalized collision frequency ν for various kinds of collision kernels
when Kn = 21−ω

√
π, and good agreements between the numerical and analytical results are

observed. It is seen that the collision frequency of the soft potential for |v| → 0 is finite.

5.3. Normal shock waves

The normal shock wave is ideal for testing the accuracy of the fast spectral method in
capturing highly nonequilibrium effects, since this is a spatially one-dimensional problem
where the boundary effects are absent. We first consider the shock wave in a gas of hard
sphere molecules. Ohwada solved this problem by means of the finite-difference method [23].
For comparison, we set ` to be

√
π/2 times the mean free path of the hard sphere molecules

(λ0 = (
√

2πd2n0)
−1, d is the diameter of a molecule) and Kn′ = 8

√
2π. Fig. 16 shows the

shock wave structure for a Mach number of 3, and it can be seen that the two deterministic
numerical methods for the Boltzmann equation give identical results.

We then consider argon with the LJ potential. To compare with experimental data [49],
we set the upstream temperature to be T0 = 298 K, ` = (16/5π)

√
π/2mkBT0µ/n0 to be

the mean free path in the upstream part and Kn = 5π/16 in Eq. (23). Good agreement
between the numerical and experimental density profiles is seen in Fig. 17. The agreement
is due to the fact that we have correctly incorporated the shear viscosity of argon into the
collision kernel, shown in Eq. (15).
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Figure 16: The normal shock wave for Ma = 3, where the reduced molecular number density is n′ =
(n− 1)/(nr − 1); temperature T ′ = (T − 1)/(Tr − 1); bulk velocity, V ′
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stress τ22 = P22 − nT ; and heat flux q2. The solid lines are the results from Ref. [23], while the symbols are
our results from the fast spectral method. The position of the shock wave is adjusted to n′(0) = 1/2. The
velocity domain [−10, 10]3 is uniformly divided into 42× 42× 42 grid points, and M = 5.
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Figure 17: Reduced molecular number density, temperature, and bulk velocity for the normal shock wave
for Ma = 2.80. The experimental density is obtained from Ref. [49]. Numerical parameters are the same as
those in Fig. 16.
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Figure 18: (a) Reduced molecular number density, temperature, and bulk velocity for the normal shock with
Ma = 5 in argon gas (LJ potential). The marginal distribution function

∫ ∫
fdv1dv3/n vs v2 is presented

in (b) at n′ = 0.151, (c) n′ = 0.350, (d) n′ = 0.511, and (e) n′ = 0.759. The solid lines are the results from
Ref. [50], while the symbols are our results from the fast spectral method. The velocity domain [−18, 18]3

is divided into 42× 84× 42 grid points.

Finally, we solve the Boltzmann equation for argon with the LJ potential and compare
our results with that of MD simulation [50]. For comparison, we set the upstream temper-
ature to be T0 = 300 K, ` to be the mean free path in the upstream part and Kn = 5π/16.
Fig. 18 shows the shock wave structure for Mach number of 5, as well as the parallel distri-
bution functions (the perpendicular distribution functions in Ref. [50] are actually parallel
distribution functions). As can be seen from this figure, the fast spectral method produces
nearly the same results as the MD simulation. Note that in this case the downstream tem-
perature is about 2600K. The excellent agreement with MD data illustrates that the collision
kernel (23) for the LJ potential works well in this temperature range.

5.4. Planar Fourier/Couette/force-driven flows

In planar Couette flow with Kn = 1, we use argon with a shear viscosity proportional
to T 0.81. The wall temperature is T0=273K, and the wall velocity is Vw =

√
2vm in the

first test case and Vw = vm/
√

2 in the second one. The spatial region (halved due to the
symmetry) is divided into 50 unequally spaced cells, with more cells near the boundary. The
maximum velocity is L = 8, and there are 42 velocity mesh points in each direction. Our
numerical results are shown in Fig. 19. In Fig. 20 we show that, when using the iteration
scheme given by Eq. (55), the relative error decays exponentially, where, roughly speaking,
the characteristic time of decay is inversely proportional to the Knudsen number. The fast
spectral method is very efficient when the Mach number is not very large, for instance, in
the Couette flow shown in Fig. 19a for which Ma ≈ 1.5, the macroscopic quantities are
obtained within 40 seconds (40 iterations, symmetry in the v3 direction is considered) using
our Matlab programme on a PC with an Intel Xeon 3.3 GHz CPU.

In Fourier flow, the temperatures of the lower and upper plates are chosen to be T0=273K
and 373K, respectively. We consider hard sphere molecules, and Kn = 0.5, 1, and 5. The
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Figure 19: Profiles of normalized velocity and temperature for planar Couette flow of argon gas at Kn = 1.
(a, b) Vw =

√
2vm and (c, d) Vw = vm/

√
2. The solid lines are our numerical results from the fast spectral

method, while the dots are DSMC results.
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Figure 21: Density and temperature profiles for the planar Fourier flow of hard sphere molecules for un-
confined Knudsen numbers of 0.5, 1, and 5. The solid lines are our numerical results from the fast spectral
method, while the dots are DSMC results.

spatial region is divided into 100 equally spaced cells. The maximum velocity is L = 6, and
there are 32 velocity mesh points in each direction. Comparisons between the fast spectral
method and DSMC are summarized in Fig. 21.

In force-driven Poiseuille flow, we use hard sphere molecules and Kn = 0.1 and 0.5. The
normalized acceleration is 0.11 and the wall temperature is T0=273K. The spatial region
(halved due to the symmetry) is divided into 50 unequally spaced cells with more cells near
the boundary. The maximum velocity is L = 6, and there are 32 velocity mesh points in
each direction. The numerical results are depicted in Fig. 22.

6. Conclusions

The fast spectral method for the approximation of the Boltzmann collision operator has
been extended. A modified collision kernel was proposed, which enables the fast spectral
method to be applied to all inverse power-law potentials except the Coulomb potential. By
appropriate superposition of the modified collision kernels, we recovered the shear viscosity
of the Lennard-Jones and rigid attracting potentials. Although many single-term collision
kernels are added together, the computational efficiency of the Boltzmann collision operator
is still the same as that for the single-term collision kernel. This unique property has advan-
tages over the DSMC technique, where the simulation of soft-potential molecules becomes
inefficient because a large number of possible collision pairs are selected but each of which
has only a small probability of actually participating in a collision [51]. For the simulation of
molecular systems interacting with the Coulomb potential, the following two solutions might
be used. The first is to adopt the Fokker-Planck-Landau equation instead of the Boltzmann
equation when all the collisions become grazing. For this case, the fast spectral method has
already been developed [52]. The second way is to use the Sutherland formula for shear
viscosity, where the Boltzmann equation with the collision kernel (17) can be solved by the
fast spectral method.
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Figure 22: Profiles of normalized number density, velocity, temperature, and heat flux for force-driven
Poiseuille flow of hard sphere molecules when Kn = 0.1 (dots) and Kn = 0.5 (open circles). The solid lines
are our results from the fast spectral method, the symbols are DSMC results.

The trapezoidal rule and Gauss-Legendre quadrature has been used to approximate the
kernel mode. By comparing the numerical solutions with the analytical BKW solutions, we
found that the latter is more accurate when M > 5. When M = 5, the accuracy is almost
the same. We have also found that the spectrally small errors in the momentum and energy
in the fast spectral method can be eliminated by using the Lagrangian multiplier method,
while spectral accuracy is retained.

With accurate solutions provided by the fast spectral method, we checked whether the
solution of the Boltzmann equation is affected by the θ-dependence of the collision kernel or
not. Within the numerical accuracy (relative errors are about 10−6) we found that, for the
same inverse power-law potential with the same value of shear viscosity but different forms
of the θ-dependence of the collision kernel, the solutions to the Boltzmann equation are the
same. This justifies the fact that one can use different forms of the collision kernel so long
as the shear viscosity (not only its value, but also its temperature dependence) is recovered.

The fast spectral method has also been applied to space-inhomogeneous problems, in-
cluding the normal shock wave and planar Fourier/Couette/force-driven Poiseuille flows.
Our numerical results are found to agree well with those of a finite-difference solution to the
Boltzmann equation, experimental data, and MD and DSMC solutions.

Since the fast spectral method solves the Boltzmann equation deterministically, it is use-
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ful for developing a hybrid solver, where in the continuum regime kinetic models (or Navier-
Stokes equations) are used, while in the rarefied regime the Boltzmann equation is solved.
The open question remains as to how to determine the location of the continuum/rarefied
interface.

The dealiasing condition requires the velocity domain to be about two times larger than
the support of the distribution function, which wastes more than half of the compute memory
and time in three-dimensional velocity space. A better way to do this is to introduce the non-
uniform FFT [53], where the velocity space is non-uniformly discretized but the frequency
space is equally divided. The only change we need is to get the spectrum f̂ from f and
the collision operator Q from Q̂ by non-uniform FFTs, while the FFT-based convolution
remains unchanged. Since the main computational effort is devoted to the calculation of
FFT-based convolution, the non-uniform FFT will not increase the computation time much,
especially when many efficient non-uniform FFT algorithms are available. Therefore, the
use of fewer non-uniform velocity mesh points (with most of the points lying in the support
of the distribution function) will need less compute memory and time, without sacrificing
of accuracy.

The fast spectral method is also ready to be extended to mixtures of monatomic mole-
cules. For hard sphere molecules, one can use the collision kernel (11), while for other cases,
one should use the modified collision kernel (13) and choose special values of γ to recover
the correct coefficients of shear viscosity and diffusion.
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Appendix A. Algorithm 1: calculation of the collision operator

step 1. f̂ = FFTSHIFT{IFFT[FFTSHIFT(f)]}
step 2. Q̂+ = 0

For θp = (1, 2, · · · ,M − 1)π/M

For ϕq = (1, 2, · · · ,M)π/M

t1 = f̂ · φα+γ(ξl, θp, ϕq)

t2 = f̂ · ψγ(ξm, θp, ϕq)

zero-padding t1, t2 to the dimension ≥ 3N1

2
× 3N2

2
× 3N3

2

Q̂+ = Q̂+ + FFT(t1) · FFT(t2) · sin θp

End

End

step 3. t1 = f̂

t2 = f̂ · φloss

zero-padding t1, t2 to the dimension ≥ 3N1

2
× 3N2

2
× 3N3

2

Q̂− = FFT(t1) · FFT(t2)

step 4. Q̂ = IFFT(Q̂+ − Q̂−)

delete the redundant data in Q̂

step 5. Q = (4π2/Kn′ M2) FFTSHIFT{<[FFT[FFTSHIFT(Q̂)]]}
Note. FFTSHIFT represents the Matlab function that shifts the zero-frequency

component to the center of spectrum, IFFT is the inverse FFT, and the func-
tion < gets the real parts of complex numbers.
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Appendix B. Algorithm 2: simpler and faster calculation of the collision oper-
ator

step 1. f̂ = FFTSHIFT{IFFT[FFTSHIFT(f)]}
step 2. Q+ = 0

For θp = (1, 2, · · · ,M − 1)π/M

For ϕq = (1, 2, · · · ,M)π/M

Q+ = Q++FFT[f̂ ·φα+γ(ξl, θp, ϕq)]·FFT[f̂ ·ψγ(ξm, θp, ϕq)]·sin θp

End

End

Q+ = (4π2/Kn′ M2) FFTSHIFT[<(Q+)]

step 3. ν = (4π2/Kn′ M2) FFTSHIFT{<[FFT[FFTSHIFT(̂f · φloss)]]}
Q− = νf

step 4. Q = Q+ −Q−

Note. Here ν =
∫ ∫

sinα+γ−1 (θ/2) cos−γ(θ/2)|u|α[f(v∗)]dΩdv∗/Kn′ is the normal-
ized collision frequency, which is accurate when the velocity is within the
support of the distribution function, i.e., |v| ≤ R/

√
2.

Appendix C. Algorithm 3: accurate calculation of the collision frequency

step 1. calculate φex
loss according to Eq. (42) with Lex = 2L and Rex =

√
2L

step 2. create a zero-value array f ex of size 2N1 × 2N2 × 2N3

step 3. copy the value of f to the middle of f ex

step 4. f̂ ex = FFTSHIFT{IFFT[FFTSHIFT(f ex)]}
step 5. νex = (4π2/Kn′ M2) FFTSHIFT{<[FFT[FFTSHIFT(̂fex · φex

loss)]]}
step 6. copy the middle region value of νex to ν.
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