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The spectroscopic analysis of large biomolecules is important in applications 

such as biomedical diagnostics and pathogen detection
1,2

, and spectroscopic 

techniques can detect such molecules at the nanogram level or lower. However, 

spectroscopic techniques have not been able to probe the structure of large 

biomolecules with similar levels of sensitivity. Here we show that superchiral 

electromagnetic fields
3
, generated by the optical excitation of plasmonic planar 

chiral metamaterials
4,5

, are highly sensitive probes of chiral supramolecular 

structure. The differences in the effective refractive indices of chiral samples 

exposed to left- and right-handed superchiral fields are found to be up to 10
6
 

times greater than that those observed in optical polarimetry measurements, 

thus allowing picogram quantities of adsorbed molecules to be characterised. 

The largest differences are observed for biomolecules that possess chiral planar 
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sheets, such as proteins with high β-sheet content, which suggest that this 

approach could form the basis for assaying technologies capable of detecting 

amyloid diseases and certain types of viruses. 

 

Since the building blocks of life are chiral molecular units such as amino acids and 

sugars, biomacromolecules formed from these units also exhibit chirality on 

molecular and supramolecular scales. Chirally sensitive (chiroptical) spectroscopic 

techniques, such as circular dichroism (CD), optical rotatory dispersion (ORD) and 

Raman optical activity (ROA), are therefore especially incisive probes of the three-

dimensional aspects of biomacromolecular structure and are widely used in 

biomolecular science 
1,2

.  Chiroptical methods typically measure small differences, or 

dissymmetries, in the interaction of left- and right-circularly polarised light, the chiral 

probe, with a chiral material
2
.  However, the inherent weakness of these existing 

chiroptical phenomena usually restricts their application to samples of microgram 

level.  Recently, Tang and Cohen
3
 postulated that under certain circumstances 

superchiral electromagnetic fields could be produced that display greater chiral 

asymmetry than circularly polarised plane light waves.  We have realised such 

superchiral electromagnetic fields are generated in the near fields of PCMs, and can  

greatly enhanced the sensitivity of a chiroptical measurement, enabling us to detect 

and characterise just a few picograms of a chiral material. 

 

PCMs were first fabricated, and shown to display large chiroptical effects such as 

optical rotation, by Schwanecke and co-workers
4
 and Gonokami and co-workers

5
.  

The PCMs used in this study, Fig. 1 (a), are composed of left or right handed (LH / 

RH) Au gammadions, of length 400 nm and thickness 100 nm (plus a 5 nm Cr 

adhesion layer) deposited on a glass substrate and arranged in a square lattice with a 

periodicity of 800 nm.  As a control we repeated all experiments using a metamaterial 

composed of achiral crosses with the same thickness and periodicity as the 

gammadions: these structures showed no dissymmetry in excitation.  Previous works 

on PCMs discussed their suitability as negative refractive index materials
6,7 

and 

broadband circular polarisers
8
. Konishi et al

9
, meanwhile, suggested that the optical 

excitation of the chiral localised surface plasmon resonances (LSPRs) generates chiral 

electric fields.  For such materials the handedness of the electromagnetic field near the 

nanoparticle is governed by the chirality of the gammadion; reversal of the chirality of 
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the gammadion reverses the chirality of the generated fields. In this paper, we 

demonstrate for the first time the potential of utilizing chiral local fields in biosensing 

technologies. 

 

UV / visible CD spectroscopy was used to probe the optical properties of the PCMs in 

the presence of a liquid layer (water, TRIS buffer and solutions of the chiral 

molecules materials). CD spectroscopy determines the difference in extinction spectra 

of the PCMs obtained with left- and right-circularly polarised light. It has the 

advantage over conventional UV / visible spectrometry of removing the achiral 

background of scattered light and achiral plasmonic resonances, considerably 

simplifying spectra
1
.  The CD spectra from LH and RH PCMs in the presence of 

water are shown in Fig. 1 (a).  As expected, the spectra of the LH and RH 

gammadions are essentially mirror images of each other: small differences in 

wavelengths and intensities of peaks can be attributed to variations in the level of 

defects between LH and RH PCMs.  We observe clear resonances in the CD spectra 

that we attribute to the excitation of localized surface plasmons resonances (LSPRs) 

in the PCM structures. 

 

A quantitative understanding of the optical properties of the PCMs can be 

accomplished by the application of electromagnetic modelling techniques that allow 

accurate simulation of the fields in the materials. Our modelling of the PCMs, Fig. 2 

(a), reproduces the main features observed in the experimental CD spectra, with a 

slight blue shift and narrowing of the resonances (effects we attribute to rounding of 

edges and inhomogeneity in the experimental samples). One can clearly see the 

enhanced electric fields [red areas in left hand panels of Figs. 2 (b)-2 (d)] caused by 

coupling to LSPRs in the gold nanostructures. Molecules in these regions will 

undergo a much stronger interaction with the electromagnetic field than those that lie 

well away from metallic particles. This means that the dielectric environment of the 

near surface region of the gammadians will strongly influence the resonant LSPR 

wavelengths ().  This phenomenon is the basis of the (bio)sensing capabilities of 

nanostructured plasmonic materials
10-15

.  The wavelength shift () of LSPR modes 

of nanoparticles induced by a dielectric layer is normally described approximately by 

Eq (1)
14, 15

; 
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           (1) 

           

where m is a constant, n is the change in effective refractive index (from that of the 

buffer solution) induced by molecules near the metallic surfaces, d is the thickness of 

the molecular layer and ld represents the spatial evanescent decay of local fields. The 

quantity, m, represents the sensitivity of the nanomaterial towards changes in local 

refractive index, and will be different for each LSPR mode.  For the PCMs used in 

this study, three chiral modes, which we have labelled I, II and III, display the largest 

m values. These three modes display the largest  on changes in the local 

environment of the gammadions, for example on changing the refractive index of the 

surrounding liquid (see supplementary data).   

 

As in previous studies
10-15

, we attribute shifts in the LSPRs to adsorption of 

macromolecules in high field regions, which induces shifts in LSPR wavelengths. We 

determined how a range of adsorbed chiral materials, with different supramolecular 

structures, influences the chiral LSPRs.  The simplest chiral adsorbate we studied is 

the amino acid tryptophan, which binds to the surface in a flat geometry via its 

carboxylate group and ring system, forming a planar “2-D” chiral monolayer
16

.  We 

also studied six proteins: myoglobin, haemoglobin and bovine serum albumin, which 

have high levels of -helical secondary structure
18

, and -lactoglobulin, outer 

membrane protein A (Omp A) and concanavalin A, which have high levels of -sheet 

secondary structure
17

.  Upon adsorption, protein tertiary structure is strongly modified 

by the drive to mimise the surface free energy of the interface, but secondary structure 

remains largely native
18

. 

 

Our data show that the supramolecular structure of an adsorbed chiral layer strongly 

affects the influence it has on the chiral plasmonic resonances of the PCM. This is 

demonstrated by the observed shifts in the resonance wavelengths (LH and RH for 

LSPRs of the LH and RH-PCMs, respectively) induced by adsorption of different 

molecular species [indicated in Fig. 1 (b)].  For the adsorption of some of the chiral 

molecular layers, the values of LH and RH are found to be different.  We also 

observe a concurrent asymmetry in the LSPR intensities [note the asymmetry in the 















dl

dnm 2exp1



 5 

mode III in the spectra in Fig. 1 (b)]. In contrast, for an achiral adsorption layer, no 

dissymmetry between LH and RH PCMs is observed (we demonstrated this by 

placing the PCMs in ethanol instead of water; and was further confirmed by collecting 

spectra from PCMs which had films of an achiral molecule deposited upon them, see 

supporting data).  We therefore parameterised the dissymmetries in the shifts of the 

LSPRs on adsorption of chiral layers using  = RH - LH (see fig. 3 (b)).  The 

largest values for  are found for the adsorption of tryptophan and for the three -

sheet proteins.  All three -sheet protein species induce positive values for , while 

tryptophan adsorption gives rise to negative values.  The values of  values display 

a similar fingerprint for different adsorbed species; modes II and III give rise to the 

largest dissymmetries, while mode I displays significantly smaller dissymmetries in 

each case.  The large dissymmetries observed for adsorption of tryptophan and the -

sheet proteins do not appear to be associated with the previously reported 

phenomenon of adsorbate-induced conveying of chirality onto the electronic 

structures of metals
19-21

; this is demonstrated by the absence of any detected optical 

activity from achiral crosses after the adsorption of chiral layers (see supporting data).  

Our observation is also unrelated to the previously reported phenomenon of CD 

spectra from a biomacromolecule being enhanced in the presence of a plasmonic 

particle
22,23

.  This resonant enhancement arises because an electronic transition of the 

molecular system overlaps with the plasmonic resonance of the particle.  The chiral 

materials studied have been purposely chosen so that they do not have an optical 

excitation that coincides with a resonance of the PCM, to preclude the possibility of 

observing a plasmonic resonant enhancement.   

 

In contrast to the behaviour found for tryptophan and the three -sheet proteins, the 

three -helical proteins induce comparatively small dissymmetries ( ~ 0 within 

experimental error). This behaviour cannot be attributed to lower levels, or even 

absence, of molecular adsorption. We verified this by monitoring the average shift 

AV = (RH + LH)/2 for the PCMs (Fig. 3 (a)), which is a measure of the 

thickness of the adsorbed layer. We have further confirmed adsorption levels by 

implementing surface plasmon resonance (SPR) measurements (supporting data).  

Both the SPR and AV data demonstrate that there is an appreciable adsorption of -

helical proteins onto the PCM surfaces. We therefore attribute the differences in the 
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dissymmetries exhibited by -helical and -sheet proteins to their distinct chiral 

supramolecular structures.  This dependency on macromolecular structure is 

supported by measurements of -lactoglobulin layers deposited onto the PCMs from 

solutions incubated at 70C.  Previous work has shown that -lactoglobulin adsorbed 

from solution at 70ºC on to a metal surface is both aggregated and unfolded, with the 

loss of -structure, while exhibiting higher levels of adsorption compared to solutions 

incubated at room temperature
24,25

.  We observe a larger AV for -lactoglobulin 

solutions incubated at 70C compared to room temperature, confirming a higher 

adsorption of the heat treated -lactoglobulin . A markedly smaller observed 

dissymmetry for heat-treated -lactoglobulin solutions (Fig. 3 (b)) therefore 

demonstrates the dependence of dissymmetry on the distinct chiral supramolecular 

structure associated with the -sheets. 

 

One can evaluate the strength of the chiral interaction with the adsorbed molecular 

layers by estimating the dissymmetry in the effective refractive indices of the chiral 

layers on LH / RH-PCMs, n
 
L/R. Using the values for  from Fig. 3 (b) with Eq. 1, 

the following dissymmetry factor g can be determined: 

 

 

       (2) 

The lower estimates for  g  obtained (see supporting data) for tryptophan and the -

sheet proteins are ~ 10
-2

 –10
-1

.  This magnitude of this dissymmetry is ~10
6
 times that 

typically observed for the dissymmetries in the refractive indices of the chiral 

molecules in solution when measured by circularly polarized light (~10
-7

)
1,2

.  

 

Local field enhancement [red areas in left hand panels of Figs. 2 (b)-2 (d)] by itself is 

not sufficient to account for the enhanced chiral response. Due to the symmetry of the 

metallic structures in this case, plasmon oscillations in different branches are coupled 

together to generate superchiral fields. In order to parameterise the local density of 

chirality of an electromagnetic field, Tang and Cohen
3
 introduced the following time-

even pseudoscalar which they called the optical chirality: 

    (3) 
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where 0 and 0 are the permittivity and permeability of free space, respectively, and 

E and B are the local electric and magnetic fields.  When considering only dipolar 

excitation of molecules, the chiral asymmetry in the rate of excitation is given by the 

product of C with the inherent chiral properties of the material
3
.  Tang and Cohen 

provided an illustration of how superchiral fields might be generated at the nodes of a 

standing wave, and also suggested that nanostructures may generate fields with 

locally enhanced chirality.  In the right hand panels of Figs. 2 (b) – 2(d) we use Eq. 3 

to evaluate the optical chirality of the near fields generated by our structures: the 

superchiral field is spatially variable, and is 1-2 orders of magnitude larger than 

expected for circularly polarized plane waves.  The largest enhancements are clearly 

observed for modes II and III, while mode I exhibits very little enhancement.  This 

observation is consistent with the larger dissymmetries observed for modes II and III 

in our experiments. 

 

Chiroptical phenomena such as circular dichroism and optical rotation derive from 

higher order effects, the largest contributions being from electric dipole–magnetic 

dipole (dipolar) and electric dipoleelectric quadrupole (quadrupolar) interactions, 

with the latter averaging to zero in isotropic media
2
. Since the definition of optical 

chirality given in Ref 
3
is derived from dipolar excitation molecules, one can expect 

enhanced optical activity due to the superchiral near fields of the nanoparticles for all 

the chiral materials studied, including those which form isotropic overlayers on our 

PCM structures. However, from our electromagnetic modeling we  estimate that the 

enhancement of dipolar chiral excitations due to superchiral fields is at most 1 to 2 

orders of magnitude, and by itself cannot explain the large dissymmetries observed for 

tryptophan and the -sheet proteins. We believe that the large dissymmetry 

enhancements observed for tryptophan and the -sheet proteins may result from the 

quadrupolar contribution to optical activity. Under ordinary excitation by circularly 

polarized light the dipolar and quadrupolar terms can contribute to the same order of 

magnitude in anisotropic materials
2
.  However the localchiral field around our PCM 

structures display steep field gradients, which will enhance, relative to the dipolar 

contributions, any quadrupolar contributions to optical activity.  Efrima
26

 has 

discussed the influence of the gradients of localized electromagnetic fields on the 

quadrupolar contribution to the optical activity displayed by an adsorbed anisotropic 
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chiral layer.  This work showed that the level of dissymmetry factors such as g scale 

with the gradients of the localized fields.  In our electromagnetic modeling (Fig. 2) we 

observe field gradients near our PCM structures that are three to four orders of 

magnitude larger than E0/ (the value characteristic of plane polarized light). 

Consequently, quadrupolar contributions to optical activity may give rise to very 

large dissymmetries  for adsorbed anisotropic chiral media. 

 

Upon adsorption the chiral molecules will adopt geometries in which they have an 

axis with a well-defined orientation with respect to the surface normal, and random 

orientation in the plane parallel to the surface.  Due to the number and broad spatial 

distribution of -helices within myoglobin, haemoglobin and BSA, in the adsorbed 

state they will be isotropically distributed with respect to the surface (illustrated for 

haemoglobin in Fig. 1 (c)).  For these molecules, one therefore expects the 

quadrupolar contribution to the dissymmetry to be small.  In contrast, the planarity of 

the adsorbed trypophan monolayer and -sheet structures will result in anisotropic 

adsorbed layers that display C symmetry (illustrated for -lactoglobulin in Fig. 1 

(c)).  The extremely large dissymmetries observed for tryptophan layers and -sheet 

proteins therefore reflect the anisotropic structure of the adsorbed layers, which 

facilitates a large quadrupolar enhancement to the optical activity.   

 

In conclusion the use of superchiral electromagnetic fields is a radically new approach 

to biospectroscopy / biosensing.  The new phenomenon we describe not only allows 

us to detect the presence of chiral materials at the picogram level, but also to sense 

their structures. In the future, this will allow, inter alia, the monitoring of protein 

dynamics in ultra-small (nanofluidic) volumes, and will provide a new ultrasensitive 

tool for studying chiral macromolecular structure generally.  The special sensitivity to 

-sheet could also provide a unique capability for studying the -structured amyloid 

plaques which play significant roles in diseases such as Alzheimer’s, Parkinson’s, and 

the transmissible spongiform encephalopathies.  Also the phenomenon might be used 

to characterize minute amounts of a virus: it may be possible to discriminate rapidly 

between isosahedral viruses which usually have coat proteins with folds based on -

sheet, from cylindrical and filamentous viruses which usually have -helical coat 

proteins folds. 
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Functionalisation of the PCMs would, meanwhile, allow a plethora of assay platforms 

to be developed (e.g. protein interactions with other macromolecules, ligands, drugs, 

the kinetics of fibrillization, etc).  

 

Methods Summary 
Experimental set-up 

The PCMs are incorporated into a liquid cell with a pathlength of 90m, and a total 

volume of 9 L.  All CD spectra were collected with a side of the PCM lattice being 

parallel to the laboratory frame, and with the back face (Metal / Glass) of the PCM 

facing the spectrometer detector (identical spectra were obtained in the reverse 

geometry when the front face of the PCM faced the detector).  A total of ~ 3.9x10
7 
 

gammadions were present in the optical path of the spectropolarimeter, and only these 

contributed to the observed spectra.  CD spectra were collected using a commercial 

spectropolarimeter (JASCO J-810).  

Solutions of chiral materials 

All solutions used had a concentration of 1 mg / ml, the trytpophan solution was made 

up using distilled water, while the proteins solutions were made using a 10 mM Tris / 

HCl buffer of pH 7.4. 

Cleaning Procedure 

PCM substrates were used in multiple experiments. After each protein adsorption and 

measurement cycle, the samples were immersed in saline solution for 20 min, 

followed by 20 min in sodium dodectyl sulphate detergent solution, and rinsed with 

distilled water after each step. Finally, any remaining (organic) residue was removed 

in an oxygen plasma-cleaning unit (100W for 1 min).   

Electromagnetic field Simulations 

Numerical simulations of electromagnetic fields were performed using a commercial 

finite-element package (Ansoft HFSS version 11.0) with a mesh size of 4.0 nm. 

Permittivity values for gold were taken from E. D. Palik, Handbook of optical 

constants of solids (Academic Press, New York, 1985). The CD spectrum in Fig. 2(a) 

is calculated from the optical rotation of linearly polarized light according to Ref 27. 

The plots in Fig. 2(b-d) are calculated for excitation by LH circularly polarized light.  

Further details of numerical simulations can be found in the supplementary 

information. 
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Figures: 

 

Fig. 1  Changes induced in the chiral plasmonic resonances of the PCM are readily 

detected using CD spectroscopy (a). CD spectra collected from LH / RH-PCMs 

immersed in distilled water.  The three modes which show the largest sensitivity to 

changes in the local refractive index of the surrounding medium have been labelled I , 

II and III.  Shown to the right of each spectrum is an electron micrograph of the PCM 

displaying the gammadion structure and periodicity. (b) The influence of the adsorbed 

proteins haemoglobin, -lactoglobulin, and thermally denatured -lactoglobulin on 

the CD spectra of the PCMs. The red spectra were collected in Tris buffer prior to 

protein adsorption (solid line LH-PCM, dashed line RH-PCM) and the black were 

collected after protein adsorption.  The magnitudes and directions of RH / LH values 

of mode II for -lactoglobulin adsorption have been highlighed. (c) Haemoglobin 

(upper) and -lactoglobulin (lower) are shown [-helix (cyan cylinder) and -sheet 

(ribbons)], adopting a well defined arbitary structure with respect to a surface.  The 

figure illustrates the more anisotropic nature of adsorbed -lactoglobulin.   
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Fig. 2  Finite element modelling of the local electromagnetic fields around our PCMs. 

(a) Comparison between experimental and modelled CD spectra. (b, c, d) Left hand 

panels: Time averaged electric field strength at the wavelength marked by arrows in 

(a), when excited by LH circularly polarized light. All fields are calculated at the 

substrate interface of the sample and normalized by the incident electric field (E0). 

Right hand panels: Local optical chirality, C, as defined in equation 3, normalized by 

the magnitudes for LH circularly polarized plane waves. 
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Fig.3  Values of  and AV induced by the adsorption of the chiral materials.  (a) 

A plot of AV (TM) for tryptophan and the six proteins.  (b) The corresponding  

values for TM,II and III modes are displayed.  Also shown are the effectively zero 

 values obtained from the (achiral) ethanol solvent. 

 

 


