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Abstract  11 

Grey water recycling has been generally accepted and is about to move into practice in terms of sustainable 12 

development. Previous research has revealed the bacteria re-growth in grey water and reclaimed municipal 13 

water during storage. However, in most present grey water recycling practices, impacts of water quality 14 

changes during storage on the system’s performance and design regulation have not been addressed. In this 15 

paper, performance of a constructed wetland based grey water recycling system was analysed by taking the 16 

constraint of residence time during storage into account using an object based household water cycle model. 17 

Two indicators, water saving efficiency (WSE) and residence time index (RTI), are employed to reflect the 18 

system’s performance and residence time during storage respectively. Results show that WSE and RTI 19 

change with storage tank volumes oppositely. As both high WSE and RTI cannot be achieved 20 

simultaneously, it is concluded that in order to achieve the most cost-effective and safe solution, systems 21 

with both small grey and green tanks are needed, whilst accepting that only relatively modest water saving 22 

efficiency targets can be achieved. Higher efficiencies will only be practicable if water quality deterioration 23 

in the green water tank can be prevented by some means (e.g. disinfection). 24 
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Grey water is defined as the water which is slightly contaminated by human activities and may possibly be 30 

reused after suitable treatment, for example, water from a washing machine, shower, bath etc. The 31 

reclaimed water or the treated grey water is termed as green water in this paper. Grey water recycling is 32 

emerging as an internal part of water demand management, promoting as it does the preservation of high 33 

quality fresh water supplies as well as potentially reducing the pollutant in the environment. The principle 34 

of domestic grey water reuse is to replace all or some of the non-potable water demand by reclaimed water. 35 

The general use of treated grey water in a household context mainly includes toilet flushing and/or garden 36 

watering. This paper focuses on the toilet flushing. In the last decade, grey water recycling practices have 37 

been reported in many countries (Asano and Levine, 1996; Fittschen and Niemczynowicz, 1997; Kayaalp, 38 

1996; Nolde, 2000; Smith et al., 2000; Yang et al., 2006).  39 

 40 

1.1 Grey water characterisation 41 

As grey water arises from domestic washing operations, it varies in quality according to, amongst other 42 

things, geographical location, demographics and level of occupancy (Al-Jayyousi, 2003). Taking BOD as 43 

an indicator, its value has been reported between 33-466 mgl-1 in the literature (Al-Jayyousi, 2003; 44 

Prathapar et al., 2005; Gross et al., 2007). It has been noticed that the BOD in grey water from hand basin 45 

is slightly smaller than the one from combined sources (bath, shower, etc.) (Jefferson et al., 2000) and the 46 

quality of grey water varies with time during a day (Al-Jayyousi, 2003). Further to this, available evidences 47 

have shown changes of grey water quality during storage. Jefferson et al. (2000) reported that a 50% 48 

reduction in BOD over a 4 hours period could be achieved. However, longer residence time in storage tank 49 

can encourage bacteria re-growth and lead to degradation of water quality. Dixon et al. (2000) conducted 50 

an experiment to examine the change of grey water quality during storage and observed obvious increases 51 

of BOD and DO after initial decrease in the sedimentation period. Therefore, the quality of grey water fed 52 

into treatment device is expected to be various not only because of the different sources and time of grey 53 

water generated, but also the changes of quality during storage.  54 

 55 

In terms of healthy concern, a key question or objective in domestic grey water recycling is to ensure the 56 

green water complies with relevant standards. This may be accomplished both by choosing robust and 57 



effective treatment and limiting grey water degradation during storage by rational design. This paper will 58 

mainly focus on the latter topic. On the other hand, the concept of grey water recycling is to reduce potable 59 

water demand by replacing non-potable demand with green water in term of water demand management 60 

and sustainable development. From this point of view, the objective of grey water recycling is to save as 61 

much potable water as possible. These two objectives may interact, or even conflict each other. Their 62 

interaction/confliction should be explored to increase the understanding and confidence in implementation 63 

of grey water recycling. Rational design can then be undertaken based on these understandings to ensure 64 

the great achievement of both objectives in recycling practices. This will be discussed in this paper.  65 

 66 

1.2 Treatment technologies 67 

Researchers have reported the application of several technologies for grey water treatment. Both strengths 68 

and constraints in implementation of these technologies have been recognized. Sand filtration plus 69 

disinfection represents the most common technology used for domestic grey water recycling in the UK 70 

(Jefferson et al., 2000). The treated grey water from this kind of system has been noticed remaining high in 71 

organic load and turbidity, which thereby limit the effectiveness of the chemical disinfection process. 72 

Membrane systems offer a permanent barrier to suspended particles greater than the size of membrane 73 

material, which can range from 0.5 µm of microfiltration membranes down to molecular dimensions for 74 

reverse osmosis. The key factor constraining the viability of membrane systems is the fouling of the 75 

membrane surface by pollutant species. This has been reported by many researchers. For example, Nghiem 76 

et al. (2006) and Oschmann et al. (2005). Meanwhile, the energy demand for membrane systems is high 77 

(Jefferson et al., 2000). Biological treatment and physical treatment can effectively remove different 78 

species. The benefits of biological and physical treatments are combined in processes such as membrane 79 

bioreactors (MBR). However, high cost implications have meant that this kind of treatment is more suitable 80 

for large scale of recycling scheme than single house.   81 

 82 

As a low-cost technology, constructed wetland has recently gained much attention in grey water treatment. 83 

Experiences in Central America (Dallas et al., 2004), Middle East (Gross et al., 2007) and the UK (Frazer-84 

Williams et al., 2008) showed that high averaged removal rate can be achieved provided appropriate 85 



hydraulic retention time is given. In this project, therefore, a constructed wetland based grey water 86 

recycling system is chosen to investigate the impact of residence time in storage tanks on the system’s 87 

performance.  88 

 89 

1.3 System configuration  90 

Although different system configurations have been reported in practice, a grey water recycling system 91 

generally includes: a grey water storage tank, a treatment unit and a green water storage tank. For the 92 

system investigated in this project (Figure 1), it also has the similar system configuration. The grey water 93 

tank is connected to appliances, which consumes potable water and produces grey water. By collecting the 94 

grey water, the grey water tank stores and feeds it to the constructed wetland, where the green water is 95 

produced. The constructed wetland was placed outside of house. The constructed wetland is linked with the 96 

green water tank.  The green water tank then collects and serves green water to non-potable water demand, 97 

for example, the toilet flushing. The design of grey water recycling system is a site-dependent problem. The 98 

storage tanks can be either placed underground or on the loft in terms of specific circumstance and the 99 

user’s preference.  Pumps may be employed to facilitate the flows between treatment device, storage tanks 100 

and toilet cistern when gravity flow is not a choice. For the purpose of simplification, in this project, the 101 

grey water recycling system is simulated in a common sense, i.e. no specific implementation situation was 102 

considered, only the main parts of the system (storage tanks, treatment device and toilet cistern) and the 103 

dynamic flows among them were simulated.  104 

 105 

(Figure 1 here) 106 

 107 

Although practices of grey water recycling system have been implemented widely, most published 108 

literatures mainly focused on reporting the performance of existing systems (for example, Jeppesen, 1996; 109 

Al-Jayyousi, 2003; March et al., 2004; Ghisi and Mengotti de Oliveira, 2007). Few attentions have been 110 

focused on the impacts of system configuration on potential of water saving. Especially, no attempt has 111 

been made to investigate this problem by taking the water quality degradation during storage into account.  112 

This paper concentrates on the analysis of potential of water saving from water quality point of view.  113 



 114 

2. Methodology  115 

2.1 The household water cycle model 116 

The household water cycle model adopted in this project was developed on a MATLAB (Simulink) 117 

platform. It accounts for the production and storage of grey water and green water, and the water balance 118 

between compartments, for example, the water supply and the water demand. The allocation of water 119 

sources to water demands is facilitated by a ‘first comes, first served’ rule. This refers that the water request 120 

will be satisfied according to its appearing sequence. The model operates at 10 minutes time step which is 121 

determined by the data availability. The household water cycle model was designed with the capacity of 122 

coping with any type of treatment system operating modes. However, complicated management strategy is 123 

required to facilitate intermittent operating mode. Therefore, in this paper, for the purpose of simplification, 124 

continuous operating mode is assumed for the operation of constructed wetland.  125 

 126 

2.2 Input data 127 

The input data required by the household water cycle model are the water use profile information for each 128 

appliance. To understand the performance of grey water recycling system at different situations (for 129 

example, peak and non-peak uses of toilet; different water use manners on weekdays and weekend), it is 130 

necessary to assess its behaviour over an extended period, ideally to cover its expected lifetime. However, 131 

in practice, it is hard to source this kind of data. Therefore, in this project, a Monte-Carlo method was 132 

adopted to generate water use profile time series data covering 10 years period at a time step of 10 minutes. 133 

The parent data uitilised in the Monte-Carlo method was derived from a large-scale survey conducted by 134 

Water Research Centre UK (WRc) to investigate water consumption trends in different parts of the UK. In 135 

this survey, flow meter and data logger were used to identify flow charcatersitics and classify water-use 136 

events, which can be the use of toilets, showers, baths, internal and external taps, washing machines and 137 

dishwashers (Ton That, 2005).  The system is capable of recording every 10ml of water used at 1 second 138 

intervals for periods up to 2 week. In this research, water profile data from 100 three-person households 139 

was employed. Figure 2 shows, by average, a three-person household requires 369.11 litres water per day, 140 

in which 103.99 litres for toilet flushing, 39.91 litres for washing machine, 55.56 litres for bath, 50.70 litres 141 



for shower and 118.95 litres for tap uses. Distributions of water use events in terms of time and household 142 

were examined.  Spatial and temporal differences of water use event were found. Taking toilet flushing as 143 

an example, Figure 3 shows the cumulative number of toilet use event in every 10 minutes interval during a 144 

day (144 intervals) for the 100 households. Except for the morning and evening peak uses, toilet flushing is 145 

featured as a randomized event. Figure 4 displays the distribution of number of toilet use event and 146 

household numbers, which reveals that most households (79 households) use 10-14 times of toilet per day. 147 

It is also noticed from Figure 4 that 8 households use less than 7 times of toilet per day, which might be 148 

because of less people living in. In generating water use profile time series data using Monte-Carlo method, 149 

spatial and temporal differences were taken into account to represent the differences of water use event in 150 

term of time and household. 151 

 152 

(Figure 2,3,4 here) 153 

 154 

2.3 Residence time distribution 155 

The residence time (RT) in a storage tank is calculated according to the ‘first in first out’ (FIFO) algorithm 156 

(Walski et al., 2003). In the FIFO algorithm, the first volume of water to enter the storage tank as inflow is 157 

the first to leave as outflow. In the household water cycle model, each parcel of water is noted with the 158 

times entering and leaving the storage tank. The difference between these two times indicates the period the 159 

water staying in the tank and is therefore the RT, which is calculated at each time step and has a precision 160 

down to 10 minutes. The probability of a RT is accounted by dividing the number of its appearance over the 161 

whole running period (10 years in this case) with the total number of appearance for all RTs. Residence 162 

time distribution (RTD) refers to the curve of the probability against its corresponding RT (illustrated in 163 

Figure 5). The RTD describes the probability and range of RT of water in the storage tank.  164 

 165 

(Figure 5 here) 166 

 167 

2.4 Performance indicators  168 



Two indicators are employed to evaluate the system’s performance. One is from quality aspect, the 169 

residence time index. The other is from quantity aspect, the water savings efficiency.  170 

 171 

The time range of a RT for the question under discussion is defined as target range (TR). Previous research 172 

has recommended that the RT in a grey water tank should not be beyond 48 hours to avoid the significant 173 

water quality degradation (Dixon et al., 2000). No similar research has been conducted for green water. 174 

However, experience from reclaimed municipal water suggests green water quality degradation during 175 

storage is expected (Narasimhan et al., 2005). For simplification, therefore, a 0 to 48 hours TR was adopted 176 

both for grey water and green water. To evaluate to what extent RT is within the TR (0 to 48 hours), a 177 

residence time index (RTI) is introduced, calculated as the ratio of the integral of RTD over the TR to the 178 

one over the whole range (Figure 5). A RTI value of 0 means no RT is in the range of 0 to 48 hours, while 1 179 

indicates that all water leaving the storage tank as outflow stays in the tank less than 48 hours. The greater 180 

the RTI is, the better the storage tank performs in terms of avoiding water quality degradation.  181 

 182 
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in which RTITR refers to the RTI for the target period of TR; TR is the target range up to 48 hours; WR is 184 

short for the whole range of retention time. 185 

 186 

Water saving efficiency (WSE) is defined as the percentage of potable water saved by reusing grey water. It 187 

reflects to what extent the toilet demand is satisfied by non-potable water. A higher WSE means more 188 

potable water is saved.  189 
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Where: 191 

T = Run duration  192 

Wt = Amount of non-potable water used for toilet flushing 193 



Dt = Toilet water demand 194 

 195 

3. Model simulation and discussions 196 

By feeding the input data series into the household water cycle model, the water dynamics in household 197 

water cycle over 10 years time was simulated. The attention was paid on the impacts of storage tank and 198 

treatment capacity on the potential of water savings with consideration of limitation for residence time. 199 

Model simulation for a three-person household was taken as an example for demonstration purpose.  200 

 201 

3.1 The RT in grey and green water tanks 202 

The function of grey and green water tanks is to deal with the synchronicity between water sources and 203 

demands. In this paper, the treatment is assumed to operate in a continuous mode, which implies that the 204 

outflow from the grey water tank and the inflow to the green water tank are continuous and at a constant 205 

rate. Meanwhile, the inflow to the grey water tank and the outflow from the green water tank are dependent 206 

on the grey water production and toilet water demand respectively, and they are at intermittent patterns. So, 207 

unlike a typical treatment reactor, which has a RT dictated solely by flow rate (for a given reactor volume), 208 

this RT will be more complex giving both varying tank volumes and intermittent supply/demand.  209 

 210 

The RTD is the reflection of the comprehensive interactions between inflow and outflow rates and patterns, 211 

and the volume of storage tank. In order to provide an insight to these interactions, the investigations of the 212 

impact of tank volume on RT for both grey and green water tanks are conducted in two types of analyses: 213 

offline analysis and online analysis.  214 

 215 

In the offline analysis, the inflow and outflow of the grey and green tanks keep unchanged while the tank 216 

volumes vary. The relationships of RTD and RTI0-48 with tank volume are focused. The interactions and 217 

impacts from other system components are not considered. Thus, the offline analysis offers a static snapshot 218 

understanding of the RT during storage. For the green water tank, the outflow is toilet water demand and 219 

the inflow is related to the treatment capacity. For the grey water tank, the inflow is grey water production 220 

from household water consumptions and the outflow is determined by the water request from treatment 221 



device, which is also related to the treatment capacity. An arbitrarily given treatment capacity value is 222 

adopted here.  223 

 224 

In the online analysis, the RT during storage is investigated by taking the system component interactions 225 

into account. For example, when the RT of a green water tank is under investigation, not only the impacts 226 

of volume of the green tank, but also the volume of grey water tank are considered. This reflects the 227 

situation in a real system. Therefore, the online analysis provides a more systematic understanding of the 228 

RT. It should be noted that the value of inflow to green water tank or the outflow from the grey water tank 229 

might not be the same as the treatment capacity because the grey water demand of the treatment device 230 

may not be always satisfied in the online analysis. The actual value, not the potential treatment capacity is 231 

adopted in the online analysis, while the potential treatment capacity is used in the offline analysis.  232 

 233 

3.1.1 The green water tank 234 

The results of the offline analysis for the green water tank are given in Figure 5. It presents the RTD of a 50 235 

litres green water tank with an inflow of 0.7 litres per 10 minutes, which corresponds to a treatment 236 

capacity of 100 litres per day, and the RTD of a 200 litres green water tank with the same inflow rate. As 237 

shown in Figure 6 (chart A), for the 50 litres tank, most water flowing out of the green water tank 238 

(excluding overflow) resided 0 to 10 days in the tank. The median value of the RTD is accounted as 1.88 239 

days. The RTI0-48 is calculated to be 0.60 according to equation 2. For the 200 litres tank, the median value 240 

of RTD and the RTI0-48 are 3.12 days and 0.43 respectively. It is observed that the increase of storage tank 241 

volume results in a longer residence time, and therefore, a reduced RTI0-48. This is also revealed in chart B, 242 

in which the RTI0-48 curve for tank size from 0 litres to 1000 litres with the same inflow rate is displayed.  243 

 244 

(Figure 6 here) 245 

 246 

Chart C in Figure 5 shows the result of the online analysis. It is clear that both the green and the grey water 247 

tank volumes impose impact on the RTI0-48 of the green water tank. It decreases with increasing of grey and 248 

green water tank volumes. However, the RTI0-48 is more sensitive to the green water tank volume. It is also 249 



noticed that very slight impact is imposed on the RTI0-48 by the size of grey water tank when the green 250 

water tank is relatively small (for example, less than 150 litres). This is because the adoption of threshold 251 

treatment capacity values. The household model operates at a 10 minute time scale and a ‘spill after yield’ 252 

assumption. In the model, the amount of grey water to spill is calculated after serving the treatment device 253 

in each time step.  When the grey water tank volume is rather small, the grey water generated in the 254 

household is more prone to spill. The difference between available grey water tank capacity and the grey 255 

water production in each time step is termed as amount to potentially spill (APS) in the case of the former 256 

is smaller than the latter. When the grey water tank is small, its ‘buffer’ function in adjusting the inflow and 257 

the outflow is not significant. At this circumstance, the more the APS uptaked by the treatment device (i.e. 258 

the bigger the treatment capacity), the more grey water would be possibly reused. For a recycling system 259 

with a small grey water tank, the highest WSE might appear when the treatment capacity is big enough to 260 

uptake all APS. This results in a large threshold value of treatment capacity. The difference between grey 261 

water in APS and in the grey water tank is that the latter can last beyond the current time step in the tank, 262 

while the former will spill if it is not uptaked in the current time step. When a bigger grey water tank is 263 

employed (more grey water can then be supplied from the grey water tank), a relatively small treatment 264 

capacity may be required to produce the same amount of green water as the situation of small grey water 265 

tank with large treatment capacity. For both situations, when the green water tank is small, more than 266 

enough (compared to the green water tank volume) green water can be produced. Different from the grey 267 

water tank, in which outflow is continuous and the APS can be uptaked by the treatment device, the 268 

outflow from the green water tank is intermittent (determined by the toilet water demand) and APS will be 269 

more possible to spill rather than to be uptaked by toilet cistern. Therefore, the RTIs of small green water 270 

tanks, as shown in chart C, will be rather steady regardless the volume of grey water tank.   271 

 272 

3.1.2 The grey water tank 273 

The results of the offline analysis for the grey water tank are shown in Figure 7. Chart A in Figure 7 274 

presents the RTDs of 50 and 200 litres grey water tanks with 100 litres per day treatment capacity. The 275 

median value of the RTDs and the RTI0-48s for 50 litres tank and 200 litres tank are: 0.25 days and 1, 1.64 276 

days and 0.95 respectively. It is clearly shown that the grey water is more prone to reside longer in a bigger 277 



grey water tank for a given treatment capacity. The RTI0-48 decreases with increasing grey water tank 278 

volume. This is also reflected by chart B in Figure 7, which depicts the changes of RTI0-48 with various grey 279 

water tank volumes for a given treatment capacity. Chart B also suggests that, for a given treatment 280 

capacity, the RTI0-48 of grey water tank remains 1 for the grey water tank volume up to a specific threshold 281 

value (for example, for treatment capacity 100 litres per day, the threshold value for grey water tank is 282 

about 190 litres (chart B in Figure 7)). The RTI0-48s for grey water tanks which are smaller than the 283 

threshold value are expected to be 1. A smaller RTI0-48 will be yielded for grey water tank which is bigger 284 

than this threshold. This turning point indicates the maximum grey water tank volume which a specific 285 

treatment capacity can ‘digest’ in terms of residence time up to 48 hours. The turning point for a bigger 286 

treatment capacity is expected to be higher.  287 

 288 

(Figure 7 here)  289 

 290 

The results of the online analysis are presented in chart C in Figure 7. It is observed that both grey and 291 

green water tank volumes have impact on the RTI0-48 of the grey water tank. However, grey water tank 292 

volume is more influential on the value of RTI0-48. It should be noticed that similar to the investigation for 293 

the green water tank, the threshold treatment capacity values are adopted in the online analysis for the grey 294 

water tank. The contour for RTI0-48 = 1 indicates a front that any combination of grey and green water tank 295 

volumes below it can lead to the residence time of grey water during storage is statistically lower than 48 296 

hours given the adoption of threshold treatment capacity.  297 

 298 

3.2 Relationship of potential WSE with grey and green water tanks  299 

Figure 8 shows WSE versus treatment capacity for 200 litres grey and green water tanks. It clearly indicates 300 

that WSE is maximised at a threshold treatment capacity of 200 litres per day for this configuration. Beyond 301 

this point, efficiency slowly declines regardless the increasing of treatment capacity. This effect is 302 

produced by the complex interactions between water supply and demand in relation to the filling of the two 303 

tanks, remembering that the green water tank has the potential for mains top up if it cannot supply the 304 

requested demand. For given volumes of grey and green water tank volumes, a bigger treatment capacity 305 



means more grey water could be treated into green water. However, it might also result in less grey water to 306 

be actually reused for toilet flushing because a bigger treatment capacity can encourage overflow from the 307 

green water tank and deficit of grey water. By iterating this calculation for any combinations of grey and 308 

green tanks in a reasonable range, the relationship of potential WSE with grey and green tank volumes can 309 

be explored. This is performed from two aspects: volume based analysis and quality based analysis. In the 310 

volume based analysis, the interaction between system performance and storage tank volumes are only 311 

investigated from water quantity aspect. The treatment device is assumed to be robust enough to cope with 312 

low quality grey water. It is also assumed that the quality of green water reaches the relevant standards and 313 

regulations before being consumed. In the quality based analysis, the relationship of grey and green water 314 

residence times during storage and their implications on water quality degradation are taken into account.  315 

 316 

(Figure 8 here) 317 

3.2.1 Volume based analysis 318 

In the volume based analysis, the system was assessed by taking just the quantity balance between water 319 

supply and demand into account.  A range of different configurations was evaluated, based on both grey 320 

and green water tank volumes up to 1000 litres, and treatment capacities up to 1000 litres per day. Result of 321 

this analysis is presented in Figure 9. It is observed that potential WSE increases with increasing total 322 

volume of grey and green water tank. For a given grey/green water tank volume, the WSE also increases 323 

with increasing green/grey water tank volume. However, the increase is not symmetrical.  For a given green 324 

water tank size, impact of grey water tank volume changing on WSE is small. Whereas in the converse case, 325 

for a given grey water tank size, impact of changing green water tank volume on WSE is significant. The 326 

figure clearly indicates the relative importance of the green tank volume in terms of achieving high WSE. 327 

The figure clearly indicates the relative importance of the green tank volume in relation to the grey water 328 

tank.  For the same total volume, a higher WSE is expected for the combination with a greater size of green 329 

water tank.  For example, for 800 litres total storage volume, the combination of 700 litres grey + 100 litres 330 

green yields 60 % WSE  (point a in Figure 9), 400 litres grey + 400 litres green gives 76 % WSE (point b), 331 

while 87 % WSE is expected for the combination of 100 litres grey + 700 litres green (point c).   332 

 333 



(Figure 9 here)  334 

 335 

3.2.2 Quality based analysis 336 

For the quality based analysis, the same configurations as the ones in the volume based analysis are 337 

adopted. Results are shown in Figure 10. Chart A in Figure 10 presents the contours of WSE and RTI0-48 338 

(for the grey tank) for different grey and green water tank volumes. It indicates that the residence time in 339 

the grey water tank is prone to be longer than 48 hours when both grey and green water tanks are large (as 340 

shown in the top right area in chart A). This implies that special attention should be paid in sizing storage 341 

tanks for a recycling system employing less robust treatment device like constructed wetland discussed in 342 

this paper, whose removal performance is sensitive to inflow grey water quality. Although the RTI0-48 of 343 

grey water tank imposes some influence on the system performance, a high WSE (i.e. over 85%) can still be 344 

accomplished theoretically by choosing rational grey and green water tanks given the RTI0-48 of the green 345 

water tank is also satisfactory. For example, a combination of relatively big green water tank and small 346 

grey water tank can promote both high WSE and low residence time (as shown in the bottom right area in 347 

chart A).  348 

 349 

(Figure 10 here)  350 

 351 

Chart B in Figure 10 shows the relationships of WSE and RTI0-48 (green) with grey and green water tank 352 

volumes. Opposing relationships are observed, such that higher grey and green water tank volumes lead to 353 

higher WSE but lower RTI0-48.  In terms of water demand management, an objective to save as much 354 

potable water as possible is generally pursued. The volume based analysis implies that a high WSE (i.e. 355 

over 85%) can be achieved with reasonable configurations (sizes – grey: 150 litres and green 650 litres, 356 

point a in chart B).  However, for this configuration, the RTI0-48 for the green water tank is 0.3.  Currently, 357 

there are no standards for RTI0-48, but in the interim if a value of 0.5 is suggested as a reasonable target 358 

figure, chart B clearly indicates it is not possible to achieve both an RTI0-48 = 0.5 and WSE = 85 %, 359 

whatever size tanks are used.  If an RTI0-48 standard of 0.5 is needed, a WSE of no greater than 65 % is 360 

possible based on a small green water tank (150 litres).    361 



 362 

4. Discussion 363 

A basic concern in grey water recycling is that the green water quality is good enough for non-potable 364 

purpose use and complies with relevant standards and regulations.  Previous studies have revealed the 365 

water quality degradation of grey water and municipal reclaimed water during storage. This might decrease 366 

the effluent quality of treatment device. Furthermore, the quality of grey water produced varies with time 367 

due to different sources (for example, quality of grey water from bath is different from washing machine). 368 

This imposes more uncertainties and variabilities on quality of influent grey water to treatment device. 369 

Therefore, methods should be taken to ensure that the grey water is to be treated before its quality degrades 370 

to unacceptable level.  In other words, residence time less than a certain value (48 hours in this work) as a 371 

criterion should be taken into account in system design. Similar consideration applies to green water tank to 372 

ensure the green water to be supplied for toilet before quality degrades to unacceptable level.  373 

 374 

The RTI is introduced in this paper to assess the probability of water residing in a storage tank over a 375 

certain period. From the analysis for grey and green water tanks, it is observed that the RTI0-48 is related to 376 

the volume of storage tank, inflow and outflow patterns. For the same volume of grey and green water 377 

tanks, differences in feature of RTD and value of RTI0-48 are observed. For example, the RTI0-48s for 200 378 

litres grey and green water tanks are 0.95 and 0.34 respectively (Figures 6 and 7). The shapes of RTD also 379 

show opposite trends (charts A in Figures 6 and 7). In the grey water tank, the probability of grey water 380 

flowing out (not spilling) immediately after flowing in (RT ∞ 0 hour) is rather small and it is more prone to 381 

reside for a while. However, in the green water tank, the green water is more prone to flow out immediately 382 

although the overall probability of residing over 48 hours is bigger than the one for a grey water tank with 383 

the same volume (RTI0-48 grey 200 litres = 0.95 or RTIover 48 = 0.05; RTI0-48 green 200 litres = 0.34 or RTIover 384 

48 = 0.66). This attributes to the different patterns of inflow and outflow of the storage tank. In the grey 385 

water tank, the inflow is the production of grey water in a household, which is intermittent and might be 386 

with high flow intensity over a short time period (for example, the use of bath and shower). The outflow is 387 

the water request from treatment device, which is continuous and with relatively low flow intensity. This 388 

results in that the grey water produced in the current time step is more possible to flow out afterwards. 389 



However, the situation for a green water tank is opposite, in which the inflow (green water production) is 390 

continuous and with relatively flow intensity and outflow is intermittent (toilet water request) and with 391 

relative high flow intensity (Assuming 1 toilet event with 9 litres water request in a 10 minute time step, the 392 

flow intensity is 9 litres per 10 minutes. For comparison, the flow intensity for a 100 litres per day 393 

treatment device is about 0.7 litres per 10 minutes).  This explains why the probability of RT ∞ 0 hour for 394 

green water tank is high (chart A in Figure 6) and the probability of RT ∞ 0 hour for grey water tank is low 395 

(chart A in Figure 7).  396 

 397 

The residence times of water in grey and green water tanks are investigated both with online and offline 398 

situations in this paper. The former assumes the storage tank is isolated from the system except for the 399 

adoption of real inflow for grey water tank (grey water production) and outflow for green water tank (toilet 400 

water request) and ignores the interaction between grey and green water tanks, and the treatment device. It 401 

provides a static snapshot on the relationship of RT with the volume of storage tank and representative 402 

inflow and outflow patterns. The latter investigates the RTs by taking the dynamic interactions between 403 

treatment capacity, grey and green water tanks. The relationship of RT with grey and green water tank 404 

volumes for a system with optimal design is explored. It reveals the systematic influence on RT of grey and 405 

green water. The finding from the offline analysis provides an insight to the understanding of RT due to 406 

volume of storage tank and flow patterns. The finding from the online analysis offers a systematic 407 

understanding of relationship of RT with system configurations and assist in revealing the constraint of RT 408 

in system design and potential water saving.   409 

 410 

In the investigation for the impact of system configuration on potential of water saving, the quality based 411 

analysis reveals the impacts of RTs on the potential of water saving. Small values of RTI0-48 are observed 412 

for big grey and green water tanks in achieving high WSE. However, it is still possible to achieve both high 413 

WSE and RTI0-48 (for the grey tank) by rational system design for a recycling system with less robust 414 

treatment device theoretically given the RTI0-48 (for the green tank) is satisfactory. More significant 415 

influence of RTI0-48 (for the green tank) on WSE is noticed. Although no standard for RTI0-48 (for the green 416 

tank) value is currently available, results from quality based analysis show that the WSE is inevitably 417 



reduced to pursue to higher RTI0-48 (for the green tank). It is also suggested that a combination of ‘big grey’ 418 

and ‘small green’ be employed to achieve a higher RTI0-48 (for the green tank) without trading off the WSE 419 

(chart B in Figure 7). This does not conflict with the finding from the volume based analysis, in which a 420 

combination of ‘big green’ and ‘small grey’ is recommended. In the volume based analysis, this conclusion 421 

is drawn on the condition of the same total volume of storage tank and in terms of water saving. However, 422 

in the quality based analysis, it is concluded to aim a better RTI0-48 (for the green tank) and the total volume 423 

of storage tanks are not the same.     424 

 425 

(Figure 11 here)  426 

 427 

The discussion above indicates that the adoption of 0 to 48 hours TR can significantly reduce the potential 428 

of potable water saved in a grey water recycling system. Figure 11 demonstrates that a broader TR, RT less 429 

than 4 days (96 hours) in the green water tank, can increase the potential of water saving by 16% for a grey 430 

water recycling system with the same configurations. In most present grey water recycling practices, the 431 

green water normally serves the toilet demand without further treatment. Therefore, target range of less 432 

than 2 days residence time is adopted in this project. The main concern of grey water recycling in terms of 433 

water demand management is to save as much potable water as possible, provided the water quality is 434 

satisfied. Result from above discussion shows that the main constraint to the percentage of potable water 435 

saved is the RT in the green water tank. Therefore, solutions should be sought to tolerate longer RT without 436 

compensate the quality of green water significant to achieve a higher water saving efficiency.  A possible 437 

answer to this might be to introduce another treatment or disinfection option, between green water tank and 438 

toilet cistern.  439 

 440 

5. Conclusions 441 

1. This paper explores the potential of water saving for a constructed wetland based grey water recycling 442 

system by taking the residence time of water during storage tank into account. The dynamics of water cycle 443 

in a household over 10 years is simulated using an object based model at a 10 minutes time step.  Results 444 

from the investigation of removal performance for different qualities of grey water suggest that attention 445 



should be paid in prohibiting degradation of grey water during storage for a constructed wetland based 446 

water recycling system. This conclusion may also apply to other grey water recycling system with less 447 

robust treatment technologies.  448 

2. Analysis for the residence time in grey and green water tanks indicates that RTD and RTI are dependent 449 

on the volume of storage tank, inflow and outflow patterns. Results from the volume based analysis reveal 450 

that the WSE increases with increasing storage tank volumes.  For a given total storage volume, greater 451 

WSE can be achieved by using greater volumes of green tank. Therefore, system configurations using larger 452 

green and smaller grey tanks are recommended in practice provided a suitable treatment strategy is 453 

employed. The quality based analysis has highlighted that although larger volume tanks produce higher 454 

water saving efficiencies, smaller volume tanks are needed to secure good water quality.  Indeed water 455 

saving efficiencies of greater than approximately 60 % cannot be safely achieved.  456 

3. As both high WSE and RTI cannot be achieved simultaneously, it is concluded that in order to achieve 457 

the most cost-effective and safe solution, systems with both small grey and green tanks are needed, whilst 458 

accepting that only relatively modest water saving efficiency targets can be achieved.  Higher efficiencies 459 

will only be practicable if water quality deterioration in the green water tank can be prevented by some 460 

means (e.g. disinfection). In this research, the effect of temperature on deterioration in storage tank is not 461 

considered. It is suggested that its impact should be included in future research. 462 
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Figure 2 Water use profile data for three-person households 689 
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Figure 5 Illustration of residence time distribution  692 

Figure 6 Results for residence time of green water: online and offline analyses 693 

Figure 7 Results for residence time of grey water: online and offline analyses 694 
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